JPH118910A - Power supply equipment for hybrid electric vehicle - Google Patents

Power supply equipment for hybrid electric vehicle

Info

Publication number
JPH118910A
JPH118910A JP9158551A JP15855197A JPH118910A JP H118910 A JPH118910 A JP H118910A JP 9158551 A JP9158551 A JP 9158551A JP 15855197 A JP15855197 A JP 15855197A JP H118910 A JPH118910 A JP H118910A
Authority
JP
Japan
Prior art keywords
battery
power supply
auxiliary battery
main battery
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9158551A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumae
博 松前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9158551A priority Critical patent/JPH118910A/en
Publication of JPH118910A publication Critical patent/JPH118910A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply equipment for a hybrid electric vehicle which realized a simple circuit configuration reverse power transmission from an auxiliary battery side to the side of a motor for starting up an engine. SOLUTION: A main battery 1 of a hybrid electric vehicle charges and auxiliary battery 6 through DC/DC converters 2-4. A high-voltage circuit section 2 conducts an inverter operation for supplying AC current to a coil 31 of a large number of turns of a transformer 3, when power is supplied from the main battery 1 to the auxiliary battery 6, and conducts a rectifying operation when power is supplied from the auxiliary battery 6 to the main battery 1. A low- voltage circuit section 4 conducts a rectifying operation, when power is supplied from the main battery 1 to the auxiliary battery 6 and conducts an inverter operation for supplying AC current to coils 32, 33 or the side of the transformer 3 with a small number of turns of, when power is supplied from the auxiliary battery 6 to the main battery 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド電気
自動車の電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply for a hybrid electric vehicle.

【0002】[0002]

【従来の技術】内燃機関により駆動される発電機から主
バッテリ−や走行モ−タ−へ給電する従来のハイブリッ
ド電気自動車では、主バッテリ−から給電されるエンジ
ン始動用モ−タにより内燃機関が始動されるが、この始
動用のモ−タとして上記発電機などを用いることができ
る。
2. Description of the Related Art In a conventional hybrid electric vehicle in which power is supplied from a generator driven by an internal combustion engine to a main battery and a traveling motor, the internal combustion engine is powered by an engine starting motor supplied from the main battery. The motor is started, and the above-described generator or the like can be used as a motor for the start.

【0003】特開昭62173901号公報は、電気自
動車の走行モ−タ−給電用のバッテリ−(以下、主バッ
テリ−ともいう)から補機給電用のDC/DCコンバ−
タ(以下、補機用DC/DCコンバ−タともいう)を介
して補機駆動用のバッテリ−(以下、補機バッテリ−と
もいう)に給電する電気自動車(以下、補機バッテリ−
式電気自動車という)を提案している。この種の補機バ
ッテリ−式電気自動車では、通常、低圧で給電される補
機に比較して走行モ−タ−に対して格段に高圧給電でき
るので、損失低減、機器の小形化などの効果を実現で
き、一方、補機へは電圧変動が少ない電源電圧を印加で
きるという利益が生じる。
Japanese Patent Application Laid-Open No. 62173901 discloses a DC / DC converter for supplying electric power to a traveling motor for an electric vehicle (hereinafter also referred to as a main battery).
An electric vehicle (hereinafter, referred to as an auxiliary battery) which supplies power to a battery for driving the auxiliary machine (hereinafter, also referred to as an auxiliary battery) via a DC / DC converter (hereinafter, also referred to as an auxiliary machine DC / DC converter).
Type electric vehicle). In this type of auxiliary battery-powered electric vehicle, a high voltage can be supplied to the traveling motor much more than an auxiliary device which is normally supplied at a low voltage, so that effects such as loss reduction and downsizing of equipment can be obtained. On the other hand, there is an advantage that a power supply voltage with small voltage fluctuation can be applied to the auxiliary machine.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たハイブリッド電気自動車では、主バッテリ−は走行モ
−タ−に走行エネルギ−を駆動するために原理的にその
残量の変動が大きく、その結果、主バッテリ−の残量す
なわち放電可能アンペアアワ−が不足してエンジン始動
ができない場合が考えられる。
However, in the above-mentioned hybrid electric vehicle, the remaining amount of the main battery is large in principle in order to drive the traveling energy to the traveling motor. It is conceivable that the engine cannot be started because the remaining amount of the main battery, that is, the dischargeable amp hour is insufficient.

【0005】この場合、上記補機バッテリ−及び補機用
DC/DCコンバ−タをもつハイブリッド電気自動車で
は、主バッテリ−の残量不足時でも補機バッテリ−から
エンジン始動用モ−タへ給電することによりエンジンを
始動することが考えられる。すなわち、補機バッテリ−
は各種補機への給電のために常時ある電圧レベルの電力
が貯えられており、主バッテリ−でエンジンを始動でき
ないような緊急事態が生じた場合には補機への安定電圧
の給電に優先してまずエンジンを始動させることが重要
であり、エンジンさえ始動できればその後の補機バッテ
リ−の再充電は速やかに実現できる筈である。
In this case, in a hybrid electric vehicle having the accessory battery and the accessory DC / DC converter, power is supplied from the accessory battery to the engine starting motor even when the remaining amount of the main battery is insufficient. It is conceivable to start the engine. That is, the auxiliary battery
The power is always stored at a certain voltage level to supply power to various accessories, and in the event of an emergency in which the engine cannot be started with the main battery, priority is given to supplying stable voltage to the accessories. It is important to start the engine first, and if the engine can be started, the recharging of the auxiliary battery should be able to be quickly realized.

【0006】しかしながら、上記したように補機バッテ
リ−により走行モ−タ−を駆動するには、低圧である補
機バッテリ−の出力電圧を昇圧して走行モ−タ−へ印加
する新たな昇圧用DC/DCコンバ−タを追設しなけれ
ばならず、回路構成が複雑化し、装置コストが増大する
という問題があった。本発明は、上記問題点に鑑みなさ
れたものであり、補機バッテリ−側からエンジン始動用
モ−タ側への逆送電を簡素な回路構成で実現したハイブ
リッド電気自動車の電源装置を提供することをその目的
としている。
However, in order to drive the traveling motor by the auxiliary battery as described above, a new boosting is performed by increasing the output voltage of the auxiliary battery, which is low, and applying it to the traveling motor. A DC / DC converter has to be additionally provided, which causes a problem that the circuit configuration becomes complicated and the cost of the apparatus increases. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a power supply apparatus for a hybrid electric vehicle in which reverse power transmission from an auxiliary battery side to an engine starting motor side is realized with a simple circuit configuration. For that purpose.

【0007】[0007]

【課題を解決するための手段】請求項1記載の構成によ
れば、ハイブリッド電気自動車の主バッテリ−はDC/
DCコンバ−タを通じて補機バッテリ−を充電する。特
に、本構成では、DC/DCコンバ−タは、主バッテリ
−側の高圧回路部と、トランスと、補機バッテリ−側の
低圧回路部とを含む。
According to the first aspect of the present invention, the main battery of the hybrid electric vehicle is DC / DC.
The auxiliary battery is charged through the DC converter. In particular, in this configuration, the DC / DC converter includes a high voltage circuit on the main battery side, a transformer, and a low voltage circuit on the auxiliary battery side.

【0008】高圧回路部は、双方向スイッチング素子を
用いることにより、主バッテリ−から補機バッテリ−へ
の給電時にはいわゆるインバ−タ動作を行ってトランス
の大巻数側のコイルに交流電流を給電し、補機バッテリ
−から主バッテリ−への給電時にはいわゆる整流動作を
行う。低圧回路部は、双方向スイッチング素子を用いる
ことにより、主バッテリ−から補機バッテリ−への給電
時にはいわゆる整流動作を行い、補機バッテリ−から主
バッテリ−への給電時にはいわゆるインバ−タ動作を行
ってトランスの小巻数側のコイルに交流電流を給電す
る。
The high-voltage circuit uses a bidirectional switching element to perform a so-called inverter operation when power is supplied from the main battery to the auxiliary battery to supply an alternating current to the coil on the large number of turns of the transformer. When power is supplied from the auxiliary battery to the main battery, a so-called rectifying operation is performed. By using a bidirectional switching element, the low-voltage circuit performs a so-called rectifying operation when power is supplied from the main battery to the auxiliary battery, and performs a so-called inverter operation when power is supplied from the auxiliary battery to the main battery. Then, an alternating current is supplied to the coil on the side of the small number of turns of the transformer.

【0009】本発明によれば、従来と同じように、補機
バッテリ−を主バッテリ−から別設しているので、補機
へ電圧変動が少ない低圧直流電圧を安定に供給すること
ができる。更に、双方向スイッチング素子を用いること
により、補機バッテリ−側からエンジン始動用モ−タ側
への逆送電を簡素な回路構成で実現したハイブリッド電
気自動車の電源装置を実現することができる。
According to the present invention, the auxiliary battery is separately provided from the main battery, as in the prior art, so that a low-voltage DC voltage with little voltage fluctuation can be stably supplied to the auxiliary machine. Further, by using the bidirectional switching element, it is possible to realize a power supply device for a hybrid electric vehicle in which reverse power transmission from the auxiliary battery side to the engine starting motor side is realized with a simple circuit configuration.

【0010】請求項2記載の構成によれば、請求項1記
載の構成において更に、走行モ−タ−は発電機を兼ねる
ので、装置構成を一層簡素化することができる。上記イ
ンバ−タ動作及び整流動作を切り替え実施可能な回路と
しては、たとえば請求項3に記載するように、トランス
に一対の小巻数側のコイルを巻装し、これらの小巻数側
のコイルから出力される低圧交流電圧を一対の双方向ス
イッチング素子で全波整流し、平滑回路のリアクトルで
平滑する。
According to the second aspect of the invention, since the traveling motor also functions as a generator in the first aspect, the configuration of the apparatus can be further simplified. As a circuit capable of switching between the inverter operation and the rectification operation, for example, a pair of small-winding-side coils are wound around a transformer, and the output from these small-winding-side coils is provided. The low-voltage AC voltage is full-wave rectified by a pair of bidirectional switching elements, and is smoothed by a reactor of a smoothing circuit.

【0011】補機バッテリ−から主バッテリ−を充電す
る場合には、この補機バッテリ−でリアクトルに周期的
に通電するようにスイッチング素子を断続し、これと同
期して上記全波整流回路を構成するスイッチング素子を
交互に導通させて昇圧された交流電圧をトランスの大巻
数側のコイルに生じさせる。このようにすれば、簡素な
回路構成で逆送電を実施することができる。
When the main battery is charged from the auxiliary battery, the switching element is turned on and off so that the reactor is periodically energized by the auxiliary battery, and the full-wave rectifier circuit is synchronized with the switching element. The constituent switching elements are turned on alternately to generate a boosted AC voltage in the coil on the large number of turns of the transformer. In this way, reverse power transmission can be performed with a simple circuit configuration.

【0012】請求項4記載の構成によれば請求項1又は
2記載の構成において更に、低小巻数側のコイルの両端
を、リアクトルを含む平滑回路を通じて補機バッテリ−
の両端に接続するHブリッジ回路を設ける。 このよう
にすれば、Hブリッジ回路を構成する4個のスイッチン
グ素子の導通制御により、昇圧された交流電圧をトラン
スの小巻数側のコイルに印加することができ、回路構成
を簡素化することができる。
According to a fourth aspect of the present invention, in the configuration of the first or second aspect, both ends of the coil having the lower number of turns are connected to the auxiliary battery through a smoothing circuit including a reactor.
An H-bridge circuit connected to both ends of is provided. With this configuration, the boosted AC voltage can be applied to the coil on the side of the small number of turns of the transformer by controlling the conduction of the four switching elements forming the H-bridge circuit, and the circuit configuration can be simplified. it can.

【0013】請求項5記載の構成によれば、請求項1な
いし4のいずれかに記載の構成において更に、補機バッ
テリ−の残量不足状態を検出する場合に、DC/DCコ
ンバ−タの双方向スイッチング素子を駆動制御して主バ
ッテリ−から補機バッテリ−へ給電させるので、補機バ
ッテリ−が十分に充電されている場合にはDC/DCコ
ンバ−タなどを停止することができ、無駄な電力消費を
低減することができる。
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, when the remaining amount of the auxiliary battery is detected as being insufficient, the DC / DC converter may be used. Since the bidirectional switching element is drive-controlled to supply power from the main battery to the auxiliary battery, the DC / DC converter and the like can be stopped when the auxiliary battery is sufficiently charged. Wasteful power consumption can be reduced.

【0014】請求項6記載の構成によれば請求項1ない
し5のいずれかに記載の構成において更に、主バッテリ
−の残量不足状態を検出する場合に、DC/DCコンバ
−タの双方向スイッチング素子を駆動制御して補機バッ
テリ−から主バッテリ−へ給電させるので、主バッテリ
−が十分に充電されている場合にはDC/DCコンバ−
タなどを停止することができ、無駄な電力消費を低減す
ることができる。
According to a sixth aspect of the present invention, in the configuration of any one of the first to fifth aspects, a bidirectional DC / DC converter is further provided for detecting an insufficiency state of the main battery. Since the driving of the switching element is controlled to supply power from the auxiliary battery to the main battery, the DC / DC converter is used when the main battery is sufficiently charged.
Data and the like can be stopped, and unnecessary power consumption can be reduced.

【0015】請求項7記載の構成によれば請求項6記載
の構成において更に、エンジン始動時で、かつ、主バッ
テリ−の残量不足時にのみ、DC/DCコンバ−タの双
方向スイッチング素子を駆動制御して補機バッテリ−か
ら主バッテリ−へ給電させるので、エンジン始動時でな
ければ、主バッテリ−の残量不足時であっても、補機バ
ッテリ−から主バッテリ−への送電を行わないので、長
期の車両停止状態においてだらだらと補機バッテリ−か
ら主バッテリ−への送電を行って、補機バッテリ−が消
耗するのを防止することができる。
According to a seventh aspect of the present invention, the bidirectional switching element of the DC / DC converter is provided only when the engine is started and the remaining amount of the main battery is insufficient. Since the drive is controlled to supply power from the auxiliary battery to the main battery, power transmission from the auxiliary battery to the main battery is performed even when the engine is not started, even when the remaining amount of the main battery is insufficient. Therefore, power can be steadily transmitted from the auxiliary battery to the main battery when the vehicle is stopped for a long period of time to prevent the auxiliary battery from being consumed.

【0016】[0016]

【発明の実施の形態】本発明のハイブリッド電気自動車
では、主バッテリ−はエンジン始動用のモ−タに給電し
てエンジンを始動させる。エンジン始動用のモ−タとし
ては、エンジンにより駆動されて発電して主バッテリ−
を充電する発電機が一般に用いられる。この発電機とし
て走行モ−タ−を用いることもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a hybrid electric vehicle according to the present invention, a main battery supplies power to an engine starting motor to start an engine. As a motor for starting the engine, the main battery is driven by the engine to generate electric power.
Is generally used. A running motor can be used as the generator.

【0017】双方向スイッチング素子は、バイポ−ラト
ランジスタのような単方向性スイッチと、それと反対方
向へ導通するダイオ−ドとを並列接続して構成してもよ
い。本発明の好適な実施態様を以下の実施例を参照して
説明する。
The bidirectional switching element may be configured by connecting a unidirectional switch such as a bipolar transistor and a diode conducting in the opposite direction in parallel. Preferred embodiments of the present invention will be described with reference to the following examples.

【0018】[0018]

【実施例】【Example】

実施例1 (構成)本発明のハイブリッド電気自動車の電源装置の
一実施例を図1を参照して説明する。
Embodiment 1 (Configuration) An embodiment of a power supply device for a hybrid electric vehicle according to the present invention will be described with reference to FIG.

【0019】この電源装置は、主バッテリ−1と、高圧
回路部2と、トランス3と、低圧回路部4と、コントロ
−ラ5と、補機バッテリ−6とからなり、高圧回路部
2、トランス3及び低圧回路部4は、本発明でいう双方
向型DC/DCコンバ−タを構成している。主バッテリ
−1は発電電動機からなる走行モ−タ−7と電力授受可
能に接続されており、走行モ−タ−7は、伝達トルク遮
断可能に車輪に機械的に結合されるとともに、同じく伝
達トルク遮断可能にエンジン8に機械的に結合されてい
る。これら走行モ−タ−7、エンジン8および車輪(図
示せず)間の機械的連結方式には各種の方式があるが、
本発明の要旨ではないので説明は省略する。
This power supply device comprises a main battery 1, a high-voltage circuit 2, a transformer 3, a low-voltage circuit 4, a controller 5, and an auxiliary battery 6. The transformer 3 and the low-voltage circuit unit 4 constitute a bidirectional DC / DC converter according to the present invention. The main battery 1 is connected to a traveling motor 7 composed of a generator motor so as to be able to exchange electric power. The traveling motor 7 is mechanically coupled to wheels so as to be able to cut off transmission torque, and is also transmitted. It is mechanically coupled to the engine 8 so that the torque can be cut off. There are various types of mechanical connection between the traveling motor 7, the engine 8 and the wheels (not shown).
The description is omitted because it is not the gist of the present invention.

【0020】高圧回路部2は、いわゆる双方向ブリッジ
回路からなり、それぞれNMOSトランジスタからなる
ハイサイドスイッチ21及びローサイドスイッチ22を
直列接続してなる第1の相インバ−タ回路と、それぞれ
NMOSトランジスタからなるハイサイドスイッチ23
及びローサイドスイッチ24を直列接続してなる第2の
相インバ−タ回路とを有し、スイッチ21、22の接続
点はトランス3の大巻数側のコイル31の一端に接続さ
れ、スイッチ23、24の接続点はトランス3の大巻数
側のコイル31の他端に接続されている。また、ハイサ
イドスイッチ21、23の他端は主バッテリ−1の高位
端に接続され、ローサイドスイッチ22、24の他端は
主バッテリ−1の低位端に接続されている。25はリッ
プル低減用のコンデンサである。
The high-voltage circuit section 2 comprises a so-called bidirectional bridge circuit, a first phase inverter circuit in which a high-side switch 21 and a low-side switch 22 each comprising an NMOS transistor are connected in series, and an NMOS transistor respectively. High side switch 23
And a second phase inverter circuit in which a low-side switch 24 is connected in series. A connection point between the switches 21 and 22 is connected to one end of a coil 31 on the large number of turns of the transformer 3, and the switches 23 and 24 are connected. Is connected to the other end of the coil 31 on the large number of turns of the transformer 3. The other ends of the high-side switches 21 and 23 are connected to a high end of the main battery 1, and the other ends of the low-side switches 22 and 24 are connected to a low end of the main battery 1. Reference numeral 25 denotes a capacitor for reducing ripple.

【0021】トランス3は、上記大巻数のコイル31と
ともに、互いに逆方向に巻装された一対の小巻数のコイ
ル32、33を有しており、両小巻数のコイル32、3
3の各一端は接続されて補機バッテリ−6の低位端に接
続されている。低圧回路部4は、それぞれNMOSトラ
ンジスタからなる全波整流用スイッチ41、42と、N
MOSトランジスタからなるスイッチング素子43と、
リアクトル44と、リップル低減用のコンデンサ45と
からなる。
The transformer 3 has a pair of small-turn coils 32 and 33 wound in opposite directions together with the large-turn coil 31.
3 is connected to the lower end of the auxiliary battery-6. The low-voltage circuit unit 4 includes full-wave rectification switches 41 and 42 each including an NMOS transistor, and N
A switching element 43 composed of a MOS transistor;
It comprises a reactor 44 and a capacitor 45 for ripple reduction.

【0022】コイル32の他端及びコイル33の他端
は、全波整流用スイッチ41及びリアクトル44を通じ
て補機バッテリ−6の高位端に接続され、スイッチング
素子43は全波整流用スイッチ41、42の両他端間を
接続している。コンデンサ45は補機バッテリ−6と並
列に接続されている。更に上述した各NMOSトランジ
スタからなる各スイッチ21〜24、41〜43は逆方
向通電用のダイオ−ドと並列接続されており、各ダイオ
−ドDのカソ−ドは主バッテリ−1または補機バッテリ
−6の高位側、アノ−ドは低位側に接続されている。な
お、これらのダイオ−ドDは各NMOSトランジスタに
内在する接合ダイオ−ドで構成されてもよい。この場
合、各NMOSトランジスタのPウエル領域すなわちチ
ャンネル直下の半導体領域は主バッテリ−1または補機
バッテリ−6の低位側に接続されている。
The other end of the coil 32 and the other end of the coil 33 are connected to the higher end of the auxiliary battery 6 through a full-wave rectification switch 41 and a reactor 44, and the switching element 43 is connected to the full-wave rectification switches 41 and 42. Are connected between the other ends. The capacitor 45 is connected in parallel with the auxiliary battery-6. Further, the switches 21 to 24 and 41 to 43 each composed of the above-mentioned NMOS transistor are connected in parallel with a diode for reverse conduction, and the cathode of each diode D is connected to the main battery-1 or the auxiliary machine. The high side and the anode of the battery 6 are connected to the low side. Note that these diodes D may be constituted by junction diodes inherent in each NMOS transistor. In this case, the P-well region of each NMOS transistor, that is, the semiconductor region immediately below the channel, is connected to the lower side of the main battery-1 or the auxiliary battery-6.

【0023】コントロ−ラ5は、高圧回路部2のスイッ
チ21〜24及び低圧回路部4のスイッチ41〜43を
断続制御する。コントロ−ラ5には、外部から入力され
る主バッテリ−1及び補機バッテリ−6の端子電圧と、
図示しない外部コントロ−ラから入力される補機バッテ
リ−充電信号及び主バッテリ−充電信号とに基づいて、
上記各スイッチ21〜24及び41〜43を断続制御す
る。
The controller 5 intermittently controls the switches 21 to 24 of the high voltage circuit 2 and the switches 41 to 43 of the low voltage circuit 4. The controller 5 has terminal voltages of the main battery 1 and the auxiliary battery 6 input from the outside,
Based on an auxiliary battery charge signal and a main battery charge signal input from an external controller (not shown),
The switches 21 to 24 and 41 to 43 are intermittently controlled.

【0024】(動作)以下、上記装置の動作を図2のフ
ロ−チャ−トを参照して説明する。まず、電源オンとと
もになされるリセット動作の後、図示しない車両制御用
の外部コントロ−ラからの補機バッテリ−充電指令信号
が存在するかどうかを調べ(S100)、なければ補機
バッテリ−6の端子電圧V2が所定の最低しきい値VT
2未満かどうかを調べ(S102)、V2がVT2以上
であればS108へ進む。
(Operation) The operation of the above apparatus will be described below with reference to the flowchart of FIG. First, after the power-on reset operation, it is checked whether or not an auxiliary battery charge command signal from an external controller (not shown) for vehicle control is present (S100). The terminal voltage V2 is equal to a predetermined minimum threshold value VT.
It is checked whether it is less than 2 (S102). If V2 is not less than VT2, the process proceeds to S108.

【0025】一方、補機バッテリ−充電指令信号が存在
するか、または、端子電圧V2が所定の最低しきい値V
T2未満であれば、DC/DCコンバ−タに後述する通
常送電すなわち主バッテリ−1から補機バッテリ−6へ
の送電を実施させ(S104)、その後、補機バッテリ
−6の電圧V2が所定のしきい値VT2’に達したかど
うかを調べ(S106)、達したらS100へリタ−ン
する。
On the other hand, if there is an auxiliary battery charge command signal or if the terminal voltage V2 is lower than the predetermined minimum threshold V
If it is less than T2, the DC / DC converter performs the normal power transmission described later, that is, the power transmission from the main battery-1 to the auxiliary battery-6 (S104), and thereafter, the voltage V2 of the auxiliary battery-6 becomes a predetermined value. It is checked whether or not the threshold value VT2 'has been reached (S106), and when it has reached, the process returns to S100.

【0026】S108では、図示しない上記車両制御用
の外部コントロ−ラからの主バッテリ−充電指令信号が
存在するかどうかを調べ、なければ主バッテリ−1の端
子電圧V1が所定の最低しきい値VT1未満かどうかを
調べ(S110)、V1がVT1以上であればS100
へリタ−ンする。一方、主バッテリ−充電指令信号が存
在するか、または、端子電圧V1が所定の最低しきい値
VT1未満であれば、DC/DCコンバ−タ3に後述す
る逆送電指令すなわち補機バッテリ−6から主バッテリ
−1への送電を実施させ(S112)、その後、主バッ
テリ−1の電圧V1が所定のしきい値VT1’に達した
かどうかを調べ(S114)、達したらS100へリタ
−ンする。
In step S108, it is checked whether there is a main battery charge command signal from the vehicle control external controller (not shown). If not, the terminal voltage V1 of the main battery-1 is reduced to a predetermined minimum threshold value. It is checked whether it is less than VT1 (S110), and if V1 is more than VT1, S100.
Return. On the other hand, if there is a main battery charge command signal or if terminal voltage V1 is lower than predetermined minimum threshold value VT1, a reverse power transmission command to DC / DC converter 3, which will be described later, that is, auxiliary battery-6 To transmit power to the main battery-1 (S112). Thereafter, it is determined whether or not the voltage V1 of the main battery-1 has reached a predetermined threshold value VT1 '(S114). I do.

【0027】なお、上記構成において、各スイッチ21
〜24、41〜43はダイオ−ドDが並列接続されたバ
イポ−ラトランジスタで構成することができ、スイッチ
ング素子43はダイオ−ドDなしのバイポ−ラトランジ
スタで構成されることもできる。 (通常送電)以下、上記通常送電について説明する。
In the above configuration, each switch 21
24 to 41 to 43 can be constituted by bipolar transistors having diodes D connected in parallel, and the switching element 43 can be constituted by bipolar transistors without the diode D. (Normal Power Transmission) Hereinafter, the normal power transmission will be described.

【0028】この通常送電では、高圧回路部2をインバ
−タ動作をさせるために、スイッチ21及び24を導通
させ、スイッチ22、23を遮断するモ−ドと、スイッ
チ21及び24を遮断し、スイッチ22、23を導通さ
せるモ−ドとを一定周期で交互に繰り返す。もちろん、
補機バッテリ−6の電圧V2をモニタ−し、その大きさ
すなわち補機バッテリ−6の残量に応じてこれらスイッ
チ21〜24のデュ−ティ比を制御してもよい。
In this normal power transmission, the switches 21 and 24 are turned on and the switches 22 and 23 are turned off, and the switches 21 and 24 are turned off in order to make the high-voltage circuit section 2 perform an inverter operation. The mode in which the switches 22 and 23 are turned on is alternately repeated at a constant cycle. of course,
The voltage V2 of the auxiliary battery 6 may be monitored, and the duty ratio of these switches 21 to 24 may be controlled according to the magnitude, that is, the remaining amount of the auxiliary battery 6.

【0029】コイル32、33は逆向きに巻装されてい
るので、それらの出力端は、補機バッテリ−6の低位端
を0Vとした場合に交互に正電位と負電位とになる。コ
イル32、33の出力端が補機バッテリ−の高位端より
正電位となると、スイッチ41、42に並列接続された
ダイオ−ド及びリアクトル44を通じて補機バッテリ−
6が充電される。なお、スイッチ41、42を遮断する
場合のゲ−ト電圧は、コイル32、33の出力端が上記
負電位であっても遮断を行うために十分に負とされてい
る。
Since the coils 32 and 33 are wound in opposite directions, their output terminals alternately become a positive potential and a negative potential when the lower end of the auxiliary battery 6 is set to 0V. When the output terminals of the coils 32 and 33 have a higher potential than the high-order terminal of the auxiliary battery, the auxiliary battery is connected through diodes and a reactor 44 connected in parallel to the switches 41 and 42.
6 is charged. The gate voltage when the switches 41 and 42 are cut off is sufficiently negative to cut off even if the output terminals of the coils 32 and 33 are at the above-mentioned negative potential.

【0030】これにより、補機バッテリ−6は、リアク
トル44とコンデンサ45とからなる平滑回路を通じて
リップル除去された直流電流により充電される。なお、
スイッチング素子43は常時遮断される。 (逆送電)以下、上記逆送電について説明する。
Thus, the auxiliary battery 6 is charged by the ripple-free DC current through the smoothing circuit including the reactor 44 and the capacitor 45. In addition,
The switching element 43 is always shut off. (Reverse power transmission) Hereinafter, the reverse power transmission will be described.

【0031】この逆送電では、低圧回路部4をインバ−
タ動作をさせるとともに、トランス3の大巻数側のコイ
ル31の出力電圧が主バッテリ−1を充電可能なレベル
まで昇圧動作もさせる必要がある。更に説明すると、ス
イッチング素子43を所定周期で断続することにより、
スイッチング素子43の遮断時にスイッチング素子43
とリアクトル5との接続点には補機バッテリ−6よりも
高い電圧が周期的に発生する。
In this reverse power transmission, the low voltage circuit section 4
It is necessary to perform the voltage raising operation to a level at which the output voltage of the coil 31 on the large number of turns of the transformer 3 can charge the main battery-1. More specifically, by intermittently switching the switching element 43 at a predetermined cycle,
When the switching element 43 is shut off, the switching element 43
A voltage higher than that of auxiliary battery 6 is periodically generated at a connection point between power supply and reactor 5.

【0032】この高い電圧が発生しているタイミングす
なわちスイッチング素子43が遮断されている奇数番目
のタイミングでスイッチ(スイッチング素子)41を導
通させ、スイッチ42を遮断するとコイル31によって
トランス3に一方向に磁束が形成され、同様にこの高い
電圧が発生しているタイミングすなわちスイッチング素
子43が遮断されている偶数番目のタイミングでスイッ
チ(スイッチング素子)42を導通させ、スイッチ41
を遮断するとコイル31によってトランス3に逆方向に
磁束が形成され、トランス3の大巻数側のコイル31に
高い交流電圧が生じる。
When the switch (switching element) 41 is turned on at the timing when this high voltage is generated, that is, at the odd-numbered timing when the switching element 43 is shut off, and the switch 42 is turned off, the coil 31 causes the transformer 3 to move in one direction. The switch (switching element) 42 is turned on at the timing when the magnetic flux is formed and the high voltage is generated, that is, at the even-numbered timing when the switching element 43 is shut off.
Is interrupted, a magnetic flux is formed in the transformer 3 in the reverse direction by the coil 31, and a high AC voltage is generated in the coil 31 on the large number of turns of the transformer 3.

【0033】この交流電圧は、高圧回路部2のブリッジ
接続された4個のダイオ−ドDで全波整流されて主バッ
テリ−1が充電される。図3にこの 実施例2 他の実施例を図4のフロ−チャ−トを参照して説明す
る。この実施例は、実施例1のS108の内容を下記の
ように変更するとともに、実施例1のS110のフロ−
チャ−ト上の位置を変更した点を特徴としている。
This AC voltage is full-wave rectified by the four bridges D of the high voltage circuit 2 to charge the main battery-1. Referring to FIG. 3, another embodiment of the present invention will be described with reference to the flowchart of FIG. In this embodiment, the contents of S108 of the first embodiment are changed as follows, and the flow of S110 of the first embodiment is changed.
The feature is that the position on the chart is changed.

【0034】すなわち、この実施例では、図示しない外
部の車両制御用のコントロ−ラからエンジンを始動させ
る信号を受けっ取ったかどうかを調べ(S108)、受
け取った場合に主バッテリ−1の電圧が所定の最低しき
い値VT1未満かどうかを調べ(S110)、V1がV
T1未満で、かつ、エンジン始動時のみ、補機バッテリ
−6から主バッテリ−1への逆送電を実施する(S11
2)。
That is, in this embodiment, it is determined whether or not a signal for starting the engine has been received from an external vehicle control controller (not shown) (S108). It is determined whether or not V1 is less than a predetermined minimum threshold value VT1 (S110).
Reverse power transmission from auxiliary battery -6 to main battery -1 is performed only when T1 is less than T1 and when the engine is started (S11).
2).

【0035】このようにすれば、エンジン始動時以外の
主バッテリ−1への逆送電による補機バッテリ−6の無
用な消耗を回避することができ、実用上優れた効果を奏
することができる。 実施例3 他の実施例を図5の回路図を参照して説明する。
In this manner, unnecessary consumption of the auxiliary battery 6 due to reverse power transmission to the main battery 1 other than when the engine is started can be avoided, and a practically excellent effect can be obtained. Embodiment 3 Another embodiment will be described with reference to the circuit diagram of FIG.

【0036】この実施例は、実施例1の回路(図1参
照)において、低圧回路部4を低圧回路部4’に変更す
るとともに、トランス3の小巻数側のコイル33を省略
した点をその特徴としている。この低圧回路部4’は、
NPNバイポ−ラトランジスタ91〜94により構成さ
れたHブリッジ(フルブリッジ)回路をもち、各トラン
ジスタ91〜94にはそれぞれダイオ−ドDが並列接続
されている。
This embodiment is different from the circuit of the first embodiment (see FIG. 1) in that the low-voltage circuit section 4 is changed to the low-voltage circuit section 4 'and the coil 33 of the transformer 3 on the small number of turns is omitted. Features. This low voltage circuit section 4 '
It has an H-bridge (full bridge) circuit composed of NPN bipolar transistors 91 to 94, and a diode D is connected in parallel to each of the transistors 91 to 94.

【0037】以下、この低圧回路部4’の動作を説明す
る。 (通常送電)通常送電では、4つのダイオ−ドDからな
るダイオ−ドブリッジ回路により全波整流が行われ、リ
アクトル44とコンデンサ45とからなる平滑回路で平
滑された電圧が補機バッテリ−6に印加される。 (逆送電)この逆送電では、低圧回路部4をインバ−タ
動作をさせるとともに、トランス3の大巻数側のコイル
31の出力電圧が主バッテリ−1を充電可能なレベルま
で昇圧動作させる必要がある。
Hereinafter, the operation of the low voltage circuit section 4 'will be described. (Normal power transmission) In normal power transmission, full-wave rectification is performed by a diode bridge circuit including four diodes D, and a voltage smoothed by a smoothing circuit including the reactor 44 and the capacitor 45 is supplied to the auxiliary battery 6. Applied. (Reverse power transmission) In this reverse power transmission, it is necessary to operate the low-voltage circuit section 4 as an inverter and to increase the output voltage of the coil 31 on the large number of turns of the transformer 3 to a level at which the main battery 1 can be charged. is there.

【0038】更に説明すると、トランジスタ91〜94
を実施例1のスイッチング素子43の代わりに所定周期
で一斉に導通させる。これにより、リアクトル44に磁
気エネルギ−が蓄積される。その結果、これらトランジ
スタ91〜94の一斉遮断時には、トランジスタ91の
コレクタ電圧は昇圧される。そこで、この時、トランジ
スタ91、94のペアを導通し、トランジスタ92、9
3のペアを遮断すれば、トランス3の小巻数側のコイル
32に一方向に電流が流れる。
More specifically, transistors 91 to 94
Are simultaneously conducted at a predetermined cycle instead of the switching element 43 of the first embodiment. Thereby, magnetic energy is stored in the reactor 44. As a result, the collector voltage of transistor 91 is boosted at the time of simultaneous shutoff of transistors 91-94. Therefore, at this time, the pair of transistors 91 and 94 is turned on, and the transistors 92 and 9 are turned on.
When the pair 3 is cut off, a current flows in one direction through the coil 32 on the side of the small number of turns of the transformer 3.

【0039】一方、これらトランジスタ91〜94の一
斉遮断時に、トランジスタ91、94のペアを遮断し、
トランジスタ92、93のペアを導通すれば、トランス
3の小巻数側のコイル32に逆方向に電流が流れ、これ
によりトランス3の大巻数側のコイル31に昇圧された
交流電圧が発生する。この昇圧された交流電圧は高圧回
路部2のダイオ−ドDで全波整流される。
On the other hand, when these transistors 91 to 94 are simultaneously turned off, the pair of transistors 91 and 94 is turned off.
When the pair of transistors 92 and 93 is turned on, a current flows in the reverse direction through the coil 32 on the small number of turns of the transformer 3, thereby generating a boosted AC voltage in the coil 31 on the large number of turns of the transformer 3. The boosted AC voltage is full-wave rectified by the diode D of the high voltage circuit section 2.

【0040】このようにすれば、簡素な回路構成で逆送
電を実施することができる。なお、上記各実施例では逆
送電時に昇圧を行ったが、設計パラメ−タの設定具合に
よっては昇圧は必ずしも必要ではなく、更には昇圧を他
の回路で実施することもできる。更に、上記各実施例で
は、MOSFETやバイポ−ラトランジスタを用いた例
を説明したが、その代わりにIGBT等の他の電圧駆動
型半導体素子を採用する事も可能である。
In this way, reverse power transmission can be performed with a simple circuit configuration. In each of the above embodiments, boosting was performed during reverse power transmission. However, boosting is not necessarily required depending on the setting of design parameters. Further, boosting can be performed by another circuit. Furthermore, in each of the above embodiments, examples using MOSFETs and bipolar transistors have been described, but other voltage-driven semiconductor elements such as IGBTs may be used instead.

【0041】また、上記実施例では、整流はダイオ−ド
Dを用いて行ったが、整流すべき交流電圧波形や電流位
相に基づいて双方向性スイッチング素子であるMOSF
ET21〜24、41〜42をスイッチング制御するこ
とにより、整流を行うことができる。たとえば、これら
MOSFETの両端の電位差をモニタして整流電流が流
れ得る期間だけ該当するMOSFETを導通させればよ
い。
In the above embodiment, the rectification is performed using the diode D. However, based on the AC voltage waveform and current phase to be rectified, the MOSF which is a bidirectional switching element is used.
By controlling the switching of the ETs 21 to 24 and 41 to 42, rectification can be performed. For example, the potential difference between both ends of these MOSFETs may be monitored and the corresponding MOSFET may be turned on only during a period during which a rectified current can flow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1のハイブリッド電気自動車の電源装
置を示す回路図である。
FIG. 1 is a circuit diagram illustrating a power supply device of a hybrid electric vehicle according to a first embodiment.

【図2】 図1のコントロ−ラ5の動作を示すフロ−チ
ャ−トである。
FIG. 2 is a flowchart showing the operation of the controller 5 of FIG.

【図3】 図1の回路における逆送電時の低圧回路部4
の動作を示すタイミングチャ−トである。
FIG. 3 is a diagram illustrating a low-voltage circuit unit 4 at the time of reverse power transmission in the circuit of FIG. 1;
5 is a timing chart showing the operation of FIG.

【図4】 実施例2を示すフロ−チャ−トである。FIG. 4 is a flowchart showing a second embodiment.

【図5】 実施例3を示す回路図である。FIG. 5 is a circuit diagram showing a third embodiment.

【符号の説明】[Explanation of symbols]

1は主バッテリ−、2は高圧回路部(DC/DCコンバ
−タの一部)、3はトランス(DC/DCコンバ−タの
一部)、4は低圧回路部(DC/DCコンバ−タの一
部)、5はコントロ−ラ(検出手段、給電制御手段、エ
ンジン始動検出手段)、6は補機バッテリ−、7は発電
機を兼ねる走行モ−タ−、8はエンジン(内燃機関)2
1〜24、41〜44はスイッチング素子、44はリア
クトル。
1 is a main battery, 2 is a high voltage circuit (a part of a DC / DC converter), 3 is a transformer (a part of a DC / DC converter), 4 is a low voltage circuit (a DC / DC converter). 5) a controller (detection means, power supply control means, engine start detection means), 6 an auxiliary battery, 7 a running motor also serving as a generator, 8 an engine (internal combustion engine) 2
1 to 24, 41 to 44 are switching elements, and 44 is a reactor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02M 3/28 H02M 3/28 H F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02M 3/28 H02M 3/28 HF

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】主バッテリ−と、この主バッテリ−から給
電される走行モ−タ−と、内燃機関と、この内燃機関に
より駆動されて前記主バッテリ−を充電する発電機と、
前記主バッテリ−より低圧である補機給電用の補機バッ
テリ−と、前記主バッテリ−から前記補機バッテリ−へ
給電するDC/DCコンバ−タとを備え、 このDC/DCコンバ−タは、 トランスと、 前記主バッテリ−から前記補機バッテリ−への給電時に
前記主バッテリ−からの給電電流を前記トランスの大巻
数側のコイルに周期的に反転して給電するとともに、前
記補機バッテリ−から前記主バッテリ−への給電時に前
記大巻数側のコイルから出力される高圧交流電圧を整流
する双方向スイッチング素子を有する高圧回路部と、 前記補機バッテリ−から前記主バッテリ−への給電時に
前記補機バッテリ−からの給電電流を前記トランスの小
巻数側のコイルに周期的に反転して給電するとともに、
前記主バッテリ−から前記補機バッテリ−への給電時に
前記小巻数側のコイルから出力される低圧交流電圧を整
流する双方向スイッチング素子を有する低圧回路部と、 を備えることを特徴とするハイブリッド電気自動車の電
源装置。
1. A main battery, a traveling motor supplied from the main battery, an internal combustion engine, and a generator driven by the internal combustion engine to charge the main battery;
An auxiliary battery for supplying power to the auxiliary machine, which is lower in voltage than the main battery; and a DC / DC converter for supplying power from the main battery to the auxiliary battery. A transformer, and when power is supplied from the main battery to the auxiliary battery, a power supply current from the main battery is periodically inverted and supplied to a coil having a large number of turns of the transformer, and the auxiliary battery is supplied. And a high-voltage circuit unit having a bidirectional switching element for rectifying a high-voltage AC voltage output from the coil having a large number of turns when power is supplied from the auxiliary battery to the main battery. Sometimes the power supply current from the auxiliary battery is periodically inverted and supplied to the coil on the side of the small number of turns of the transformer,
A low-voltage circuit unit having a bidirectional switching element for rectifying a low-voltage AC voltage output from the coil on the small number of turns when power is supplied from the main battery to the auxiliary battery; Automotive power supply.
【請求項2】請求項1記載のハイブリッド電気自動車の
電源装置において、 前記走行モ−タ−は前記発電機を兼ねることを特徴とす
るハイブリッド電気自動車の電源装置。
2. A power supply apparatus for a hybrid electric vehicle according to claim 1, wherein said traveling motor also functions as said generator.
【請求項3】請求項1又は2記載のハイブリッド電気自
動車の電源装置において、 前記トランスの互いに逆向きに巻装された一対の前記小
巻数側のコイルをもち、 前記低圧回路部は、前記主バッテリ−から前記補機バッ
テリ−への給電時に前記小巻数側のコイルから出力され
る低圧交流電圧を交互に整流する整流用の双方向スイッ
チング素子と、前記整流用の双方向スイッチング素子と
前記補機バッテリ−との間に介設されるリアクトルと、
前記補機バッテリ−から前記リアクトルへ流れる電流を
周期的に断続する断続用のスイッチング素子とを有する
ことを特徴とするハイブリッド電気自動車の電源装置。
3. The power supply device for a hybrid electric vehicle according to claim 1, further comprising: a pair of said small number-of-turn coils wound in opposite directions of said transformer; A rectifying bidirectional switching element for alternately rectifying a low-voltage AC voltage output from the small-number-of-turns coil when power is supplied from a battery to the auxiliary battery; A reactor interposed between the machine battery and
A power supply device for a hybrid electric vehicle, comprising: a switching element for intermittently intermittently intermitting a current flowing from the auxiliary battery to the reactor.
【請求項4】請求項1又は2記載のハイブリッド電気自
動車の電源装置において、 前記低圧回路部は、前記小巻数側のコイルの両端を、リ
アクトルを含む平滑回路を通じて前記補機バッテリ−の
両端に接続するHブリッジ回路を有することを特徴とす
るハイブリッド電気自動車の電源装置。
4. The power supply device for a hybrid electric vehicle according to claim 1, wherein the low-voltage circuit section connects both ends of the small-turn-side coil to both ends of the auxiliary battery through a smoothing circuit including a reactor. A power supply device for a hybrid electric vehicle, comprising an H-bridge circuit to be connected.
【請求項5】請求項1ないし4のいずれかに記載のハイ
ブリッド電気自動車の電源装置において、 前記補機バッテリ−の残量不足状態を検出する検出手段
と、前記補機バッテリ−の残量不足状態検出時に前記D
C/DCコンバ−タの双方向スイッチング素子を駆動制
御して前記主バッテリ−から前記補機バッテリ−へ給電
させる給電制御手段とを有することを特徴とするハイブ
リッド電気自動車の電源装置。
5. The power supply device for a hybrid electric vehicle according to claim 1, wherein a detecting means for detecting a state of the remaining amount of the auxiliary battery is insufficient, and a remaining amount of the auxiliary battery is insufficient. When the state is detected, the D
A power supply device for a hybrid electric vehicle, comprising: power supply control means for driving and controlling a bidirectional switching element of a C / DC converter to supply power from the main battery to the auxiliary battery.
【請求項6】請求項1ないし5のいずれかに記載のハイ
ブリッド電気自動車の電源装置において、 前記主バッテリ−の残量不足状態を検出する検出手段
と、前記主バッテリ−の残量不足状態検出時に前記DC
/DCコンバ−タの双方向スイッチング素子を駆動制御
して前記補機バッテリ−から前記主バッテリ−へ給電さ
せる給電制御手段とを有することを特徴とするハイブリ
ッド電気自動車の電源装置。
6. A power supply device for a hybrid electric vehicle according to claim 1, wherein said detecting means detects a state of insufficient remaining amount of said main battery, and detects a state of insufficient remaining amount of said main battery. Sometimes said DC
Power supply control means for controlling the driving of the bidirectional switching element of the DC / DC converter to supply power from the auxiliary battery to the main battery.
【請求項7】請求項6記載のハイブリッド電気自動車の
電源装置において、 エンジン始動を検出するエンジン始動検出手段を有し、
前記給電制御手段は、前記残量不足状態でのエンジン始
動を検出した場合に前記DC/DCコンバ−タの双方向
スイッチング素子を駆動制御して前記補機バッテリ−か
ら前記主バッテリ−へ給電させることを特徴とするハイ
ブリッド電気自動車の電源装置。
7. A power supply device for a hybrid electric vehicle according to claim 6, further comprising engine start detection means for detecting engine start,
The power supply control means drives and controls the bidirectional switching element of the DC / DC converter to supply power from the auxiliary battery to the main battery when detecting the start of the engine when the remaining amount is insufficient. A power supply device for a hybrid electric vehicle.
JP9158551A 1997-06-16 1997-06-16 Power supply equipment for hybrid electric vehicle Pending JPH118910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9158551A JPH118910A (en) 1997-06-16 1997-06-16 Power supply equipment for hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9158551A JPH118910A (en) 1997-06-16 1997-06-16 Power supply equipment for hybrid electric vehicle

Publications (1)

Publication Number Publication Date
JPH118910A true JPH118910A (en) 1999-01-12

Family

ID=15674185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9158551A Pending JPH118910A (en) 1997-06-16 1997-06-16 Power supply equipment for hybrid electric vehicle

Country Status (1)

Country Link
JP (1) JPH118910A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253594A (en) * 1999-02-19 2000-09-14 Sagem Sa Unit for transmitting charging current between batteries
JP2000287301A (en) * 1999-03-30 2000-10-13 Nissan Diesel Motor Co Ltd Power supply unit
JP2000354306A (en) * 1999-05-08 2000-12-19 Daimlerchrysler Ag Electric rolling stock driving device
JP2001275201A (en) * 2000-03-29 2001-10-05 Nissan Diesel Motor Co Ltd Auxiliary power unit of vehicle
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
US6923279B2 (en) 2001-08-10 2005-08-02 Honda Giken Kogyo Kabushiki Kaisha Power supply apparatus and electric vehicle using the same
WO2006072815A2 (en) * 2004-09-08 2006-07-13 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
EP1801960A3 (en) * 2005-12-21 2008-11-19 Hitachi, Ltd. Bi-directional DC-DC converter and control method
JP2009095080A (en) * 2007-10-04 2009-04-30 Toshiba Corp Auxiliary power unit for ac electric train
WO2009128373A1 (en) * 2008-04-18 2009-10-22 シャープ株式会社 Bidirectional dc/dc converter and power conditioner
JP2010206886A (en) * 2009-03-02 2010-09-16 Omron Corp Power control apparatus, method, and program
US7868584B2 (en) 2008-01-28 2011-01-11 Murata Manufacturing Co., Ltd. DC-DC converter
US8030882B2 (en) 2007-06-15 2011-10-04 Kabushiki Kaisha Toyota Jidoshokki Power supply unit
JP2012005266A (en) * 2010-06-17 2012-01-05 Tdk-Lambda Corp Dc-dc converter
JP2013031368A (en) * 2012-11-09 2013-02-07 Hitachi Computer Peripherals Co Ltd Bidirectional dc-dc converter
JP2013115926A (en) * 2011-11-29 2013-06-10 Tdk Corp Dc-dc converter and method of controlling dc-dc converter
CN103187757A (en) * 2011-12-30 2013-07-03 Ls产电株式会社 Apparatus for charging battery in electric vehicle
US8817490B2 (en) 2011-06-13 2014-08-26 Tdk Corporation DC-DC converter
US8830701B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter
US8830700B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter and method for controlling DC-DC converter
US9378888B2 (en) 2011-01-26 2016-06-28 Murata Manufacturing Co., Ltd. Power transfer system
WO2016208035A1 (en) * 2015-06-25 2016-12-29 三菱電機株式会社 Railway vehicle control apparatus
CN107415709A (en) * 2017-09-07 2017-12-01 广西玉柴机器股份有限公司 Hybrid power system for hybrid power passenger car
CN109941088A (en) * 2017-12-20 2019-06-28 丰田自动车株式会社 The control method of hybrid vehicle and hybrid vehicle
JP2019170080A (en) * 2018-03-23 2019-10-03 ダイヤモンド電機株式会社 Power conversion device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253594A (en) * 1999-02-19 2000-09-14 Sagem Sa Unit for transmitting charging current between batteries
JP2000287301A (en) * 1999-03-30 2000-10-13 Nissan Diesel Motor Co Ltd Power supply unit
JP2000354306A (en) * 1999-05-08 2000-12-19 Daimlerchrysler Ag Electric rolling stock driving device
JP2001275201A (en) * 2000-03-29 2001-10-05 Nissan Diesel Motor Co Ltd Auxiliary power unit of vehicle
DE10235489B4 (en) * 2001-08-10 2013-03-21 Honda Giken Kogyo K.K. Power supply device and electric vehicle using the same
US6923279B2 (en) 2001-08-10 2005-08-02 Honda Giken Kogyo Kabushiki Kaisha Power supply apparatus and electric vehicle using the same
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
WO2006072815A2 (en) * 2004-09-08 2006-07-13 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
WO2006072815A3 (en) * 2004-09-08 2006-09-21 Eaton Corp Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
US7489101B2 (en) 2004-09-08 2009-02-10 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
US7692935B2 (en) 2005-12-21 2010-04-06 Hitachi, Ltd. Bi-directional DC-DC converter and control method
US7936573B2 (en) 2005-12-21 2011-05-03 Hitachi, Ltd. Bi-directional DC-DC converter and control method
EP1801960A3 (en) * 2005-12-21 2008-11-19 Hitachi, Ltd. Bi-directional DC-DC converter and control method
US8030882B2 (en) 2007-06-15 2011-10-04 Kabushiki Kaisha Toyota Jidoshokki Power supply unit
JP2009095080A (en) * 2007-10-04 2009-04-30 Toshiba Corp Auxiliary power unit for ac electric train
US7868584B2 (en) 2008-01-28 2011-01-11 Murata Manufacturing Co., Ltd. DC-DC converter
US8705251B2 (en) 2008-04-18 2014-04-22 Sharp Kabushiki Kaisha Bidirectional DC/DC converter and power conditioner
WO2009128373A1 (en) * 2008-04-18 2009-10-22 シャープ株式会社 Bidirectional dc/dc converter and power conditioner
JP2010206886A (en) * 2009-03-02 2010-09-16 Omron Corp Power control apparatus, method, and program
JP2012005266A (en) * 2010-06-17 2012-01-05 Tdk-Lambda Corp Dc-dc converter
US9378888B2 (en) 2011-01-26 2016-06-28 Murata Manufacturing Co., Ltd. Power transfer system
US8830700B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter and method for controlling DC-DC converter
US8830701B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter
US8817490B2 (en) 2011-06-13 2014-08-26 Tdk Corporation DC-DC converter
JP2013115926A (en) * 2011-11-29 2013-06-10 Tdk Corp Dc-dc converter and method of controlling dc-dc converter
US9214825B2 (en) 2011-12-30 2015-12-15 Lsis Co., Ltd. Apparatus for charging battery in electric vehicle
JP2013141395A (en) * 2011-12-30 2013-07-18 Ls Industrial Systems Co Ltd Device for charging electric vehicle battery
CN103187757A (en) * 2011-12-30 2013-07-03 Ls产电株式会社 Apparatus for charging battery in electric vehicle
JP2013031368A (en) * 2012-11-09 2013-02-07 Hitachi Computer Peripherals Co Ltd Bidirectional dc-dc converter
WO2016208035A1 (en) * 2015-06-25 2016-12-29 三菱電機株式会社 Railway vehicle control apparatus
JPWO2016208035A1 (en) * 2015-06-25 2017-11-09 三菱電機株式会社 Railway vehicle control system
US10193433B2 (en) 2015-06-25 2019-01-29 Mitsubishi Electric Corporation Railway vehicle control apparatus
CN107415709A (en) * 2017-09-07 2017-12-01 广西玉柴机器股份有限公司 Hybrid power system for hybrid power passenger car
CN107415709B (en) * 2017-09-07 2023-08-29 广西玉柴机器股份有限公司 Composite power supply system for hybrid electric bus
CN109941088A (en) * 2017-12-20 2019-06-28 丰田自动车株式会社 The control method of hybrid vehicle and hybrid vehicle
JP2019170080A (en) * 2018-03-23 2019-10-03 ダイヤモンド電機株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JPH118910A (en) Power supply equipment for hybrid electric vehicle
KR100468884B1 (en) DC-DC Converter
US7120036B2 (en) Switching-mode power supply having a synchronous rectifier
JP4481879B2 (en) Switching power supply
KR100471093B1 (en) Power supply device
EP1463178B1 (en) Power generating device
US20040178637A1 (en) Engine generator
WO2006011359A1 (en) Power source device
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
US11476753B2 (en) Switching converter
JP2000050402A (en) Power source unit for hybrid electric automobile
US20060279968A1 (en) DC/AC converter circuit and DC/AC conversion method
JPH09233709A (en) Charger for electric car
JP4175109B2 (en) Switching power supply
JP2001128369A (en) Power supply apparatus
JP5901383B2 (en) In-vehicle charging system
JP4191874B2 (en) Uninterruptible power system
JP2001231258A (en) Direct-current to direct-current converter
JP7426397B2 (en) Power electronic devices and methods for supplying voltage to drive circuits of power semiconductor switches
JP2000050404A (en) Power source unit for hybrid electric automobile
JP2004357457A (en) Charge pump drive circuit
JP4459532B2 (en) Motor control device
JP4210804B2 (en) Synchronous rectification type DC-DC converter
US6163467A (en) Switching power supply for generating DC voltage by synchronous rectification
JP2002209302A (en) Power supply for electric vehicle and dc voltage conversion circuit used for the power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214