JP2001025175A - Multiple output battery charger - Google Patents

Multiple output battery charger

Info

Publication number
JP2001025175A
JP2001025175A JP11190658A JP19065899A JP2001025175A JP 2001025175 A JP2001025175 A JP 2001025175A JP 11190658 A JP11190658 A JP 11190658A JP 19065899 A JP19065899 A JP 19065899A JP 2001025175 A JP2001025175 A JP 2001025175A
Authority
JP
Japan
Prior art keywords
phase
output
battery
generator
switching circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11190658A
Other languages
Japanese (ja)
Other versions
JP4229533B2 (en
Inventor
Masami Kawabe
正美 河辺
Koji Kodama
光司 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP19065899A priority Critical patent/JP4229533B2/en
Publication of JP2001025175A publication Critical patent/JP2001025175A/en
Application granted granted Critical
Publication of JP4229533B2 publication Critical patent/JP4229533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Secondary Cells (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize well-balanced charging of a battery by rectifying a current using a first switching circuit, including a circuit for outputting a current to a battery or a capacitor using the second or third witching circuit and driving the first switching circuit to use a magnetic type generator as a motor. SOLUTION: When a three-phase magnet-type generator used concurrently as a generator, an AC is applied when power generation output is generated in u, v, w phases with the rotation of an engine. The output of the generator smoothed with the first switching circuit is generated and makes conductive the second and third switching circuits, depending on the battery voltage lower than the specified voltage to charge the battery. When the battery voltage is higher than the specified voltage, these circuits are not conductive, and thereby the battery is not charged to control the battery voltage to a constant voltage. Thereby, different voltages can be obtained under a well-balanced condition, and the battery can be charged from a low voltage to a high voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単相又は三相の磁石
式発電機により、複数のバッテリに充電する装置の充電
分配制御方法と単相又は三相の磁石式発電機をモータと
して駆動する方法に関するものである。又、三相のフィ
ールド式発電機により、複数のバッテリに充電する装置
の充電分配制御方法と三相のフィールド式発電機をモー
タとして駆動する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge distribution control method for a device for charging a plurality of batteries by a single-phase or three-phase magnet generator, and to drive the single-phase or three-phase magnet generator as a motor. It is about the method. The present invention also relates to a charge distribution control method for a device that charges a plurality of batteries by using a three-phase field generator and a method of driving the three-phase field generator as a motor.

【0002】[0002]

【従来の技術】従来の装置は、図4に示すようにバッテ
リに充電する装置とモータとして駆動する装置及び12
Vバッテリに電圧変換する装置と別々に設けられてお
り、それぞれ、バッテリの状態と発電機(モータ)の状
態を監視し、制御していたので部品点数が多くなる原因
となっていた。
2. Description of the Related Art As shown in FIG. 4, a conventional device includes a device for charging a battery, a device for driving as a motor, and
The apparatus is provided separately from a device for converting the voltage into a V battery, and the state of the battery and the state of the generator (motor) are monitored and controlled, respectively, which causes an increase in the number of parts.

【0003】[0003]

【発明が解決しようとする課題】1つの磁石式発電機ま
たはフィールド式発電機から異なった出力電圧を低回転
から高回転まで出力して各バッテリにバランス良く充電
し、かつ発電機をモータとして駆動できることをの目的
としている。また、高電圧バッテリが電圧不足時発電コ
イルを使用し、昇圧電力を高電位バッテリに充電できる
ことを目的としている。
SUMMARY OF THE INVENTION Different output voltages are output from one magnet generator or field generator from low rotation to high rotation to charge each battery in a well-balanced manner, and the generator is driven as a motor. The purpose is to be able to. It is another object of the present invention to charge a high-potential battery with boosted power by using a high-voltage battery with an insufficient voltage generating coil.

【0004】[0004]

【課題を解決するための手段】本発明は単相又は三相の
磁石式発電機の出力電圧波形を制御手段として各相毎に
スイッチング素子をバッテリに直列に挿入し、1)単相
又は三相の磁石式発電機の正波形出力と負波形出力を区
別し、正負の出力波形に対し、優先度を設ける。2)単
相又は三相の磁石式発電機の相の数を区別し、複数の出
力に対し、優先度を設ける。3)単相又は三相磁石式発
電機の正波形出力又は負波形出力の位相角度で区別し、
複数の出力に対し、優先度を設けるこのことにより片方
の出力に発電機のエネルギーが偏らないように出力させ
る。
According to the present invention, a switching element is inserted in series with a battery for each phase by using an output voltage waveform of a single-phase or three-phase magnet generator as a control means. A positive waveform output and a negative waveform output of a phase magnet generator are distinguished, and a priority is provided for positive and negative output waveforms. 2) The number of phases of a single-phase or three-phase magnet generator is distinguished, and a priority is set for a plurality of outputs. 3) Distinguishing by the phase angle of the positive or negative waveform output of the single-phase or three-phase magnet generator,
A priority is provided for a plurality of outputs, so that the energy of the generator is output to one of the outputs without bias.

【0005】本発明は三相フィールド式発電機の出力電
圧波形を制御手段として第一及び第三のスイッチング素
子を用い、発電機の出力を整流してバッテリに充電し、
1)単相又は三相の磁石式発電機の正波形出力と負波形
出力を区別し、正負の出力波形に対し、優先度を設け
る。2)三相フィールド式発電機の相の数を区別し、複
数の出力に対し、優先度を設ける。 3)三相フィール
ド式発電機の正波形出力又は負波形出力の位相角度で区
別し、複数の出力に対し、優先度を設けることにより片
方の出力に発電機のエネルギーが偏らないように出力さ
せる。
The present invention uses first and third switching elements as control means for controlling the output voltage waveform of a three-phase field type generator, rectifies the output of the generator and charges the battery,
1) Positive waveform output and negative waveform output of a single-phase or three-phase magnet generator are distinguished, and priority is set for positive and negative output waveforms. 2) The number of phases of the three-phase field generator is distinguished, and a priority is set for a plurality of outputs. 3) The phase angle of the positive waveform output or the negative waveform output of the three-phase field generator is distinguished, and a priority is provided to a plurality of outputs so that the output of one of the generators is not biased to one of the outputs. .

【0006】本発明は同期整流回路をモータ駆動するフ
ルブリッジとして使用し、高電位バッテリから電源を供
給し発電機をモータとして使用する。又、エンジン停止
時、発電機兼のモータのコイルを昇圧コイルとして用い
低電圧バッテリから高電位バッテリへスイッチング充電
する。
The present invention uses a synchronous rectifier circuit as a full bridge for driving a motor, supplies power from a high-potential battery, and uses a generator as a motor. When the engine is stopped, the switching coil is charged from the low-voltage battery to the high-potential battery by using the coil of the motor serving as the generator as a boosting coil.

【0007】[0007]

【発明の実施の形態】本発明の実施例を図1に示す。1
は三相磁石式発電機兼モータ、2は36V用バッテリ、
3は12V用バッテリ、一は三相磁石式発電機兼モータ
を駆動するドライバ回路と発電出力を整流する同期整流
回路を兼用した第一のスイッチング回路、二は一回路で
整流された発電出力を36V用バッテリに充電するため
の第二のスイッチング回路でバッテリ電圧制御回路とド
ライバで構成されている、三は一回路で整流された発電
出力を12V用バッテリに充電するための第三のスイッ
チング回路でバッテリ電圧制御回路とドライバで構成さ
れている、四はエンジン停止時12V用バッテリから三
相磁石式発電機兼モータのコイルを利用し、36V用バ
ッテリに充電するための第四のスイッチング回路で導通
制御回路とドライバで構成されている。
FIG. 1 shows an embodiment of the present invention. 1
Is a three-phase magnet generator / motor, 2 is a 36V battery,
Reference numeral 3 denotes a 12V battery, one is a first switching circuit which also serves as a driver circuit for driving a three-phase magnet generator / motor and a synchronous rectification circuit for rectifying a power generation output, and the second is a power generation output rectified by one circuit. The second switching circuit for charging the 36V battery is composed of a battery voltage control circuit and a driver. The third is a third switching circuit for charging the rectified output in one circuit to the 12V battery. The fourth is a fourth switching circuit for charging a 36V battery from a 12V battery when the engine is stopped by using a coil of a three-phase magnet generator / motor when the engine is stopped. It is composed of a conduction control circuit and a driver.

【0008】次に、これを動作するためにはまず、三相
磁石式発電機兼モータを発電機として使用する場合は、
エンジンが回転し発電出力がu,v,w各相に発生する
とA点に図2に示すように交流は波形が印可される。こ
の時一aの同期位相検出回路で正波形を検出すると上段
のスイッチング素子Q1を導通し、下段のスイッチング
素子Q2を非導通する。また、負波形を検出すると上段
のスイッチング素子Q1を非導通し、下段のスイッチン
グ素子Q2を導通する。以下B、C点に交流波形が印可
された場合も同様である。
Next, in order to operate this, first, when a three-phase magnet type generator / motor is used as a generator,
When the engine rotates and power generation output is generated in each phase of u, v, and w, a waveform of an alternating current is applied to point A as shown in FIG. At this time, when a positive waveform is detected by the synchronous phase detection circuit 1a, the upper switching element Q1 is turned on and the lower switching element Q2 is turned off. When a negative waveform is detected, the upper switching element Q1 is turned off and the lower switching element Q2 is turned on. The same applies to the case where an AC waveform is applied to points B and C below.

【0009】このことにより、一aの同期位相検出回路
が動作するまでは各スイッチング素子の両端間のダイオ
ードD1〜6を通して第二及び第三のスイッチング回路
へ発電機出力電流が流れるが一aの同期位相検出回路が
動作するとダイオードD1〜6ではなく各スイッチング
素子を通して発電機出力電流が流れるので各素子の飽和
電圧が下げられるため第一のスイッチング回路の発熱損
失が低下させることができる。次に第一のスイッチング
回路で整流された発電機の出力を36V用バッテリ及び
12V用バッテリの電圧状態により、第二及び第三のス
イッチング回路をバッテリ電圧が規定電圧よりも低い場
合は導通され、バッテリへ充電する。また、規定電圧よ
り高い場合は非道通させて、バッテリへ充電させず、バ
ッテリ電圧が常に一定電圧になるように制御される。
As a result, the generator output current flows to the second and third switching circuits through the diodes D1 to D6 between both ends of each switching element until the synchronous phase detection circuit 1a operates. When the synchronous phase detection circuit operates, the generator output current flows through each switching element instead of the diodes D1 to D6, so that the saturation voltage of each element is reduced, so that the heat loss of the first switching circuit can be reduced. Next, the output of the generator rectified by the first switching circuit is turned on when the battery voltage is lower than the specified voltage, by the voltage state of the 36 V battery and the 12 V battery, Charge the battery. If the voltage is higher than the specified voltage, the battery is not charged and the battery is not charged, and the battery voltage is controlled so as to be always constant.

【0010】この時、36V用バッテリ及び12V用バッ
テリの状態により充電状態が不均衡にしないために、表
1の3通りの充電方法がある。第一の波形優先タイプ方
式は36V用バッテリに は発電機の正出力波形を12V
用バッテリには発電機の負出力波形を満充電でない時に
優先的に第二及び第三のスイッチング回路を動作させ
る。第二の位相角優先タイプ方式は半サイクルの発電機
出力波形に対し、36V用バッテリには発電機の出力波
形の内0〜Θanglまでを12V用バッテリには発電
機の出力波形をΘangl〜0までを満充電でない時に
優先的に第二及び第三のスイッチング回路を動作させ
る。
At this time, there are three charging methods shown in Table 1 in order to prevent the charging state from becoming unbalanced depending on the state of the 36V battery and the 12V battery. The first waveform priority type method uses a 12V positive output waveform of the generator for a 36V battery.
When the negative output waveform of the generator is not fully charged, the second and third switching circuits are operated preferentially. In the second phase angle priority type system, the output waveform of the generator is 0 to 、 angl for the 36 V battery and the output waveform of the generator is Θangl to 0 for the 12 V battery for the half cycle generator output waveform. When the battery is not fully charged, the second and third switching circuits are operated preferentially.

【0011】第三の相分配優先タイプ方式は発電機出力
波形に対し、36V用バッテリには発電機の出力波形の
3相分の内2相分を12V用バッテリには発電機の出力
波形の3相分の内残りの1相分を満充電でない時に優先
的に第二及び第三のスイッチング回路を動作させる。3
6V用バッテリ又は12V用バッテリが満充電でない時は
表1のように第二及び第三のスイッチング回路を動作さ
せることでバランス良く、36V用バッテリ及び12V用
バッテリを充電できる。
In the third phase distribution priority type system, the output waveform of the generator is compared with the output waveform of the generator in the 36V battery by using two phases out of the three phases of the generator output waveform in the 12V battery. The second and third switching circuits are preferentially operated when the remaining one of the three phases is not fully charged. Three
When the 6V battery or the 12V battery is not fully charged, the 36V battery and the 12V battery can be charged in good balance by operating the second and third switching circuits as shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】次に、三相磁石式発電機兼モータをモータ
として使用する場合は36V用バッテリからの電圧を第
二のスイッチング素子回路のスイッチング素子Q7,8,
9を全て導通し、各u,v,w相コイルに順次Q1→u相
コイル→Q4, Q3→v相コイル→Q6, Q3→w相コイル
→Q2に短時間電流を流し、過電流が流れない相を基点
にして正規導通時間で回転磁界が発生するように各相に
順次第一のスイッチング素子を通電していく。このこと
により36V用バッテリを電源として第一のスイッチン
グ素子回路をフルブリッジドライバとして三相磁石式発
電機兼モータを駆動できる。また、停止する時の逆起電
力は第一及び第二のスイッチング素子回路を通して再び
36V用バッテリに回生充電される。
Next, when a three-phase magnet type generator / motor is used as a motor, the voltage from the 36V battery is applied to the switching elements Q7, 8,
9 are conducted, and a short-time current flows through each of the u, v, and w phase coils in the order of Q1 → u phase coil → Q4, Q3 → v phase coil → Q6, Q3 → w phase coil → Q2, and an overcurrent flows. The first switching element is sequentially energized to each phase so that a rotating magnetic field is generated in a normal conduction time with no phase as a starting point. Thus, the three-phase magnet generator / motor can be driven using the 36V battery as a power source and the first switching element circuit as a full bridge driver. Further, the back electromotive force at the time of stopping is recharged again to the 36V battery through the first and second switching element circuits.

【0014】次に、三相磁石式発電機兼モータをエンジ
ン停止時昇圧コイルとして使用する場合は第四のスイッ
チング素子回路(Q10、11)を導通し、第二のスイ
ッチング素子回路を全て導通し、スイッチング素子Q
2、Q4を一定時間のスイッチングすることで三相磁石
式発電機兼モータの各相のコイルに高電圧が発生しダイ
オードD1,D3を通して36V用バッテリに充電され
る。このことにより36V用バッテリはコンデンサ等で
もエンジン起動時、12V用バッテリから36V用バッ
テリ代換コンデンサに充電し電源を確保でき、この電源
をもとに三相磁石式発電機兼モータをモータとして駆動
できる。
Next, when the three-phase magnet generator / motor is used as a step-up coil when the engine is stopped, the fourth switching element circuit (Q10, 11) is turned on and all the second switching element circuits are turned on. , Switching element Q
By switching Q2 and Q4 for a certain period of time, a high voltage is generated in the coils of each phase of the three-phase magnet generator / motor, and the 36V battery is charged through the diodes D1 and D3. Thus, when the engine is started, the 36V battery can be charged from the 12V battery to the 36V battery replacement capacitor when the engine is started, and the power can be secured. Based on this power, the three-phase magnet generator / motor is driven as a motor. it can.

【0015】以上のことから、三相磁石式発電機兼モー
タを、多出力を設けてもバランスよくバッテリに充電で
きる。かつ、高電圧側が電圧不足及びバッテリ代替えコ
ンデンサを使用しても三相磁石式発電機兼モータを昇コ
イルとして充電でき、モータ駆動が動作可能となる。ま
た、充電機能とモータ駆動機能を兼ね備えることで回路
を効率的に構成できる。
As described above, the three-phase magnet generator / motor can be charged to the battery in a well-balanced manner even if multiple outputs are provided. In addition, even if the high voltage side has insufficient voltage and a battery substitute capacitor is used, the three-phase magnet type generator / motor can be charged as a raising coil, and the motor can be driven. In addition, the circuit can be efficiently configured by having both the charging function and the motor driving function.

【0016】次に本発明の他の実施例を図3に示す。1
は三相フィード式発電機兼モータ、2は36V用バッテ
リ、3は12V用バッテリ、一は三相フィード式発電機
兼モータを駆動するドライバ回路と発電出力を整流する
同期整流回路を兼用した第一のスイッチング回路、五は
一回路で整流された発電出力を36V用バッテリに直接
一定電圧充電するための第五のスイッチング回路でフィ
ードコイル制御回路とドライバで構成されている、三は
一回路で整流された発電出力を12V用バッテリに充電
するための第三のスイッチング回路でバッテリ電圧制御
回路とドライバで構成されている、四はエンジン停止時
12V用バッテリから三相フィールド式発電機兼モータ
のコイルを利用し、36V用バッテリに充電するための
第四のスイッチング回路で導通制御回路とドライバで構
成されている。
Next, another embodiment of the present invention is shown in FIG. 1
Is a three-phase feed generator / motor, 2 is a 36V battery, 3 is a 12V battery, one is a driver circuit that drives the three-phase feed generator / motor and a synchronous rectifier circuit that rectifies the power output. One switching circuit, five is a fifth switching circuit for directly charging the power output rectified by one circuit to a 36V battery at a constant voltage, and is composed of a feed coil control circuit and a driver. Three is one circuit. The third switching circuit for charging the rectified power output to the 12V battery is composed of a battery voltage control circuit and a driver. The fourth is a three-phase field type generator / motor from the 12V battery when the engine is stopped. A fourth switching circuit for charging a 36V battery by using a coil is constituted by a conduction control circuit and a driver.

【0017】次に、これを動作するためにはまず、三相
フィード式発電機兼モータを発電機として使用する場合
は、エンジンが回転し発電出力がu,v,w各相に発生
するとA点に交流波形が印可される。この時一aの同期
位相検出回路で正波形を検出すると上段のスイッチング
素子Q1を導通し、下段のスイッチング素子Q2を非導
通する。また、負波形を検出すると上段のスイッチング
素子Q1を非導通し、下段のスイッチング素子Q2を導
通する。以下B、C点に交流波形が印可された場合も同
様である。
Next, in order to operate this, first, when a three-phase feed type generator / motor is used as a generator, when the engine rotates and power generation output is generated in each of u, v and w phases, A An AC waveform is applied to the point. At this time, when a positive waveform is detected by the synchronous phase detection circuit 1a, the upper switching element Q1 is turned on and the lower switching element Q2 is turned off. When a negative waveform is detected, the upper switching element Q1 is turned off and the lower switching element Q2 is turned on. The same applies to the case where an AC waveform is applied to points B and C below.

【0018】このことにより、一aの同期位相検出回路
が動作するまでは各スイッチング素子の両端間のダイオ
ードD1〜6を通して36V用バッテリ及び第三のスイ
ッチング回路へ発電機出力電流が流れるが一aの同期位
相検出回路が動作するとダイオードD1〜6ではなく各
スイッチング素子を通して発電機出力電流が流れるので
各素子の飽和電圧が下げられるので第一のスイッチング
回路の発熱損失が低下させることができる。
As a result, the generator output current flows to the 36V battery and the third switching circuit through the diodes D1 to D6 between both ends of each switching element until the synchronous phase detection circuit 1a operates. When the synchronous phase detection circuit operates, the generator output current flows through each switching element instead of the diodes D1 to D6, so that the saturation voltage of each element is reduced, so that the heat loss of the first switching circuit can be reduced.

【0019】次に第一のスイッチング回路で整流された
発電機の出力は36V用バッテリが一定電圧に充電され
るように第五のスイッチング素子回路を通してフィード
コイルを制御する。また、12V用バッテリは電圧状態
により、第三のスイッチング回路をバッテリ電圧が規定
電圧よりも低い場合は導通され、バッテリへ充電する。
また、規定電圧より高い場合は非道通させて、バッテリ
へ充電させず、バッテリ電圧が常に一定電圧になるよう
に制御される。この時、36V用バッテリ及び12V用バ
ッテリの状態により充電状態が不均衡にしないために、
前記実施例(図1)と同様な充電方法がある。
Next, the output of the generator rectified by the first switching circuit controls the feed coil through the fifth switching element circuit so that the 36V battery is charged to a constant voltage. The 12V battery is turned on when the battery voltage is lower than the specified voltage, and charges the battery according to the voltage state.
If the voltage is higher than the specified voltage, the battery is not charged and the battery is not charged, and the battery voltage is controlled so as to be always constant. At this time, in order to prevent the charging state from being unbalanced depending on the state of the 36V battery and the 12V battery,
There is a charging method similar to that of the embodiment (FIG. 1).

【0020】第一の波形優先タイプ方式は36V用バッ
テリには発電機の正出力波形を12V用バッテリには発
電機の負出力波形を満充電でない時に優先的に第一及び
第三のスイッチング回路を動作させる。第二の位相角優
先タイプ方式は半サイクルの発電機出力波形に対し、3
6V用バッテリには発電機の出力波形の内0〜Θang
lまでを12V用バッテリには発電機の出力波形をΘa
ngl〜0までを満充電でない時に優先的に第一及び第
三のスイッチング回路を動作させる。第三の相分配優先
タイプ方式は発電機出力波形に対し、36V用バッテリ
には発電機の出力波形の3相分の内2相分を12V用バ
ッテリには発電機の出力波形の3相分の内残りの1相分
を満充電でない時に優先的に第一及び第三のスイッチン
グ回路を動作させる。
In the first waveform priority type system, the first and third switching circuits are given priority when the positive output waveform of the generator is not fully charged to the 36V battery and the negative output waveform of the generator is not fully charged to the 12V battery. To work. The second phase angle priority type method uses 3
For the 6V battery, 0 to Θang of the output waveform of the generator
The output waveform of the generator is Θa
When ngl to 0 are not fully charged, the first and third switching circuits are preferentially operated. In the third phase distribution priority type system, for the generator output waveform, two phases out of three phases of the generator output waveform for the 36V battery are three phases of the generator output waveform for the 12V battery. When the remaining one phase is not fully charged, the first and third switching circuits are preferentially operated.

【0021】36V用バッテリ又は12V用バッテリが満
充電でない時は第五及び第三のスイッチン グ回路を動
作させることでバランス良く、36V用バッテリ及び1
2V用バッテリを充電できる。
When the 36V battery or the 12V battery is not fully charged, the fifth and third switching circuits are operated to achieve a good balance, so that the 36V battery and the 1V battery are not fully charged.
2V battery can be charged.

【0022】次に、三相フィールド式発電機兼モータを
モータとして使用する場合は36V用バッテリからの電
圧を第五のスイッチング素子回路のスイッチング素子Q7
導通し、各u,v,w相コイルに順次Q1→u相コイル→Q
4, Q3→v相コイル→Q6, Q3→w相コイル→Q2に短
時間電流を流し、過電流が流れない相を基点にして正規
導通時間で回転磁界が発生するように各相に順次第一の
スイッチング素子を通電していく。このことにより36
V用バッテリを電源として第一のスイッチング素子回路
をフルブリッジドライバとして三相フィールド式発電機
兼モータを駆動できる。また、停止する時の逆起電力は
第一のスイッチング素子回路を通して再び36V用バッ
テリに回生充電される。
Next, when the three-phase field type generator / motor is used as a motor, the voltage from the 36V battery is applied to the switching element Q7 of the fifth switching element circuit.
Conducted, Q1 → u-phase coil → Q
4, Q3 → v-phase coil → Q6, Q3 → w-phase coil → A short-time current is applied to Q2, and a phase where no overcurrent flows is used as a starting point. One switching element is energized. This allows 36
The three-phase field generator / motor can be driven using the V battery as a power source and the first switching element circuit as a full bridge driver. Further, the back electromotive force at the time of stopping is regenerated and recharged to the 36V battery again through the first switching element circuit.

【0023】次に、三相フィールド式発電機兼モータを
エンジン停止時昇圧コイルとして使用する場合は第四の
スイッチング素子回路(Q8,9)を導通し、第一のス
イッチング素子回路を全て導通し、スイッチング素子Q
2、Q4を一定時間のスイッチングすることで三相フィ
ールド式発電機兼モータの各相のコイルに高電圧が発生
しダイオードD1,D3を通して36V用バッテリに充
電される。このことにより36V用バッテリはコンデン
サ等でもエンジン起動時、12V用バッテリから36V
用バッテリ代換コンデンサに充電し電源を確保でき、こ
の電源をもとに三相フィールド式発電機兼モータをモー
タとして駆動できる。
Next, when the three-phase field type generator / motor is used as a step-up coil when the engine is stopped, the fourth switching element circuit (Q8, 9) is turned on, and all the first switching element circuits are turned on. , Switching element Q
By switching Q2 and Q4 for a certain period of time, a high voltage is generated in the coils of each phase of the three-phase field generator / motor and charged to the 36V battery through diodes D1 and D3. As a result, when the engine is started, the 36V battery can be switched from the 12V battery to a 36V
Power can be secured by charging the battery replacement capacitor for use, and a three-phase field type generator / motor can be driven as a motor based on this power.

【0024】以上のことから、三相フィールド式発電機
兼モータを、多出力を設けてもバランスよくバッテリに
充電できる。かつ、高電圧側が電圧不足及びバッテリ代
替えコンデンサを使用しても三相フィールド式発電機兼
モータを昇コイルとして充電でき、モータ駆動が動作可
能となる。また、充電機能とモータ駆動機能を兼ね備え
ることで回路を効率的に構成できる。
As described above, the three-phase field type generator / motor can be charged to the battery in a well-balanced manner even if multiple outputs are provided. In addition, even if the high voltage side has insufficient voltage and a battery substitute capacitor is used, the three-phase field type generator / motor can be charged as a raising coil, and the motor can be driven. In addition, the circuit can be efficiently configured by having both the charging function and the motor driving function.

【0025】[0025]

【効果の説明】本発明の構成をすることにより、発電機
兼モータから複数の電圧の異なった出力が容易にバラン
スよく得られる。かつ、モータ駆動回路と組合わせるこ
とで充電回路部との共通部分が省略され、低電圧から高
電圧バッテリに充電が可能になる。また、この発明をエ
ンジン駆動による発電機を用いる装置に関し、多出力を
必要とする構成、例えば、高電圧でモータを駆動し、低
電圧でランプ等の通常の負荷を動作するものに応用でき
る。
According to the present invention, different outputs of a plurality of voltages can be easily obtained from the generator / motor in a well-balanced manner. In addition, by combining with a motor drive circuit, a common part with a charging circuit unit is omitted, and charging from a low voltage to a high voltage battery becomes possible. Further, the present invention relates to a device using a generator driven by an engine, and can be applied to a configuration that requires multiple outputs, for example, a device that drives a motor at a high voltage and operates a normal load such as a lamp at a low voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例回路図FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】本発明実施例の同期整流タイミング波形図FIG. 2 is a synchronous rectification timing waveform diagram according to the embodiment of the present invention.

【図3】本発明の他の実施例回路図FIG. 3 is a circuit diagram of another embodiment of the present invention.

【図4】従来例FIG. 4 Conventional example

【符号の説明】[Explanation of symbols]

1.発電機兼モータ 2,3.バッテリ 一.第一のスイッチング回路 二.第二のスイッチング回路 三.第三のスイッチング回路 四.第四のスイッチング回路 五.第五のスイッチング回路 1. Generator / motor 2,3. Battery 1. First switching circuit Second switching circuit 3. Third switching circuit 4. Fourth switching circuit Fifth switching circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G060 BA06 CA13 DA01 DA02 5H007 BB06 CA02 CA03 CB04 CB05 CC12 CC23 CC32 DA06 DB01 DC04 DC05 5H030 AA03 AS18 BB10 DD08 DD09 FF43 5H590 AA10 AA30 CA07 CA23 CC01 CC02 CC22 CC24 CD01 CD03 CD10 CE05 DD25 DD64 EA10 EB12 EB13 FA06 FA08 FB01 FB02 FB05 FB06 FC14 FC15 FC17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G060 BA06 CA13 DA01 DA02 5H007 BB06 CA02 CA03 CB04 CB05 CC12 CC23 CC32 DA06 DB01 DC04 DC05 5H030 AA03 AS18 BB10 DD08 DD09 FF43 5H590 AA10 AA30 CA07 CA23 CC01 CC02 CC10 DD25 DD64 EA10 EB12 EB13 FA06 FA08 FB01 FB02 FB05 FB06 FC14 FC15 FC17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】単相又は三相磁石式発電機において第一の
スイッチング回路を用いて整流し、第二又は第三のスイ
ッチング回路を用いてバッテリ又はコンデンサに出力す
る回路を有し、各出力に見合った電圧を出力させ、上記
第一のスイッチング回路を駆動し、単相又は三相の磁石
式発電機をモータとして使用させることを特徴とした多
出力バッテリ充電装置。
1. A single-phase or three-phase magnet generator having a circuit for rectifying using a first switching circuit and outputting to a battery or a capacitor using a second or third switching circuit. A multi-output battery charger characterized by outputting a voltage corresponding to (1), driving the first switching circuit, and using a single-phase or three-phase magnet generator as a motor.
【請求項2】単相又は三相磁石式発電機の出力電圧波形
を制御手段として第二スイッチング回路及び、第三のス
イッチング回路を夫々バッテリに直列に挿入し、単相又
は三相の磁石式発電機の正波形出力又は負波形出力を区
別し、複数の出力に対し、優先度を設けて複数の出力を
バランスよく出力電圧制御をすることを特徴とした請求
項1の多出力バッテリ充電装置。
2. A single-phase or three-phase magnet type generator, wherein a second switching circuit and a third switching circuit are respectively inserted in series with a battery by using an output voltage waveform of a single-phase or three-phase magnet generator as control means. 2. The multi-output battery charging apparatus according to claim 1, wherein the generator has a positive waveform output or a negative waveform output, and a plurality of outputs are prioritized to output voltage control in a well-balanced manner. .
【請求項3】単相又は三相磁石式発電機の出力電圧波形
を制御手段として単相又は三相の磁石式発電機の相の数
を区別し、複数の出力に対し、優先度を設けて複数の出
力をバランスよく出力電圧制御をすることを特徴とした
請求項2の多出力バッテリ充電装置。
3. The number of phases of a single-phase or three-phase magnet generator is distinguished by using the output voltage waveform of a single-phase or three-phase magnet generator as control means, and a priority is set for a plurality of outputs. 3. The multi-output battery charger according to claim 2, wherein a plurality of outputs are output voltage controlled in a well-balanced manner.
【請求項4】単相又は三相磁石式発電機の出力電圧波形
を制御手段として、単相又は三相磁石式発電機の正波形
出力又は負波形出力の位相角度で区別し、複数の出力に
対し、優先度を設けて複数の出力をバランスよく出力電
圧制御をすることを特徴とした請求項2の多出力バッテ
リ充電装置。
4. An output voltage waveform of a single-phase or three-phase magnet generator is used as a control means, and a plurality of outputs are distinguished by a phase angle of a positive waveform output or a negative waveform output of a single-phase or three-phase magnet generator. 3. The multi-output battery charging device according to claim 2, wherein a plurality of outputs are controlled in a well-balanced output voltage by setting priorities.
【請求項5】三相フィールド式発電機において第一のス
イッチング回路を用いて整流し、バッテリ又はコンデン
サに出力する回路を複数有し、最高電位の出力電圧にも
とづいてフィールドコイルを制御する第五のスイッチン
グ回路を用いて磁界を調整して出力し、その他の出力は
第三のスイッチング回路を用いて整流して出力に見合っ
た電圧を出力させ、上記第一のスイッチング回路を駆動
し、三相フィールド式発電機をモータとして使用させる
ことを特徴とした多出力バッテリ充電装置。
5. A fifth phase generator comprising: a plurality of circuits for rectifying and outputting to a battery or a capacitor using a first switching circuit in a three-phase field type generator, and controlling a field coil based on an output voltage having a highest potential. The output is adjusted by adjusting the magnetic field using the switching circuit, and the other output is rectified using the third switching circuit to output a voltage corresponding to the output. A multi-output battery charger characterized by using a field generator as a motor.
【請求項6】三相フィールド式発電機の出力電圧波形を
制御手段として第一スイッチング回路及び、第三のスイ
ッチング回路を夫々バッテリに直列に挿入し、三相フィ
ールド式発電機の相の数を区別し、複数の出力に対し、
優先度を設けて複数の出力をバランスよく出力電圧制御
をすることを特徴とした請求項5の多出力バッテリ充電
装置。
6. A first switching circuit and a third switching circuit are respectively connected in series to a battery by using an output voltage waveform of a three-phase field generator as control means, and the number of phases of the three-phase field generator is determined. Distinguish, for multiple outputs,
6. The multi-output battery charging device according to claim 5, wherein a plurality of outputs are controlled in a well-balanced output voltage by setting priorities.
【請求項7】三相フィールド式発電機の出力電圧波形を
制御手段として三相フィールド式発電機の正波形出力又
は負波形出力の位相角度で区別し、複数の出力に対し、
優先度を設けて複数の出力をバランスよく出力電圧制御
をすることを特徴とした請求項6の多出力バッテリ充電
装置。
7. The output voltage waveform of the three-phase field type generator is distinguished by a phase angle of a positive waveform output or a negative waveform output of the three-phase field type generator as control means.
7. The multi-output battery charger according to claim 6, wherein a plurality of outputs are controlled in a well-balanced output voltage by setting priorities.
【請求項8】三相のフィールド式発電機の出力電圧波形
を制御手段として三相フィールド式発電機の正波形出力
又は負波形出力で区別し、複数の出力に対し、優先度を
設けて複数の出力をバランスよく出力電圧制御をするこ
とを特徴とした請求項6の多出力バッテリ充電装置。
8. The output voltage waveform of a three-phase field type generator is distinguished by a positive waveform output or a negative waveform output of a three-phase field type generator as control means, and a plurality of outputs are provided with a priority. 7. The multi-output battery charging device according to claim 6, wherein the output voltage control is performed in a well-balanced manner.
【請求項9】高電圧のバッテリが低い場合は、発電機停
止時に第四のスイッチング回路を通して発電機コイルに
通電し第一のスイッチング回路でスイッチングすること
により高電圧バッテリに充電させることを特徴とした請
求項1又は請求項5の多出力バッテリ充電装置。
9. When the high voltage battery is low, the generator coil is energized through the fourth switching circuit when the generator is stopped, and the high voltage battery is charged by switching in the first switching circuit. 6. The multi-output battery charger according to claim 1 or claim 5.
JP19065899A 1999-07-05 1999-07-05 Multi-output battery charger Expired - Fee Related JP4229533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19065899A JP4229533B2 (en) 1999-07-05 1999-07-05 Multi-output battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19065899A JP4229533B2 (en) 1999-07-05 1999-07-05 Multi-output battery charger

Publications (2)

Publication Number Publication Date
JP2001025175A true JP2001025175A (en) 2001-01-26
JP4229533B2 JP4229533B2 (en) 2009-02-25

Family

ID=16261762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19065899A Expired - Fee Related JP4229533B2 (en) 1999-07-05 1999-07-05 Multi-output battery charger

Country Status (1)

Country Link
JP (1) JP4229533B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835118A1 (en) * 2002-01-23 2003-07-25 Toyota Motor Co Ltd INVERTER FOR AC GENERATOR
JP2007135391A (en) * 2005-10-06 2007-05-31 Deere & Co Double voltage electrical system
JP2007534284A (en) * 2003-09-24 2007-11-22 ジョンソン コントロールズ オートモティブ エレクトロニクス Synchronous rectifier device and synchronous electric machine running the device
JP2010239729A (en) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd Vehicle charging generator
KR101015129B1 (en) * 2002-08-26 2011-02-16 발레오 에끼쁘망 엘렉뜨리끄 모뙤르 Control device for a reversible rotating electrical machine
CN103547474A (en) * 2011-05-19 2014-01-29 丰田自动车株式会社 Vehicle power-supply device
WO2016157381A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
WO2016157386A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
JP2022173040A (en) * 2021-05-06 2022-11-17 深▲せん▼市斗索科技有限公司 Ac rectification and buck-boost circuit and method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835118A1 (en) * 2002-01-23 2003-07-25 Toyota Motor Co Ltd INVERTER FOR AC GENERATOR
KR101015129B1 (en) * 2002-08-26 2011-02-16 발레오 에끼쁘망 엘렉뜨리끄 모뙤르 Control device for a reversible rotating electrical machine
JP2007534284A (en) * 2003-09-24 2007-11-22 ジョンソン コントロールズ オートモティブ エレクトロニクス Synchronous rectifier device and synchronous electric machine running the device
JP2007135391A (en) * 2005-10-06 2007-05-31 Deere & Co Double voltage electrical system
JP2010239729A (en) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd Vehicle charging generator
JP5713102B2 (en) * 2011-05-19 2015-05-07 トヨタ自動車株式会社 Vehicle power supply
CN103547474A (en) * 2011-05-19 2014-01-29 丰田自动车株式会社 Vehicle power-supply device
CN103547474B (en) * 2011-05-19 2015-11-25 丰田自动车株式会社 The supply unit of vehicle
WO2016157381A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
WO2016157386A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
JP2022173040A (en) * 2021-05-06 2022-11-17 深▲せん▼市斗索科技有限公司 Ac rectification and buck-boost circuit and method thereof
US11955903B2 (en) 2021-05-06 2024-04-09 SHENZHEN DOSO Technology Ltd. Rectification and boost-buck control system for alternating current
JP7486465B2 (en) 2021-05-06 2024-05-17 深▲せん▼市斗索科技有限公司 AC rectification and step-up/step-down circuit and method thereof

Also Published As

Publication number Publication date
JP4229533B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US7332882B2 (en) Motor drive device that combined charge controller
JP2971568B2 (en) Engine power generator
WO2014073058A1 (en) Power source device
JP2004282827A (en) Generator
WO2006011359A1 (en) Power source device
KR20000029032A (en) Driving apparatus of brushless motor for outdoor fan of airconditioner
JP2007068362A5 (en)
JPS5840918B2 (en) Electric motor operation control device
JP2011234458A (en) Output controller of hybrid type engine generator
JPH118910A (en) Power supply equipment for hybrid electric vehicle
JP5288178B2 (en) Motor drive system
US20170207738A1 (en) Electric machine for the power supply of a motor vehicle electrical system
JP2019126116A (en) Motor drive device having power storage part, and motor drive system
JP2001025175A (en) Multiple output battery charger
JPH08317508A (en) Charging device for electric vehicle
CN101577499A (en) Cycloconverter generator
US11264937B2 (en) AC rotary machine apparatus
JP3875083B2 (en) Operation of a switched reluctance drive system with a dual voltage source.
JP5724830B2 (en) Power system
JP6547672B2 (en) Motor device
JP2016007118A (en) Rotary electric machine system
JP2013090511A (en) Power control unit
JP2006020470A (en) Power unit
US6906490B2 (en) Starting of switched reluctance generators
JPS6055900A (en) Dc generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Ref document number: 4229533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees