JP5288178B2 - Motor drive system - Google Patents

Motor drive system Download PDF

Info

Publication number
JP5288178B2
JP5288178B2 JP2008318235A JP2008318235A JP5288178B2 JP 5288178 B2 JP5288178 B2 JP 5288178B2 JP 2008318235 A JP2008318235 A JP 2008318235A JP 2008318235 A JP2008318235 A JP 2008318235A JP 5288178 B2 JP5288178 B2 JP 5288178B2
Authority
JP
Japan
Prior art keywords
power converter
motor
power
drive system
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008318235A
Other languages
Japanese (ja)
Other versions
JP2009232672A (en
Inventor
貴志 飯田
康 松本
壮章 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008318235A priority Critical patent/JP5288178B2/en
Publication of JP2009232672A publication Critical patent/JP2009232672A/en
Application granted granted Critical
Publication of JP5288178B2 publication Critical patent/JP5288178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Description

本発明は、電力変換器によりモータを駆動するモータ駆動装置を複数台備えたモータ駆動システムにおいて、特に専用の充電装置を用いることなくバッテリを充電可能としたモータ駆動システムに関するものである。   The present invention relates to a motor drive system including a plurality of motor drive devices that drive a motor by a power converter, and particularly to a motor drive system that can charge a battery without using a dedicated charging device.

モータを効率よく運転するために、モータの入力電流を低減させることを目的として、電源電圧を昇圧して電力変換器によりモータを駆動する方法が知られている。この種のモータ駆動システムは、例えば特許文献1に記載されており、その概要は図7に示す通りである。   In order to efficiently operate the motor, a method of boosting the power supply voltage and driving the motor with a power converter is known for the purpose of reducing the input current of the motor. This type of motor drive system is described in Patent Document 1, for example, and the outline thereof is as shown in FIG.

すなわち、図7において、101,102はインバータ、103はコンデンサ、201,202は各インバータの交流側に接続された同期電動機等のモータ、104は一方のモータ202の固定子巻線の中性点と負側直流母線との間に接続された直流電源としてのバッテリ、105は制御ユニットである。
上記構成において、一方のインバータ102はコンデンサ103の電圧がバッテリ104の電圧よりも高くなるように昇圧動作しながら交流電圧を出力してモータ202を駆動すると共に、他方のインバータ101は昇圧動作を行うことなく交流電圧を出力してモータ201をモータ202とは独立して駆動制御している。
7, 101 and 102 are inverters, 103 is a capacitor, 201 and 202 are motors such as synchronous motors connected to the AC side of each inverter, and 104 is a neutral point of the stator winding of one motor 202. Reference numeral 105 denotes a control unit which is a battery serving as a DC power source connected between the DC bus and the negative DC bus.
In the above configuration, one inverter 102 drives the motor 202 by outputting an AC voltage while boosting so that the voltage of the capacitor 103 is higher than the voltage of the battery 104, and the other inverter 101 performs boosting operation. The AC voltage is output without driving the motor 201 independently of the motor 202.

上記従来技術では、バッテリ104に蓄えられた直流電力を用いてモータ201,202を駆動するので、これらのモータの力行、回生動作に伴ってバッテリ104は放電、充電を繰り返す。しかし、モータ201,202の運動エネルギーを全て回生することはできず、また、種々の損失や電装部品の電力消費によってバッテリ104の蓄電量は徐々に減少してくる。
このため、バッテリ104を充電するための充電装置が必要になるが、専用の充電装置を設けるとすると、装置全体が大型化したり、部品点数の増加によってコストが高くなるという問題がある。
In the above prior art, since the motors 201 and 202 are driven using the DC power stored in the battery 104, the battery 104 is repeatedly discharged and charged along with the power running and regenerative operation of these motors. However, the kinetic energy of the motors 201 and 202 cannot be regenerated, and the amount of power stored in the battery 104 gradually decreases due to various losses and power consumption of the electrical components.
For this reason, a charging device for charging the battery 104 is required. However, if a dedicated charging device is provided, there is a problem that the entire device becomes large or the cost increases due to an increase in the number of parts.

この問題を解決するため、特許文献2には、モータの固定子巻線を昇圧用リアクトルとして用い、モータを駆動するインバータのスイッチング素子をオンオフ制御することにより、モータを回転させるトルクを発生させずに商用電源からバッテリを充電するようにした車載充電装置が開示されている。   In order to solve this problem, Patent Document 2 discloses that the stator winding of the motor is used as a boosting reactor, and the switching element of the inverter that drives the motor is turned on / off so that torque for rotating the motor is not generated. Discloses an in-vehicle charging apparatus in which a battery is charged from a commercial power source.

図8は、上記車載充電装置の概要を示しており、106,107はインバータ、108はコンデンサ、109はバッテリ、110はブレーカ、111は極性判定部、112は制御部、113はスイッチ、203,204はモータ、300は単相の商用電源である。
上記構成において、商用電源300の両端をブレーカ110を介して2個のモータ203,204の固定子巻線の中性点に接続し、これらのモータ203,204の各相巻線に等しい電流が流れるようにインバータ106,107のスイッチング素子をオンオフ制御する。
これにより、前記巻線に発生する磁界を相殺してモータ203,204を回転させることなく、商用電源300からモータ203,204、インバータ106,107及びスイッチ113を介してバッテリ109を充電している。
FIG. 8 shows an outline of the above-described on-vehicle charging apparatus, where 106 and 107 are inverters, 108 is a capacitor, 109 is a battery, 110 is a breaker, 111 is a polarity determination unit, 112 is a control unit, 113 is a switch, 203, Reference numeral 204 denotes a motor, and 300 denotes a single-phase commercial power source.
In the above configuration, both ends of the commercial power supply 300 are connected to the neutral points of the stator windings of the two motors 203 and 204 via the breaker 110, and an equal current is supplied to each phase winding of these motors 203 and 204. The switching elements of the inverters 106 and 107 are on / off controlled so as to flow.
As a result, the battery 109 is charged from the commercial power supply 300 via the motors 203 and 204, the inverters 106 and 107, and the switch 113 without offsetting the magnetic field generated in the windings and rotating the motors 203 and 204. .

特開2002−10670号公報(段落[0022]〜[0029]、図1〜図3等)JP 2002-10670 A (paragraphs [0022] to [0029], FIGS. 1 to 3 etc.) 特許3275578号公報(段落[0008]〜[0015]、図1,図2等)Japanese Patent No. 3275578 (paragraphs [0008] to [0015], FIG. 1, FIG. 2, etc.)

しかしながら、図8(特許文献2)に記載された従来技術は、バッテリ109に電力を供給する商用電源300がモータ203,204の中性点に接続される回路構成を対象とした充電装置であるため、図7(特許文献1)のように、モータの中性点と直流母線との間にバッテリが接続されている回路構成の駆動システムには適用することができない。   However, the prior art described in FIG. 8 (Patent Document 2) is a charging device intended for a circuit configuration in which a commercial power supply 300 that supplies power to the battery 109 is connected to the neutral point of the motors 203 and 204. Therefore, as shown in FIG. 7 (Patent Document 1), it cannot be applied to a drive system having a circuit configuration in which a battery is connected between the neutral point of the motor and the DC bus.

そこで、本発明の解決課題は、特許文献1の如くモータの中性点と直流母線との間にバッテリが接続されている回路構成において、電力変換器によりバッテリとコンデンサとの間で電力を授受させてバッテリの充電及びモータの駆動を同時に行うと共に、特許文献2と同様にモータの固定子巻線をリアクトルとして利用し、しかも、バッテリの充電時にはモータの回転トルクを発生させないようにした、構成簡単なモータ駆動システムを提供することにある。   Therefore, the problem to be solved by the present invention is that in a circuit configuration in which a battery is connected between the neutral point of a motor and a DC bus as in Patent Document 1, power is transferred between the battery and the capacitor by a power converter. The battery is charged and the motor is driven at the same time, and the stator winding of the motor is used as a reactor in the same manner as in Patent Document 2, and the rotational torque of the motor is not generated when the battery is charged. It is to provide a simple motor drive system.

上記課題を解決するため、請求項1に係る発明は、直流側にエネルギー蓄積要素が接続された1台の電力変換器と、
この電力変換器から出力される交流電力により駆動され、かつ、固定子巻線の中性点と前記電力変換器の一方の直流母線との間にバッテリが接続された1台のモータと、
前記エネルギー蓄積要素が直流側に接続され、かつ、交流側に交流電源が接続された他の電力変換器と、
この電力変換器の交流側に切り離し手段を介して接続された他のモータと、
を備えたモータ駆動システムにおいて、
前記他のモータの固定子巻線の中性点と前記1台のモータの固定子巻線の中性点とを接続し、
前記切り離し手段により前記他の電力変換器と他のモータとを切り離した状態で前記他の電力変換器を整流器動作させて前記エネルギー蓄積要素に直流電力を蓄積すると共に、前記1台の電力変換器の零電圧ベクトル出力時に、降圧用リアクトルとして作用する前記1台のモータの固定子巻線に前記1台の電力変換器から直流電流を流し、前記1台のモータを回転させるトルクを発生させずに前記1台のモータの固定子巻線を介して前記バッテリを充電するものである。
また、請求項2に係る発明は、請求項1における他のモータの中性点を、バッテリの一端(前記1台のモータの中性点)に接続しないように構成したものである。
なお、請求項に記載するように、前記切り離し手段は、前記他の電力変換器と他のモータとの接続を入切するスイッチ手段によって構成される。
In order to solve the above-mentioned problem, the invention according to claim 1 includes one power converter having an energy storage element connected to the DC side;
A motor driven by AC power output from the power converter, and having a battery connected between a neutral point of the stator winding and one DC bus of the power converter;
The energy storage element is connected to the DC side, and another power converter in which an AC power source is connected to the AC side; and
Other motors connected to the AC side of this power converter via disconnect means,
In a motor drive system with
Connecting the neutral point of the stator winding of the other motor and the neutral point of the stator winding of the one motor;
The other power converter is operated as a rectifier in a state where the other power converter and the other motor are separated by the separating means, and DC power is stored in the energy storage element, and the one power converter When a zero voltage vector is output, a direct current is passed from the one power converter to the stator windings of the one motor that acts as a step-down reactor without generating torque for rotating the one motor. The battery is charged through a stator winding of the one motor .
The invention according to claim 2 is configured such that the neutral point of the other motor in claim 1 is not connected to one end of the battery (the neutral point of the one motor).
According to a fourth aspect of the present invention, the disconnecting unit is configured by a switch unit that turns on and off the connection between the other power converter and the other motor.

請求項に係る発明は、請求項1または2に記載したモータ駆動システムにおいて、前記他の電力変換器を制御して前記交流電源の電圧に対し力率1の正弦波電流を流すものである。 According to a third aspect of the present invention, in the motor drive system according to the first or second aspect , the other power converter is controlled to flow a sine wave current having a power factor of 1 with respect to the voltage of the AC power supply. .

請求項に係る発明は、請求項1〜の何れか1項に記載したモータ駆動システムであって、前記他の電力変換器と前記交流電源との間に電源スイッチが接続されたモータ駆動システムにおいて、前記電源スイッチの投入により前記他の電力変換器に交流電源電圧を印加する前に、前記1台の電力変換器により前記バッテリの電圧を昇圧して前記エネルギー蓄積要素を所定の電圧値まで充電するものである。
なお、この場合のエネルギー蓄積要素の充電電圧値は、請求項に記載したように、交流電源電圧のピーク値付近とすることが望ましい。
The invention according to claim 5 is the motor drive system according to any one of claims 1 to 4 , wherein a power switch is connected between the other power converter and the AC power supply. In the system, before applying the AC power supply voltage to the other power converter by turning on the power switch, the voltage of the battery is boosted by the one power converter to set the energy storage element to a predetermined voltage value. To charge up to.
In this case, the charging voltage value of the energy storage element is preferably near the peak value of the AC power supply voltage as described in claim 6 .

本発明によれば、電力変換器により、バッテリとコンデンサとの間の昇圧動作及びモータ駆動を同時に行うモータ駆動装置と、他のモータ駆動装置とが並列接続されているモータ駆動システムにおいて、モータの固定子巻線等、既存の部品を利用することによってバッテリを効率よく充電することができる。このため、専用の充電装置を設ける必要がなく、構成の簡略化、コストの低減に寄与することができる。
また、電力変換器を制御してモータに直流電流を流すことにより、モータを回転させるトルクを発生させずにバッテリを充電可能であり、この駆動システムを搭載した車両等が予期せずに移動するのを防止することができる。更に、交流電源と接続された他の電力変換器を制御することで、交流電源電圧に対して力率1の正弦波電流を流すことも可能である。
更に、他の電力変換器の交流電源側に電源スイッチが接続される場合には、この電源スイッチにより交流電源を投入する前に、バッテリから一方の電力変換器を介してエネルギー蓄積要素を所定の電圧値まで充電しておくことにより、交流電源投入時におけるエネルギー蓄積要素への突入電流を抑制することができる。
According to the present invention, in a motor drive system in which a motor drive device that simultaneously performs a boost operation and a motor drive between a battery and a capacitor by a power converter and another motor drive device are connected in parallel, The battery can be efficiently charged by using existing components such as a stator winding. For this reason, it is not necessary to provide a dedicated charging device, which can contribute to simplification of the configuration and cost reduction.
In addition, by controlling the power converter and allowing a direct current to flow through the motor, the battery can be charged without generating torque for rotating the motor, and a vehicle or the like equipped with this drive system moves unexpectedly. Can be prevented. Furthermore, a sine wave current having a power factor of 1 can be supplied to the AC power supply voltage by controlling another power converter connected to the AC power supply.
Further, when a power switch is connected to the AC power supply side of another power converter, before the AC power is turned on by this power switch, the energy storage element is connected to a predetermined power source from the battery via one power converter. By charging to a voltage value, an inrush current to the energy storage element when the AC power is turned on can be suppressed.

以下、図に沿って本発明の実施形態を説明する。
図1は、請求項1,に係る本発明の第1実施形態を示す回路構成図である。この実施形態に係るモータ駆動システムは、商用電源である三相交流電源10と、この交流電源10と後述する電力変換器20との間に接続された中継回路11と、星形結線された固定子巻線を持つ2台の交流モータ(以下、単にモータという)40,50と、前記中継回路11及び電力変換器20の接続点とモータ40の固定子巻線との間に配置された切り離し手段としてのスイッチ12と、トランジスタ及びダイオードを逆並列接続した半導体スイッチTr〜Tr及びTr〜Tr12からなる2台の電力変換器20,30と、モータ40,50の固定子巻線の中性点41,51と電力変換器20,30の直流入力端子(負側入力端子)の一端との間に接続されたバッテリ60と、電力変換器20,30の直流入力端子間に接続されたエネルギー蓄積要素としての電解コンデンサ14と、その電圧を検出する電圧検出器15と、バッテリ60の電圧を検出する電圧検出器16と、バッテリ60に流入する電流を検出する電流検出器17と、前記各検出器15,16,17による検出値Vdc,V,Iに基づいて電力変換器20,30を制御するための駆動信号(PWMパルス)PWM,PWMを生成し出力する制御装置70とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention according to claims 1 and 4 . The motor drive system according to this embodiment includes a three-phase AC power supply 10 that is a commercial power supply, a relay circuit 11 connected between the AC power supply 10 and a power converter 20 described later, and a star-connected fixed circuit. Two AC motors (hereinafter simply referred to as “motors”) 40 and 50 having child windings, and a separation disposed between the connection point of the relay circuit 11 and the power converter 20 and the stator windings of the motor 40. a switch 12 as a means, a semiconductor switch Tr 1 to Tr 6 and Tr 7 2 sets of power converters 20 and 30 made of to Tr 12 and inverse parallel connected transistors and diodes, stator windings of the motor 40, 50 The battery 60 connected between the neutral points 41 and 51 and one end of the DC input terminal (negative input terminal) of the power converters 20 and 30 is connected between the DC input terminals of the power converters 20 and 30. Electrolytic capacitor 14 as a stored energy storage element, voltage detector 15 for detecting the voltage, voltage detector 16 for detecting the voltage of battery 60, and current detector 17 for detecting the current flowing into battery 60 , Generates and outputs drive signals (PWM pulses) PWM 1 and PWM 2 for controlling the power converters 20 and 30 based on the detection values V dc , V b and I b detected by the detectors 15, 16 and 17. It is comprised from the control apparatus 70 which performs.

既に明らかなように、2組のモータ駆動装置を構成する電力変換器20,30は、直流入力端子間のコンデンサ14を共通にして並列に接続されており、電力変換器20の交流出力端子にスイッチ12を介して接続されたモータ40の中性点41、及び、電力変換器30の交流出力端子に直接接続されたモータ50の中性点51は、バッテリ60を介して負側直流母線に接続されている。
ここで、電力変換器30は請求項における「1台の電力変換器」に、モータ50は「1台のモータ」に、電力変換器20は「他の電力変換器」に、モータ40は「他のモータ」に、それぞれ相当している。
As is apparent, the power converters 20 and 30 constituting the two sets of motor drive devices are connected in parallel with the capacitor 14 between the DC input terminals in common, and are connected to the AC output terminal of the power converter 20. A neutral point 41 of the motor 40 connected via the switch 12 and a neutral point 51 of the motor 50 directly connected to the AC output terminal of the power converter 30 are connected to the negative DC bus via the battery 60. It is connected.
Here, the power converter 30 is “one power converter”, the motor 50 is “one motor”, the power converter 20 is “other power converter”, and the motor 40 is “ It corresponds to “other motor” respectively.

次に、この実施形態におけるバッテリ60の充電動作について説明する。
まず、スイッチ12をオフして一方の電力変換器20とモータ40とを切り離した状態で、交流電源10の三相交流電力を、初期充電回路及びスイッチ等(図示せず)からなる中継回路11を介して電力変換器20の交流側に供給する。
中継回路11を介して供給された交流電力は、電力変換器20によりAC/DC変換され、直流電力がコンデンサ14に蓄えられる。このとき、電力変換器20の半導体スイッチTr〜Trには制御装置70から駆動信号PWMとしてオフ信号が入力されるため、電力変換器20は実質的にダイオードブリッジとなって通常のダイオード整流器と同様の動作となる。
Next, the charging operation of the battery 60 in this embodiment will be described.
First, in a state where the switch 12 is turned off and the one power converter 20 and the motor 40 are disconnected, the three-phase AC power of the AC power supply 10 is transferred to the relay circuit 11 including an initial charging circuit, a switch, and the like (not shown). To the AC side of the power converter 20.
AC power supplied via the relay circuit 11 is AC / DC converted by the power converter 20, and DC power is stored in the capacitor 14. At this time, since the off signal is input as the drive signal PWM 1 from the control device 70 to the semiconductor switches Tr 1 to Tr 6 of the power converter 20, the power converter 20 substantially becomes a diode bridge and is a normal diode. The operation is the same as that of the rectifier.

前記コンデンサ14に蓄えられた直流電力は、他方の電力変換器30によりDC/DC変換され、その交流出力端子からモータ50の固定子巻線を介してバッテリ60に供給されてバッテリ60を充電する。
このとき、電力変換器30は、全ての上アームまたは下アームをオン(他方のアームをオフ)とする二種類の零電圧ベクトルを用いてPWM制御を行うことにより、DC/DC変換を行う。以下、その動作を詳述する。
The DC power stored in the capacitor 14 is DC / DC converted by the other power converter 30 and supplied from the AC output terminal to the battery 60 via the stator winding of the motor 50 to charge the battery 60. .
At this time, the power converter 30 performs DC / DC conversion by performing PWM control using two types of zero voltage vectors that turn on all upper arms or lower arms (turn off the other arm). The operation will be described in detail below.

図2は、電力変換器30の動作説明図である。
零電圧ベクトル出力時は、上アームの半導体スイッチ同士、及び下アームの半導体スイッチ同士は何れも同時にオンまたはオフするので、ここでは、図1における電力変換器30の上アームの半導体スイッチTr,Tr,Tr11を単一の半導体スイッチTr、下アームの半導体スイッチTr,Tr10,Tr12を単一の半導体スイッチTrとして説明する。
図2(a)は半導体スイッチTrがオンのときの回路動作を、図2(b)は半導体スイッチTrがオンのときの回路動作を、図2(c)はこの回路における電圧波形,電流波形をそれぞれ示している。なお、図2(a),(b)では、オン状態の半導体スイッチを○で囲んである。
FIG. 2 is an operation explanatory diagram of the power converter 30.
At the time of the zero voltage vector output, the upper arm semiconductor switches and the lower arm semiconductor switches are simultaneously turned on or off. Therefore, here, the upper arm semiconductor switches Tr 7 ,. In the following description, it is assumed that Tr 9 and Tr 11 are single semiconductor switches Tr p and the lower arm semiconductor switches Tr 8 , Tr 10 , and Tr 12 are single semiconductor switches Tr n .
FIG. 2 (a) circuit operation when the semiconductor switch Tr p is on, FIG. 2 (b) the circuit operation when the semiconductor switch Tr n is on, FIG. 2 (c) the voltage waveform in the circuit, Each current waveform is shown. In FIGS. 2A and 2B, the semiconductor switch in the on state is circled.

図2(c)における半導体スイッチTrのオン期間Tponでは、バッテリ60を流れる電流Iはモータ50の固定子巻線等によるリアクトルを介して指数関数的に増加する。一方、半導体スイッチTrのオン期間Tnonでは、バッテリ60に流れる電流Iは、上記リアクトルに蓄えられたエネルギーにより半導体スイッチTrのダイオードを通じて還流し、指数関数的に減衰する。なお、図2(a),(b)における破線は、電流Iの経路である。
これらの動作により、半導体スイッチTr,Trを期間Tpon,Tnonのデューティ比によってオンオフさせることにより、電力変換器30を一般的な昇降圧チョッパとして動作させながらバッテリ60を充電することができる。
In the on period T pon semiconductor switch Tr p in FIG. 2 (c), the current I b flowing through the battery 60 is increased exponentially through the inductor in the stator windings of the motor 50. On the other hand, in the on-period T non of the semiconductor switch Tr n , the current I b flowing through the battery 60 circulates through the diode of the semiconductor switch Tr n by the energy stored in the reactor and attenuates exponentially. The broken line in FIG. 2 (a), (b) is a path of the current I b.
By these operations, the semiconductor switch Tr p , Tr n is turned on / off according to the duty ratios of the periods T pon , T non , so that the battery 60 can be charged while operating the power converter 30 as a general buck-boost chopper. it can.

図1に示した制御装置70は、電圧検出器15により検出したコンデンサ14の電圧検出値Vdcと、電圧検出器16によるバッテリ60の電圧検出値Vと、電流検出器17によるバッテリ60の電流検出値Iとを用いて駆動信号PWMを生成し、電力変換器30の半導体スイッチTr〜Tr12をオンオフさせて零電圧ベクトルを出力させることにより、バッテリ60に一定の充電電流が流れるように制御する。そして、制御装置70は電圧検出値Vに基づいてバッテリ60の満充電状態を検出したら、電力変換器30による充電動作を終了する。
なお、電力変換器30が零電圧ベクトルを出力する時以外は、通常の三相電圧形インバータとして動作することにより、電力変換器30からモータ50に三相交流電力を供給してモータ50を駆動する。
The control device 70 shown in FIG. 1 includes the voltage detection value V dc of the capacitor 14 detected by the voltage detector 15, the voltage detection value V b of the battery 60 by the voltage detector 16, and the battery 60 by the current detector 17. The drive signal PWM 2 is generated using the current detection value Ib, and the semiconductor switches Tr 7 to Tr 12 of the power converter 30 are turned on and off to output a zero voltage vector, whereby a constant charging current is generated in the battery 60. Control to flow. And the control apparatus 70 will complete | finish the charging operation by the power converter 30, if the full charge state of the battery 60 is detected based on the voltage detection value Vb .
Except when the power converter 30 outputs a zero voltage vector, the motor 50 is driven by supplying three-phase AC power from the power converter 30 to the motor 50 by operating as a normal three-phase voltage source inverter. To do.

ここで、請求項2に記載するように、モータ40の中性点41とバッテリ60の正極との間は接続しなくても良い。この場合にも、上述した電力変換器30の動作によりバッテリ60の充電が可能である。
また、請求項1,2に記載するごとく、電力変換器30によりバッテリ60を充電している間、モータ50の各相コイルには直流電流が流れるため回転磁界が発生せず、トルクは発生しない。従って、モータ50を回転させることなくバッテリ60を充電することができ、この駆動システムを搭載した車両等が予期せずに移動するのを防止することができる。
Here, as described in claim 2, the neutral point 41 of the motor 40 and the positive electrode of the battery 60 may not be connected. Also in this case, the battery 60 can be charged by the operation of the power converter 30 described above.
In addition, as described in claims 1 and 2 , while the battery 60 is being charged by the power converter 30, a direct current flows in each phase coil of the motor 50, so that no rotating magnetic field is generated and no torque is generated. . Therefore, the battery 60 can be charged without rotating the motor 50, and it is possible to prevent a vehicle or the like equipped with this drive system from moving unexpectedly.

次に、請求項に係る本発明の第2実施形態を説明する。
図3は第2実施形態を示す回路構成図であり、図1と同一の構成要素には同一の符号を付して説明を省略し、以下では異なる部分を中心に説明する。
Next, a second embodiment of the present invention according to claim 3 will be described.
FIG. 3 is a circuit configuration diagram showing the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different portions will be mainly described.

本実施形態では、三相交流電源10に電源電圧検出器13を設け、電力変換器20と中継回路11との間に電流検出器21,22,23を設けてある。電源電圧検出器13による各相電圧検出値V,V,Vと、電流検出器21,22,23による各相電流検出値I,I,Iと、電圧検出器15による電圧検出値Vdcとを制御装置70に入力し、制御装置70は、電力変換器20をPWM整流器として動作させるように駆動信号PWMを生成して出力する。
PWM整流器の制御方法は種々あるため、ここではその一例を図4に基づいて説明する。
In the present embodiment, a power supply voltage detector 13 is provided in the three-phase AC power supply 10, and current detectors 21, 22, and 23 are provided between the power converter 20 and the relay circuit 11. Phase voltage detection value V r by the power supply voltage detector 13, V s, V t and each phase current detection value I r by the current detector 21, 22, 23, I s, and I t, by the voltage detector 15 The voltage detection value V dc is input to the control device 70, and the control device 70 generates and outputs a drive signal PWM 1 so that the power converter 20 operates as a PWM rectifier.
Since there are various control methods for the PWM rectifier, an example thereof will be described with reference to FIG.

制御装置70の機能を示す図4において、直流リンク電圧指令Vdc と電圧検出値Vdcとの偏差を電圧調整器71に入力し、交流電流振幅指令を生成する。一方、各相電圧検出値V,V,VをPLL回路72に入力して、三相交流電源10と同位相の基準正弦波を得る。この基準正弦波と前記交流電流振幅指令とを乗算することで各相電流指令I ,I ,I を生成する。そして、この各相電流指令I ,I ,I と各相電流検出値I,I,Iとの偏差を電流調整器73に入力し、各相電圧指令V ,V ,V を得る。この各相電圧指令V ,V ,V と三角波キャリア発生器74から出力される三角波キャリアとをPWMパルス発生器75に入力して駆動信号(PWMパルス)PWMを生成し、この駆動信号PWMを電力変換器20に出力する。
上記のように電力変換器20をPWM整流器として運転することにより、電源電圧に対して力率1の正弦波電流を流すことができる。
In FIG. 4 showing the function of the control device 70, the deviation between the DC link voltage command V dc * and the voltage detection value V dc is input to the voltage regulator 71, and an AC current amplitude command is generated. On the other hand, the phase voltage detection values V r , V s , and V t are input to the PLL circuit 72 to obtain a reference sine wave having the same phase as that of the three-phase AC power supply 10. Phase current command I r * by multiplying the reference sine wave and said alternating current amplitude command, I s *, generates the I t *. Then, the phase current command I r *, I s *, I t * and the phase current detection value I r, I s, enter the deviation between I t to the current regulator 73, the phase voltage command V r * , V s * , V t * are obtained. Each phase voltage command V r * , V s * , V t * and the triangular wave carrier output from the triangular wave carrier generator 74 are input to the PWM pulse generator 75 to generate a drive signal (PWM pulse) PWM 1. The drive signal PWM 1 is output to the power converter 20.
By operating the power converter 20 as a PWM rectifier as described above, a sine wave current having a power factor of 1 can be supplied to the power supply voltage.

次に、請求項5,6に係る本発明の第3実施形態を説明する。
前述した第1実施形態では、三相交流電源10の交流電力を、中継回路11を介して、電力変換器20を構成する半導体スイッチTr〜Trのダイオードにより整流してコンデンサ14を充電している。しかし、図5(a)に示すように、中継回路11を例えば電源スイッチ11aにより構成した場合、この電源スイッチ11aの投入タイミングによってはコンデンサ14の充電電流Ichが大きな値となる。
Next, a third embodiment of the present invention according to claims 5 and 6 will be described.
In the first embodiment described above, the AC power of the three-phase AC power supply 10 is rectified by the diodes of the semiconductor switches Tr 1 to Tr 6 constituting the power converter 20 via the relay circuit 11 to charge the capacitor 14. ing. However, as shown in FIG. 5A, when the relay circuit 11 is constituted by, for example, the power switch 11a, the charging current Ich of the capacitor 14 becomes a large value depending on the turn-on timing of the power switch 11a.

一般に、電力変換器20を構成する半導体スイッチTr〜Trに逆並列されたダイオード(環流ダイオード)は、インバータとしての動作する際のスイッチング特性が重視されており、電源投入時にコンデンサ14を充電する突入電流に耐え得る能力が一般的な整流ダイオードに比べて劣っている。
このため、図5(b)に示すように、電源スイッチ11aの投入時に流れるコンデンサ14の充電電流(突入電流)Ichによって半導体スイッチTr〜Trを破壊する恐れがある。また、この突入電流Ichにより、図5(b)に破線で示す如く電源電圧が瞬時低下したり、ブレーカが誤動作してしまう恐れもある。
これらの不都合を防止するためには、中継回路11に抵抗等を備えた初期充電回路を取り付けることが考えられるが、部品数の増加によるコスト上昇や装置の大型化を招いてしまう。
In general, the diode (freewheeling diode) antiparallel to the semiconductor switches Tr 1 to Tr 6 constituting the power converter 20 places importance on switching characteristics when operating as an inverter, and charges the capacitor 14 when the power is turned on. The ability to withstand the inrush current is inferior to that of a general rectifier diode.
Therefore, as shown in FIG. 5 (b), there is a risk of destroying the semiconductor switch Tr 1 to Tr 6 by a charging current (rush current) I ch capacitor 14 flowing at the time of turn-on of the power switch 11a. Further, by the rush current I ch, there or the power supply voltage is momentarily reduced as indicated by the broken line in FIG. 5 (b), a possibility that breaker malfunctions.
In order to prevent these inconveniences, it is conceivable to attach an initial charging circuit having a resistor or the like to the relay circuit 11, but this causes an increase in cost due to an increase in the number of components and an increase in the size of the apparatus.

そこで、本発明の第3実施形態は、部品数の増加を招くことなく、三相交流電源10の投入時における突入電流Ichを抑制するようにしたものである。
なお、第3実施形態の回路構成は図1の第1実施形態と同様であるが、図5に示したように、三相交流電源10と電力変換器20との間に接続される中継回路11として電源スイッチ11aを用いている。
Therefore, in the third embodiment of the present invention, the inrush current Ich when the three-phase AC power supply 10 is turned on is suppressed without increasing the number of components.
The circuit configuration of the third embodiment is the same as that of the first embodiment of FIG. 1, but a relay circuit connected between the three-phase AC power supply 10 and the power converter 20 as shown in FIG. 11 is a power switch 11a.

この第3実施形態の動作を説明すると、バッテリ60の充電時には、図5のスイッチ12を予めオフして電力変換器20とモータ40とを切り離してから、電源スイッチ11aを投入する点は第1実施形態と同様であるが、本実施形態では、電源スイッチ11aを投入する前に電力変換器30をPWM動作させる。
図6は、第3実施形態の動作説明図である。電力変換器20,30が動作を停止している状態では、コンデンサ14の電圧Vdcはバッテリ60の電圧Vとほぼ等しい。図6の時刻tで制御装置70から充電開始指令が発せられると、電力変換器30の半導体スイッチTr〜Tr12に駆動信号PWMが与えられ、電力変換器30は全ての上アームまたは下アームをオンとする二種類の零電圧ベクトルを出力してDC/DC変換を行う。これにより、コンデンサ14はその電圧Vdcが電源電圧Vのピーク値付近になるまで充電され、昇圧される。ここで、上記駆動信号PWMは、電力変換器30の容量(許容電流、熱責務等)に応じて適宜作成すればよい。
なお、電力変換器30の上アームの半導体スイッチTr,Tr,Tr11(Tr)がオンしたときの回路動作、下アームの半導体スイッチTr,Tr10,Tr12(Tr)がオンしたときの回路動作は、前述した図2(a),(b)と同様であり、電力変換器30は一般的な昇降圧チョッパとして動作する。
The operation of the third embodiment will be described. When the battery 60 is charged, the switch 12 in FIG. 5 is turned off in advance to disconnect the power converter 20 and the motor 40, and then the power switch 11a is turned on. Although it is the same as that of embodiment, in this embodiment, the power converter 30 is PWM-operated before turning on the power switch 11a.
FIG. 6 is an operation explanatory diagram of the third embodiment. When the power converters 20 and 30 are not operating, the voltage V dc of the capacitor 14 is substantially equal to the voltage V b of the battery 60. When a charge start command is issued from the control device 70 at time t 0 in FIG. 6, the drive signal PWM 2 is given to the semiconductor switches Tr 7 to Tr 12 of the power converter 30, and the power converter 30 Two types of zero voltage vectors that turn on the lower arm are output to perform DC / DC conversion. As a result, the capacitor 14 is charged and boosted until its voltage V dc is near the peak value of the power supply voltage V s . Here, the drive signal PWM 2 may be appropriately generated according to the capacity of the power converter 30 (allowable current, thermal duty, etc.).
The circuit operation when the semiconductor switches Tr 7 , Tr 9 , Tr 11 (Tr p ) on the upper arm of the power converter 30 are turned on, and the semiconductor switches Tr 8 , Tr 10 , Tr 12 (Tr n ) on the lower arm are turned on. The circuit operation when turned on is the same as that in FIGS. 2A and 2B described above, and the power converter 30 operates as a general step-up / step-down chopper.

図6の時刻tにおいて、電圧検出器15によりコンデンサ14の電圧Vdcが電源電圧Vのピーク値付近に達したことを検出したら、駆動信号PWMをオフし、その後、時刻tにおいて電源スイッチ11aを投入する。このとき、三相交流電源10とコンデンサ14との間には電位差が殆どないため、電力変換器20のダイオードを介してコンデンサ14に流入する電流は最小限に抑えることができる。
以後は、第1実施形態により説明した方法によりバッテリ60を充電すれば良い。
When the voltage detector 15 detects that the voltage V dc of the capacitor 14 has reached the vicinity of the peak value of the power supply voltage V s at time t 1 in FIG. 6, the drive signal PWM 2 is turned off, and then at time t 2 . Turn on the power switch 11a. At this time, since there is almost no potential difference between the three-phase AC power supply 10 and the capacitor 14, the current flowing into the capacitor 14 via the diode of the power converter 20 can be minimized.
Thereafter, the battery 60 may be charged by the method described in the first embodiment.

なお、コンデンサ14の昇圧電圧値は、電源スイッチ11aの投入時間遅れやコンデンサ14の電圧垂下特性により、電源電圧Vのピーク値より高く設定しても問題はない。また、三相交流電源10と電源スイッチ11aとの間に昇圧または降圧変圧器が挿入される場合には、コンデンサ14の電圧をこれらの変圧器の二次側電圧のピーク値付近まで昇圧しておけば良い。
上記のように、第3実施形態によれば、初期充電回路を別個に設けることなくコンデンサ14への突入電流を抑制することができるので、部品点数の増加に伴うコストの増加や装置全体の大型化を防ぐことができる。
また、この第3実施形態は、第2実施形態の回路構成にも適用可能である。
Incidentally, the boosted voltage of the capacitor 14, the voltage drop characteristics of the input time delay and the capacitor 14 of the power switch 11a, no problem set higher than the peak value of the power supply voltage V s. When a step-up or step-down transformer is inserted between the three-phase AC power source 10 and the power switch 11a, the voltage of the capacitor 14 is stepped up to near the peak value of the secondary side voltage of these transformers. It ’s fine.
As described above, according to the third embodiment, since an inrush current to the capacitor 14 can be suppressed without separately providing an initial charging circuit, an increase in the cost associated with an increase in the number of parts and a large size of the entire apparatus. Can be prevented.
The third embodiment is also applicable to the circuit configuration of the second embodiment.

以上の各実施形態では、2台のモータ40,50を個別の電力変換器20,30によりそれぞれ駆動するモータ駆動システム(2台のモータ駆動装置からなるシステム)について説明した。
しかし、本発明は、電力変換器30により駆動されるモータ50のように、その中性点51と電力変換器30の一方の直流母線との間にバッテリ60が接続され、電力変換器30のエネルギー蓄積要素としてのコンデンサ14を交流電源10から充電する他の電力変換器(例えば電力変換器20)を備えていれば良く、これらの他の電力変換器20及びその負荷としてのモータ40の台数(言い換えれば他のモータ駆動装置の台数)は何ら限定されない。すなわち、本発明は複数台のモータ駆動装置からなるシステムに適用可能である。
In each of the above-described embodiments, the motor driving system (system including two motor driving devices) that drives the two motors 40 and 50 by the individual power converters 20 and 30 has been described.
However, in the present invention, like the motor 50 driven by the power converter 30, the battery 60 is connected between the neutral point 51 and one DC bus of the power converter 30. It suffices to have another power converter (for example, power converter 20) that charges the capacitor 14 as an energy storage element from the AC power supply 10, and the number of these other power converters 20 and motors 40 as loads thereof. (In other words, the number of other motor driving devices) is not limited at all. That is, the present invention can be applied to a system including a plurality of motor drive devices.

本発明の第1実施形態を示す回路構成図である。It is a circuit block diagram which shows 1st Embodiment of this invention. 図1における電力変換器の動作説明図である。It is operation | movement explanatory drawing of the power converter in FIG. 本発明の第2実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of this invention. 図3における制御装置の機能を示すブロック図である。It is a block diagram which shows the function of the control apparatus in FIG. 第1実施形態の問題点を説明するための図である。It is a figure for demonstrating the problem of 1st Embodiment. 本発明の第3実施形態の動作説明図である。It is operation | movement explanatory drawing of 3rd Embodiment of this invention. 従来技術を示す回路構成図である。It is a circuit block diagram which shows a prior art. 従来技術を示す回路構成図である。It is a circuit block diagram which shows a prior art.

符号の説明Explanation of symbols

10:三相交流電源
11:中継回路
11a:電源スイッチ
12:スイッチ
13:電源電圧検出器
14:コンデンサ(エネルギー蓄積要素)
15,16:電圧検出器
17:電流検出器
20,30:電力変換器
21,22,23:電流検出器
40,50:モータ
41,51:中性点
60:バッテリ
70:制御装置
71:電圧調整器
72:PLL回路
73:電流調整器
74:三角波キャリア発生器
75:PWMパルス発生器
Tr〜Tr12:半導体スイッチ
10: Three-phase AC power supply 11: Relay circuit 11a: Power switch 12: Switch 13: Power supply voltage detector 14: Capacitor (energy storage element)
15, 16: Voltage detector 17: Current detector 20, 30: Power converter 21, 22, 23: Current detector 40, 50: Motor 41, 51: Neutral point 60: Battery 70: Controller 71: Voltage Regulator 72: PLL circuit 73: Current regulator 74: Triangular wave carrier generator
75: PWM pulse generator Tr 1 to Tr 12: semiconductor switch

Claims (6)

直流側にエネルギー蓄積要素が接続された1台の電力変換器と、
この電力変換器から出力される交流電力により駆動され、かつ、固定子巻線の中性点と前記電力変換器の一方の直流母線との間にバッテリが接続された1台のモータと、
前記エネルギー蓄積要素が直流側に接続され、かつ、交流側に交流電源が接続された他の電力変換器と、
この電力変換器の交流側に切り離し手段を介して接続された他のモータと、
を備えたモータ駆動システムにおいて、
前記他のモータの固定子巻線の中性点と前記1台のモータの固定子巻線の中性点とを接続し、
前記切り離し手段により前記他の電力変換器と他のモータとを切り離した状態で前記他の電力変換器を整流器動作させて前記エネルギー蓄積要素に直流電力を蓄積すると共に、前記1台の電力変換器の零電圧ベクトル出力時に、降圧用リアクトルとして作用する前記1台のモータの固定子巻線に前記1台の電力変換器から直流電流を流し、前記1台のモータを回転させるトルクを発生させずに前記1台のモータの固定子巻線を介して前記バッテリを充電することを特徴とするモータ駆動システム。
One power converter with an energy storage element connected to the DC side;
A motor driven by AC power output from the power converter, and having a battery connected between a neutral point of the stator winding and one DC bus of the power converter;
The energy storage element is connected to the DC side, and another power converter in which an AC power source is connected to the AC side; and
Other motors connected to the AC side of this power converter via disconnect means,
In a motor drive system with
Connecting the neutral point of the stator winding of the other motor and the neutral point of the stator winding of the one motor;
The other power converter is operated as a rectifier in a state where the other power converter and the other motor are separated by the separating means, and DC power is stored in the energy storage element, and the one power converter When a zero voltage vector is output, a direct current is passed from the one power converter to the stator windings of the one motor that acts as a step-down reactor without generating torque for rotating the one motor. The battery is charged through a stator winding of the one motor.
直流側にエネルギー蓄積要素が接続された1台の電力変換器と、
この電力変換器から出力される交流電力により駆動され、かつ、固定子巻線の中性点と前記電力変換器の一方の直流母線との間にバッテリが接続された1台のモータと、
前記エネルギー蓄積要素が直流側に接続され、かつ、交流側に交流電源が接続された他の電力変換器と、
この電力変換器の交流側に切り離し手段を介して接続された他のモータと、
を備えたモータ駆動システムにおいて、
前記切り離し手段により前記他の電力変換器と他のモータとを切り離した状態で前記他の電力変換器を整流器動作させて前記エネルギー蓄積要素に直流電力を蓄積すると共に、前記1台の電力変換器の零電圧ベクトル出力時に、降圧用リアクトルとして作用する前記1台のモータの固定子巻線に前記1台の電力変換器から直流電流を流し、前記1台のモータを回転させるトルクを発生させずに前記1台のモータの固定子巻線を介して前記バッテリを充電することを特徴とするモータ駆動システム。
One power converter with an energy storage element connected to the DC side;
A motor driven by AC power output from the power converter, and having a battery connected between a neutral point of the stator winding and one DC bus of the power converter;
The energy storage element is connected to the DC side, and another power converter in which an AC power source is connected to the AC side; and
Other motors connected to the AC side of this power converter via disconnect means,
In a motor drive system with
The other power converter is operated as a rectifier in a state where the other power converter and the other motor are separated by the separating means, and DC power is stored in the energy storage element, and the one power converter When a zero voltage vector is output, a direct current is passed from the one power converter to the stator windings of the one motor that acts as a step-down reactor without generating torque for rotating the one motor. The battery is charged through a stator winding of the one motor.
請求項1または2に記載したモータ駆動システムにおいて、
前記他の電力変換器を制御して前記交流電源の電圧に対し力率1の正弦波電流を流すことを特徴とするモータ駆動システム。
In the motor drive system according to claim 1 or 2,
A motor drive system characterized in that a sine wave current having a power factor of 1 is supplied to the voltage of the AC power supply by controlling the other power converter .
請求項1〜3の何れか1項に記載したモータ駆動システムにおいて、
前記切り離し手段は、前記他の電力変換器と他のモータとの接続を入切するスイッチ手段であることを特徴とするモータ駆動システム。
In the motor drive system given in any 1 paragraph of Claims 1-3,
The motor drive system according to claim 1, wherein the disconnecting means is a switch means for switching on and off the connection between the other power converter and another motor .
請求項1〜4の何れか1項に記載したモータ駆動システムであって、前記他の電力変換器と前記交流電源との間に電源スイッチが接続されたモータ駆動システムにおいて、
前記電源スイッチの投入により前記他の電力変換器に交流電源電圧を印加する前に、前記1台の電力変換器により前記バッテリの電圧を昇圧して前記エネルギー蓄積要素を所定の電圧値まで充電することを特徴とするモータ駆動システム。
The motor drive system according to any one of claims 1 to 4 , wherein a power switch is connected between the other power converter and the AC power supply .
Before applying the AC power supply voltage to the other power converter by turning on the power switch, the voltage of the battery is boosted by the one power converter to charge the energy storage element to a predetermined voltage value. A motor drive system characterized by that.
請求項5に記載したモータ駆動システムにおいて、
前記所定の電圧値が、前記交流電源の電圧のピーク値付近であることを特徴とするモータ駆動システム。
In the motor drive system according to claim 5 ,
Wherein the predetermined voltage value, a motor drive system characterized a peak value near der Rukoto voltage of the AC power source.
JP2008318235A 2008-02-28 2008-12-15 Motor drive system Expired - Fee Related JP5288178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318235A JP5288178B2 (en) 2008-02-28 2008-12-15 Motor drive system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008047116 2008-02-28
JP2008047116 2008-02-28
JP2008318235A JP5288178B2 (en) 2008-02-28 2008-12-15 Motor drive system

Publications (2)

Publication Number Publication Date
JP2009232672A JP2009232672A (en) 2009-10-08
JP5288178B2 true JP5288178B2 (en) 2013-09-11

Family

ID=41247436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318235A Expired - Fee Related JP5288178B2 (en) 2008-02-28 2008-12-15 Motor drive system

Country Status (1)

Country Link
JP (1) JP5288178B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396317B2 (en) * 2010-03-18 2014-01-22 株式会社豊田中央研究所 Power transmission device
JP2012110138A (en) * 2010-11-18 2012-06-07 Fuji Electric Co Ltd Motor drive system
JP5621539B2 (en) * 2010-11-18 2014-11-12 富士電機株式会社 Motor drive system
FR3028683B1 (en) * 2014-11-17 2017-12-29 Lohr Electromecanique METHOD FOR RECHARGING ENERGY ACCUMULATION MEANS EQUIPPED WITH AN ELECTRIC OR HYBRID VEHICLE
CN111355414B (en) * 2018-12-21 2024-05-07 比亚迪股份有限公司 Vehicle, motor drive device, control method, and readable storage medium
CN111355432B (en) * 2018-12-21 2023-12-12 比亚迪股份有限公司 Motor driving device, control method, vehicle, and readable storage medium
CN111434512B (en) * 2019-06-30 2021-01-01 比亚迪股份有限公司 Energy conversion device, power system and vehicle
WO2021253249A1 (en) * 2020-06-16 2021-12-23 美的威灵电机技术(上海)有限公司 Motor controller of electrical appliance, motor apparatus of electrical appliance, and electrical appliance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620321B2 (en) * 1987-07-08 1994-03-16 日野自動車工業株式会社 AC power supply for automobile work
JP3275578B2 (en) * 1994-10-19 2002-04-15 トヨタ自動車株式会社 In-vehicle charging device for electric vehicles
JP2002010670A (en) * 2000-06-28 2002-01-11 Toyota Motor Corp Power-output unit
JP4023171B2 (en) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 LOAD DRIVE DEVICE, CHARGE CONTROL METHOD FOR POWER STORAGE DEVICE IN LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CHARGE CONTROL
JP4925181B2 (en) * 2006-03-09 2012-04-25 国立大学法人長岡技術科学大学 Power system

Also Published As

Publication number Publication date
JP2009232672A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US8508961B2 (en) Power conversion apparatus
JP5288178B2 (en) Motor drive system
JP4196867B2 (en) Bidirectional buck-boost chopper circuit, inverter circuit using the same, and DC-DC converter circuit
CN101682278B (en) Motor drive
EP1246353B1 (en) Multi-output power conversion circuit
JP7191951B2 (en) Electric vehicle power system
US20120229061A1 (en) Voltage converter and voltage converter system including voltage converter
EP2928061B1 (en) Power conversion system and method for controlling same
JP2007068362A5 (en)
JP2010220443A (en) Vehicle mounted multiphase converter
JP2012019674A (en) Charger of hybrid vehicle and method
JP2011010406A (en) Power conversion device for vehicle, and vehicle mounted with the same
JP2005224012A (en) Dc-dc converter
EP3316470B1 (en) Inverter with charging capability
CN115635866A (en) System for charging battery of vehicle using motor driving system
JP2009284560A (en) Charging method of motor driven system
EP2940846B1 (en) A method of initiating a regenerative converter and a regenerative converter
JP2010119239A (en) Smes apparatus, interface device for smes, and driving method therefor
JP2004166370A (en) Voltage converter
JP5122200B2 (en) Drive controller for buck-boost converter and buck-boost converter
JP5499850B2 (en) Inverter discharge control device
EP4108507A1 (en) System for charging vehicle battery using motor driving system
JP5332853B2 (en) Power conversion system
WO2023112220A1 (en) Power conversion device
JP7029269B2 (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees