JP2002119095A - Controller for controlling output of synchronous power generator - Google Patents

Controller for controlling output of synchronous power generator

Info

Publication number
JP2002119095A
JP2002119095A JP2000310769A JP2000310769A JP2002119095A JP 2002119095 A JP2002119095 A JP 2002119095A JP 2000310769 A JP2000310769 A JP 2000310769A JP 2000310769 A JP2000310769 A JP 2000310769A JP 2002119095 A JP2002119095 A JP 2002119095A
Authority
JP
Japan
Prior art keywords
voltage
value
output
energization
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310769A
Other languages
Japanese (ja)
Other versions
JP3778342B2 (en
Inventor
Atsuro Ota
淳朗 大田
Satoshi Honda
聡 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000310769A priority Critical patent/JP3778342B2/en
Priority to CNB011384530A priority patent/CN1196249C/en
Priority to MYPI20014681A priority patent/MY128621A/en
Priority to TW090124920A priority patent/TWI244255B/en
Priority to IT2001TO000961A priority patent/ITTO20010961A1/en
Priority to TR2003/00471T priority patent/TR200300471T2/en
Priority to PE2001001003A priority patent/PE20020700A1/en
Priority to BR0114398-0A priority patent/BR0114398A/en
Priority to ES200350021A priority patent/ES2215483B1/en
Priority to ARP010104744A priority patent/AR030872A1/en
Priority to KR10-2003-7004908A priority patent/KR100526715B1/en
Priority to IL15449101A priority patent/IL154491A0/en
Priority to PCT/JP2001/008873 priority patent/WO2002031960A1/en
Publication of JP2002119095A publication Critical patent/JP2002119095A/en
Priority to ZA200301242A priority patent/ZA200301242B/en
Application granted granted Critical
Publication of JP3778342B2 publication Critical patent/JP3778342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1484Regulation of the charging current or voltage otherwise than by variation of field by commutation of the output windings of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase amount of power generation while stability of rotation of an engine is kept within the low rotation range. SOLUTION: An engine rotation number discriminator 48 detects the number of rotations of a rotor. When the number of rotations of engine is in the lower rotation field, a driver 46 controls a rectifier 4 with the power feeding of the delayed angle to increase a field magnetic flux and also increase the amount of power generation. The driver 46 reads the amount of delayed angle stored in a delayed angle setting unit 49, in response to polarity change of the poles detected with a rotor angle sensor 29, and feeds the power in the delayed angle to a stator winding. An output voltage of the power generator is controlled to be converged to a value between a voltage control value VMax and VMin which are lower than a regulation voltage of the regulator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同期発電機の出力
制御装置に関し、特に、低回転域での発電量を増大させ
るのに好適な同期発電機の出力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output control device for a synchronous generator, and more particularly to an output control device for a synchronous generator suitable for increasing the amount of power generation in a low rotation speed range.

【0002】[0002]

【従来の技術】車両用発電装置として三相同期発電機が
用いられ、発電された交流を、三相全波整流器で整流し
てバッテリの充電に使用している。特開平9−1919
4号公報に開示された三相同期発電機では、ステータコ
イルに進相電流を流して、この進相電流に起因する電機
子反作用の増磁作用により界磁束を増加させて出力(発
電電圧および出力電流)を増大させている。
2. Description of the Related Art A three-phase synchronous generator is used as a power generator for a vehicle, and the generated alternating current is rectified by a three-phase full-wave rectifier and used for charging a battery. JP-A-9-1919
In the three-phase synchronous generator disclosed in Japanese Patent Application Publication No. 4 (1999) -1994, a leading current is supplied to a stator coil, and a field flux is increased by a magnetizing effect of an armature reaction caused by the leading current to output (generation voltage and power generation voltage). Output current).

【0003】[0003]

【発明が解決しようとする課題】一般に発電機には発電
電力が所定値を超えないように出力電圧を制限するレギ
ュレータが設けられ、このレギュレータが機能すること
により発電が停止される。発電が停止するとエンジンに
負荷変動が起こるため、特に、低回転域ではエンジン回
転が不安定になってしまう。また、発電力が過大である
と、低回転域ではそのためのフリクションの増大による
エンジン回転への影響が大きい。
Generally, a generator is provided with a regulator for limiting the output voltage so that the generated power does not exceed a predetermined value, and the power generation is stopped by the function of the regulator. When the power generation stops, the load fluctuates in the engine, so that the engine rotation becomes unstable especially in a low rotation speed range. Also, if the generated power is excessive, in a low rotation range, an increase in friction due to this has a large effect on the engine rotation.

【0004】本発明は、低回転域においてエンジン回転
を不安定にさせずに発電電力を増大させることができる
同期発電機の出力制御装置を提供することを目的とす
る。
An object of the present invention is to provide an output control device of a synchronous generator capable of increasing the generated power without making the engine rotation unstable in a low rotation range.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、発電機の回転子の回転数を検出する検出
手段と、固定子巻線に遅角通電させて前記発電機の発電
量を増大させる通電手段と、前記発電機の出力電圧を所
定のレギュレート電圧に制限するレギュレータとを具備
し、前記遅角通電が、前記回転子の回転数が予定の低回
転数域にあるときに行われるとともに、前記出力電圧を
前記レギュレート電圧よりも低い予定の電圧制御値に制
御するよう通電制御される点に第1の特徴がある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a detecting means for detecting the number of revolutions of a rotor of a generator, and a method of controlling the generator by applying a retarded current to a stator winding. An energizing means for increasing the amount of power generation, and a regulator for limiting the output voltage of the generator to a predetermined regulated voltage, wherein the retarded energization is performed when the rotational speed of the rotor is in a predetermined low rotational speed range. The first characteristic is that the power supply is controlled so as to be performed at a certain time and to control the output voltage to a predetermined voltage control value lower than the regulation voltage.

【0006】第1の特徴によれば、固定子巻線に遅角通
電することにより発電出力が増大する。そして、この遅
角通電が、出力電圧をレギュレータのレギュレート電圧
より低く設定される電圧制御値に制御するように行われ
るので、低回転域でレギュレータを作動させずに安定的
に発電量の増大を図ることができる。
[0006] According to the first feature, the power generation output is increased by conducting the retarded current to the stator winding. Then, since this retardation energization is performed so as to control the output voltage to a voltage control value set lower than the regulation voltage of the regulator, the power generation amount is stably increased without operating the regulator in a low rotation range. Can be achieved.

【0007】また、本発明は、前記遅角通電では、通電
遅角量を予定値に維持したまま通電デューティを変化さ
せることにより、前記出力電圧が前記予定の電圧制御値
に制御される点に第2の特徴がある。
Further, the present invention is characterized in that in the retarding energization, the output voltage is controlled to the predetermined voltage control value by changing the energization duty while maintaining the energization delay amount at a predetermined value. There is a second feature.

【0008】さらに、本発明は、前記電圧制御値が予定
の幅を有し、前記通電デューティを、前記出力電圧が該
幅の最大値に達したときに微減させ、前記出力電圧が該
幅の最小値に以下に下がったときに微増させる点に第3
の特徴があり、前記通電デュ−ティが、前記発電機の回
転数に応じて決定される点に第4の特徴がある。
Further, according to the present invention, the voltage control value has a predetermined width, and the energization duty is slightly reduced when the output voltage reaches the maximum value of the width, and the output voltage is reduced to the predetermined width. The third point is to increase slightly when the value falls below the minimum value.
The fourth characteristic lies in that the energization duty is determined according to the rotation speed of the generator.

【0009】第2〜第4の特徴によれば、遅角のタイミ
ングが固定されるので、発電量の調整が容易であり、調
整の精度を上げることができる。
According to the second to fourth features, since the timing of the retardation is fixed, the amount of power generation can be easily adjusted, and the accuracy of the adjustment can be increased.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図2は、本発明の一実施形態に係
るスタータ兼発電機の断面図である。このスタータ兼発
電機(以下、「ACG」という)1は、例えば、スクー
タ型自動二輪車エンジンに搭載される。ACG1は、三
相巻線(ステータコイル)が巻回されたステータ50
と、エンジンのクランク軸201の端部に結合されてス
テータ50の外周を回転するアウタロータ60とを有す
る。アウタロータ60はクランク軸201に連結される
カップ状のロータケース63と、ロータケース63の内
周面に収容されるマグネット62とを有する。マグネッ
ト62はロータヨークに円周方向に沿って配置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view of a starter / generator according to an embodiment of the present invention. The starter / generator (hereinafter, referred to as “ACG”) 1 is mounted on, for example, a scooter-type motorcycle engine. ACG1 is a stator 50 on which a three-phase winding (stator coil) is wound.
And an outer rotor 60 coupled to the end of the crankshaft 201 of the engine and rotating on the outer periphery of the stator 50. The outer rotor 60 has a cup-shaped rotor case 63 connected to the crankshaft 201, and a magnet 62 housed on the inner peripheral surface of the rotor case 63. The magnet 62 is arranged on the rotor yoke along the circumferential direction.

【0011】アウタロータ60は、ハブ部60aの内周
をクランク軸201の先端テーパ部に嵌合させて取り付
けられ、ハブ部60aの中心を貫通してクランク軸20
1の端部ネジに螺挿されるボルト253で固定される。
アウタロータ60の内周側に配設されるステータ50は
ボルト279によってクランクケース202に固定され
る。アウタロータ60にはボルト246によって固定さ
れたファン280が設けられる。ファン280に隣接し
てラジエータ282が設けられ、ラジエータ282はフ
ァンカバー281によって覆われる。
The outer rotor 60 is mounted by fitting the inner periphery of the hub portion 60a to the tapered end of the crankshaft 201, and penetrates through the center of the hub portion 60a.
It is fixed with a bolt 253 inserted into one end screw.
The stator 50 disposed on the inner peripheral side of the outer rotor 60 is fixed to the crankcase 202 by bolts 279. A fan 280 fixed to the outer rotor 60 by bolts 246 is provided. A radiator 282 is provided adjacent to the fan 280, and the radiator 282 is covered by a fan cover 281.

【0012】ステータ50の内周にはセンサケース28
が嵌め込められ、このセンサケース28内にはアウタロ
ータ60のボスの外周に沿って等間隔でロータ角度セン
サ(磁極センサ)29およびパルサセンサ(点火パル
サ)30が設けられる。ロータ角度センサ29はACG
1のステータコイルに対する通電制御を行うためのもの
であり、ACG1のU相、V相、W相のそれぞれに対応
して1つずつ設けられる。一方、点火パルサ30はエン
ジンの点火制御のためのものであり、1つだけ設けられ
る。ロータ角度センサ29および点火パルサ30はいず
れもホールICまたは磁気抵抗(MR)素子で構成する
ことができる。
A sensor case 28 is provided on the inner periphery of the stator 50.
A rotor angle sensor (magnetic pole sensor) 29 and a pulser sensor (ignition pulser) 30 are provided in the sensor case 28 at regular intervals along the outer periphery of the boss of the outer rotor 60. The rotor angle sensor 29 is ACG
This is for controlling the energization of one stator coil, and one is provided corresponding to each of the U-phase, V-phase, and W-phase of ACG1. On the other hand, only one ignition pulser 30 is provided for controlling the ignition of the engine. Each of the rotor angle sensor 29 and the ignition pulser 30 can be constituted by a Hall IC or a magnetoresistive (MR) element.

【0013】ロータ角度センサ29および点火パルサ3
0のリード線は基板31に接続され、さらに基板31に
はワイヤハーネス32が結合される。アウタロータ60
のボス60aの外周には、ロータ角度センサ29および
点火パルサ30のそれぞれに磁気作用を及ぼすよう2段
着磁されたマグネットリング33が嵌め込まれる。
The rotor angle sensor 29 and the ignition pulser 3
The lead wire of No. 0 is connected to the substrate 31, and a wire harness 32 is connected to the substrate 31. Outer rotor 60
A boss 60a is fitted with a magnet ring 33 magnetized in two stages so as to exert a magnetic action on each of the rotor angle sensor 29 and the ignition pulser 30.

【0014】ロータ角度センサ29に対応するマグネッ
トリング33の一方の着磁帯には、ステータ50の磁極
に対応して、円周方向に30°幅間隔で交互に配列され
たN極とS極が形成され、点火パルサ30に対応するマ
グネットリング33の他方の着磁帯には、円周方向の1
か所に15°ないし40°の範囲で着磁部が形成され
る。
In one magnetized band of the magnet ring 33 corresponding to the rotor angle sensor 29, N poles and S poles are alternately arranged at intervals of 30 ° in the circumferential direction corresponding to the magnetic poles of the stator 50. Is formed, and the other magnetized band of the magnet ring 33 corresponding to the ignition pulser 30 is provided with one in the circumferential direction.
Magnetized portions are formed at 15 ° to 40 ° in some places.

【0015】上記構成のACG1は、始動時には同期モ
ータとして機能し、バッテリから供給される電流で駆動
されてクランク軸201を回動させてエンジンを始動さ
せるとともに、始動後は同期発電機として機能し、発電
した電流でバッテリを充電し、かつ各電装部に電流を供
給する。
The ACG 1 having the above structure functions as a synchronous motor at the time of starting, is driven by a current supplied from a battery, rotates the crankshaft 201 to start the engine, and functions as a synchronous generator after the starting. The battery is charged with the generated current, and the current is supplied to each electrical component.

【0016】図3は、ACG1の出力制御装置を有する
自動二輪車の要部電装系統図である。同図において、E
CU3にはACG1で発生した三相交流を整流する全波
整流器4と、全波整流器4の出力を予定のレギュレート
電圧(レギュレータ作動電圧:例えば、14.5V)に
制限するためのレギュレータ5とが設けられる。さら
に、ECU3は、エンジン回転数が予定の低回転域(以
下、「発電制御領域」という)であるとき、発電量を増
加させる制御を行う発電制御部6を有する。なお、発電
制御部6はCPUの機能として実現される。前記ロータ
角度センサ29および点火パルサ30もECU3に接続
されて、その検出信号はECU3に入力される。
FIG. 3 is a main part electrical system diagram of a motorcycle having an ACG 1 output control device. In FIG.
The CU 3 includes a full-wave rectifier 4 for rectifying the three-phase alternating current generated in the ACG 1 and a regulator 5 for limiting the output of the full-wave rectifier 4 to a predetermined regulated voltage (regulator operating voltage: for example, 14.5 V). Is provided. Further, the ECU 3 includes a power generation control unit 6 that performs control to increase the amount of power generation when the engine speed is in a predetermined low rotation range (hereinafter, referred to as a “power generation control region”). The power generation control unit 6 is realized as a function of the CPU. The rotor angle sensor 29 and the ignition pulser 30 are also connected to the ECU 3, and the detection signals are input to the ECU 3.

【0017】ECU3には、点火コイル21が接続さ
れ、点火コイル21の二次側には点火プラグ22が接続
される。また、ECU3にはスロットルセンサ23、フ
ューエルセンサ24、シートスイッチ25、アイドルス
イッチ26、冷却水温センサ27が接続され、各部から
検出信号がECU3に入力される。
An ignition coil 21 is connected to the ECU 3, and an ignition plug 22 is connected to a secondary side of the ignition coil 21. The ECU 3 is connected to a throttle sensor 23, a fuel sensor 24, a seat switch 25, an idle switch 26, and a coolant temperature sensor 27, and a detection signal is input to the ECU 3 from each unit.

【0018】さらに、ECU3には、スタータリレー3
4、スタータスイッチ35、ストップスイッチ36,3
7、スタンバイインジケータ38、フューエルインジケ
ータ39、スピードセンサ40、オートバイスタ41、
およびヘッドライト42が接続される。ヘッドライト4
2には、ディマースイッチ43が設けられる。
Further, the ECU 3 includes a starter relay 3
4. Starter switch 35, stop switch 36,3
7, standby indicator 38, fuel indicator 39, speed sensor 40, motorcycle star 41,
And a headlight 42 are connected. Headlight 4
2 is provided with a dimmer switch 43.

【0019】上記の各部にはメインヒュ−ズ44および
メインスイッチ45を介してバッテリ2から電流が供給
される。なお、バッテリ2は、スタータリレー34によ
ってECU3に直接接続される一方、メインスイッチ4
5を介さず、メインヒューズ44だけを介してECU3
に接続される回路を有する。
The above components are supplied with current from the battery 2 via a main fuse 44 and a main switch 45. The battery 2 is directly connected to the ECU 3 by a starter relay 34, while the main switch 4
5 and not through the main fuse 44 but the ECU 3
Having a circuit connected to it.

【0020】上記発電制御部6は、通常に発電量(電
圧)を制御する機能に加え、本発明に従って前記発電A
CG1の各相のステータコイルに対してバッテリ2から
遅角通電して発電量を増加させる(以下、「ACG 通電制
御」という)機能を有する。ここで、遅角通電とは、前
記ロータ角度センサ29で検出される前記着磁帯33の
磁極の変化時の検出信号から予定の電気角相当分を遅延
させてステータコイルに通電することをいう。但し、低
回転域で前記レギュレータ5が作動することによって生
じるエンジン負荷の急変に起因するエンジン回転の不安
定化を防止するため、全波整流器4の出力電圧(バッテ
リ電圧)が、レギュレート電圧以下の予定電圧範囲内に
収まるよう制御される。
The power generation control unit 6 has a function of controlling the amount of power generation (voltage) in addition to the function of normally controlling the power generation A according to the present invention.
It has a function of increasing the amount of electric power generated by retarding electricity from the battery 2 to the stator coils of each phase of the CG 1 (hereinafter referred to as “ACG electricity supply control”). Here, the retard angle energization means energizing the stator coil with a delay corresponding to a predetermined electrical angle from a detection signal at the time of a change in the magnetic pole of the magnetization zone 33 detected by the rotor angle sensor 29. . However, the output voltage (battery voltage) of the full-wave rectifier 4 is equal to or less than the regulation voltage in order to prevent the engine rotation from becoming unstable due to the sudden change in the engine load caused by the operation of the regulator 5 in the low rotation range. Is controlled so as to fall within the predetermined voltage range.

【0021】図4はACG 通電制御をしたときのエンジン
回転数と発電電流との関係を示す図である。同図におい
て、エンジン回転数が1000rpm〜3500rpm
の領域が発電制御領域として設定されており、このよう
な低回転領域では、従来の制御手法によるACG1の発
電電流(ACG出力)は極めて小さい。そこで、発電制
御領域においてACG 通電制御により発電電流を増加させ
る。増加分は「遅角通電時」として点線で示す。発電量
が常用負荷電流に相当するように制御することにより、
低回転領域においても、消費電流量に相当する発電量を
確保できる。
FIG. 4 is a diagram showing the relationship between the engine speed and the generated current when ACG energization control is performed. In the figure, the engine speed is 1000 rpm to 3500 rpm.
Is set as the power generation control region. In such a low rotation speed region, the generated current (ACG output) of the ACG 1 by the conventional control method is extremely small. Therefore, in the power generation control region, the generated current is increased by ACG energization control. The increment is indicated by a dotted line as “when the retard is energized”. By controlling the amount of power generation to correspond to the normal load current,
Even in the low rotation region, a power generation amount corresponding to the current consumption can be secured.

【0022】図5は、遅角発電領域におけるバッテリ電
圧の変化を示す図である。同図において、レギュレート
電圧(14.5V)以下に設定された制御電圧最大値V
Maxおよび制御電圧最小値VMin で規定されるACG 制御
電圧範囲でバッテリ電圧Vbが制御される。具体的に
は、ステータコイルに対する通電遅角量は固定値(例え
ば電気角60°)とし、全波整流器4の通電デューティ
を増減してバッテリ電圧Vb をACG 制御電圧範囲に制御
する。すなわち、バッテリ電圧Vb が制御電圧最大値V
Max に達したら通電デューティを予定の微小値(例えば
1%)だけ低減させ、バッテリ電圧Vb が制御電圧最小
値VMin に下がったら通電デューティを同微小値だけ増
大させる。
FIG. 5 is a diagram showing a change in battery voltage in the retarded power generation region. In the figure, the control voltage maximum value V set to be equal to or lower than the regulated voltage (14.5 V)
The battery voltage Vb is controlled within the ACG control voltage range defined by Max and the control voltage minimum value VMin. Specifically, the amount of retardation of the current supply to the stator coil is set to a fixed value (for example, an electrical angle of 60 °), and the current supply duty of the full-wave rectifier 4 is increased or decreased to control the battery voltage Vb within the ACG control voltage range. That is, when the battery voltage Vb is equal to the control voltage maximum value V
When it reaches Max, the energization duty is reduced by a predetermined minute value (for example, 1%), and when the battery voltage Vb falls to the control voltage minimum value VMin, the energization duty is increased by the minute value.

【0023】図1は、ACG 通電制御装置の要部機能を示
すブロック図である。同図において、全波整流器4はA
CG1のステータコイル1U,1V,1Wに接続された
FET(一般的には固体スイッチング素子)4a,4
b,4c,4d,4e,4fを有し、エンジン始動時
は、ドライバ46によりFET4a〜4fをスイッチン
グし、ACG1を同期電動機として駆動し、前記クラン
ク軸201を回転させる一方、エンジン始動後は、逆に
アウタロータがエンジンによって駆動して同期発電機と
して機能するので、FET4a〜4fで発電交流を整流
してバッテリ2や電装負荷47に給電する。また、エン
ジン駆動による発電中においても、特に、エンジンの低
回転時には本発明に従い、ステータコイルへの遅角通電
が行われるようにドライバ46でFET4a〜4fを制
御して発電量を増大させる。なお、遅角通電制御につい
ては図7を参照して後述する。
FIG. 1 is a block diagram showing the main functions of the ACG power supply control device. In the figure, the full-wave rectifier 4 is A
FETs (generally, solid-state switching elements) 4a, 4 connected to stator coils 1U, 1V, 1W of CG1
b, 4c, 4d, 4e, and 4f. When the engine is started, the FETs 4a to 4f are switched by the driver 46, the ACG 1 is driven as a synchronous motor, and the crankshaft 201 is rotated. Conversely, since the outer rotor is driven by the engine and functions as a synchronous generator, the generated AC is rectified by the FETs 4a to 4f and supplied to the battery 2 and the electric load 47. Further, according to the present invention, even during power generation by driving the engine, especially when the engine is running at a low speed, the FETs 4a to 4f are controlled by the driver 46 so as to carry out the retarded energization to the stator coil to increase the power generation amount. The retardation energization control will be described later with reference to FIG.

【0024】エンジン回転数判別部48は、例えば、点
火パルサ30の検出信号や発電電圧の周波数信号などを
もとにエンジン回転数を検出し、検出エンジン回転数が
予定の発電制御領域にあれば遅角指令をドライバ46に
供給する。ドライバ46は遅角指令に応答して遅角量設
定部49から予め設定されている通電遅角量を読み出し
て遅角通電させる。通電デューティはデューティ設定部
51から読み出してドライバ46に供給される。ドライ
バ46はロータ角度センサ29による磁極検出信号、す
なわちアウタロータ60の磁極に対応して形成されてい
るマグネットリング33の着磁帯をセンサ29が検出す
るたびにオンに立ち上がる信号を検出する。そして、そ
の信号の立上がりから通電遅角量相当分を遅角させてF
ET4a〜4fに対するPWM制御信号を出力する。
The engine speed discriminating section 48 detects the engine speed based on, for example, a detection signal of the ignition pulser 30 and a frequency signal of the generated voltage, and if the detected engine speed is in a predetermined power generation control area. A retard command is supplied to the driver 46. In response to the retard command, the driver 46 reads a preset energization delay amount from the retard amount setting section 49 and performs the retard energization. The energization duty is read from the duty setting unit 51 and supplied to the driver 46. The driver 46 detects a magnetic pole detection signal from the rotor angle sensor 29, that is, a signal that is turned on every time the sensor 29 detects a magnetization band of the magnet ring 33 formed corresponding to the magnetic pole of the outer rotor 60. Then, from the rising of the signal, the amount of delay of the energization is retarded by F
It outputs PWM control signals for the ETs 4a to 4f.

【0025】バッテリ電圧判別部52ではバッテリ電圧
Vb を、電圧制御範囲を規定する前記制御電圧最大値V
Max および制御電圧最小値VMin と比較し、その比較結
果に基づいて、デューティ設定部51に設定される通電
デューティを増減し、バッテリ電圧Vb が前記制御範囲
に収まるようにする。
The battery voltage determining unit 52 determines the battery voltage Vb as the control voltage maximum value V that defines the voltage control range.
Max and the control voltage minimum value VMin are compared, and based on the comparison result, the energization duty set in the duty setting unit 51 is increased or decreased so that the battery voltage Vb falls within the control range.

【0026】図6は、上記の出力制御装置の処理を示す
フローチャートである。同図において、ステップS1で
はエンジン回転数が発電制御領域に存在しているか否か
を判断する。発電制御領域は、上述のように、例えば1
000rpm以上3500rpm以下に設定される。エ
ンジン回転数が発電制御領域に存在していれば、ステッ
プS2に進み、エンジン回転数が発電制御領域に存在し
ていることを示すフラグFACG がセットされている(=
1)か否かを判別する。フラグFACG がセットされてい
なければステップS3に進んでフラグFACG をセットす
る(「1」にする)。フラグFACG をセットしたなら
ば、ステップS4に進んで通電遅角量acgaglに予定値AC
GAGLをセットする。予定値ACGAGLは、予め適当に設定し
ておくことができるが、本実施形態では、例えば、電気
角60°である。続くステップS5では通電デューティ
acdutyに初期値ACDUTYをセットする。前記初期値ACDUTY
も予め適当に設定しておくことができるが、本実施形態
では、例えば40%である。ステップS3〜S5が終わ
ったならばステップS7に進む。前記ステップS2が肯
定ならばステップS3〜S5はスキップしてステップS
7に進む。また、エンジン回転数が前記発電制御領域に
存在しないときは、ステップS6でフラグFACG をリセ
ット(=0)した後、ステップS7に進む。
FIG. 6 is a flowchart showing the processing of the output control device. In FIG. 5, in step S1, it is determined whether or not the engine speed is in the power generation control region. The power generation control area is, for example, 1 as described above.
It is set to 000 rpm or more and 3500 rpm or less. If the engine speed is in the power generation control region, the process proceeds to step S2, and a flag FACG indicating that the engine speed is in the power generation control region is set (=
1) It is determined whether or not. If the flag FACG has not been set, the routine proceeds to step S3, where the flag FACG is set (set to "1"). If the flag FACG is set, the process proceeds to step S4, and the energization retard amount acgagl is set to the predetermined value AC.
Set GAGL. The scheduled value ACGAGL can be appropriately set in advance, but in the present embodiment, for example, the electrical angle is 60 °. In the following step S5, the energization duty
Set the initial value ACDUTY to acduty. The initial value ACDUTY
Can be appropriately set in advance, but in the present embodiment, it is, for example, 40%. When steps S3 to S5 are completed, the process proceeds to step S7. If step S2 is positive, steps S3 to S5 are skipped and step S
Go to 7. If the engine speed is not in the power generation control region, the flag FACG is reset (= 0) in step S6, and then the process proceeds to step S7.

【0027】ステップS7では、フラグFACG がセット
されているか否かを判別する。フラグFACG がセットさ
れていた(=1)ならば、ステップS8でバッテリ電圧
Vbが制御電圧最大値VMax 以上か否かを判断する。制
御電圧最大値VMax は、レギュレート電圧より低い値、
例えば13.5ボルトに設定される。バッテリ電圧Vb
が制御電圧最大値VMax 以上でないときは、ステップS
9に進んでバッテリ電圧Vb が制御電圧最小値VMin 以
下か否かを判断する。制御電圧最小値VMin は、例えば
13.0ボルトに設定される。ステップS9でバッテリ
電圧Vb が制御電圧最小値VMin 以下でないときは、レ
ギュレータのレギュレート電圧よりも低い値に設定され
たACG 通電電圧範囲に入っていると判断され、ステップ
S10に進んで、上記通電遅角量acgaglと通電デューテ
ィacdutyとに従ってACG 通電制御を行う。
In step S7, it is determined whether or not the flag FACG is set. If the flag FACG has been set (= 1), it is determined in step S8 whether or not the battery voltage Vb is equal to or higher than the control voltage maximum value VMax. The control voltage maximum value VMax is a value lower than the regulation voltage,
For example, it is set to 13.5 volts. Battery voltage Vb
Is smaller than the control voltage maximum value VMax, step S
Proceeding to 9, it is determined whether or not the battery voltage Vb is equal to or lower than the control voltage minimum value VMin. The control voltage minimum value VMin is set to, for example, 13.0 volts. If the battery voltage Vb is not equal to or smaller than the control voltage minimum value VMin in step S9, it is determined that the battery voltage Vb is within the ACG energizing voltage range set to a value lower than the regulated voltage of the regulator, and the process proceeds to step S10. ACG energization control is performed according to the retard amount acgagl and the energization duty acduty.

【0028】ステップS8でバッテリ電圧Vb が制御電
圧最大値VMax 以上であると判断されたときは、ステッ
プS11に進んで通電デューティacdutyを微小値DDUTY
低減する。微小値DDUTY は例えば1%である。また、ス
テップS9でバッテリ電圧Vb が制御電圧最小値VMin
以下であると判断されたときはステップS12に進んで
通電デューティacdutyを微小値DDUTY 増大する。ステッ
プS11,S12の処理後はステップS10に進む。な
お、通電デューティacdutyを増大させる時と低減させる
ときの前記微小値DDUTY は必ずしも同一でなくてもよい
し、制御電圧最大値VMax または制御電圧最小値VMin
と現在値との差に比例して微小値DDUTYを変化させても
よい。
If it is determined in step S8 that the battery voltage Vb is equal to or higher than the control voltage maximum value VMax, the process proceeds to step S11, in which the energization duty acduty is reduced to a small value DDUTY.
Reduce. The minute value DDUTY is, for example, 1%. In step S9, the battery voltage Vb is set to the control voltage minimum value VMin.
If it is determined that it is below, the process proceeds to step S12, and the energization duty acduty is increased by the minute value DDUTY. After the processes in steps S11 and S12, the process proceeds to step S10. The minute value DDUTY when increasing and decreasing the energization duty acduty does not necessarily have to be the same, and the control voltage maximum value VMax or the control voltage minimum value VMin
The minute value DDUTY may be changed in proportion to the difference between the current value and the current value.

【0029】一方、ステップS7でフラグFACG がセッ
トされていなかった(=0)ならば、発電制御領域でな
いのでステップS13に進んでACG 通電制御を停止す
る。
On the other hand, if the flag FACG has not been set (= 0) in step S7, the flow is not in the power generation control region, and the flow advances to step S13 to stop the ACG energization control.

【0030】図7は、ACG 通電制御時にステータコイル
の各相に流れる電流(相電流)とロータ角度センサ29
の出力とのタイミングを示す図である。図に示すよう
に、遅角通電制御が行われない、通常の場合にはロータ
角度センサ29の検出出力の正負(NS)の変化に応答
してステータコイルのU,V,W各相に電流が供給され
る。一方、遅角通電制御を行った場合には、ロータ角度
センサ29の検出出力の正負(NS)の変化時から予定
の遅角量d(=60°)だけ遅れてステータコイルの
U,V,W各相に電流が供給される。図7において、デ
ューティチョッピングによる通電角Tは180°である
が、デューティ設定部51からドライバ46へ供給され
る通電デューティによって180°以内で決定すること
ができる。
FIG. 7 shows the current (phase current) flowing through each phase of the stator coil and the rotor angle sensor 29 during the ACG energization control.
FIG. 6 is a diagram showing timings with respect to the output of FIG. As shown in the figure, the retarding energization control is not performed. In a normal case, the current is supplied to each of the U, V, and W phases of the stator coil in response to a change in the sign (NS) of the detection output of the rotor angle sensor 29. Is supplied. On the other hand, when the retardation energization control is performed, the U, V, and V of the stator coil are delayed by a predetermined delay amount d (= 60 °) from the change of the sign (NS) of the detection output of the rotor angle sensor 29. Current is supplied to each phase of W. In FIG. 7, the energization angle T due to duty chopping is 180 °, but it can be determined within 180 ° by the energization duty supplied from the duty setting unit 51 to the driver 46.

【0031】図8はエンジン回転数つまり発電機の回転
数をパラメータとして設定した通電デューティのテーブ
ルである。エンジン回転数を検出し、図8を参照してエ
ンジン回転数に応じた通電デューティを決定する。
FIG. 8 is a table of the energization duty in which the engine speed, that is, the generator speed is set as a parameter. The engine speed is detected, and the energization duty according to the engine speed is determined with reference to FIG.

【0032】上記実施形態では、アウタロータ/インナ
ロータ方式で、アウタロータに界磁束発生用磁石手段と
して永久磁石を配置した。しかし、本発明は、インナロ
ータに界磁束発生用磁石手段を設けた発電機や、界磁束
発生用磁石手段として電磁石を採用した発電機にも同様
に適用できる。また、通電遅角量acgaglを、固定値とす
るのではなく、一般的な負帰還制御手法に従い、比例、
微分、積分およびこれらの複合制御をすることができ
る。
In the above-described embodiment, the outer rotor / inner rotor system has permanent magnets arranged as field magnetic flux generating magnet means on the outer rotor. However, the present invention can be similarly applied to a generator in which an inner rotor is provided with magnet means for generating field magnetic flux, and a generator in which an electromagnet is used as the magnet means for generating field magnetic flux. Further, the energization delay amount acgagl is not set to a fixed value, but is proportional,
Differential, integral and a combination of these controls can be performed.

【0033】[0033]

【発明の効果】以上の説明から明らかなとおり、請求項
1〜請求項4の発明によれば、低回転域で通常の電圧レ
ギュレータを作動させずに安定的に発電量の増大を図る
ことができる。したがって、回転子がエンジンで駆動さ
れる車載の発電機に適用した場合、アイドル運転時など
にエンジン負荷の変動を少なくしてエンジン回転の変動
を極力小さくし、アイドル運転を安定にすることができ
る。また、請求項2〜4の発明によれば、遅角のタイミ
ングが予め設定した値に固定されるので、簡易な構成で
容易に発電量の調整ができるとともに、調整の精度を上
げることができる。
As is apparent from the above description, according to the first to fourth aspects of the present invention, it is possible to stably increase the power generation amount without operating a normal voltage regulator in a low rotation speed range. it can. Therefore, when the rotor is applied to an on-vehicle generator driven by an engine, it is possible to minimize fluctuations in engine load during idling operation and the like, to minimize fluctuations in engine rotation, and to stabilize idling operation. . According to the second to fourth aspects of the present invention, since the timing of the retardation is fixed to a preset value, the power generation amount can be easily adjusted with a simple configuration, and the accuracy of the adjustment can be increased. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る出力制御装置の要
部機能を示すブロック図である。
FIG. 1 is a block diagram illustrating main functions of an output control device according to an embodiment of the present invention.

【図2】 本発明の一実施形態に係るスタータ兼発電機
の断面図である。
FIG. 2 is a sectional view of a starter / generator according to an embodiment of the present invention.

【図3】 本発明の出力制御装置を有する自動二輪車の
要部電装系統図である。
FIG. 3 is a main part electrical system diagram of a motorcycle having the output control device of the present invention.

【図4】 ACG 通電制御時のエンジン回転数と発電電流
との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an engine speed and a generated current during ACG energization control.

【図5】 遅角発電領域におけるバッテリ電圧の変化を
示す図である。
FIG. 5 is a diagram showing a change in battery voltage in a retarded power generation region.

【図6】 出力制御装置の処理を示すフローチャートで
ある。
FIG. 6 is a flowchart showing a process of the output control device.

【図7】 ACG 通電制御時のステータコイルの相電流と
ロータ角度センサの出力とのタイミングを示す図であ
る。
FIG. 7 is a diagram showing timings of a phase current of a stator coil and an output of a rotor angle sensor during ACG energization control.

【図8】 エンジン回転数をパラメータとする通電デュ
ーティのテーブルでっある。
FIG. 8 is a table of an energization duty using an engine speed as a parameter.

【符号の説明】[Explanation of symbols]

1…スタータ兼発電機、 2…バッテリ、 3…EC
U、 4…全波整流器、5…レギュレータ、 29…ロ
ータ角度センサ、 30…点火パルサ、 46…ドライ
バ、 48…エンジン回転数判別部、49…遅角量設定
部、 50…ステータ、 51…デューティ設定部、
60…アウタロータ、 62…マグネット、 201…
クランク軸
1: starter / generator, 2: battery, 3: EC
U, 4: full-wave rectifier, 5: regulator, 29: rotor angle sensor, 30: ignition pulser, 46: driver, 48: engine speed discriminator, 49: retard amount setting unit, 50: stator, 51: duty Setting part,
60: outer rotor, 62: magnet, 201:
Crankshaft

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G093 AA02 AA16 BA02 CA10 DA01 DA05 DA06 DB00 DB01 DB19 EB00 EB09 EC01 FA14 FB02 5G060 AA04 CA13 CA16 DA01 DB07 5H590 AA22 AA30 CA07 CA23 CC02 CC18 CC24 CD03 CE05 DD64 EA10 EB12 FA08 FB01 FB03 FB05 GB05 HA02 HA11 HA27 JA02  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) FB05 GB05 HA02 HA11 HA27 JA02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 界磁束発生用磁石手段を有する回転子、
および発電出力発生用の固定子巻線が巻回された固定子
を有する同期発電機の出力制御装置において、 前記回転子の回転数を検出する検出手段と、 前記固定子巻線に遅角通電させて前記発電機の発電量を
増大させる通電手段と、 前記発電機の出力電圧を所定のレギュレート電圧に制限
するレギュレータとを具備し、 前記遅角通電が、前記回転子の回転数が予定の低回転数
域にあるときに行われるとともに、前記出力電圧を前記
レギュレート電圧よりも低い、予定の電圧制御値に制御
するよう通電制御されることを特徴とする同期発電機の
出力制御装置。
A rotor having a field magnetic flux generating magnet means,
And an output control device for a synchronous generator having a stator on which a stator winding for generating a power generation output is wound, wherein a detecting means for detecting a rotation speed of the rotor; Power supply means for increasing the amount of power generated by the generator, and a regulator for limiting the output voltage of the generator to a predetermined regulated voltage. An output control device for a synchronous generator, which is performed when the rotational speed is in a low rotational speed range, and is energized so as to control the output voltage to a predetermined voltage control value lower than the regulated voltage. .
【請求項2】 前記遅角通電では、通電遅角量を予定値
に維持したまま通電デューティを変化させることによ
り、前記出力電圧が前記予定の電圧制御値に制御される
ことを特徴とする請求項1記載の同期発電機の出力制御
装置。
2. In the retard energization, the output voltage is controlled to the predetermined voltage control value by changing the energization duty while maintaining the energization delay amount at a predetermined value. Item 3. An output control device for a synchronous generator according to Item 1.
【請求項3】 前記電圧制御値が予定の幅を有し、前記
通電デューティを、前記出力電圧が該幅の最大値に達し
たときに微減させ、前記出力電圧が該幅の最小値に以下
に下がったときに微増させることを特徴とする請求項2
記載の同期発電機の出力制御装置。
3. The voltage control value has a predetermined width, and the energization duty is slightly reduced when the output voltage reaches a maximum value of the width, and the output voltage is reduced to a minimum value of the width. 3. The method according to claim 2, wherein the value is slightly increased when the value falls.
An output control device for a synchronous generator as described in the above.
【請求項4】 前記通電デュ−ティが、前記発電機の回
転数に応じて決定されることを特徴とする請求項2また
は3記載の同期発電機の出力制御装置。
4. The output control device for a synchronous generator according to claim 2, wherein the energization duty is determined in accordance with a rotation speed of the generator.
JP2000310769A 2000-10-11 2000-10-11 Output generator for synchronous generator Expired - Fee Related JP3778342B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2000310769A JP3778342B2 (en) 2000-10-11 2000-10-11 Output generator for synchronous generator
CNB011384530A CN1196249C (en) 2000-10-11 2001-05-30 Output control device for synchro generator
TW090124920A TWI244255B (en) 2000-10-11 2001-10-09 Output control unit for synchronous generator
MYPI20014681A MY128621A (en) 2000-10-11 2001-10-09 Output control unit for synchronous generator
IL15449101A IL154491A0 (en) 2000-10-11 2001-10-10 Ouptut control device of synchronous generator
PE2001001003A PE20020700A1 (en) 2000-10-11 2001-10-10 OUTPUT CONTROL UNIT FOR SYNCHRONOUS GENERATOR
BR0114398-0A BR0114398A (en) 2000-10-11 2001-10-10 Output Control Unit for a Synchronous Generator
ES200350021A ES2215483B1 (en) 2000-10-11 2001-10-10 OUTPUT CONTROL UNIT FOR SYNCHRONOUS GENERATOR.
IT2001TO000961A ITTO20010961A1 (en) 2000-10-11 2001-10-10 OUTPUT CONTROL UNIT FOR SYNCHRONOUS GENERATOR.
KR10-2003-7004908A KR100526715B1 (en) 2000-10-11 2001-10-10 Output control device of synchronous generator
TR2003/00471T TR200300471T2 (en) 2000-10-11 2001-10-10 Output controller of synchronous generator.
PCT/JP2001/008873 WO2002031960A1 (en) 2000-10-11 2001-10-10 Output control device of synchronous generator
ARP010104744A AR030872A1 (en) 2000-10-11 2001-10-10 OUTPUT CONTROL UNIT FOR SYNCHRONIZED GENERATOR
ZA200301242A ZA200301242B (en) 2000-10-11 2003-02-14 Output control device of synchronous generator.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310769A JP3778342B2 (en) 2000-10-11 2000-10-11 Output generator for synchronous generator

Publications (2)

Publication Number Publication Date
JP2002119095A true JP2002119095A (en) 2002-04-19
JP3778342B2 JP3778342B2 (en) 2006-05-24

Family

ID=18790663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310769A Expired - Fee Related JP3778342B2 (en) 2000-10-11 2000-10-11 Output generator for synchronous generator

Country Status (14)

Country Link
JP (1) JP3778342B2 (en)
KR (1) KR100526715B1 (en)
CN (1) CN1196249C (en)
AR (1) AR030872A1 (en)
BR (1) BR0114398A (en)
ES (1) ES2215483B1 (en)
IL (1) IL154491A0 (en)
IT (1) ITTO20010961A1 (en)
MY (1) MY128621A (en)
PE (1) PE20020700A1 (en)
TR (1) TR200300471T2 (en)
TW (1) TWI244255B (en)
WO (1) WO2002031960A1 (en)
ZA (1) ZA200301242B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005651A (en) * 2006-06-23 2008-01-10 Aisin Seiki Co Ltd Power supply device
JP2008271707A (en) * 2007-04-20 2008-11-06 Yamaha Motor Electronics Co Ltd Power generation control apparatus and saddle-riding type vehicle
JP2009298398A (en) * 2008-05-14 2009-12-24 Yamaha Motor Electronics Co Ltd Theft inhibiting apparatus and transportation machine
JP2010163879A (en) * 2009-01-13 2010-07-29 Honda Motor Co Ltd Idle stop control device
WO2010137710A1 (en) * 2009-05-28 2010-12-02 ゼファー株式会社 Wind power generation control device and wind power generation control method
JP2013198319A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Power generation control device in idle stop vehicle
WO2016157386A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
WO2016157381A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270445B2 (en) * 2003-10-17 2009-06-03 本田技研工業株式会社 Output generator for synchronous generator
JP5158682B2 (en) * 2007-09-25 2013-03-06 本田技研工業株式会社 Power generation control device
CN101917049A (en) * 2010-08-20 2010-12-15 广州三业科技有限公司 Accumulator charger for internal combustion engine
JP6068192B2 (en) * 2013-02-28 2017-01-25 本田技研工業株式会社 Battery state estimation device and vehicle control system
TWI492518B (en) 2013-12-10 2015-07-11 Ind Tech Res Inst Apparatus of control of a motor and method of a controller thereof
EP3533995B1 (en) 2018-03-02 2021-03-31 Yamaha Hatsudoki Kabushiki Kaisha Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177677A (en) * 1989-03-08 1993-01-05 Hitachi, Ltd. Power conversion system
JP3417720B2 (en) * 1995-04-24 2003-06-16 株式会社デンソー Power generator for vehicles
US5648705A (en) * 1995-09-05 1997-07-15 Ford Motor Company Motor vehicle alternator and methods of operation
US5642021A (en) * 1995-12-04 1997-06-24 Ford Motor Company Method and system for controlling an alternator to optimize direct current output
JP3710602B2 (en) * 1997-07-25 2005-10-26 国産電機株式会社 Power generator
JP2000102279A (en) * 1998-09-24 2000-04-07 Kokusan Denki Co Ltd Generator functioning as motor in combination for starting internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005651A (en) * 2006-06-23 2008-01-10 Aisin Seiki Co Ltd Power supply device
JP2008271707A (en) * 2007-04-20 2008-11-06 Yamaha Motor Electronics Co Ltd Power generation control apparatus and saddle-riding type vehicle
JP2009298398A (en) * 2008-05-14 2009-12-24 Yamaha Motor Electronics Co Ltd Theft inhibiting apparatus and transportation machine
JP2010163879A (en) * 2009-01-13 2010-07-29 Honda Motor Co Ltd Idle stop control device
WO2010137710A1 (en) * 2009-05-28 2010-12-02 ゼファー株式会社 Wind power generation control device and wind power generation control method
JP2010275926A (en) * 2009-05-28 2010-12-09 Zephyr Corp Wind power generation control device and wind power generation control method
CN102428269A (en) * 2009-05-28 2012-04-25 轻风株式会社 Wind power generation control device and wind power generation control method
AU2010252987B2 (en) * 2009-05-28 2014-03-20 Zephyr Corporation Wind power generation control device and wind power generation control method
CN102428269B (en) * 2009-05-28 2014-06-11 轻风株式会社 Wind power generation control device and wind power generation control method
JP2013198319A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Power generation control device in idle stop vehicle
WO2016157386A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
WO2016157381A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method

Also Published As

Publication number Publication date
CN1349302A (en) 2002-05-15
ZA200301242B (en) 2004-02-04
TWI244255B (en) 2005-11-21
KR100526715B1 (en) 2005-11-08
PE20020700A1 (en) 2002-09-09
AR030872A1 (en) 2003-09-03
WO2002031960A1 (en) 2002-04-18
ES2215483A1 (en) 2004-10-01
MY128621A (en) 2007-02-28
JP3778342B2 (en) 2006-05-24
BR0114398A (en) 2004-02-03
KR20030040521A (en) 2003-05-22
CN1196249C (en) 2005-04-06
ES2215483B1 (en) 2005-11-01
TR200300471T2 (en) 2003-09-22
IL154491A0 (en) 2003-09-17
ITTO20010961A1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
US7081738B2 (en) Generating device having magneto generator
CA2252842C (en) Generator motor for internal combustion engine
JP3797972B2 (en) Generator motor system for vehicles
US6894402B2 (en) Method for controlling a polyphase and reversible rotating electrical machine for heat engine motor vehicle
JP3778342B2 (en) Output generator for synchronous generator
JP2007074868A (en) Voltage controller for vehicle
US20040000281A1 (en) Engine starting device
JP2004350358A (en) Rotary electric machine for vehicle and its controller
WO2015093574A1 (en) Engine unit and vehicle
JP3664379B2 (en) Voltage control device for vehicle alternator
EP0903832A1 (en) Generator for internal combustion engine
JP3881301B2 (en) Control method of rotating electrical machine for vehicles
JP2009165232A (en) Controller for rotating electrical machine and rotating electrical machine device
JP2008017556A (en) Output voltage controller of engine-driven generator
JP3614174B2 (en) Control device for vehicle alternator
TW201517504A (en) Power generation device, mobile object and power generation control method
JP3736011B2 (en) Vehicle power generation control device
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
JP3938747B2 (en) Output generator for synchronous generator
JPH08116699A (en) Electric power generator for vehicle
JPH0788782B2 (en) Engine torque fluctuation suppression device
JP2001069797A (en) Current-adjusting device of starter generator
JP2649291B2 (en) AC generator for vehicles
JPH10299533A (en) Generator-motor device for internal combustion engine
EP3301282B1 (en) Vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees