WO2016157381A1 - Starting power generation device and starting power generation method - Google Patents

Starting power generation device and starting power generation method Download PDF

Info

Publication number
WO2016157381A1
WO2016157381A1 PCT/JP2015/059987 JP2015059987W WO2016157381A1 WO 2016157381 A1 WO2016157381 A1 WO 2016157381A1 JP 2015059987 W JP2015059987 W JP 2015059987W WO 2016157381 A1 WO2016157381 A1 WO 2016157381A1
Authority
WO
WIPO (PCT)
Prior art keywords
side switch
unit
power
mosfet
generator
Prior art date
Application number
PCT/JP2015/059987
Other languages
French (fr)
Japanese (ja)
Inventor
達也 新井
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2015/059987 priority Critical patent/WO2016157381A1/en
Publication of WO2016157381A1 publication Critical patent/WO2016157381A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a starter generator power generation method.
  • This ACG starter motor includes a permanent magnet that forms a field and is designed so that the winding specifications of the armature satisfy the torque characteristics required when starting the engine (Patent Document 1 and Patent Document 2). ).
  • the ACG starter motor is used as a generator as it is, the amount of power generation exceeds the amount of power required for the electrical load, and surplus power is generated.
  • a method is used in which the generated power is suppressed by short-circuit control of the semiconductor elements constituting the rectifier circuit. In this system, the current that flows back through the ACG starter motor flows through the armature winding of the ACG starter motor and the power device element that drives the ACG starter motor. As well as worsening engine friction.
  • JP 2003-83209 A Japanese Patent No. 4851844 Japanese Patent No. 4329527
  • the configurations described in Patent Document 1 to Patent Document 3 have the following problems.
  • the armature winding is formed by four windings connected in parallel, but one of the three phases is commonly connected in all windings. Yes. That is, the winding used as the ACG starter motor and the winding used as the generator are connected to a common node and are not completely separated. The winding is selected by a relay. For this reason, the use of the relays frequently turned on and off, such as idle stop control, has a problem of reducing contact life.
  • MOSFET metal oxide field effect transistor
  • the relay can cut off the current in both directions by turning off the contact, but even if the MOSFET is turned off, the current flows through the parasitic diode between the drain and source, so that the current can only be cut in one direction. Can not.
  • a MOSFET is used instead of a relay to separate the windings, the windings used as the ACG starter motor are not separated and the generated power is supplied from the windings of the ACG starter motor. The problem is that the power is excessively supplied and the power loss increases.
  • the neutral point is controlled and can be used only when the armature winding is a star connection, and when the armature winding is a delta connection. There is a problem that it cannot be dealt with. If a combination with a delta-connected armature winding having no neutral point is considered, the number of individual relays increases, resulting in problems of high cost and complicated wiring.
  • the ACG starter motor is composed of two armature windings. When used as an ACG starter motor, only one armature winding is used and used as a generator. When used, two windings are used.
  • the field is configured using windings. In this configuration, a current is normally applied to the field winding using a brush. Compared with the case where the field is configured using a permanent magnet, the configuration described in Patent Document 3 is difficult to reduce the size of the device, and as shown in Patent Document 2, it can be directly attached to the crankshaft. There is a problem that it is not suitable.
  • the present invention is a starter generator, a starter generator having an armature part having a winding part made of a multiphase coil and a field part made of a permanent magnet, and a high side switch connected in series with each other
  • a power conversion unit that includes a plurality of sets of low-side switch units and low-side switch units, connects the multi-phase coil to a connection point between the high-side switch unit and the low-side switch unit, and converts power bidirectionally between direct current and alternating current
  • the high-side switch unit or the low-side switch unit includes a first switch element and a second switch element connected in series.
  • the present invention is a starting power generation method, in which a starting generator including an armature portion having a winding portion made of a multiphase coil and a field portion made of a permanent magnet is connected to a high-speed power generator connected in series with each other.
  • Power conversion that includes a plurality of sets of side switch units and low side switch units, connects the multiphase coil to the connection point between the high side switch unit and the low side switch unit, and converts power in both directions between DC and AC
  • the starting power generator comprising the first switch element and the second switch element in which the high-side switch part or the low-side switch part is connected in series, the first and second switch elements connected in series with each other A step of turning on the first switch element and turning off the second switch element when on / off control of the one switch element and the second switch element is performed; And wherein the Mukoto.
  • FIG. 2 is a circuit diagram illustrating a power conversion unit 6 and a winding unit 11 illustrated in FIG. 1.
  • FIG. 4 is a circuit diagram for explaining a high-side switch unit 601 shown in FIG. 3. It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG. It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG.
  • FIG. 7 is a timing chart showing a change over time in the energization mode shown in FIG. 6.
  • FIG. 4 is a timing diagram illustrating an example of operation waveforms in the circuit diagram illustrated in FIG. 3.
  • FIG. 6 is a circuit diagram illustrating another configuration example of the power conversion unit 6 and the winding unit 11 illustrated in FIG. 1.
  • FIG. 10 is a circuit diagram for explaining a low-side switch unit 604a shown in FIG. 9. It is the figure which showed an example of the electricity supply mode of the power converter 6a shown in FIG.
  • FIG. 12 is a timing chart showing a change over time in the energization mode shown in FIG. 11.
  • FIG. 10 is a timing diagram illustrating an example of operation waveforms in the circuit diagram illustrated in FIG. 9. It is a characteristic view for demonstrating the operation example of the starting electric power generation control system 100 shown in FIG. It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG.
  • FIG. 1 is a block diagram illustrating a configuration example of a starting power generation control system (starting power generation apparatus) 100 according to an embodiment of the present invention.
  • a starting power generation control system 100 shown in FIG. 1 includes a starting generator (ACG starter motor) 1, an engine 2, a crankshaft 3, a rotation angle sensor 4, an engine water temperature gauge 5, a power converter 6, A control unit 7, a starter switch 8, and a battery 9 are included.
  • the starter generator 1 is directly connected to the crankshaft 3 and rotates in synchronization with the rotation of the engine 2.
  • the starter generator 1 operates as a starter motor or operates as an ACG under the control of the power conversion unit 6.
  • the starter generator 1 includes a winding part 11 and a field part 15 shown in FIG.
  • the winding portion 11 includes coils 11u, 11v, and 11w that constitute a star-connected three-phase coil (multi-phase coil).
  • the neutral point 11 n is a neutral point of star connection constituting the winding portion 11.
  • the coils 11u to 11w are armature windings wound around an armature core (not shown).
  • the winding portion 11 and an armature core (not shown) constitute an armature portion.
  • winding part 11 may be comprised not only by star connection but by delta connection.
  • FIG. 2 is a diagram schematically showing a configuration example of the winding portion 11 and the field portion 15 of the starter generator 1 as viewed from the axial direction. However, in FIG. 2, only the coil 11u for one phase of the three phases is shown.
  • the starter generator 1 is an outer rotor type brushless motor in which the field unit 15 includes a plurality of sets of N-pole permanent magnets 15 ⁇ / b> N and S-pole permanent magnets 15 ⁇ / b> S.
  • the coil 11u is composed of three windings arranged at intervals of 120 degrees with respect to an armature core (not shown). One end of each of the three windings of the coil 11u is commonly connected to the neutral point 11n, and the other end is commonly connected to the terminal 11u2.
  • the engine 2 is a motor mounted on, for example, a small motorcycle.
  • the crankshaft 3 is a component part of the engine 2 and is an axis that converts a reciprocating motion of a piston (not shown) included in the engine 2 into a rotational motion.
  • the rotation angle sensor 4 is a sensor that detects the rotation angle (crank angle) of the crankshaft 3.
  • the engine water temperature gauge 5 is a sensor that detects the temperature of the cooling water of the engine 2.
  • the power conversion unit 6 includes high-side switch units 601, 602, and 603 and low-side switch units 604, 605, and 606.
  • the high side switch unit 601 and the low side switch unit 604 are connected in series with each other.
  • the high side switch unit 602 and the low side switch unit 605 are connected in series with each other.
  • the high side switch part 603 and the low side switch part 606 are mutually connected in series.
  • the end of the coil 11u of the winding part 11 is connected to an AC terminal 611 that is a connection point between the high-side switch part 601 and the low-side switch part 604.
  • the end of the coil 11v of the winding part 11 is connected to an AC terminal 612 that is a connection point between the high-side switch part 602 and the low-side switch part 605.
  • the end of the coil 11 w of the winding part 11 is connected to an AC terminal 613 that is a connection point between the high-side switch part 603 and the low-side switch part 606.
  • the high-side switch unit 601 includes n-channel MOSFETs (hereinafter referred to as MOSFETs) (Q1) (first switch element) and MOSFETs (Q7) (second switch element) connected in series.
  • the high-side switch unit 602 includes a MOSFET (Q2) (first switch element) and a MOSFET (Q8) (second switch element) connected in series.
  • the high-side switch section 603 includes a MOSFET (Q3) (first switch element) and a MOSFET (Q9) (second switch element) that are connected in series.
  • the low side switch unit 604 is composed of a MOSFET (Q4).
  • the low side switch unit 605 is composed of a MOSFET (Q5).
  • the low side switch part 606 is comprised from MOSFET (Q6).
  • the power conversion unit 6 includes a high-side switch unit 601, 602, and 603 and a low-side switch unit 604, 605, and 606 to form a three-phase bridge orthogonal conversion circuit.
  • the DC terminal 614 on the positive side (high side) of the DC input / output line is connected to the positive electrode of the battery 9, and the DC terminal 615 on the negative side (low side) is connected to the negative electrode of the battery 9.
  • the power conversion unit 6 is connected to the battery 9 and is also connected to the winding unit 11 and performs bidirectional power conversion between AC and DC.
  • the AC terminals 611, 612, and 613 of the power conversion unit 6 are connected to the ends of the coils 11u, 11v, and 11w of the winding unit 11, respectively.
  • the MOSFET (Q1) and the MOSFET (Q7) that constitute the high-side switch unit 601 include the direction of the parasitic diode D1 of the MOSFET (Q1) and the parasitic diode D7 of the MOSFET (Q7). It is connected so that the direction is opposite. That is, the source S of the MOSFET (Q1) and the source S of the MOSFET (Q7) are connected, and the anode of the parasitic diode D1 and the anode of the MOSFET (Q7) are connected.
  • the MOSFET (Q2) and the MOSFET (Q8) constituting the high-side switch unit 602 are connected to each other's sources and connected to the anodes of parasitic diodes (not shown).
  • the MOSFET (Q3) and the MOSFET (Q9) constituting the high-side switch unit 603 are also connected to the sources of each other and to the anodes of parasitic diodes (not shown).
  • symbol G represents a gate
  • symbol D represents a drain.
  • Unit 6 operates as follows. That is, in a state where the MOSFETs (Q7), (Q8), and (Q9) are turned on, even if the MOSFETs (Q1) to (Q6) are turned off, the parasitics of the MOSFETs (Q1) to (Q6) are generated in the power generation operation.
  • a current path from the winding portion 11 to the battery 9 is formed by a bridge rectifier circuit including a diode.
  • the MOSFETs (Q7), (Q8), and (Q9) connect or separate the coils 11u, 11v, and 11w of the winding portion 11 to the MOSFETs (Q1), (Q2), and (Q3), respectively.
  • the three MOSFETs (Q7), (Q8), and (Q9) are the MOSFETs (Q1), (Q2), and (Q3), and the coils 11u, 11v, and 11w of the winding unit 11, respectively. It is inserted between the ends.
  • the three MOSFETs (Q7), (Q8), and (Q9) are turned on by turning on the end portions of the coils 11u, 11v, and 11w of the winding portion 11, and the MOSFETs (Q1), (Q2), and By connecting to (Q3) or turning off, the MOSFETs (Q1), (Q2), and (Q3) are separated.
  • the power conversion unit 6 includes a drive circuit (not shown) for on / off control of the MOSFETs (Q1) to (Q9). This drive circuit performs on / off control of the MOSFETs (Q1) to (Q9) in accordance with a predetermined energization mode instructed by the control unit 7.
  • the power converter 6 includes a sensor for detecting the current flowing through each MOSFET. For example, when the MOSFETs (Q7) to (Q9) are switched from on to off, the current flowing through the MOSFET is zero (or almost zero). ) Can be done.
  • the control unit 7 shown in FIG. 1 is a device that performs ignition control and the like of the engine 2.
  • the output signal of the rotation angle sensor 4, the output signal of the engine water temperature gauge 5, and the output signal of the starter switch 8 Enter.
  • the control unit 7 instructs a drive circuit (not shown) included in the power conversion unit 6 about the energization mode, that is, the operation state of the MOSFETs (Q1) to (Q9).
  • the control unit 7 turns on all of the MOSFETs (Q7), (Q8), and (Q9), while the starter generator 1 generates power.
  • the duty ratios of the MOSFETs (Q7), (Q8), and (Q9) are changed according to the DC output voltage of the power converter 6.
  • the control unit 7 turns on the MOSFETs (Q7), (Q8), and (Q9), while the starter / generator 1 generates power.
  • each of the MOSFETs (Q1) to (Q9) is on / off controlled based on the engine speed so as to perform either retarded angle power generation or conduction angle rectification. The retarded angle power generation and conduction angle rectification will be described later.
  • the starter switch 8 is a switch operated when the user starts the engine 2.
  • the battery 9 is a secondary battery.
  • FIG. 5 is a diagram showing an example of the energization mode of the power conversion unit 6 shown in FIG. 3 when the starter generator 1 is used as a starter motor.
  • control when the starter generator 1 is used as a starter motor is referred to as motor control.
  • each energization mode shown in FIG. 5 is a case of 180 degree energization control.
  • FIG. 5 shows combinations of ON (ON) or OFF (OFF) operations of the MOSFETs (Q1) to (Q9) in the power conversion unit 6.
  • the control unit 7 selects one of the energization modes M1 to M6 shown in FIG. 5 and instructs the power conversion unit 6 about the selected energization mode. That is, the control unit 7 repeatedly selects one of the energization modes M1 to M6 shown in FIG. 5 in accordance with the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected energization mode each time.
  • the power converter 6 is instructed.
  • the MOSFETs (Q1) to (Q6) are controlled to be switched ON or OFF according to the combination of ON and OFF corresponding to the energization mode. Further, the MOSFETs (Q7) to (Q9) are all controlled to be ON.
  • FIG. 6 is a diagram illustrating an example of an energization mode of the power conversion unit 6 illustrated in FIG. 3 in the case of power generation control.
  • the energization mode shown in FIG. 6 includes 12 stages of stage numbers S1 to S12. 6 corresponds to the control state of each MOSFET (Q1) to (Q9) in the power conversion unit 6 and the output state of each end of each coil 11u, 11v and 11w of the winding unit 11. It is attached.
  • the output state of the winding part 11 indicates the terminal voltage at each end of each coil 11 u, 11 v and 11 w, that is, the magnitude relationship between the terminal voltages of the AC terminals 611, 612 and 613 and the polarity.
  • the terminal voltages at the ends of the coils 11u, 11v, and 11w are indicated by Uv, Vv, and Wv, respectively.
  • the polarity is indicated by “+” for positive and “ ⁇ ” for negative.
  • the U-phase voltage relationship “Uv> Wv, Vv” of the stage S2 means that the terminal voltage of the coil 11u is larger than the terminal voltages of the coils 11v and 11w.
  • control state indicates a combination of on (ON) or off (OFF) or duty control (DUTY) operations of the MOSFETs (Q1) to (Q9) in the power converter 6.
  • ON or OFF means that the MOSFET is controlled to be turned on or off during the stage.
  • 100% means that all four stages are on.
  • 0% means that all four stages are off.
  • the control unit 7 changes the duty ratio in the duty control of the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6.
  • the control unit 7 changes the duty ratio according to the comparison result between the reference value corresponding to the charging voltage of the battery 9 and the DC output voltage of the power conversion unit 6 (voltage between the DC terminals 614 and 615). .
  • the control unit 7 increases the duty ratio when the DC output voltage of the power conversion unit 6 is lower than the reference value, and decreases the duty ratio when the DC output voltage is higher than the reference value.
  • control unit 7 adjusts the time continuity state of the duty ratio so that each phase of the three-phase alternating current is not biased, or adds hysteresis to the reference value so that the output voltage is not hunted. Can be set.
  • the comparison target with the reference value may be, for example, the terminal voltage of the battery 9 instead of the voltage between the DC terminals 614 and 615.
  • the control unit 7 selects one of the stage numbers S1 to S12 shown in FIG. 6 and instructs the power conversion unit 6 of the selected stage number. That is, the control unit 7 repeatedly selects any one of the stage numbers S1 to S12 shown in FIG. 6 according to the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected stage number each time.
  • the power converter 6 is instructed.
  • the MOSFETs (Q1) to (Q6) are controlled by switching them on or off. Further, the MOSFETs (Q7) to (Q9) are controlled by being switched ON or OFF, or are duty controlled according to the DC output voltage of the power converter 6.
  • FIG. 7 is a timing chart showing a time change of the energization mode shown in FIG.
  • FIG. 7 shows the temporal change of the terminal voltages Uv, Vv and Wv at the respective ends of the coils 11u, 11v and 11w and the control states of the MOSFETs (Q1) to (Q9).
  • ON or OFF control is indicated by a level change (H level or L level), and a duty control period is indicated by an arrow.
  • MOSFETs (Q1), (Q2), (Q4), (Q6) and (Q7) are OFF, MOSFETs (Q3), (Q5) and (Q8) are ON, and MOSFET (Q9) Is the duty control state.
  • FIG. 8 shows the waveform of the next part when the rotation speed (rotational speed) of the starter generator 1 is increased from 0 with the duty ratio kept constant at about 70%. That is, FIG. 8 shows the DC output voltage Vout of the power converter 6, the drain currents of the MOSFETs (Q1) to (Q3), the gate voltages of the MOSFETs (Q1) to (Q9), and the terminal voltages Uv, Vv and Each waveform of Wv is shown.
  • a section T1 delimited by a broken line where the current of the MOSFET (Q1) first rises corresponds to the stages S2 to S5 in FIG.
  • the power conversion unit 6 includes a plurality of high-side switch units and low-side switch units (for example, the high-side switch unit 601 and the low-side switch unit 604) that are connected in series with each other.
  • a multi-phase coil for example, the coil 11u of the winding unit 11
  • the high-side switch unit includes a MOSFET (for example, MOSFET (Q1); first switch element) and a MOSFET (MOSFET (Q7); second switch element) connected in series.
  • the direction of the parasitic diodes of the MOSFETs (Q1) to (Q3) and the direction of the parasitic diodes of the MOSFETs (Q7) to (Q9) are opposed to each other, thereby separating the winding part 11.
  • the switch element for connection can be comprised by MOSFET which has a parasitic diode.
  • the power conversion unit 6 is controlled to be either retarded angle power generation or conduction angle rectification based on the engine speed, and the MOSFET (Q7), Each of (Q8) and (Q9) can be on / off controlled.
  • the retarded angle power generation is power generation control for turning on MOSFETs (Q1) to (Q6) constituting the power conversion unit 6 by an electrical angle of 180 degrees as shown in FIG.
  • conduction angle rectification is also called conduction angle rectification, and as shown in FIGS. 6 and 7, the MOSFETs (Q1) to (Q6) constituting the power conversion unit 6 are turned on by 120 degrees in electrical angle. It is power generation control.
  • the ON period for each phase corresponds to the period in which the voltage of each phase is the highest voltage.
  • two of the three high-side MOSFETs (Q1) to (Q3) and one low-side or three low-side MOSFETs (Q4) to (Q4) to (Q3) to ( Two of Q6) and one of the high side connected to the low-side non-conduction phase are simultaneously turned on.
  • conduction angle rectification a total of two MOSFETs, one of the three high-side MOSFETs (Q1) to (Q3) and one of the three low-side MOSFETs (Q4) to (Q6). Only turns on. Therefore, in the conduction angle rectification, the circuit of the circulating current is not formed.
  • the output of the starting generator 1 is controlled to an appropriate magnitude by duty-controlling the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6 (that is, the charging voltage of the battery 9). Can do.
  • the retarded angle power generation can increase the output of the starter generator 1 rather than the conduction angle rectification. Therefore, in the present embodiment, as shown in FIG. 14, for example, when the engine 2 is at a low speed and the starter generator 1 has an insufficient power generation amount, retarded power generation is performed. Then, power generation control by the conduction angle rectification method is performed.
  • FIG. 14 is a characteristic diagram in which the horizontal axis represents the number of revolutions of the engine 2 and the vertical axis represents the electric load and the power generation amount of the starting generator 1.
  • the power generation amount indicated by the chain line indicates the power generation amount when the duty control by the MOSFETs (Q7) to (Q9) is not performed, and the power generation amount indicated by the solid line is when the duty control by the MOSFETs (Q7) to (Q9) is performed. Indicates the amount of power generation.
  • the amount of power generation can be controlled to an appropriate size corresponding to the electric load.
  • FIG. 15 shows an energization mode in power generation control by retarded angle power generation.
  • FIG. 15 shows a combination of ON (ON) or OFF (OFF) operations of the MOSFETs (Q1) to (Q9) in the power converter 6.
  • FIG. 9 is a circuit diagram illustrating another configuration example of the power conversion unit 6 illustrated in FIG. 1 as a power conversion unit 6a.
  • the same reference numerals are used for the same components as those shown in FIG.
  • the same code is used for the corresponding configuration except that the character “a” is added to the end of the code.
  • the 9 includes a high-side switch unit 601a, 602a, and 603a and a low-side switch unit 604a, 605a, and 606a.
  • the high side switch unit 601a and the low side switch unit 604a are connected in series with each other.
  • the high side switch unit 602a and the low side switch unit 605a are connected in series with each other.
  • the high side switch part 603a and the low side switch part 606a are mutually connected in series.
  • the end of the coil 11u of the winding part 11 is connected to an AC terminal 611 which is a connection point between the high side switch part 601a and the low side switch part 604a.
  • the end of the coil 11v of the winding part 11 is connected to an AC terminal 612 that is a connection point between the high-side switch part 602a and the low-side switch part 605a.
  • winding part 11 is connected to the alternating current terminal 613 which is a connection point of the high side switch part 603a and the low side switch part 606a.
  • the high side switch unit 601a is configured by a MOSFET (Q1).
  • the high side switch unit 602a is composed of a MOSFET (Q2).
  • the high side switch part 603a is comprised from MOSFET (Q3).
  • the low-side switch unit 604a includes a MOSFET (Q7) (second switch element) and a MOSFET (Q4) (first switch element) connected in series.
  • the low-side switch unit 605a includes a MOSFET (Q8) (second switch element) and a MOSFET (Q5) (first switch element) connected in series.
  • the low-side switch unit 606a includes a MOSFET (Q9) (second switch element) and a MOSFET (Q6) (first switch element) connected in series.
  • the basic configuration and operation of the power converter 6a are the same as those of the power converter 6 shown in FIG. That is, the power conversion unit 6a constitutes a three-phase bridge orthogonal transformation circuit by the high side switch units 601a, 602a and 603a and the low side switch units 604a, 605a and 606a.
  • the DC terminal 614 on the positive side (high side) of the DC input / output line is connected to the positive electrode of the battery 9
  • the DC terminal 615 on the negative side (low side) is connected to the negative electrode of the battery 9.
  • the power conversion unit 6a is connected to the battery 9 and is also connected to the winding unit 11, and performs bidirectional power conversion between AC and DC. Further, the respective end portions of the coils 11u, 11v, and 11w of the winding unit 11 are connected to the AC terminals 611, 612, and 613 of the power conversion unit 6a.
  • the MOSFET (Q4) and the MOSFET (Q7) constituting the low-side switch unit 604a include the direction of the parasitic diode D4 of the MOSFET (Q4) and the direction of the parasitic diode D7 of the MOSFET (Q7). Are connected to face each other. That is, the drain D of the MOSFET (Q1) and the drain D of the MOSFET (Q7) are connected, and the cathode of the parasitic diode D4 and the cathode of the MOSFET (Q7) are connected.
  • the MOSFET (Q5) and the MOSFET (Q8) constituting the low-side switch unit 605a have their drains connected to each other and the cathodes of parasitic diodes (not shown) connected to each other.
  • the MOSFET (Q6) and the MOSFET (Q9) constituting the low-side switch unit 606a are connected to each other's drain and to the cathode of a parasitic diode (not shown).
  • the unit 6a operates as follows. That is, in a state where the MOSFETs (Q7), (Q8), and (Q9) are turned on, even if the MOSFETs (Q1) to (Q6) are turned off, the parasitics of the MOSFETs (Q1) to (Q6) are generated in the power generation operation.
  • a current path from the winding portion 11 to the battery 9 is formed by a bridge rectifier circuit including a diode.
  • the MOSFETs (Q7), (Q8), and (Q9) connect or separate the coils 11u, 11v, and 11w of the winding portion 11 from the MOSFETs (Q4), (Q5), and (Q6), respectively.
  • the three MOSFETs (Q7), (Q8), and (Q9) are the MOSFETs (Q4), (Q5), and (Q6), and the coils 11u, 11v, and 11w of the winding unit 11, respectively. It is inserted between the ends.
  • the three MOSFETs (Q7), (Q8), and (Q9) are turned on by turning on the end portions of the coils 11u, 11v, and 11w of the winding portion 11, and the MOSFETs (Q4), (Q5), and By connecting to (Q6) or turning off, the MOSFETs (Q4), (Q5), and (Q6) are separated.
  • the power conversion unit 6a includes a drive circuit (not shown) for on / off control of the MOSFETs (Q1) to (Q9). This drive circuit performs on / off control of the MOSFETs (Q1) to (Q9) in accordance with a predetermined energization mode instructed by the control unit 7.
  • the power converter 6a includes a sensor for detecting the current flowing through each MOSFET. For example, when the MOSFETs (Q7) to (Q9) are switched from on to off, the current flowing through the MOSFET is zero (or almost zero). ) Can be done.
  • FIG. 11 is a diagram illustrating an example of an energization mode of the power conversion unit 6a illustrated in FIG. 9 in the case of power generation control.
  • the chart of FIG. 11 is similar to that shown in FIG. 6, and the control states of the MOSFETs (Q1) to (Q9) in the power conversion unit 6a and the coils 11u, 11v and 11w of the winding unit 11 are shown.
  • the output state of the end portion is shown in association with each other.
  • the difference between the energization mode shown in FIG. 11 and the energization mode shown in FIG. 6 is the stage number for performing duty control (DUTY) with the MOSFETs (Q7) to (Q9).
  • DUTY duty control
  • duty control for the phase is performed in accordance with a period in which the voltage of each phase is larger than the voltage of the other phase.
  • duty control for the phase is performed in accordance with a period in which the voltage of each phase is smaller than the voltage of the other phase.
  • the MOSFET (Q7) is in duty control (DUTY) at stages S2 to S5 where “Uv> Vv, Wv”.
  • the MOSFET (Q7) is in duty control (DUTY) at stages S8 to S11 where “Uv ⁇ Vv, Wv”.
  • the control unit 7 changes the duty ratio in the duty control of the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6a.
  • the control unit 7 changes the duty ratio according to the comparison result between the reference value corresponding to the charging voltage of the battery 9 and the DC output voltage of the power conversion unit 6a (voltage between the DC terminals 614 and 615). .
  • the control unit 7 increases the duty ratio when the DC output voltage of the power conversion unit 6a is lower than the reference value, and decreases the duty ratio when the DC output voltage is higher than the reference value.
  • control unit 7 adjusts the time continuity state of the duty ratio so that each phase of the three-phase alternating current is not biased, or adds hysteresis to the reference value so that the output voltage is not hunted. Can be set.
  • the comparison target with the reference value may be, for example, the terminal voltage of the battery 9 instead of the voltage between the DC terminals 614 and 615.
  • the control unit 7 selects one of the stage numbers S1 to S12 shown in FIG. 11, and instructs the power conversion unit 6a of the selected stage number. That is, the control unit 7 repeatedly selects one of the stage numbers S1 to S12 shown in FIG. 11 according to the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected stage number each time.
  • the power conversion unit 6a is instructed.
  • the MOSFETs (Q1) to (Q6) are controlled by switching them on or off. Further, the MOSFETs (Q7) to (Q9) are controlled by being switched ON or OFF, or are duty controlled according to the DC output voltage of the power converter 6a.
  • the timing chart shown in FIG. 12 is the same as the timing chart shown in FIG. 7 except that the timing (stage number) for performing duty control (DUTY) is different in the MOSFETs (Q7) to (Q9). is there. Other description is omitted.
  • FIG. 13 shows the waveform of the next part when the rotational speed (rotational speed) of the starter generator 1 is increased from 0 with the duty ratio kept constant at about 70%. That is, FIG. 13 shows the DC output voltage Vout of the power converter 6a, the drain currents of the MOSFETs (Q1) to (Q3), the gate voltages of the MOSFETs (Q1) to (Q9), and the terminal voltages Uv, Vv and Each waveform of Wv is shown.
  • the waveform shown in FIG. 13 is the same as the waveform shown in FIG. In FIG. 13, for example, a section T2 corresponds to the stages S8 to S11 in FIG.
  • the power conversion unit 6a includes a plurality of high-side switch units and low-side switch units (for example, the high-side switch unit 601a and the low-side switch unit 604a) connected in series with each other.
  • a multi-phase coil for example, the coil 11u of the winding unit 11
  • the low-side switch unit includes a MOSFET (for example, MOSFET (Q4); first switch element) and a MOSFET (MOSFET (Q7); second switch element) connected in series.
  • the winding part 11 is separated.
  • the switch element for connection can be comprised by MOSFET which has a parasitic diode.
  • the power conversion unit 6 a also performs retarded power generation or conduction based on the engine speed in the case of power generation control.
  • the power conversion unit 6a can be controlled so as to be either angular rectification.
  • the starter generator 1 including the armature part in which the winding part 11 that is a three-phase coil (multi-phase coil) is disposed and the field part made of a permanent magnet. (ACG starter motor) and multiple sets of a high-side switch unit and a low-side switch unit connected in series with each other, a multiphase coil is connected to the connection point between the high-side switch unit and the low-side switch unit, and direct current and alternating current
  • a power conversion unit 6 or 6a that converts power bidirectionally between the first switch element and the second switch element in which the high-side switch unit or the low-side switch unit are connected in series. It is characterized by that. According to this configuration, it is possible to easily improve the control characteristics of the starter generator 1 (ACG starter motor) such as reduction of power loss.
  • the heat generation of the armature winding and the power device can be reduced by reducing the circulating current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

A starting power generation device comprising: a starter generator and a power conversion unit. The starter generator comprises: an armature section having a winding section comprising a multi-phase coil; and a field section comprising a permanent magnet. The power conversion unit: comprises a plurality of sets comprising a high-side switch unit and a low-side switch unit that are connected in series to each other; connects the multi-phase coil to the connection point between the high-side switch units and the low-side switch units; and converts power both ways between DC and AC. The power conversion unit comprises a first switch element and a second switch element that have the high-side switch units or the low-side switch units connected in series thereto.

Description

始動発電装置、及び始動発電方法STARTING POWER GENERATION DEVICE AND STARTING POWER GENERATION METHOD
 本発明は、始動発電装置発電方法に関する。 The present invention relates to a starter generator power generation method.
 従来、車両、特に小型二輪車などにおいては、エンジン始動時にスタータモータとして働くと共にエンジン始動後は発電機として働くACG(交流ジェネレータ)スタータモータ(始動発電機)が多用されている(例えば、特許文献1、特許文献2及び特許文献3)。 2. Description of the Related Art Conventionally, in a vehicle, particularly a small two-wheeled vehicle, an ACG (alternating current generator) starter motor (starting generator) that functions as a starter motor when the engine starts and also functions as a generator after the engine starts (for example, Patent Document 1). Patent Document 2 and Patent Document 3).
 このACGスタータモータには、永久磁石で界磁を構成するとともに、電機子の巻線仕様をエンジン始動時に必要なトルク特性を満たすように設計しているものがある(特許文献1及び特許文献2)。このような構成では、ACGスタータモータがそのまま発電機として用いられると、電装負荷に必要な電力量を超えた発電量となり、余剰電力が発生してしまう。また、このようなACGスタータモータでは、整流回路を構成する半導体素子のショート制御により発電電力を抑制する方式が用いられている。この方式では、ACGスタータモータを還流する電流がACGスタータモータの電機子巻線やACGスタータモータを駆動するパワーデバイス素子を流れることにより、発熱することで電力損失が発生して車両の燃費を悪化させるとともに、エンジンフリクションも悪化させる。そのため、特許文献1及び特許文献2に記載されている構成では、ACGスタータモータの電機子巻線を並列に複数設け、ACGスタータモータとして用いられる場合と、発電機として用いられる場合とで使用する電機子巻線を切り替える制御が行われている。 This ACG starter motor includes a permanent magnet that forms a field and is designed so that the winding specifications of the armature satisfy the torque characteristics required when starting the engine (Patent Document 1 and Patent Document 2). ). In such a configuration, if the ACG starter motor is used as a generator as it is, the amount of power generation exceeds the amount of power required for the electrical load, and surplus power is generated. Further, in such an ACG starter motor, a method is used in which the generated power is suppressed by short-circuit control of the semiconductor elements constituting the rectifier circuit. In this system, the current that flows back through the ACG starter motor flows through the armature winding of the ACG starter motor and the power device element that drives the ACG starter motor. As well as worsening engine friction. For this reason, in the configurations described in Patent Document 1 and Patent Document 2, a plurality of armature windings of the ACG starter motor are provided in parallel to be used as an ACG starter motor and as a generator. Control to switch the armature winding is performed.
特開2003-83209号公報JP 2003-83209 A 特許第4851184号公報Japanese Patent No. 4851844 特許第4329527号公報Japanese Patent No. 4329527
 しかしながら、特許文献1から特許文献3に記載されている構成には次の課題がある。まず、特許文献1に記載の構成では、電機子巻線が並列に接続された4個の巻線から形成されているが、全ての巻線において三相の内一相が共通に接続されている。すなわち、ACGスタータモータとして用いられる巻線と、発電機として用いられる巻線とが、共通の節点に接続されていて、完全には分離されていない。また、巻線の選択はリレーで行われている。そのためアイドルストップ制御のように頻繁にリレーをオン・オフする使い方では接点の寿命低下が課題となる。また、各巻線の一相が共通に接続されている構成では、リレーをMOSFET(金属酸化物電界効果トランジスタ)へ置き換える場合、次の点が課題となる。すなわち、リレーでは接点をオフすることで電流を双方向で遮断することができるが、MOSFETではオフした場合でもドレイン・ソース間の寄生ダイオードに電流が流れるため、一方向の電流しか遮断することができない。このため、巻線を分離するためにリレーでなくMOSFETを用いた場合には、ACGスタータモータとして用いられる巻線が分離されずに、ACGスタータモータの巻線から発電電力が供給されて電力が過剰供給され、電力損失が増大するということが課題となる。 However, the configurations described in Patent Document 1 to Patent Document 3 have the following problems. First, in the configuration described in Patent Document 1, the armature winding is formed by four windings connected in parallel, but one of the three phases is commonly connected in all windings. Yes. That is, the winding used as the ACG starter motor and the winding used as the generator are connected to a common node and are not completely separated. The winding is selected by a relay. For this reason, the use of the relays frequently turned on and off, such as idle stop control, has a problem of reducing contact life. Further, in the configuration in which one phase of each winding is connected in common, the following points become problems when the relay is replaced with a MOSFET (metal oxide field effect transistor). In other words, the relay can cut off the current in both directions by turning off the contact, but even if the MOSFET is turned off, the current flows through the parasitic diode between the drain and source, so that the current can only be cut in one direction. Can not. For this reason, when a MOSFET is used instead of a relay to separate the windings, the windings used as the ACG starter motor are not separated and the generated power is supplied from the windings of the ACG starter motor. The problem is that the power is excessively supplied and the power loss increases.
 また、特許文献2に記載の構成では、中性点を制御するものであり、電機子巻線がスター結線である場合にのみ使用することができ、電機子巻線がデルタ結線である場合に対応することができないという課題がある。仮に中性点が無いデルタ結線の電機子巻線との組み合わせを考えた場合、個別リレーが増加することとなり、コスト高や配線の複雑化が問題となる。 In the configuration described in Patent Document 2, the neutral point is controlled and can be used only when the armature winding is a star connection, and when the armature winding is a delta connection. There is a problem that it cannot be dealt with. If a combination with a delta-connected armature winding having no neutral point is considered, the number of individual relays increases, resulting in problems of high cost and complicated wiring.
 また、特許文献3に記載の構成では、ACGスタータモータが2つの電機子巻線から構成されており、ACGスタータモータとして用いられる際には一方の電機子巻線のみを用い、発電機として用いられる際には2個の巻線を用いる構成となっている。また、特許文献1及び特許文献2に記載の構成と異なり、特許文献3に記載の構成では、界磁が巻線を用いて構成されている。この構成では、通常、ブラシを用いて界磁巻線に電流が通電される。永久磁石を用いて界磁を構成する場合と比較して、特許文献3に記載の構成は、装置の小型化が難しく、特許文献2で図示されているようにクランクシャフトに直結する取り付けにも適していないという課題がある。 In the configuration described in Patent Document 3, the ACG starter motor is composed of two armature windings. When used as an ACG starter motor, only one armature winding is used and used as a generator. When used, two windings are used. In addition, unlike the configurations described in Patent Document 1 and Patent Document 2, in the configuration described in Patent Document 3, the field is configured using windings. In this configuration, a current is normally applied to the field winding using a brush. Compared with the case where the field is configured using a permanent magnet, the configuration described in Patent Document 3 is difficult to reduce the size of the device, and as shown in Patent Document 2, it can be directly attached to the crankshaft. There is a problem that it is not suitable.
 本発明は、上記の課題を解決することができる始動発電装置、及び始動発電方法を提供することを目的とする。 It is an object of the present invention to provide a starting power generation device and a starting power generation method that can solve the above-described problems.
 本発明は、始動発電装置であり、多相コイルからなる巻線部を有する電機子部と、永久磁石からなる界磁部とを備えた始動発電機と、互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部とを複数組備え、前記ハイサイドスイッチ部と前記ローサイドスイッチ部との接続点に前記多相コイルを接続し、直流及び交流間で電力を双方向に変換する電力変換部であって、前記ハイサイドスイッチ部又は前記ローサイドスイッチ部が直列接続された第1スイッチ素子と第2スイッチ素子とから構成されたものとを備えることを特徴とする。 The present invention is a starter generator, a starter generator having an armature part having a winding part made of a multiphase coil and a field part made of a permanent magnet, and a high side switch connected in series with each other A power conversion unit that includes a plurality of sets of low-side switch units and low-side switch units, connects the multi-phase coil to a connection point between the high-side switch unit and the low-side switch unit, and converts power bidirectionally between direct current and alternating current The high-side switch unit or the low-side switch unit includes a first switch element and a second switch element connected in series.
 また、本発明は、始動発電方法であり、多相コイルからなる巻線部を有する電機子部と、永久磁石からなる界磁部とを備えた始動発電機と、互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部とを複数組備え、前記ハイサイドスイッチ部と前記ローサイドスイッチ部との接続点に前記多相コイルを接続し、直流及び交流間で電力を双方向に変換する電力変換部であって、前記ハイサイドスイッチ部又は前記ローサイドスイッチ部が直列接続された第1スイッチ素子と第2スイッチ素子とから構成されたものとを備える始動発電装置において、互いに直列接続された前記第1スイッチ素子及び前記第2スイッチ素子をオン・オフ制御する際に、前記第1スイッチ素子をオンして前記第2スイッチ素子をオフするステップを含むことを特徴とする。 In addition, the present invention is a starting power generation method, in which a starting generator including an armature portion having a winding portion made of a multiphase coil and a field portion made of a permanent magnet is connected to a high-speed power generator connected in series with each other. Power conversion that includes a plurality of sets of side switch units and low side switch units, connects the multiphase coil to the connection point between the high side switch unit and the low side switch unit, and converts power in both directions between DC and AC In the starting power generator comprising the first switch element and the second switch element in which the high-side switch part or the low-side switch part is connected in series, the first and second switch elements connected in series with each other A step of turning on the first switch element and turning off the second switch element when on / off control of the one switch element and the second switch element is performed; And wherein the Mukoto.
 本発明によれば、電力損失の低減等、始動発電機の制御特性を容易に向上させることができる。 According to the present invention, it is possible to easily improve the control characteristics of the starter generator such as reduction of power loss.
本発明の一実施形態の構成例を示したブロック図である。It is the block diagram which showed the example of a structure of one Embodiment of this invention. 図1に示した始動発電機1の構成例を模式的に示した図である。It is the figure which showed typically the example of a structure of the starter generator 1 shown in FIG. 図1に示した電力変換部6と巻線部11とを示した回路図である。FIG. 2 is a circuit diagram illustrating a power conversion unit 6 and a winding unit 11 illustrated in FIG. 1. 図3に示したハイサイドスイッチ部601を説明するための回路図である。FIG. 4 is a circuit diagram for explaining a high-side switch unit 601 shown in FIG. 3. 図3に示した電力変換部6の通電モードの一例を示した図である。It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG. 図3に示した電力変換部6の通電モードの一例を示した図である。It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG. 図6に示した通電モードの時間変化を示したタイミング図である。FIG. 7 is a timing chart showing a change over time in the energization mode shown in FIG. 6. 図3に示した回路図における動作波形の一例を示したタイミング図である。FIG. 4 is a timing diagram illustrating an example of operation waveforms in the circuit diagram illustrated in FIG. 3. 図1に示した電力変換部6と巻線部11との他の構成例を示した回路図である。FIG. 6 is a circuit diagram illustrating another configuration example of the power conversion unit 6 and the winding unit 11 illustrated in FIG. 1. 図9に示したローサイドスイッチ部604aを説明するための回路図である。FIG. 10 is a circuit diagram for explaining a low-side switch unit 604a shown in FIG. 9. 図9に示した電力変換部6aの通電モードの一例を示した図である。It is the figure which showed an example of the electricity supply mode of the power converter 6a shown in FIG. 図11に示した通電モードの時間変化を示したタイミング図である。FIG. 12 is a timing chart showing a change over time in the energization mode shown in FIG. 11. 図9に示した回路図における動作波形の一例を示したタイミング図である。FIG. 10 is a timing diagram illustrating an example of operation waveforms in the circuit diagram illustrated in FIG. 9. 図1に示した始動発電制御システム100の動作例を説明するための特性図である。It is a characteristic view for demonstrating the operation example of the starting electric power generation control system 100 shown in FIG. 図3に示した電力変換部6の通電モードの一例を示した図である。It is the figure which showed an example of the electricity supply mode of the power converter part shown in FIG.
 以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の実施形態の始動発電制御システム(始動発電装置)100の構成例を示したブロック図である。図1に示した始動発電制御システム100は、始動発電機(ACGスタータモータ)1と、エンジン2と、クランクシャフト3と、回転角度センサ4と、エンジン水温計5と、電力変換部6と、制御部7と、スタータスイッチ8と、バッテリ9とを含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration example of a starting power generation control system (starting power generation apparatus) 100 according to an embodiment of the present invention. A starting power generation control system 100 shown in FIG. 1 includes a starting generator (ACG starter motor) 1, an engine 2, a crankshaft 3, a rotation angle sensor 4, an engine water temperature gauge 5, a power converter 6, A control unit 7, a starter switch 8, and a battery 9 are included.
 始動発電機1は、クランクシャフト3に直結されていて、エンジン2の回転に同期して回転する。始動発電機1は、電力変換部6の制御によって、スタータモータとして動作したり、ACGとして動作したりする。始動発電機1は、巻線部11と図2に示す界磁部15とを備える。巻線部11はスター結線された3相コイル(多相コイル)を構成するコイル11u、11v及び11wを備える。中性点11nは巻線部11を構成するスター結線の中性点である。コイル11u~11wは、図示してない電機子鉄心に巻かれている電機子巻線である。また、巻線部11と図示してない電機子鉄心とは電機子部を構成する。なお、巻線部11はスター結線に限らず、デルタ結線で構成されていてもよい。 The starter generator 1 is directly connected to the crankshaft 3 and rotates in synchronization with the rotation of the engine 2. The starter generator 1 operates as a starter motor or operates as an ACG under the control of the power conversion unit 6. The starter generator 1 includes a winding part 11 and a field part 15 shown in FIG. The winding portion 11 includes coils 11u, 11v, and 11w that constitute a star-connected three-phase coil (multi-phase coil). The neutral point 11 n is a neutral point of star connection constituting the winding portion 11. The coils 11u to 11w are armature windings wound around an armature core (not shown). The winding portion 11 and an armature core (not shown) constitute an armature portion. In addition, the coil | winding part 11 may be comprised not only by star connection but by delta connection.
 図2は、始動発電機1の巻線部11及び界磁部15の構成例を軸方向から見て模式的に示した図である。ただし、図2では、3相のうちの1相分のコイル11uのみを示している。図2に示した構成例では、始動発電機1は、界磁部15を複数組のN極の永久磁石15N及びS極の永久磁石15Sから構成したアウターロータ型のブラシレスモータである。コイル11uは、図示してない電機子鉄心に対して120度おきに配設された3個の巻線から構成されている。コイル11uの3個の巻線は各一端を中性点11nに共通に接続し、各他端を端子11u2に共通に接続している。 FIG. 2 is a diagram schematically showing a configuration example of the winding portion 11 and the field portion 15 of the starter generator 1 as viewed from the axial direction. However, in FIG. 2, only the coil 11u for one phase of the three phases is shown. In the configuration example shown in FIG. 2, the starter generator 1 is an outer rotor type brushless motor in which the field unit 15 includes a plurality of sets of N-pole permanent magnets 15 </ b> N and S-pole permanent magnets 15 </ b> S. The coil 11u is composed of three windings arranged at intervals of 120 degrees with respect to an armature core (not shown). One end of each of the three windings of the coil 11u is commonly connected to the neutral point 11n, and the other end is commonly connected to the terminal 11u2.
 一方、図1において、エンジン2は例えば小型二輪車に搭載された発動機である。クランクシャフト3は、エンジン2の構成部品であり、エンジン2が備える図示していないピストンの往復運動を回転運動に変換する軸である。回転角度センサ4は、クランクシャフト3の回転角度(クランク角)を検知するセンサである。エンジン水温計5は、エンジン2の冷却水の温度を検知するセンサである。 On the other hand, in FIG. 1, the engine 2 is a motor mounted on, for example, a small motorcycle. The crankshaft 3 is a component part of the engine 2 and is an axis that converts a reciprocating motion of a piston (not shown) included in the engine 2 into a rotational motion. The rotation angle sensor 4 is a sensor that detects the rotation angle (crank angle) of the crankshaft 3. The engine water temperature gauge 5 is a sensor that detects the temperature of the cooling water of the engine 2.
 次に、図3を参照して電力変換部6の構成例について説明する。図3に示したように、電力変換部6は、ハイサイドスイッチ部601、602及び603と、ローサイドスイッチ部604、605及び606とを備える。ハイサイドスイッチ部601とローサイドスイッチ部604とは互いに直列接続されている。ハイサイドスイッチ部602とローサイドスイッチ部605とは互いに直列接続されている。そして、ハイサイドスイッチ部603とローサイドスイッチ部606とは互いに直列接続されている。 Next, a configuration example of the power conversion unit 6 will be described with reference to FIG. As shown in FIG. 3, the power conversion unit 6 includes high- side switch units 601, 602, and 603 and low- side switch units 604, 605, and 606. The high side switch unit 601 and the low side switch unit 604 are connected in series with each other. The high side switch unit 602 and the low side switch unit 605 are connected in series with each other. And the high side switch part 603 and the low side switch part 606 are mutually connected in series.
 また、ハイサイドスイッチ部601とローサイドスイッチ部604との接続点である交流端子611に巻線部11のコイル11uの端部が接続されている。ハイサイドスイッチ部602とローサイドスイッチ部605との接続点である交流端子612に巻線部11のコイル11vの端部が接続されている。そして、ハイサイドスイッチ部603とローサイドスイッチ部606との接続点である交流端子613に巻線部11のコイル11wの端部が接続されている。 Also, the end of the coil 11u of the winding part 11 is connected to an AC terminal 611 that is a connection point between the high-side switch part 601 and the low-side switch part 604. The end of the coil 11v of the winding part 11 is connected to an AC terminal 612 that is a connection point between the high-side switch part 602 and the low-side switch part 605. The end of the coil 11 w of the winding part 11 is connected to an AC terminal 613 that is a connection point between the high-side switch part 603 and the low-side switch part 606.
 ハイサイドスイッチ部601は、互いに直列接続されたnチャネルMOSFET(以下、MOSFETと記す)(Q1)(第1スイッチ素子)とMOSFET(Q7)(第2スイッチ素子)とから構成されている。ハイサイドスイッチ部602は、互いに直列接続されたMOSFET(Q2)(第1スイッチ素子)とMOSFET(Q8)(第2スイッチ素子)とから構成されている。そして、ハイサイドスイッチ部603は、互いに直列接続されたMOSFET(Q3)(第1スイッチ素子)とMOSFET(Q9)(第2スイッチ素子)とから構成されている。 The high-side switch unit 601 includes n-channel MOSFETs (hereinafter referred to as MOSFETs) (Q1) (first switch element) and MOSFETs (Q7) (second switch element) connected in series. The high-side switch unit 602 includes a MOSFET (Q2) (first switch element) and a MOSFET (Q8) (second switch element) connected in series. The high-side switch section 603 includes a MOSFET (Q3) (first switch element) and a MOSFET (Q9) (second switch element) that are connected in series.
 また、ローサイドスイッチ部604は、MOSFET(Q4)から構成されている。ローサイドスイッチ部605は、MOSFET(Q5)から構成されている。そして、ローサイドスイッチ部606は、MOSFET(Q6)から構成されている。 Also, the low side switch unit 604 is composed of a MOSFET (Q4). The low side switch unit 605 is composed of a MOSFET (Q5). And the low side switch part 606 is comprised from MOSFET (Q6).
 電力変換部6は、ハイサイドスイッチ部601、602及び603と、ローサイドスイッチ部604、605及び606とによって、3相ブリッジ直交変換回路を構成する。電力変換部6は、直流入出力線の正側(ハイサイド)の直流端子614をバッテリ9の正極に、負側(ローサイド)の直流端子615をバッテリ9の負極に接続している。電力変換部6は、バッテリ9に接続されるとともに、巻線部11に接続され、交流及び直流間の双方向の電力変換を行う。また、電力変換部6の各交流端子611、612及び613には、巻線部11の各コイル11u、11v及び11wの各端部が接続される。 The power conversion unit 6 includes a high- side switch unit 601, 602, and 603 and a low- side switch unit 604, 605, and 606 to form a three-phase bridge orthogonal conversion circuit. In the power conversion unit 6, the DC terminal 614 on the positive side (high side) of the DC input / output line is connected to the positive electrode of the battery 9, and the DC terminal 615 on the negative side (low side) is connected to the negative electrode of the battery 9. The power conversion unit 6 is connected to the battery 9 and is also connected to the winding unit 11 and performs bidirectional power conversion between AC and DC. The AC terminals 611, 612, and 613 of the power conversion unit 6 are connected to the ends of the coils 11u, 11v, and 11w of the winding unit 11, respectively.
 この場合、ハイサイドスイッチ部601を構成するMOSFET(Q1)及びMOSFET(Q7)は、図4に示したように、MOSFET(Q1)の寄生ダイオードD1の向きとMOSFET(Q7)の寄生ダイオードD7の向きとが対向するように接続されている。すなわち、MOSFET(Q1)のソースSとMOSFET(Q7)のソースSとが接続されていて、寄生ダイオードD1のアノードとMOSFET(Q7)のアノードとが接続されている。なお、ハイサイドスイッチ部602を構成するMOSFET(Q2)及びMOSFET(Q8)も同様に、互いのソースを接続し、互いの図示していない寄生ダイオードのアノードを接続している。また、ハイサイドスイッチ部603を構成するMOSFET(Q3)及びMOSFET(Q9)も同様に、互いのソースを接続し、互いの図示していない寄生ダイオードのアノードを接続している。なお、図4において、符号Gはゲートを表し、符号Dはドレインを表す。 In this case, as shown in FIG. 4, the MOSFET (Q1) and the MOSFET (Q7) that constitute the high-side switch unit 601 include the direction of the parasitic diode D1 of the MOSFET (Q1) and the parasitic diode D7 of the MOSFET (Q7). It is connected so that the direction is opposite. That is, the source S of the MOSFET (Q1) and the source S of the MOSFET (Q7) are connected, and the anode of the parasitic diode D1 and the anode of the MOSFET (Q7) are connected. Similarly, the MOSFET (Q2) and the MOSFET (Q8) constituting the high-side switch unit 602 are connected to each other's sources and connected to the anodes of parasitic diodes (not shown). Similarly, the MOSFET (Q3) and the MOSFET (Q9) constituting the high-side switch unit 603 are also connected to the sources of each other and to the anodes of parasitic diodes (not shown). In FIG. 4, symbol G represents a gate, and symbol D represents a drain.
 以上のようにMOSFET(Q1)、(Q2)及び(Q3)の各寄生ダイオードの向きとMOSFET(Q7)、(Q8)及び(Q9)の各寄生ダイオードの向きとを対向させることで、電力変換部6は次のように動作する。すなわち、各MOSFET(Q7)、(Q8)及び(Q9)をオンした状態では、MOSFET(Q1)~(Q6)をオフしたとしても、発電動作において、MOSFET(Q1)~(Q6)の各寄生ダイオードからなるブリッジ整流回路によって、巻線部11からバッテリ9への電流経路が形成される。一方、各MOSFET(Q7)、(Q8)及び(Q9)をオフした状態では、発電動作において、MOSFET(Q1)~(Q6)の各寄生ダイオードからなるブリッジ整流回路を介した巻線部11からバッテリ9への電流経路は遮断される。よって、始動発電機1の発電量が電気負荷を上回る場合に、MOSFET(Q7)、(Q8)及び(Q9)をオフすることで、始動発電機1の出力電流を遮断し、バッテリ9の過充電を防止したり、始動発電機1の駆動トルクを低減したりすることができる。 As described above, by converting the direction of the parasitic diodes of the MOSFETs (Q1), (Q2) and (Q3) and the direction of the parasitic diodes of the MOSFETs (Q7), (Q8) and (Q9), power conversion is performed. Unit 6 operates as follows. That is, in a state where the MOSFETs (Q7), (Q8), and (Q9) are turned on, even if the MOSFETs (Q1) to (Q6) are turned off, the parasitics of the MOSFETs (Q1) to (Q6) are generated in the power generation operation. A current path from the winding portion 11 to the battery 9 is formed by a bridge rectifier circuit including a diode. On the other hand, when the MOSFETs (Q7), (Q8), and (Q9) are turned off, in the power generation operation, from the winding unit 11 via the bridge rectifier circuit that includes the parasitic diodes of the MOSFETs (Q1) to (Q6). The current path to the battery 9 is interrupted. Therefore, when the power generation amount of the starter generator 1 exceeds the electrical load, the MOSFET (Q7), (Q8), and (Q9) are turned off to cut off the output current of the starter generator 1, Charging can be prevented or the driving torque of the starter generator 1 can be reduced.
 なお、上記の構成は、次のように説明することもできる。すなわち、MOSFET(Q7)、(Q8)及び(Q9)は、巻線部11の各コイル11u、11v及び11wをそれぞれMOSFET(Q1)、(Q2)及び(Q3)に接続したり、分離したりする。この場合、3個のMOSFET(Q7)、(Q8)及び(Q9)は、それぞれ、MOSFET(Q1)、(Q2)及び(Q3)と、巻線部11の各コイル11u、11v及び11wの各端部との間に介挿されている。そして、3個のMOSFET(Q7)、(Q8)及び(Q9)は、巻線部11の各コイル11u、11v及び11wの各端部を、オンすることでMOSFET(Q1)、(Q2)及び(Q3)に対して接続したり、オフすることでMOSFET(Q1)、(Q2)及び(Q3)から分離したりする。 The above configuration can also be explained as follows. That is, the MOSFETs (Q7), (Q8), and (Q9) connect or separate the coils 11u, 11v, and 11w of the winding portion 11 to the MOSFETs (Q1), (Q2), and (Q3), respectively. To do. In this case, the three MOSFETs (Q7), (Q8), and (Q9) are the MOSFETs (Q1), (Q2), and (Q3), and the coils 11u, 11v, and 11w of the winding unit 11, respectively. It is inserted between the ends. The three MOSFETs (Q7), (Q8), and (Q9) are turned on by turning on the end portions of the coils 11u, 11v, and 11w of the winding portion 11, and the MOSFETs (Q1), (Q2), and By connecting to (Q3) or turning off, the MOSFETs (Q1), (Q2), and (Q3) are separated.
 なお、電力変換部6は、MOSFET(Q1)~(Q9)をオン・オフ制御するための図示していない駆動回路を備えている。この駆動回路は、制御部7から指示された所定の通電モードに従ってMOSFET(Q1)~(Q9)をオン・オフ制御する。また、電力変換部6は、各MOSFETに流れる電流を検出するためのセンサを備え、例えば、MOSFET(Q7)~(Q9)のオンからオフへの切替をMOSFETに流れる電流が零(あるいはほぼ零)となったときに行うことができる。 The power conversion unit 6 includes a drive circuit (not shown) for on / off control of the MOSFETs (Q1) to (Q9). This drive circuit performs on / off control of the MOSFETs (Q1) to (Q9) in accordance with a predetermined energization mode instructed by the control unit 7. The power converter 6 includes a sensor for detecting the current flowing through each MOSFET. For example, when the MOSFETs (Q7) to (Q9) are switched from on to off, the current flowing through the MOSFET is zero (or almost zero). ) Can be done.
 図1に示した制御部7は、エンジン2の点火制御等を行う装置であり、この場合、回転角度センサ4の出力信号と、エンジン水温計5の出力信号と、スタータスイッチ8の出力信号とを入力する。また、制御部7は、電力変換部6が備える図示していない駆動回路に対して、MOSFET(Q1)~(Q9)の通電モードすなわち動作状態を指示する。制御部7は、例えば、始動発電機1がエンジンの始動を行うスタータモータとして用いられる場合にMOSFET(Q7)、(Q8)及び(Q9)全てをオン状態とし、一方、始動発電機1が発電機として用いられる場合、電力変換部6の直流出力電圧に応じてMOSFET(Q7)、(Q8)及び(Q9)のデューティ比を変化させる。また、制御部7は、始動発電機1がエンジンの始動を行うスタータモータとして用いられる場合にMOSFET(Q7)、(Q8)及び(Q9)全てをオン状態とし、一方、始動発電機1が発電機として用いられる場合、エンジン回転数に基づき、遅角発電又は導通角整流のいずれかとなるようMOSFET(Q1)~(Q9)の各々をオン・オフ制御する。遅角発電及び導通角整流については後述する。 The control unit 7 shown in FIG. 1 is a device that performs ignition control and the like of the engine 2. In this case, the output signal of the rotation angle sensor 4, the output signal of the engine water temperature gauge 5, and the output signal of the starter switch 8 Enter. Further, the control unit 7 instructs a drive circuit (not shown) included in the power conversion unit 6 about the energization mode, that is, the operation state of the MOSFETs (Q1) to (Q9). For example, when the starter generator 1 is used as a starter motor that starts the engine, the control unit 7 turns on all of the MOSFETs (Q7), (Q8), and (Q9), while the starter generator 1 generates power. When used as a machine, the duty ratios of the MOSFETs (Q7), (Q8), and (Q9) are changed according to the DC output voltage of the power converter 6. In addition, when the starter / generator 1 is used as a starter motor that starts the engine, the control unit 7 turns on the MOSFETs (Q7), (Q8), and (Q9), while the starter / generator 1 generates power. When used as a machine, each of the MOSFETs (Q1) to (Q9) is on / off controlled based on the engine speed so as to perform either retarded angle power generation or conduction angle rectification. The retarded angle power generation and conduction angle rectification will be described later.
 一方、スタータスイッチ8は、ユーザがエンジン2を始動する際に操作するスイッチである。そして、バッテリ9は2次電池である。 On the other hand, the starter switch 8 is a switch operated when the user starts the engine 2. The battery 9 is a secondary battery.
 次に、図5から図8を参照して、図3に示した始動発電機1と電力変換部6との動作例について説明する。図5は、始動発電機1がスタータモータとして用いられる場合の図3に示した電力変換部6の通電モードの一例を示した図である。以下、始動発電機1がスタータモータとして用いられる場合の制御をモータ制御と呼ぶ。ここで、図5に示した各通電モードは、180度通電制御の場合である。図5は、電力変換部6内の各MOSFET(Q1)~(Q9)のON(オン)又はOFF(オフ)の動作の組み合わせを示している。 Next, with reference to FIG. 5 to FIG. 8, an operation example of the starter generator 1 and the power conversion unit 6 shown in FIG. 3 will be described. FIG. 5 is a diagram showing an example of the energization mode of the power conversion unit 6 shown in FIG. 3 when the starter generator 1 is used as a starter motor. Hereinafter, control when the starter generator 1 is used as a starter motor is referred to as motor control. Here, each energization mode shown in FIG. 5 is a case of 180 degree energization control. FIG. 5 shows combinations of ON (ON) or OFF (OFF) operations of the MOSFETs (Q1) to (Q9) in the power conversion unit 6.
 モータ制御の場合、制御部7は、図5に示した通電モードM1~M6の1つを選択し、選択した通電モードを電力変換部6に対して指示する。すなわち、制御部7は、回転角度センサ4の出力に基づき、界磁部15の角度に合わせて図5に示した通電モードM1~M6のいずれかを繰り返し選択し、選択した通電モードをその都度、電力変換部6に対して指示する。この場合、MOSFET(Q1)~(Q6)は通電モードに応じたON・OFFの組み合わせに従いON又はOFFに切り替えて制御される。また、MOSFET(Q7)~(Q9)はすべてONに制御される。 In the case of motor control, the control unit 7 selects one of the energization modes M1 to M6 shown in FIG. 5 and instructs the power conversion unit 6 about the selected energization mode. That is, the control unit 7 repeatedly selects one of the energization modes M1 to M6 shown in FIG. 5 in accordance with the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected energization mode each time. The power converter 6 is instructed. In this case, the MOSFETs (Q1) to (Q6) are controlled to be switched ON or OFF according to the combination of ON and OFF corresponding to the energization mode. Further, the MOSFETs (Q7) to (Q9) are all controlled to be ON.
 次に、図6から図8を参照して、始動発電機1が発電機として用いられる場合の図3に示した電力変換部6の通電モードについて説明する。以下、始動発電機1が発電機として用いられる場合の制御を発電制御と呼ぶ。図6は、発電制御の場合の図3に示した電力変換部6の通電モードの一例を示した図である。ここで、図6に示した通電モードは、ステージ番号S1~S12の12段階を含む。また、図6の図表は、電力変換部6内の各MOSFET(Q1)~(Q9)の制御状態と、巻線部11の各コイル11u、11v及び11wの各端部の出力状態とを対応付けて示している。 Next, the energization mode of the power conversion unit 6 shown in FIG. 3 when the starter generator 1 is used as a generator will be described with reference to FIGS. Hereinafter, the control when the starter generator 1 is used as a generator is referred to as power generation control. FIG. 6 is a diagram illustrating an example of an energization mode of the power conversion unit 6 illustrated in FIG. 3 in the case of power generation control. Here, the energization mode shown in FIG. 6 includes 12 stages of stage numbers S1 to S12. 6 corresponds to the control state of each MOSFET (Q1) to (Q9) in the power conversion unit 6 and the output state of each end of each coil 11u, 11v and 11w of the winding unit 11. It is attached.
 図6の図表では、巻線部11の出力状態を、各コイル11u、11v及び11wの各端部の端子電圧、すなわち交流端子611、612及び613の端子電圧間の大小関係と、極性とで示している。ここで、コイル11u、11v及び11wの各端部の端子電圧をそれぞれUv、Vv及びWvで示した。また、極性は、正を「+」で、そして、負を「-」で示した。例えばステージS2のU相の電圧関係「Uv>Wv,Vv」は、コイル11uの端子電圧がコイル11v及び11wの各端子電圧より大きいことを意味する。 In the chart of FIG. 6, the output state of the winding part 11 indicates the terminal voltage at each end of each coil 11 u, 11 v and 11 w, that is, the magnitude relationship between the terminal voltages of the AC terminals 611, 612 and 613 and the polarity. Show. Here, the terminal voltages at the ends of the coils 11u, 11v, and 11w are indicated by Uv, Vv, and Wv, respectively. The polarity is indicated by “+” for positive and “−” for negative. For example, the U-phase voltage relationship “Uv> Wv, Vv” of the stage S2 means that the terminal voltage of the coil 11u is larger than the terminal voltages of the coils 11v and 11w.
 また、制御状態は、電力変換部6内の各MOSFET(Q1)~(Q9)のオン(ON)若しくはオフ(OFF)又はデューティ制御(DUTY)の動作の組み合わせを示している。ON又はOFFは、当該ステージの期間中MOSFETがオン又はオフに固定して制御されることを意味する。DUTYは、例えば、連続する当該4つのステージにおいて、オンとなる時間の割合(=デューティ比)が0%から100%までの範囲の値となるように制御されることを意味する。ここで、100%は4ステージ分の期間すべてオンとなることを意味する。また、0%は4ステージ分の期間すべてオフとなることを意味する。 Also, the control state indicates a combination of on (ON) or off (OFF) or duty control (DUTY) operations of the MOSFETs (Q1) to (Q9) in the power converter 6. ON or OFF means that the MOSFET is controlled to be turned on or off during the stage. DUTY means that, for example, in the four consecutive stages, control is performed such that the ratio of the time during which it is turned on (= duty ratio) becomes a value in the range from 0% to 100%. Here, 100% means that all four stages are on. Also, 0% means that all four stages are off.
 なお、デューティ制御では、例えば、ハイサイドスイッチ部601を構成する、互いに直列接続されたMOSFET(Q1)(第1スイッチ素子)とMOSFET(Q7)(第2スイッチ素子)とにおいて、MOSFET(Q1)をオンした状態で、MOSFET(Q7)をオン又はオフする制御を行う。 In the duty control, for example, the MOSFET (Q1) in the MOSFET (Q1) (first switch element) and the MOSFET (Q7) (second switch element) constituting the high-side switch unit 601 that are connected in series with each other. Control is performed to turn on or off the MOSFET (Q7) in a state where is turned on.
 本実施形態において、制御部7は、電力変換部6の直流出力電圧に応じてMOSFET(Q7)~(Q9)のデューティ制御におけるデューティ比を変化させる。この場合、制御部7は、バッテリ9の充電電圧に対応する基準値と、電力変換部6の直流出力電圧(直流端子614及び615間の電圧)との比較結果に応じてデューティ比を変化させる。制御部7は、電力変換部6の直流出力電圧が基準値を下回った場合にデューティ比を増加させ、上回った場合にデューティ比を減少させる。その際、制御部7は、例えば、3相交流の各相に偏りが生じないようにデューティ比の時間的な継続状態を調整したり、出力電圧がハンチングしないよう基準値との比較にヒステリシスを設定したりすることができる。また、基準値との比較対象は、直流端子614及び615間の電圧に代えて、例えば、バッテリ9の端子電圧としてもよい。 In the present embodiment, the control unit 7 changes the duty ratio in the duty control of the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6. In this case, the control unit 7 changes the duty ratio according to the comparison result between the reference value corresponding to the charging voltage of the battery 9 and the DC output voltage of the power conversion unit 6 (voltage between the DC terminals 614 and 615). . The control unit 7 increases the duty ratio when the DC output voltage of the power conversion unit 6 is lower than the reference value, and decreases the duty ratio when the DC output voltage is higher than the reference value. At that time, for example, the control unit 7 adjusts the time continuity state of the duty ratio so that each phase of the three-phase alternating current is not biased, or adds hysteresis to the reference value so that the output voltage is not hunted. Can be set. Further, the comparison target with the reference value may be, for example, the terminal voltage of the battery 9 instead of the voltage between the DC terminals 614 and 615.
 発電制御の場合、制御部7は、図6に示したステージ番号S1~S12の1つを選択して、選択したステージ番号を電力変換部6に対して指示する。すなわち、制御部7は、回転角度センサ4の出力に基づき、界磁部15の角度に合わせて図6に示したステージ番号S1~S12のいずれかを繰り返し選択し、選択したステージ番号をその都度、電力変換部6に対して指示する。この場合、MOSFET(Q1)~(Q6)はON又はOFFに切り替えて制御される。また、MOSFET(Q7)~(Q9)はON又はOFFに切り替えて制御されるか、あるいは電力変換部6の直流出力電圧に応じてデューティ制御される。 In the case of power generation control, the control unit 7 selects one of the stage numbers S1 to S12 shown in FIG. 6 and instructs the power conversion unit 6 of the selected stage number. That is, the control unit 7 repeatedly selects any one of the stage numbers S1 to S12 shown in FIG. 6 according to the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected stage number each time. The power converter 6 is instructed. In this case, the MOSFETs (Q1) to (Q6) are controlled by switching them on or off. Further, the MOSFETs (Q7) to (Q9) are controlled by being switched ON or OFF, or are duty controlled according to the DC output voltage of the power converter 6.
 次に、図7を参照して、図6に示した通電モードの各ステージS1~S12の時間変化について説明する。図7は、図6に示した通電モードの時間変化を示したタイミング図である。図7は、コイル11u、11v及び11wの各端部の端子電圧Uv、Vv及びWvの交流分の時間変化と、MOSFET(Q1)~(Q9)の制御状態とを示す。MOSFET(Q1)~(Q9)の制御状態は、ON又はOFFの制御をレベルの変化(Hレベル又はLレベル)で示し、デューティ制御の期間を矢印で示した。例えば、ステージS1では、MOSFET(Q1)、(Q2)、(Q4)、(Q6)及び(Q7)がOFF、MOSFET(Q3)、(Q5)及び(Q8)がON、そして、MOSFET(Q9)がデューティ制御状態である。 Next, with reference to FIG. 7, the time change of each stage S1-S12 in the energization mode shown in FIG. 6 will be described. FIG. 7 is a timing chart showing a time change of the energization mode shown in FIG. FIG. 7 shows the temporal change of the terminal voltages Uv, Vv and Wv at the respective ends of the coils 11u, 11v and 11w and the control states of the MOSFETs (Q1) to (Q9). In the control states of the MOSFETs (Q1) to (Q9), ON or OFF control is indicated by a level change (H level or L level), and a duty control period is indicated by an arrow. For example, in stage S1, MOSFETs (Q1), (Q2), (Q4), (Q6) and (Q7) are OFF, MOSFETs (Q3), (Q5) and (Q8) are ON, and MOSFET (Q9) Is the duty control state.
 次に、図8を参照して、図3に示した回路図における動作波形の一例について説明する。図8は、デューティ比を約70%一定として始動発電機1の回転数(回転速度)を0から増加させた場合の次の部分の波形を示す。すなわち、図8は、電力変換部6の直流出力電圧Vout、MOSFET(Q1)~(Q3)の各ドレイン電流、MOSFET(Q1)~(Q9)の各ゲート電圧、及び、端子電圧Uv、Vv及びWvの各波形を示す。例えば、初めにMOSFET(Q1)の電流が立ち上がっている破線で区切られた区間T1は、図7のステージS2~S5に対応する。 Next, an example of operation waveforms in the circuit diagram shown in FIG. 3 will be described with reference to FIG. FIG. 8 shows the waveform of the next part when the rotation speed (rotational speed) of the starter generator 1 is increased from 0 with the duty ratio kept constant at about 70%. That is, FIG. 8 shows the DC output voltage Vout of the power converter 6, the drain currents of the MOSFETs (Q1) to (Q3), the gate voltages of the MOSFETs (Q1) to (Q9), and the terminal voltages Uv, Vv and Each waveform of Wv is shown. For example, a section T1 delimited by a broken line where the current of the MOSFET (Q1) first rises corresponds to the stages S2 to S5 in FIG.
 以上のように、本実施形態においては、電力変換部6が、互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部(例えばハイサイドスイッチ部601とローサイドスイッチ部604)とを複数組備える。そのハイサイドスイッチ部とローサイドスイッチ部との接続点(例えば交流端子611)に多相コイル(例えば巻線部11のコイル11u)を接続し、直流及び交流間で電力を双方向に変換する。さらに、ハイサイドスイッチ部が直列接続されたMOSFET(例えばMOSFET(Q1);第1スイッチ素子)とMOSFET(MOSFET(Q7);第2スイッチ素子)とから構成されている。この構成によれば、発電電力が過剰となった場合に巻線部11を切り離すことができるので、還流電流を生じさせないようにすることができる。したがって、発熱による電力損失の発生を防止することができる。よって、電力損失の低減等、始動発電機の制御特性を容易に向上させることができる。 As described above, in the present embodiment, the power conversion unit 6 includes a plurality of high-side switch units and low-side switch units (for example, the high-side switch unit 601 and the low-side switch unit 604) that are connected in series with each other. A multi-phase coil (for example, the coil 11u of the winding unit 11) is connected to a connection point (for example, an AC terminal 611) between the high-side switch unit and the low-side switch unit, and power is bidirectionally converted between DC and AC. Further, the high-side switch unit includes a MOSFET (for example, MOSFET (Q1); first switch element) and a MOSFET (MOSFET (Q7); second switch element) connected in series. According to this configuration, when the generated power becomes excessive, the winding portion 11 can be disconnected, so that no reflux current can be generated. Therefore, generation of power loss due to heat generation can be prevented. Therefore, it is possible to easily improve the control characteristics of the starter generator such as reduction of power loss.
 また、本実施形態によれば、MOSFET(Q1)~(Q3)の寄生ダイオードの向きと、MOSFET(Q7)~(Q9)の寄生ダイオードの向きと、対向させることで、巻線部11の切り離し及び接続のためのスイッチ素子を寄生ダイオードを有するMOSFETで構成することができる。 In addition, according to the present embodiment, the direction of the parasitic diodes of the MOSFETs (Q1) to (Q3) and the direction of the parasitic diodes of the MOSFETs (Q7) to (Q9) are opposed to each other, thereby separating the winding part 11. And the switch element for connection can be comprised by MOSFET which has a parasitic diode.
 なお、上述したように、本実施形態においては、発電制御の場合、エンジン回転数に基づき、遅角発電又は導通角整流のいずれかとなるよう電力変換部6を制御するとともに、MOSFET(Q7)、(Q8)及び(Q9)の各々をオン・オフ制御することができる。ここで、遅角発電とは、図15に示したように、電力変換部6を構成するMOSFET(Q1)~(Q6)を電気角で180度分オンさせる発電制御である。一方、導通角整流とは、通電角整流とも呼ばれ、図6及び図7に示したように、電力変換部6を構成するMOSFET(Q1)~(Q6)を電気角で120度分オンさせる発電制御である。その際、相毎のオン期間は各相の電圧が最も高い電圧となる期間に対応する。遅角発電ではハイサイドの3個のMOSFET(Q1)~(Q3)のうちの2個とハイサイドの非通電相に接続されるローサイドの1個又はローサイドの3個のMOSFET(Q4)~(Q6)のうちの2個とローサイドの非通電相に接続されるハイサイドの1個が同時にオンする。他方、導通角整流では、ハイサイドの3個のMOSFET(Q1)~(Q3)のうちの1個とローサイドの3個のMOSFET(Q4)~(Q6)のうちの1個との合計2個がオンするだけである。したがって、導通角整流では、環流電流の回路が形成されない。そのため、発電量が過剰となった場合、MOSFETの寄生ダイオードで構成される整流回路によってバッテリに過電圧が印加される可能性があるが、本実施形態ではMOSFET(Q7)~(Q9)を遮断することで過電圧の発生を防止することができる。また、電力変換部6の直流出力電圧(すなわちバッテリ9の充電電圧)に応じてMOSFET(Q7)~(Q9)をデューティ制御することで始動発電機1の出力を適切な大きさに制御することができる。 As described above, in the present embodiment, in the case of power generation control, the power conversion unit 6 is controlled to be either retarded angle power generation or conduction angle rectification based on the engine speed, and the MOSFET (Q7), Each of (Q8) and (Q9) can be on / off controlled. Here, the retarded angle power generation is power generation control for turning on MOSFETs (Q1) to (Q6) constituting the power conversion unit 6 by an electrical angle of 180 degrees as shown in FIG. On the other hand, conduction angle rectification is also called conduction angle rectification, and as shown in FIGS. 6 and 7, the MOSFETs (Q1) to (Q6) constituting the power conversion unit 6 are turned on by 120 degrees in electrical angle. It is power generation control. At this time, the ON period for each phase corresponds to the period in which the voltage of each phase is the highest voltage. In retarded power generation, two of the three high-side MOSFETs (Q1) to (Q3) and one low-side or three low-side MOSFETs (Q4) to (Q4) to (Q3) to ( Two of Q6) and one of the high side connected to the low-side non-conduction phase are simultaneously turned on. On the other hand, in conduction angle rectification, a total of two MOSFETs, one of the three high-side MOSFETs (Q1) to (Q3) and one of the three low-side MOSFETs (Q4) to (Q6). Only turns on. Therefore, in the conduction angle rectification, the circuit of the circulating current is not formed. Therefore, when the amount of power generation becomes excessive, there is a possibility that an overvoltage is applied to the battery by a rectifier circuit composed of MOSFET parasitic diodes, but in this embodiment, MOSFETs (Q7) to (Q9) are cut off. Thus, the occurrence of overvoltage can be prevented. Further, the output of the starting generator 1 is controlled to an appropriate magnitude by duty-controlling the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6 (that is, the charging voltage of the battery 9). Can do.
 なお、電力変換部6の出力電圧がバッテリ9の電圧を超えない場合、導通角整流よりも、遅角発電の方が始動発電機1の出力を大きくすることができる。そこで、本実施形態では、図14に示したように、例えばエンジン2が低回転時で始動発電機1の発電量が不足となるとき遅角発電を行い、中高回転時で発電量が過剰となるとき導通角整流方式による発電制御を行う。 In addition, when the output voltage of the power converter 6 does not exceed the voltage of the battery 9, the retarded angle power generation can increase the output of the starter generator 1 rather than the conduction angle rectification. Therefore, in the present embodiment, as shown in FIG. 14, for example, when the engine 2 is at a low speed and the starter generator 1 has an insufficient power generation amount, retarded power generation is performed. Then, power generation control by the conduction angle rectification method is performed.
 なお、図14は、横軸をエンジン2の回転数、縦軸を電気負荷及び始動発電機1の発電量とする特性図である。鎖線で示した発電量はMOSFET(Q7)~(Q9)によるデューティ制御を行わない場合の発電量を示し、実線で示した発電量はMOSFET(Q7)~(Q9)によるデューティ制御を行った場合の発電量を示す。本実施形態によるデューティ制御を行うことで、発電量を電気負荷に見合った適切な大きさに制御することができる。 FIG. 14 is a characteristic diagram in which the horizontal axis represents the number of revolutions of the engine 2 and the vertical axis represents the electric load and the power generation amount of the starting generator 1. The power generation amount indicated by the chain line indicates the power generation amount when the duty control by the MOSFETs (Q7) to (Q9) is not performed, and the power generation amount indicated by the solid line is when the duty control by the MOSFETs (Q7) to (Q9) is performed. Indicates the amount of power generation. By performing the duty control according to the present embodiment, the amount of power generation can be controlled to an appropriate size corresponding to the electric load.
 また、図15は、遅角発電による発電制御における通電モードを示す。図15は、電力変換部6内の各MOSFET(Q1)~(Q9)のON(オン)又はOFF(オフ)の動作の組み合わせを示している。 FIG. 15 shows an energization mode in power generation control by retarded angle power generation. FIG. 15 shows a combination of ON (ON) or OFF (OFF) operations of the MOSFETs (Q1) to (Q9) in the power converter 6.
 次に、図9から図13を参照して、図1に示した電力変換部6の他の構成例について説明する。図9は、図1に示した電力変換部6の他の構成例を、電力変換部6aとして示した回路図である。なお、図9において、図3に示したものと同一の構成には同一の符号を用いている。また、対応する構成には、符号の末尾に文字「a」を付加したことを除いて同一の符号を用いている。 Next, another configuration example of the power conversion unit 6 illustrated in FIG. 1 will be described with reference to FIGS. 9 to 13. FIG. 9 is a circuit diagram illustrating another configuration example of the power conversion unit 6 illustrated in FIG. 1 as a power conversion unit 6a. In FIG. 9, the same reference numerals are used for the same components as those shown in FIG. In addition, the same code is used for the corresponding configuration except that the character “a” is added to the end of the code.
 図9に示した電力変換部6aは、ハイサイドスイッチ部601a、602a及び603aと、ローサイドスイッチ部604a、605a及び606aとを備える。ハイサイドスイッチ部601aとローサイドスイッチ部604aとは互いに直列接続されている。ハイサイドスイッチ部602aとローサイドスイッチ部605aとは互いに直列接続されている。そして、ハイサイドスイッチ部603aとローサイドスイッチ部606aとは互いに直列接続されている。 9 includes a high- side switch unit 601a, 602a, and 603a and a low- side switch unit 604a, 605a, and 606a. The high side switch unit 601a and the low side switch unit 604a are connected in series with each other. The high side switch unit 602a and the low side switch unit 605a are connected in series with each other. And the high side switch part 603a and the low side switch part 606a are mutually connected in series.
 また、ハイサイドスイッチ部601aとローサイドスイッチ部604aとの接続点である交流端子611に巻線部11のコイル11uの端部が接続されている。ハイサイドスイッチ部602aとローサイドスイッチ部605aとの接続点である交流端子612に巻線部11のコイル11vの端部が接続されている。そして、ハイサイドスイッチ部603aとローサイドスイッチ部606aとの接続点である交流端子613に巻線部11のコイル11wの端部が接続されている。 Further, the end of the coil 11u of the winding part 11 is connected to an AC terminal 611 which is a connection point between the high side switch part 601a and the low side switch part 604a. The end of the coil 11v of the winding part 11 is connected to an AC terminal 612 that is a connection point between the high-side switch part 602a and the low-side switch part 605a. And the edge part of the coil 11w of the coil | winding part 11 is connected to the alternating current terminal 613 which is a connection point of the high side switch part 603a and the low side switch part 606a.
 また、ハイサイドスイッチ部601aは、MOSFET(Q1)から構成されている。ハイサイドスイッチ部602aは、MOSFET(Q2)から構成されている。そして、ハイサイドスイッチ部603aは、MOSFET(Q3)から構成されている。 Further, the high side switch unit 601a is configured by a MOSFET (Q1). The high side switch unit 602a is composed of a MOSFET (Q2). And the high side switch part 603a is comprised from MOSFET (Q3).
 ローサイドスイッチ部604aは、互いに直列接続されたMOSFET(Q7)(第2スイッチ素子)とMOSFET(Q4)(第1スイッチ素子)とから構成されている。ローサイドスイッチ部605aは、互いに直列接続されたMOSFET(Q8)(第2スイッチ素子)とMOSFET(Q5)(第1スイッチ素子)とから構成されている。そして、ローサイドスイッチ部606aは、互いに直列接続されたMOSFET(Q9)(第2スイッチ素子)とMOSFET(Q6)(第1スイッチ素子)とから構成されている。 The low-side switch unit 604a includes a MOSFET (Q7) (second switch element) and a MOSFET (Q4) (first switch element) connected in series. The low-side switch unit 605a includes a MOSFET (Q8) (second switch element) and a MOSFET (Q5) (first switch element) connected in series. The low-side switch unit 606a includes a MOSFET (Q9) (second switch element) and a MOSFET (Q6) (first switch element) connected in series.
 電力変換部6aの基本的な構成及び動作は、図3に示した電力変換部6と同一である。すなわち、電力変換部6aは、ハイサイドスイッチ部601a、602a及び603aと、ローサイドスイッチ部604a、605a及び606aとによって、3相ブリッジ直交変換回路を構成する。電力変換部6aは、直流入出力線の正側(ハイサイド)の直流端子614をバッテリ9の正極に、負側(ローサイド)の直流端子615をバッテリ9の負極に接続している。電力変換部6aは、バッテリ9に接続されるとともに、巻線部11に接続され、交流及び直流間の双方向の電力変換を行う。また、電力変換部6aの各交流端子611、612及び613には、巻線部11の各コイル11u、11v及び11wの各端部が接続される。 The basic configuration and operation of the power converter 6a are the same as those of the power converter 6 shown in FIG. That is, the power conversion unit 6a constitutes a three-phase bridge orthogonal transformation circuit by the high side switch units 601a, 602a and 603a and the low side switch units 604a, 605a and 606a. In the power converter 6 a, the DC terminal 614 on the positive side (high side) of the DC input / output line is connected to the positive electrode of the battery 9, and the DC terminal 615 on the negative side (low side) is connected to the negative electrode of the battery 9. The power conversion unit 6a is connected to the battery 9 and is also connected to the winding unit 11, and performs bidirectional power conversion between AC and DC. Further, the respective end portions of the coils 11u, 11v, and 11w of the winding unit 11 are connected to the AC terminals 611, 612, and 613 of the power conversion unit 6a.
 この場合、ローサイドスイッチ部604aを構成するMOSFET(Q4)及びMOSFET(Q7)は、図10に示したように、MOSFET(Q4)の寄生ダイオードD4の向きとMOSFET(Q7)の寄生ダイオードD7の向きとが対向するように接続されている。すなわち、MOSFET(Q1)のドレインDとMOSFET(Q7)のドレインDとが接続されていて、寄生ダイオードD4のカソードとMOSFET(Q7)のカソードとが接続されている。なお、ローサイドスイッチ部605aを構成するMOSFET(Q5)及びMOSFET(Q8)も同様に、互いのドレインを接続し、互いの図示していない寄生ダイオードのカソードを接続している。また、ローサイドスイッチ部606aを構成するMOSFET(Q6)及びMOSFET(Q9)も同様に、互いのドレインを接続し、互いの図示していない寄生ダイオードのカソードを接続している。 In this case, as shown in FIG. 10, the MOSFET (Q4) and the MOSFET (Q7) constituting the low-side switch unit 604a include the direction of the parasitic diode D4 of the MOSFET (Q4) and the direction of the parasitic diode D7 of the MOSFET (Q7). Are connected to face each other. That is, the drain D of the MOSFET (Q1) and the drain D of the MOSFET (Q7) are connected, and the cathode of the parasitic diode D4 and the cathode of the MOSFET (Q7) are connected. Similarly, the MOSFET (Q5) and the MOSFET (Q8) constituting the low-side switch unit 605a have their drains connected to each other and the cathodes of parasitic diodes (not shown) connected to each other. Similarly, the MOSFET (Q6) and the MOSFET (Q9) constituting the low-side switch unit 606a are connected to each other's drain and to the cathode of a parasitic diode (not shown).
 以上のようにMOSFET(Q4)、(Q5)及び(Q6)の各寄生ダイオードの向きとMOSFET(Q7)、(Q8)及び(Q9)の各寄生ダイオードの向きとを対向させることで、電力変換部6aは次のように動作する。すなわち、各MOSFET(Q7)、(Q8)及び(Q9)をオンした状態では、MOSFET(Q1)~(Q6)をオフしたとしても、発電動作において、MOSFET(Q1)~(Q6)の各寄生ダイオードからなるブリッジ整流回路によって、巻線部11からバッテリ9への電流経路が形成される。一方、各MOSFET(Q7)、(Q8)及び(Q9)をオフした状態では、発電動作において、MOSFET(Q1)~(Q6)の各寄生ダイオードからなるブリッジ整流回路を介した巻線部11からバッテリ9への電流経路は遮断される。よって、始動発電機1の発電量が電気負荷を上回る場合に、MOSFET(Q7)、(Q8)及び(Q9)をオフすることで、始動発電機1の出力電流を遮断し、バッテリ9の過充電を防止したり、始動発電機1の駆動トルクを低減したりすることができる。 As described above, by converting the direction of the parasitic diodes of the MOSFETs (Q4), (Q5) and (Q6) and the direction of the parasitic diodes of the MOSFETs (Q7), (Q8) and (Q9), power conversion is performed. The unit 6a operates as follows. That is, in a state where the MOSFETs (Q7), (Q8), and (Q9) are turned on, even if the MOSFETs (Q1) to (Q6) are turned off, the parasitics of the MOSFETs (Q1) to (Q6) are generated in the power generation operation. A current path from the winding portion 11 to the battery 9 is formed by a bridge rectifier circuit including a diode. On the other hand, when the MOSFETs (Q7), (Q8), and (Q9) are turned off, in the power generation operation, from the winding unit 11 via the bridge rectifier circuit that includes the parasitic diodes of the MOSFETs (Q1) to (Q6). The current path to the battery 9 is interrupted. Therefore, when the power generation amount of the starter generator 1 exceeds the electrical load, the MOSFET (Q7), (Q8), and (Q9) are turned off to cut off the output current of the starter generator 1, Charging can be prevented or the driving torque of the starter generator 1 can be reduced.
 なお、上記の構成は、次のように説明することもできる。すなわち、MOSFET(Q7)、(Q8)及び(Q9)は、巻線部11の各コイル11u、11v及び11wをそれぞれMOSFET(Q4)、(Q5)及び(Q6)に接続したり、分離したりする。この場合、3個のMOSFET(Q7)、(Q8)及び(Q9)は、それぞれ、MOSFET(Q4)、(Q5)及び(Q6)と、巻線部11の各コイル11u、11v及び11wの各端部との間に介挿されている。そして、3個のMOSFET(Q7)、(Q8)及び(Q9)は、巻線部11の各コイル11u、11v及び11wの各端部を、オンすることでMOSFET(Q4)、(Q5)及び(Q6)に対して接続したり、オフすることでMOSFET(Q4)、(Q5)及び(Q6)から分離したりする。 The above configuration can also be explained as follows. That is, the MOSFETs (Q7), (Q8), and (Q9) connect or separate the coils 11u, 11v, and 11w of the winding portion 11 from the MOSFETs (Q4), (Q5), and (Q6), respectively. To do. In this case, the three MOSFETs (Q7), (Q8), and (Q9) are the MOSFETs (Q4), (Q5), and (Q6), and the coils 11u, 11v, and 11w of the winding unit 11, respectively. It is inserted between the ends. The three MOSFETs (Q7), (Q8), and (Q9) are turned on by turning on the end portions of the coils 11u, 11v, and 11w of the winding portion 11, and the MOSFETs (Q4), (Q5), and By connecting to (Q6) or turning off, the MOSFETs (Q4), (Q5), and (Q6) are separated.
 なお、電力変換部6aは、MOSFET(Q1)~(Q9)をオン・オフ制御するための図示していない駆動回路を備えている。この駆動回路は、制御部7から指示された所定の通電モードに従ってMOSFET(Q1)~(Q9)をオン・オフ制御する。また、電力変換部6aは、各MOSFETに流れる電流を検出するためのセンサを備え、例えば、MOSFET(Q7)~(Q9)のオンからオフへの切替をMOSFETに流れる電流が零(あるいはほぼ零)となったときに行うことができる。 The power conversion unit 6a includes a drive circuit (not shown) for on / off control of the MOSFETs (Q1) to (Q9). This drive circuit performs on / off control of the MOSFETs (Q1) to (Q9) in accordance with a predetermined energization mode instructed by the control unit 7. The power converter 6a includes a sensor for detecting the current flowing through each MOSFET. For example, when the MOSFETs (Q7) to (Q9) are switched from on to off, the current flowing through the MOSFET is zero (or almost zero). ) Can be done.
 次に、図11から図13を参照して、図9に示した始動発電機1と電力変換部6aとの発電制御における動作例について説明する。なお、モータ制御における通電モードは、図5を参照して説明した図3の電力変換部6の動作と同一であり、説明を省略する。 Next, with reference to FIG. 11 to FIG. 13, an operation example in the power generation control between the starter generator 1 and the power conversion unit 6a shown in FIG. 9 will be described. The energization mode in the motor control is the same as the operation of the power conversion unit 6 in FIG. 3 described with reference to FIG.
 図11は、発電制御の場合の図9に示した電力変換部6aの通電モードの一例を示した図である。図11の図表は、図6に示したものと同様に、電力変換部6a内の各MOSFET(Q1)~(Q9)の制御状態と、巻線部11の各コイル11u、11v及び11wの各端部の出力状態とを対応付けて示している。ここで、図11に示した通電モードと、図6に示した通電モードとで異なる点は、MOSFET(Q7)~(Q9)でデューティ制御(DUTY)を行うステージ番号である。図6に示した通電モードでは各相の電圧が他の相の電圧より大きい期間に合わせて当該相に対するデューティ制御を行う。他方、図11に示した通電モードでは各相の電圧が他の相の電圧より小さい期間に合わせて当該相に対するデューティ制御を行う。例えば、図6に示した通電モードでは、MOSFET(Q7)は「Uv>Vv,Wv」となるステージS2~S5でデューティ制御(DUTY)となる。一方、図11に示した通電モードでは、MOSFET(Q7)は「Uv<Vv,Wv」となるステージS8~S11でデューティ制御(DUTY)となる。 FIG. 11 is a diagram illustrating an example of an energization mode of the power conversion unit 6a illustrated in FIG. 9 in the case of power generation control. The chart of FIG. 11 is similar to that shown in FIG. 6, and the control states of the MOSFETs (Q1) to (Q9) in the power conversion unit 6a and the coils 11u, 11v and 11w of the winding unit 11 are shown. The output state of the end portion is shown in association with each other. Here, the difference between the energization mode shown in FIG. 11 and the energization mode shown in FIG. 6 is the stage number for performing duty control (DUTY) with the MOSFETs (Q7) to (Q9). In the energization mode shown in FIG. 6, duty control for the phase is performed in accordance with a period in which the voltage of each phase is larger than the voltage of the other phase. On the other hand, in the energization mode shown in FIG. 11, duty control for the phase is performed in accordance with a period in which the voltage of each phase is smaller than the voltage of the other phase. For example, in the energization mode shown in FIG. 6, the MOSFET (Q7) is in duty control (DUTY) at stages S2 to S5 where “Uv> Vv, Wv”. On the other hand, in the energization mode shown in FIG. 11, the MOSFET (Q7) is in duty control (DUTY) at stages S8 to S11 where “Uv <Vv, Wv”.
 本実施形態において、制御部7は、電力変換部6aの直流出力電圧に応じてMOSFET(Q7)~(Q9)のデューティ制御におけるデューティ比を変化させる。この場合、制御部7は、バッテリ9の充電電圧に対応する基準値と、電力変換部6aの直流出力電圧(直流端子614及び615間の電圧)との比較結果に応じてデューティ比を変化させる。制御部7は、電力変換部6aの直流出力電圧が基準値を下回った場合にデューティ比を増加させ、上回った場合にデューティ比を減少させる。その際、制御部7は、例えば、3相交流の各相に偏りが生じないようにデューティ比の時間的な継続状態を調整したり、出力電圧がハンチングしないよう基準値との比較にヒステリシスを設定したりすることができる。また、基準値との比較対象は、直流端子614及び615間の電圧に代えて、例えば、バッテリ9の端子電圧としてもよい。 In the present embodiment, the control unit 7 changes the duty ratio in the duty control of the MOSFETs (Q7) to (Q9) according to the DC output voltage of the power conversion unit 6a. In this case, the control unit 7 changes the duty ratio according to the comparison result between the reference value corresponding to the charging voltage of the battery 9 and the DC output voltage of the power conversion unit 6a (voltage between the DC terminals 614 and 615). . The control unit 7 increases the duty ratio when the DC output voltage of the power conversion unit 6a is lower than the reference value, and decreases the duty ratio when the DC output voltage is higher than the reference value. At that time, for example, the control unit 7 adjusts the time continuity state of the duty ratio so that each phase of the three-phase alternating current is not biased, or adds hysteresis to the reference value so that the output voltage is not hunted. Can be set. Further, the comparison target with the reference value may be, for example, the terminal voltage of the battery 9 instead of the voltage between the DC terminals 614 and 615.
 発電制御の場合、制御部7は、図11に示したステージ番号S1~S12の1つを選択して、選択したステージ番号を電力変換部6aに対して指示する。すなわち、制御部7は、回転角度センサ4の出力に基づき、界磁部15の角度に合わせて図11に示したステージ番号S1~S12のいずれかを繰り返し選択し、選択したステージ番号をその都度、電力変換部6aに対して指示する。この場合、MOSFET(Q1)~(Q6)はON又はOFFに切り替えて制御される。また、MOSFET(Q7)~(Q9)はON又はOFFに切り替えて制御されるか、あるいは電力変換部6aの直流出力電圧に応じてデューティ制御される。 In the case of power generation control, the control unit 7 selects one of the stage numbers S1 to S12 shown in FIG. 11, and instructs the power conversion unit 6a of the selected stage number. That is, the control unit 7 repeatedly selects one of the stage numbers S1 to S12 shown in FIG. 11 according to the angle of the field unit 15 based on the output of the rotation angle sensor 4, and selects the selected stage number each time. The power conversion unit 6a is instructed. In this case, the MOSFETs (Q1) to (Q6) are controlled by switching them on or off. Further, the MOSFETs (Q7) to (Q9) are controlled by being switched ON or OFF, or are duty controlled according to the DC output voltage of the power converter 6a.
 次に、図12を参照して、図11に示した通電モードの各ステージS1~S12の時間変化について説明する。図12に示したタイミング図は、図7に示したタイミング図と比較して、MOSFET(Q7)~(Q9)でデューティ制御(DUTY)を行うタイミング(ステージ番号)が異なる点を除き、同一である。他の説明は省略する。 Next, with reference to FIG. 12, the time change of each stage S1 to S12 in the energization mode shown in FIG. 11 will be described. The timing chart shown in FIG. 12 is the same as the timing chart shown in FIG. 7 except that the timing (stage number) for performing duty control (DUTY) is different in the MOSFETs (Q7) to (Q9). is there. Other description is omitted.
 次に、図13を参照して、図9に示した回路図における動作波形の一例について説明する。図13は、デューティ比を約70%一定として始動発電機1の回転数(回転速度)を0から増加させた場合の次の部分の波形を示す。すなわち、図13は、電力変換部6aの直流出力電圧Vout、MOSFET(Q1)~(Q3)の各ドレイン電流、MOSFET(Q1)~(Q9)の各ゲート電圧、及び、端子電圧Uv、Vv及びWvの各波形を示す。図13に示した波形は図8に示した波形と同一であり、説明を省略する。なお、図13において、例えば、区間T2は、図12のステージS8~S11に対応する。 Next, an example of operation waveforms in the circuit diagram shown in FIG. 9 will be described with reference to FIG. FIG. 13 shows the waveform of the next part when the rotational speed (rotational speed) of the starter generator 1 is increased from 0 with the duty ratio kept constant at about 70%. That is, FIG. 13 shows the DC output voltage Vout of the power converter 6a, the drain currents of the MOSFETs (Q1) to (Q3), the gate voltages of the MOSFETs (Q1) to (Q9), and the terminal voltages Uv, Vv and Each waveform of Wv is shown. The waveform shown in FIG. 13 is the same as the waveform shown in FIG. In FIG. 13, for example, a section T2 corresponds to the stages S8 to S11 in FIG.
 以上のように、本実施形態においては、電力変換部6aが、互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部(例えばハイサイドスイッチ部601aとローサイドスイッチ部604a)とを複数組備える。そのハイサイドスイッチ部とローサイドスイッチ部との接続点(例えば交流端子611)に多相コイル(例えば巻線部11のコイル11u)を接続し、直流及び交流間で電力を双方向に変換する。さらに、ローサイドスイッチ部が直列接続されたMOSFET(例えばMOSFET(Q4);第1スイッチ素子)とMOSFET(MOSFET(Q7);第2スイッチ素子)とから構成されている。この構成によれば、発電電力が過剰となった場合に巻線部11を切り離すことができるので、還流電流を生じさせないようにすることができる。したがって、発熱による電力損失の発生を防止することができる。よって、電力損失の低減等、始動発電機の制御特性を容易に向上させることができる。 As described above, in the present embodiment, the power conversion unit 6a includes a plurality of high-side switch units and low-side switch units (for example, the high-side switch unit 601a and the low-side switch unit 604a) connected in series with each other. A multi-phase coil (for example, the coil 11u of the winding unit 11) is connected to a connection point (for example, an AC terminal 611) between the high-side switch unit and the low-side switch unit, and power is bidirectionally converted between DC and AC. Further, the low-side switch unit includes a MOSFET (for example, MOSFET (Q4); first switch element) and a MOSFET (MOSFET (Q7); second switch element) connected in series. According to this configuration, when the generated power becomes excessive, the winding portion 11 can be disconnected, so that no reflux current can be generated. Therefore, generation of power loss due to heat generation can be prevented. Therefore, it is possible to easily improve the control characteristics of the starter generator such as reduction of power loss.
 また、本実施形態によれば、MOSFET(Q4)~(Q6)の寄生ダイオードの向きと、MOSFET(Q7)~(Q9)の寄生ダイオードの向きと、対向させることで、巻線部11の切り離し及び接続のためのスイッチ素子を寄生ダイオードを有するMOSFETで構成することができる。 In addition, according to the present embodiment, by separating the direction of the parasitic diodes of the MOSFETs (Q4) to (Q6) and the direction of the parasitic diodes of the MOSFETs (Q7) to (Q9), the winding part 11 is separated. And the switch element for connection can be comprised by MOSFET which has a parasitic diode.
 なお、図14及び図15を参照して、図3に示した電力変換部6について説明したように、電力変換部6aについても、発電制御の場合、エンジン回転数に基づき、遅角発電又は導通角整流のいずれかとなるよう電力変換部6aを制御することができる。 14 and 15, as described for the power conversion unit 6 shown in FIG. 3, the power conversion unit 6 a also performs retarded power generation or conduction based on the engine speed in the case of power generation control. The power conversion unit 6a can be controlled so as to be either angular rectification.
 以上のように、上記の実施形態は、3相コイル(多相コイル)である巻線部11が配設された電機子部と、永久磁石からなる界磁部とを備えた始動発電機1(ACGスタータモータ)と、互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部とを複数組備え、ハイサイドスイッチ部とローサイドスイッチ部との接続点に多相コイルを接続し、直流及び交流間で電力を双方向に変換する電力変換部6又は6aであって、ハイサイドスイッチ部又はローサイドスイッチ部が直列接続された第1スイッチ素子と第2スイッチ素子とから構成されたものとを備えることを特徴とする。この構成によれば、電力損失の低減等、始動発電機1(ACGスタータモータ)の制御特性を容易に向上させることができる。 As described above, in the above-described embodiment, the starter generator 1 including the armature part in which the winding part 11 that is a three-phase coil (multi-phase coil) is disposed and the field part made of a permanent magnet. (ACG starter motor) and multiple sets of a high-side switch unit and a low-side switch unit connected in series with each other, a multiphase coil is connected to the connection point between the high-side switch unit and the low-side switch unit, and direct current and alternating current A power conversion unit 6 or 6a that converts power bidirectionally between the first switch element and the second switch element in which the high-side switch unit or the low-side switch unit are connected in series. It is characterized by that. According to this configuration, it is possible to easily improve the control characteristics of the starter generator 1 (ACG starter motor) such as reduction of power loss.
 また、環流電流を減らすことで電機子巻線とパワーデバイスの発熱を低減することができる。 Also, the heat generation of the armature winding and the power device can be reduced by reducing the circulating current.
 なお、本発明の実施形態は上記のものに限定されず、発明の要旨を逸脱しない範囲の設計等も含まれる。 It should be noted that the embodiments of the present invention are not limited to the above-described ones, and include designs and the like within a range not departing from the gist of the invention.
100 始動発電制御システム
1 始動発電機
6、6a 電力変換部
7 制御部
D7~D9 寄生ダイオード
Q1~Q9 MOSFET
11 巻線部
11u、11v、11w コイル(巻線)
15 界磁部
601~603、601a~603a ハイサイドスイッチ部
604~606、604a~606a ローサイドスイッチ部
611、612、612 交流端子
100 STARTING GENERATION CONTROL SYSTEM 1 STARTING GENERATOR 6, 6a POWER CONVERTER 7 CONTROL UNIT D7-D9 Parasitic diodes Q1-Q9 MOSFET
11 Winding part 11u, 11v, 11w Coil (winding)
15 Field part 601 to 603, 601a to 603a High side switch part 604 to 606, 604a to 606a Low side switch part 611, 612, 612 AC terminal

Claims (5)

  1.  多相コイルからなる巻線部を有する電機子部と、永久磁石からなる界磁部とを備えた始動発電機と、
     互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部とを複数組備え、前記ハイサイドスイッチ部と前記ローサイドスイッチ部との接続点に前記多相コイルを接続し、直流及び交流間で電力を双方向に変換する電力変換部であって、前記ハイサイドスイッチ部又は前記ローサイドスイッチ部が直列接続された第1スイッチ素子と第2スイッチ素子とから構成されたものと
     を備えることを特徴とする始動発電装置。
    A starting generator having an armature portion having a winding portion made of a multiphase coil and a field portion made of a permanent magnet;
    A plurality of sets of a high-side switch unit and a low-side switch unit connected in series with each other, the multi-phase coil is connected to a connection point between the high-side switch unit and the low-side switch unit, and power is supplied between DC and AC. A power conversion unit for bidirectional conversion, the high-side switch unit or the low-side switch unit comprising a first switch element and a second switch element connected in series. Starting power generator.
  2.  前記第1スイッチ素子及び前記第2スイッチ素子がそれぞれMOSFETであり、
     前記第1スイッチ素子のMOSFETの寄生ダイオードの向きと前記第2スイッチ素子のMOSFETの寄生ダイオードの向きとが対向している
     ことを特徴とする請求項1に記載の始動発電装置。
    Each of the first switch element and the second switch element is a MOSFET;
    The starting power generator according to claim 1, wherein the direction of the parasitic diode of the MOSFET of the first switch element and the direction of the parasitic diode of the MOSFET of the second switch element are opposed to each other.
  3.  前記電力変換部の制御を行う制御部がさらに設けられ、
     前記制御部が、前記始動発電機がエンジンの始動を行うスタータモータとして用いられる場合に複数の前記第2スイッチ素子全てをオン状態とし、一方、前記始動発電機が発電機として用いられる場合、前記電力変換部の直流出力電圧に応じて複数の前記第2スイッチ素子のデューティ比を変化させる
     ことを特徴とする請求項1又は請求項2に記載の始動発電装置。
    A control unit for controlling the power conversion unit is further provided;
    When the starter generator is used as a starter motor that starts the engine, the control unit turns on all of the plurality of second switch elements, while when the starter generator is used as a generator, The starting power generator according to claim 1 or 2, wherein a duty ratio of the plurality of second switch elements is changed in accordance with a DC output voltage of a power converter.
  4.  前記制御部が、前記始動発電機がエンジンの始動を行うスタータモータとして用いられる場合に複数の前記第2スイッチ素子全てをオン状態とし、一方、前記始動発電機が発電機として用いられる場合、エンジン回転数に基づき、遅角発電又は導通角整流のいずれかとなるよう前記電力変換部を制御する
     ことを特徴とする請求項1から3のいずれか1項に記載の始動発電装置。
    When the starter generator is used as a starter motor for starting the engine, the control unit turns on all of the plurality of second switch elements, whereas when the starter generator is used as a generator, the engine The starting power generator according to any one of claims 1 to 3, wherein the power conversion unit is controlled based on a rotational speed so as to be either retarded angle power generation or conduction angle rectification.
  5.  多相コイルからなる巻線部を有する電機子部と、永久磁石からなる界磁部とを備えた始動発電機と、
     互いに直列に接続されたハイサイドスイッチ部とローサイドスイッチ部とを複数組備え、前記ハイサイドスイッチ部と前記ローサイドスイッチ部との接続点に前記多相コイルを接続し、直流及び交流間で電力を双方向に変換する電力変換部であって、前記ハイサイドスイッチ部又は前記ローサイドスイッチ部が直列接続された第1スイッチ素子と第2スイッチ素子とから構成されたものと
     を備える始動発電装置において、
     互いに直列接続された前記第1スイッチ素子及び前記第2スイッチ素子をオン・オフ制御する際に、前記第1スイッチ素子をオンして前記第2スイッチ素子をオフするステップを含む
     ことを特徴とする始動発電方法。
    A starting generator having an armature portion having a winding portion made of a multiphase coil and a field portion made of a permanent magnet;
    A plurality of sets of a high-side switch unit and a low-side switch unit connected in series with each other, the multi-phase coil is connected to a connection point between the high-side switch unit and the low-side switch unit, and power is supplied between DC and AC. In a starting power generation device comprising: a power conversion unit that converts bidirectionally, the high-side switch unit or the low-side switch unit comprising a first switch element and a second switch element connected in series,
    A step of turning on the first switch element and turning off the second switch element when the on-off control of the first switch element and the second switch element connected in series with each other is performed. Starting power generation method.
PCT/JP2015/059987 2015-03-30 2015-03-30 Starting power generation device and starting power generation method WO2016157381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059987 WO2016157381A1 (en) 2015-03-30 2015-03-30 Starting power generation device and starting power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059987 WO2016157381A1 (en) 2015-03-30 2015-03-30 Starting power generation device and starting power generation method

Publications (1)

Publication Number Publication Date
WO2016157381A1 true WO2016157381A1 (en) 2016-10-06

Family

ID=57004153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059987 WO2016157381A1 (en) 2015-03-30 2015-03-30 Starting power generation device and starting power generation method

Country Status (1)

Country Link
WO (1) WO2016157381A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025175A (en) * 1999-07-05 2001-01-26 Shindengen Electric Mfg Co Ltd Multiple output battery charger
JP2002119095A (en) * 2000-10-11 2002-04-19 Honda Motor Co Ltd Controller for controlling output of synchronous power generator
WO2013140906A1 (en) * 2012-03-22 2013-09-26 日立オートモティブシステムズ株式会社 Power conversion device, electric power steering system, electric vehicle, electronic control throttle, and electric brake

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025175A (en) * 1999-07-05 2001-01-26 Shindengen Electric Mfg Co Ltd Multiple output battery charger
JP2002119095A (en) * 2000-10-11 2002-04-19 Honda Motor Co Ltd Controller for controlling output of synchronous power generator
WO2013140906A1 (en) * 2012-03-22 2013-09-26 日立オートモティブシステムズ株式会社 Power conversion device, electric power steering system, electric vehicle, electronic control throttle, and electric brake

Similar Documents

Publication Publication Date Title
US6787931B2 (en) Starter generator for internal combustion engine
US7554279B2 (en) Method for operating an electronically commutated motor, and motor for carrying out a method such as this
US8541989B2 (en) Power supply apparatus
EP3358741B1 (en) Starter-generator device and starter-generator method
CN105281627B (en) Electric rotating machine with load dump protection
JP6120472B2 (en) STARTING POWER GENERATION DEVICE AND STARTING POWER GENERATION METHOD
JP5488265B2 (en) Vehicle generator
JP6128721B2 (en) STARTING POWER GENERATION DEVICE AND STARTING POWER GENERATION METHOD
JP6419285B1 (en) Engine starter
US10027252B2 (en) Rotating electric machine system
WO2016157381A1 (en) Starting power generation device and starting power generation method
JP6662208B2 (en) Power output device
WO2016157386A1 (en) Starting power generation device and starting power generation method
JP6645405B2 (en) Rotary electric machine control device, rotary electric machine unit
JP2015065788A (en) Rotary electric machine for vehicle
JP6157042B1 (en) STARTING POWER GENERATION DEVICE AND STARTING POWER GENERATION METHOD
JP6406143B2 (en) Rotating electric machine for vehicles
US9712100B2 (en) Electric rotating machine and control method therefor
JP2013070564A (en) Alternator and rectifier
JP2018026994A (en) Winding number switching electric machine
JP2017089457A (en) Engine start system
JP2011114973A (en) Charging circuit, generator using charging circuit, and electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP