WO2023112220A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023112220A1
WO2023112220A1 PCT/JP2021/046339 JP2021046339W WO2023112220A1 WO 2023112220 A1 WO2023112220 A1 WO 2023112220A1 JP 2021046339 W JP2021046339 W JP 2021046339W WO 2023112220 A1 WO2023112220 A1 WO 2023112220A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
voltage
circuit
electric motor
Prior art date
Application number
PCT/JP2021/046339
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 早坂
哲 重田
遼一 稲田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2021/046339 priority Critical patent/WO2023112220A1/en
Publication of WO2023112220A1 publication Critical patent/WO2023112220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the present invention relates to a power converter.
  • Vehicles such as hybrid vehicles and electric vehicles are equipped with power converters that control electric motors.
  • a power conversion device converts DC power supplied from a DC power supply into AC power by an inverter, and outputs the AC power to a motor. Also, when the motor is rotated by an external force, the motor functions as a generator and converts AC power into DC power.
  • the gate drive circuit that drives the switching elements that make up the inverter is powered by DC power. Requires a DC power supply.
  • Patent Document 1 describes an inverter system for driving a multiphase motor, which includes an AC motor that is driven by an inverter and generates power, and a power supply connected to the neutral point of the AC motor.
  • Patent Document 1 when the supplied DC power drops, power is not supplied to the gate drive circuit, and the switching element cannot be controlled appropriately.
  • a power conversion apparatus includes at least one switching leg composed of an upper arm switching element and a lower arm switching element, and a DC power supplied from a DC power supply is converted into AC power by the switching leg to generate a motor.
  • a gate drive circuit for driving the switching element;
  • a gate power supply section for generating gate power to be supplied to the gate drive circuit based on the DC power; and a backup from the neutral point voltage of the motor.
  • a backup power supply section for generating power, wherein the backup power supply section supplies the backup power supply to the gate drive circuit in place of the gate power supply when the DC power drops.
  • FIG. 1 It is a circuit block diagram of a power converter device.
  • (A) and (B) are diagrams showing an armature of an electric motor.
  • (A) and (B) are timing charts of the rotation speed of the electric motor and the power supply line voltage in the present embodiment.
  • (A) and (B) are timing charts of the number of revolutions of an electric motor and the voltage between power supply lines in a comparative example.
  • FIG. 1 is a circuit configuration diagram of a power converter 100.
  • Power converter 100 converts high voltage DC power supplied from high voltage DC power supply 200 through high voltage contactor 300 into AC power to drive electric motor 400 . Further, when the electric motor 400 is rotated by an external force and functions as a generator, the power conversion device 100 converts the generated AC power into high voltage DC power to charge the high voltage DC power supply 200 .
  • High-voltage DC power supply 200 is, for example, a rechargeable battery.
  • a high voltage is, for example, a voltage exceeding 60 V direct current and 1,500 V or less, or a voltage exceeding 30 V alternating current (rms value) and 1,000 V (rms value) or less.
  • the motor 400 is a three-phase synchronous motor with three-phase windings inside. Three-phase AC currents Ui, Vi, and Wi output from the power conversion device 100 flow through the windings of each phase of the electric motor 400 . Further, the neutral point voltage of the electric motor 400 is input to the power converter 100 via the neutral line L in order to utilize the voltage fluctuation of the neutral point voltage of the electric motor 400 .
  • the neutral point voltage of the electric motor 400 will be described using the voltage at the neutral point of the armature of the electric motor 400 as an example, but it may be the voltage at the intermediate point of the windings of the armature of the electric motor 400 .
  • the low-voltage DC power supply 500 supplies operating power to the control circuit 101 in the power converter 100 .
  • the external ECU 600 performs operation instructions to the power converter 100 and switching control of conduction/interruption (ON/OFF) of the high-voltage contactor 300 .
  • the high-voltage contactor 300 is a switching device that switches conduction/interruption of the high-voltage DC power from the high-voltage DC power supply 200 to the power converter 100 .
  • the power converter 100 includes a control circuit 101 , a control power supply section 102 , a voltage discharge circuit 103 and a backup power supply section 104 .
  • the backup power supply section 104 includes a gate power supply section 105 , a rectifier circuit 106 , an inverter circuit 107 and a gate drive circuit 108 .
  • control circuit 101 When the control circuit 101 receives a normal operation command from the external ECU 600, it controls the operation of the inverter circuit 107 via the gate drive circuit 108, and converts the DC power supplied from the high-voltage DC power supply 200 into AC power. to drive and control the electric motor 400 . In addition, so-called regenerative control is performed to convert the AC power generated by the electric motor 400 into DC power and charge the high-voltage DC power supply 200 .
  • the control circuit 101 shifts to the high voltage safe state.
  • the voltage discharge circuit 103 performs high voltage power discharge between the positive power line P and the negative power line N, and further controls the operation of the inverter circuit 107 through the gate drive circuit 108. Then, the inverter circuit 107 is short-circuited in three phases of the lower arm or the three phases of the upper arm.
  • the control power supply unit 102 generates power for the control circuit 101 using the low voltage DC power supplied from the low voltage DC power supply 500 .
  • the gate power supply unit 105 is composed of, for example, an insulated DC-DC converter.
  • high voltage contactor 300 When high voltage contactor 300 is turned on on the vehicle side and high voltage DC power is supplied to power converter 100 , this high voltage DC power is used to generate power for gate drive circuit 108 . Further, even if the high-voltage contactor 300 is turned off, a backup power supply is generated due to fluctuations in the neutral point voltage of the electric motor 400, although the details will be described later.
  • the rectifier circuit 106 is composed of a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a capacitor C1.
  • the high voltage contactor 300 is ON and the high voltage DC power supply 200 is supplied, the high voltage DC power is supplied to the gate power supply unit 105 by the first diode D1 and the fourth diode D4, and the gate power supply unit 105 uses this high voltage DC power to generate a power supply for gate drive circuit 108 .
  • the rectifier circuit 106 full-wave rectifies the neutral point voltage oscillating positively and negatively with reference to the negative electrode of the high-voltage power supply when the inverter circuit 107 is three-phase short-circuited. That is, when the voltage of the neutral line L is low, a current flows from the positive power supply line P of the inverter circuit 107 to the gate power supply unit 105 through the first diode D1, and the gate power supply through the second diode D2. A current flows from the portion 105 to the neutral wire L.
  • the inverter circuit 107 has a smoothing capacitor C2 and six switching elements S1 to S6.
  • a smoothing capacitor C2 is provided between the positive power line P and the negative power line N.
  • switching legs Ru, Rv, and Rw for three phases are connected between the positive power line P and the negative power line N.
  • Each switching leg Ru, Rv, Rw is composed of switching elements S1, S3, S5 of the upper arm Ua and switching elements S2, S4, S6 of the lower arm La.
  • the switching elements S1 to S6 each have a power semiconductor element and a diode provided in parallel with the power semiconductor element.
  • Power semiconductor devices are, for example, MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
  • the switching elements S1 to S6 are switched by gate signals from the gate drive circuit 108.
  • the state in which the switching elements S1, S3 and S5 of the upper arm Ua are turned ON simultaneously and the switching elements S2, S4 and S6 of the lower arm La are turned OFF simultaneously is referred to as an upper arm three-phase short circuit.
  • a state in which the switching elements S1, S3 and S5 of the upper arm Ua are simultaneously turned off and the switching elements S2, S4 and S6 of the lower arm La are simultaneously turned on is referred to as a lower arm three-phase short circuit.
  • a state in which the switching elements S1, S3 and S5 of the upper arm Ua and the switching elements S2, S4 and S6 of the lower arm La are simultaneously turned off is referred to as all-phase open.
  • the smoothing capacitor C2 smoothes the current generated by ON/OFF of the switching elements S1 to S6, and suppresses the ripple of the DC current supplied from the high-voltage DC power supply 200 to the power converter 100.
  • This smoothing capacitor C2 is, for example, an electrolytic capacitor or a film capacitor.
  • FIG. Path 1 is when the high voltage contactor 300 is ON. In this case, current flows through the positive power supply line P, the first diode D1, the gate power supply unit 105 and the capacitor C1, the fourth diode D4, and the negative power supply line N in this order.
  • Paths 2 and 3 are in a high voltage safe state, and the electric motor 400 is rotating.
  • the high voltage safe state means that the high voltage contactor is turned off, the voltage discharge circuit 103 discharges the high voltage power between the positive power line P and the negative power line N, and the inverter circuit 107 causes the lower arm three-phase short circuit. Alternatively, the upper arm three-phase short-circuit state.
  • the difference between path 2 and path 3 is whether the voltage between neutral line L and negative power line N is positive or negative. Path 2 is positive and path 3 is negative.
  • the current flows through the neutral wire L, the third diode D3, the gate power supply unit 105 and the capacitor C1, the fourth diode D4, the switching element S2, and the U phase of the electric motor 400 in that order.
  • energization of the switching element for example, in the case of an IGBT, energization is performed via the IGBT when the lower arm three-phase short circuit is performed, and energization is performed via the diode when the upper arm three-phase short circuit is performed.
  • the current flows through the U phase of the electric motor 400, the switching element S1, the first diode D1, the gate power supply unit 105, the capacitor C1, the second diode D2, and the neutral wire L in this order.
  • energization of the switching element for example, in the case of an IGBT, energization is performed via a diode when the lower arm three-phase short circuit is performed, and energization is performed via the IGBT when the upper arm three-phase circuit is short-circuited.
  • the route for the U phase was explained as an example, but the route for other phases is the same.
  • the voltage between the neutral line L and the negative power line N is the positive power line P and the negative power line P.
  • the voltage between the power line N (hereinafter referred to as the power line voltage) is E, it is E / 2 ⁇ E / 6, so unnecessary current does not flow in the neutral line L, PWM control does not adversely affect
  • the power line voltage E can also be rephrased as the voltage supplied to the inverter circuit 107 .
  • the backup power supply unit 104 generates power for the gate drive circuit 108 through paths 2 and 3 according to fluctuations in the neutral point voltage of the electric motor 400 when the power supply line voltage E drops during transition to the high-voltage safe state. do.
  • FIG. 2A and 2B are diagrams showing the armature of electric motor 400.
  • FIG. 2A the voltage at the neutral point P1 of the armature of the electric motor 400 is derived from the neutral line L as the neutral point voltage.
  • FIG. 2B is a modified example, but as shown in the same drawing, the voltage at the middle point P2 of the armature winding of the electric motor 400 is derived from the neutral line L as the neutral point voltage.
  • the intermediate point P2 includes not only the intermediate position of the winding of the armature, but also the vicinity of the intermediate position.
  • This embodiment can be applied to either case shown in FIGS. 2(A) and 2(B), and the voltage derived from the neutral line L is called the neutral point voltage. That is, as will be described later, the neutral point voltage fluctuates when a current is passed through the inverter circuit 107 due to a three-phase short circuit.
  • 3(A) and 3(B) are timing charts of the rotation speed ⁇ of the electric motor 400 and the power line voltage E in this embodiment.
  • the vertical axis represents the rotational speed ⁇
  • the vertical axis represents the power line voltage E
  • the horizontal axis represents time on the same scale.
  • the period a represents the normal operation period. During this period a, the high-voltage contactor 300 is turned on by a normal operation command from the external ECU 600 .
  • the power conversion device 100 and the electric motor 400 are mounted on the vehicle and the electric motor 400 is used as the driving source of the vehicle, this corresponds to normal operation of the vehicle.
  • the rotation speed ⁇ of the electric motor 400 varies depending on the operating conditions of the vehicle.
  • the power supply line voltage E depends on the battery voltage of the high voltage DC power supply 200 .
  • the inverter circuit 107 performs PWM control.
  • Period b is the transition period to the high voltage safe state.
  • the high-voltage contactor 300 is turned off by a transition command from the external ECU 600 to the high-voltage safe state.
  • the control circuit 101 sets the inverter circuit 107 to a lower arm three-phase short circuit or an upper arm three-phase short circuit. Since the output torque of the electric motor 400 becomes 0 Nm by short-circuiting the three phases, the rotational speed ⁇ of the electric motor 400 gradually decreases as shown in FIG. 3(A). Also, by short-circuiting the three phases, the regenerative power becomes 0 W (watts). Furthermore, as shown in FIG. 3B, the power supply line voltage E is discharged by the voltage discharge circuit 103 and rapidly drops.
  • a period c is a three-phase short-circuit period. If the rotation speed ⁇ of the electric motor 400 is equal to or higher than the threshold rotation speed N2, the backup power supply unit 104 generates power according to the fluctuation of the neutral point voltage of the electric motor 400 . That is, the backup power supply unit 104 generates power for the gate drive circuit 108 through the paths 2 and 3 shown in FIG. If the rotation speed ⁇ of the electric motor 400 is equal to or higher than the threshold rotation speed N2, the power supply to the gate drive circuit 108 can be generated by the fluctuation of the neutral point voltage of the electric motor 400, so that the three-phase short-circuit state is maintained by the control of the control circuit 101. can. As shown in FIG. 3A, the output torque becomes 0 Nm due to the three-phase short circuit, so the rotation speed ⁇ of the electric motor 400 gradually decreases. Furthermore, as shown in FIG. 3B, the power supply line voltage E is zero.
  • the reason for performing the three-phase short circuit is as follows.
  • the smoothing capacitor C2 provided between the positive and negative electrodes of the inverter circuit 107 It is charged by the induced power of 400 and its voltage rises.
  • the switching elements are protected by turning on all the switching elements of the upper arm or the lower arm of each phase of the inverter circuit 107 to short-circuit the three phases.
  • the period d is the three-phase open period 1.
  • no gate signal is output from the gate drive circuit 108 to the switching elements S1 to S6, and all the switching elements S1 to S6 of the inverter circuit 107 are turned off.
  • the rotation speed ⁇ of the electric motor 400 becomes less than the threshold rotation speed N2
  • the electric power regenerated by the electric motor 400 generates a deceleration torque in the electric motor 400, so the rotation speed ⁇ of the electric motor 400 gradually decreases as shown in FIG. 3(A).
  • FIG. 3(B) in the three-phase open circuit, the power regenerated by the electric motor 400 causes the voltage E between the power supply lines to rise.
  • the period e is the three-phase open period 2.
  • the switching elements of the inverter circuit 107 are properly controlled.
  • FIG. 4 is a circuit configuration diagram of a power conversion device 100' in a comparative example.
  • a comparative example shown in FIG. 4 illustrates an example to which the present invention is not applied for comparison with the present embodiment.
  • a power conversion device 100' in the comparative example differs from the power conversion device 100 shown in FIG.
  • the gate power supply unit 105 is composed of, for example, an insulated DC-DC converter. When high voltage contactor 300 is turned on on the vehicle side and high voltage DC power is supplied to power converter 100 , this high voltage DC power is used to generate power for gate drive circuit 108 .
  • FIGS. 5(A) and 5(B) are timing charts of the rotational speed ⁇ of the electric motor 400 and the power line voltage E in the comparative example.
  • the vertical axis represents the rotation speed ⁇
  • the vertical axis represents the power supply line voltage E
  • the horizontal axis represents time on the same scale.
  • the period a represents the normal operation period. During this period a, the high-voltage contactor 300 is turned on by a normal operation command from the external ECU 600 . This is the same as the period a shown in FIGS. 3A and 3B. As shown in FIG. 5A, the rotation speed ⁇ of the electric motor 400 varies depending on the operating conditions of the vehicle. As shown in FIG. 5B, the power supply line voltage E depends on the battery voltage of the high voltage DC power supply 200 . The inverter circuit 107 performs PWM control.
  • Period b is the transition period to the high voltage safe state.
  • the high-voltage contactor 300 is turned off by a transition command from the external ECU 600 to the high-voltage safe state.
  • the control circuit 101 sets the inverter circuit 107 to a lower arm three-phase short circuit or an upper arm three-phase short circuit.
  • the output torque of the electric motor 400 becomes 0 Nm, so the rotational speed ⁇ of the electric motor 400 gradually decreases as shown in FIG. 5(A).
  • the regenerative power becomes 0 W (watts).
  • FIG. 5(B) the power supply line voltage E is discharged by the voltage discharge circuit 103 and rapidly drops.
  • a period c is a three-phase open period.
  • all the switching elements S1 to S6 of the inverter circuit 107 are turned off.
  • the electric power regenerated by the electric motor 400 generates deceleration torque in the electric motor 400, so that the rotational speed ⁇ of the electric motor 400 gradually decreases as shown in FIG. 5(A).
  • the regenerated electric power by the electric motor 400 increases the voltage E between the power supply lines.
  • a period d is a three-phase short-circuit period.
  • the three-phase short-circuit state is entered.
  • the rotation speed ⁇ of the electric motor 400 gradually decreases.
  • the regenerated electric power by the electric motor 400 becomes 0 W, and the voltage E between the power supply lines decreases.
  • a period e is a power supply line voltage retention control period.
  • the control similar to period c and period d is alternately repeated until the rotation speed ⁇ of the electric motor 400 becomes equal to or lower than the threshold rotation speed N1. That is, the control circuit 101 alternately repeats control of the three-phase open and three-phase short circuits.
  • the control circuit 101 holds the power supply line voltage E by performing this power supply line voltage hold control, and secures the power supply from the gate power supply unit 105 to the gate drive circuit 108 . In other words, since the power supply to the gate drive circuit 108 is ensured, it is possible to control the voltage between the power supply lines.
  • a period f is a three-phase open period.
  • the three-phase short-circuit state can be maintained without performing the power supply line voltage holding control, so the power supply line voltage holding control becomes unnecessary, and the reliability of the power converter 100 is improved. do.
  • the power conversion device 100 includes at least one switching leg Ru, Rv, and Rw composed of upper arm switching elements S1, S3, and S5 and lower arm switching elements S2, S4, and S6, and a high-voltage DC power supply.
  • An inverter circuit 107 that converts the DC power supplied from 200 into AC power by switching legs Ru, Rv, and Rw and outputs it to the electric motor 400, a gate drive circuit 108 that drives the switching elements S1 to S6, and a gate drive circuit 108. and a backup power supply unit 104 for generating a backup power supply from the neutral point voltage of the electric motor 400.
  • the backup power supply unit 104 is provided with a DC A backup power supply is supplied to the gate drive circuit 108 in place of the gate power supply when the power drops. As a result, even when the supplied DC power drops, power is supplied to the gate drive circuit 108, and the switching elements S1 to S6 can be appropriately controlled.
  • the present invention can be implemented by modifying the embodiments described above as follows. (1) Although the inverter circuit 107 and the electric motor 400 have been described as having three phases, they are not limited to three phases and may have a multi-phase configuration.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the features of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a modification.
  • SYMBOLS 100... Power converter, 101... Control circuit, 102... Control power supply part, 103... Voltage discharge circuit, 104... Backup power supply part, 105... Gate power supply part, 106... Rectifier circuit 107 Inverter circuit 108 Gate drive circuit 200 High voltage DC power supply 300 High voltage contactor 400 Motor 500 Low voltage DC power supply , 600 .

Abstract

This power conversion device comprises: at least one switching leg formed by a switching element of an upper arm and a switching element of a lower arm; an inverter circuit that converts direct-current power supplied by a direct-current power supply to alternating-current power using the switch leg and outputs the alternating-current power to an electric motor; a gate drive circuit that drives the switching elements; a gate power supply unit that generates a gate power supply to feed to the gate drive circuit on the basis of the direct-current power supply; and a backup power supply unit that generates a backup power supply by neutral point voltage of the electric motor. If the direct-current power has fallen, the backup power supply unit feeds the backup power supply, in place of the gate power supply, to the gate drive circuit.

Description

電力変換装置power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power converter.
 ハイブリッド自動車や電気自動車等の車両には、電動機を制御する電力変換装置が搭載されている。電力変換装置は、直流電源より供給された直流電力をインバータにより交流電力に変換して電動機へ出力する。また、電動機が外力によって回転された場合には、電動機は発電機として機能し、交流電力を直流電力に変換する。そして、インバータを構成するスイッチング素子を駆動するゲート駆動回路には直流電力より電源が供給されているが、供給されている直流電力が低下した場合には、ゲート駆動回路に電源を供給する低電圧直流電源を必要とする。 Vehicles such as hybrid vehicles and electric vehicles are equipped with power converters that control electric motors. A power conversion device converts DC power supplied from a DC power supply into AC power by an inverter, and outputs the AC power to a motor. Also, when the motor is rotated by an external force, the motor functions as a generator and converts AC power into DC power. The gate drive circuit that drives the switching elements that make up the inverter is powered by DC power. Requires a DC power supply.
 特許文献1には、インバータにて駆動されて、また発電を行う交流モータと、この交流モータの中性点に接続された電源と、を有する多相モータ駆動用インバータシステムが記載されている。 Patent Document 1 describes an inverter system for driving a multiphase motor, which includes an AC motor that is driven by an inverter and generates power, and a power supply connected to the neutral point of the AC motor.
日本国特開2004-48923号公報Japanese Patent Application Laid-Open No. 2004-48923
 特許文献1では、供給されている直流電力が低下した場合に、ゲート駆動回路に電源が供給されず、スイッチング素子を適切に制御することができない。 In Patent Document 1, when the supplied DC power drops, power is not supplied to the gate drive circuit, and the switching element cannot be controlled appropriately.
 本発明による電力変換装置は、上アームのスイッチング素子及び下アームのスイッチング素子より構成される少なくとも1つのスイッチングレグと、直流電源より供給された直流電力を前記スイッチングレグにより交流電力に変換して電動機へ出力するインバータ回路と、前記スイッチング素子を駆動するゲート駆動回路と、前記ゲート駆動回路に供給するゲート電源を前記直流電源に基づいて生成するゲート電源部と、前記電動機の中性点電圧よりバックアップ電源を生成するバックアップ電源部とを備え、前記バックアップ電源部は、前記直流電力が低下した場合に、前記ゲート電源に替えて前記バックアップ電源を前記ゲート駆動回路に供給する。 A power conversion apparatus according to the present invention includes at least one switching leg composed of an upper arm switching element and a lower arm switching element, and a DC power supplied from a DC power supply is converted into AC power by the switching leg to generate a motor. a gate drive circuit for driving the switching element; a gate power supply section for generating gate power to be supplied to the gate drive circuit based on the DC power; and a backup from the neutral point voltage of the motor. and a backup power supply section for generating power, wherein the backup power supply section supplies the backup power supply to the gate drive circuit in place of the gate power supply when the DC power drops.
 本発明によれば、供給されている直流電力が低下した場合でも、ゲート駆動回路に電源が供給され、スイッチング素子を適切に制御することができる。 According to the present invention, even when the supplied DC power drops, power is supplied to the gate drive circuit and the switching element can be appropriately controlled.
電力変換装置の回路構成図である。It is a circuit block diagram of a power converter device. (A)(B)電動機の電機子を示す図である。(A) and (B) are diagrams showing an armature of an electric motor. (A)(B)本実施形態における電動機の回転数と電源線間電圧のタイミングチャートである。(A) and (B) are timing charts of the rotation speed of the electric motor and the power supply line voltage in the present embodiment. 比較例における電力変換装置の回路構成図である。It is a circuit block diagram of the power converter device in a comparative example. (A)(B)比較例における電動機の回転数と電源線間電圧のタイミングチャートである。(A) and (B) are timing charts of the number of revolutions of an electric motor and the voltage between power supply lines in a comparative example.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
 図1は、電力変換装置100の回路構成図である。
 電力変換装置100は、高電圧直流電源200より高電圧コンタクタ300を介して供給される高電圧直流電力を、交流電力に変換して電動機400を駆動する。また、電力変換装置100は、電動機400が外力により回転されて発電機として機能した場合に、発電された交流電力を高電圧直流電力に変換して高電圧直流電源200を充電する。高電圧直流電源200は、例えば充放電可能なバッテリである。高電圧とは、例えば,直流60Vを超え1,500V以下、又は交流30V(実効値)を超え1,000V(実効値)以下の電圧である。
FIG. 1 is a circuit configuration diagram of a power converter 100. As shown in FIG.
Power converter 100 converts high voltage DC power supplied from high voltage DC power supply 200 through high voltage contactor 300 into AC power to drive electric motor 400 . Further, when the electric motor 400 is rotated by an external force and functions as a generator, the power conversion device 100 converts the generated AC power into high voltage DC power to charge the high voltage DC power supply 200 . High-voltage DC power supply 200 is, for example, a rechargeable battery. A high voltage is, for example, a voltage exceeding 60 V direct current and 1,500 V or less, or a voltage exceeding 30 V alternating current (rms value) and 1,000 V (rms value) or less.
 電動機400は内部に三相の巻線を有した三相同期電動機である。電力変換装置100より出力される三相の交流電流Ui、Vi、Wiが電動機400の各相の巻線に流れる。また、電動機400の中性点電圧の電圧変動を利用するために、電動機400の中性点電圧が中性線Lを介して電力変換装置100へ入力される。なお、電動機400の中性点電圧は、電動機400の電機子の中性点の電圧の例で説明するが、電動機400の電機子の巻線の中間点の電圧であってもよい。 The motor 400 is a three-phase synchronous motor with three-phase windings inside. Three-phase AC currents Ui, Vi, and Wi output from the power conversion device 100 flow through the windings of each phase of the electric motor 400 . Further, the neutral point voltage of the electric motor 400 is input to the power converter 100 via the neutral line L in order to utilize the voltage fluctuation of the neutral point voltage of the electric motor 400 . The neutral point voltage of the electric motor 400 will be described using the voltage at the neutral point of the armature of the electric motor 400 as an example, but it may be the voltage at the intermediate point of the windings of the armature of the electric motor 400 .
 低電圧直流電源500は、電力変換装置100内の制御回路101へ動作電源を供給する。外部ECU600は、電力変換装置100への動作指示と高電圧コンタクタ300の導通/遮断(ON/OFF)の切替制御を行う。高電圧コンタクタ300は、高電圧直流電源200からの高電圧直流電力を電力変換装置100へ導通/遮断を切り替える切り替え器である。 The low-voltage DC power supply 500 supplies operating power to the control circuit 101 in the power converter 100 . The external ECU 600 performs operation instructions to the power converter 100 and switching control of conduction/interruption (ON/OFF) of the high-voltage contactor 300 . The high-voltage contactor 300 is a switching device that switches conduction/interruption of the high-voltage DC power from the high-voltage DC power supply 200 to the power converter 100 .
 電力変換装置100は、制御回路101、制御電源部102、電圧放電回路103、バックアップ電源部104を備える。バックアップ電源部104は、ゲート電源部105、整流回路106、インバータ回路107、ゲート駆動回路108を備える。 The power converter 100 includes a control circuit 101 , a control power supply section 102 , a voltage discharge circuit 103 and a backup power supply section 104 . The backup power supply section 104 includes a gate power supply section 105 , a rectifier circuit 106 , an inverter circuit 107 and a gate drive circuit 108 .
 制御回路101は、外部ECU600から通常動作の指令を受信した場合、ゲート駆動回路108を介してインバータ回路107の動作を制御し、高電圧直流電源200より供給された直流電力を交流電力に変換して電動機400を駆動制御する。また、電動機400により発電された交流電力を直流電力に変換して高電圧直流電源200に充電する、所謂、回生制御を行う。 When the control circuit 101 receives a normal operation command from the external ECU 600, it controls the operation of the inverter circuit 107 via the gate drive circuit 108, and converts the DC power supplied from the high-voltage DC power supply 200 into AC power. to drive and control the electric motor 400 . In addition, so-called regenerative control is performed to convert the AC power generated by the electric motor 400 into DC power and charge the high-voltage DC power supply 200 .
 一方、外部ECU600から高電圧安全状態への移行指令を受信した場合、制御回路101は、高電圧安全状態への移行を実施する。高電圧安全状態では、電圧放電回路103により、正極側電源線Pと負極側電源線Nとの間で高電圧電力放電を実施し、さらにゲート駆動回路108を介してインバータ回路107の動作を制御し、インバータ回路107を下アーム三相短絡もしくは上アーム三相短絡する。
 制御電源部102は、低電圧直流電源500より供給される低電圧直流電力を用いて制御回路101用の電源を生成する。
On the other hand, when receiving a command to shift to the high voltage safe state from the external ECU 600, the control circuit 101 shifts to the high voltage safe state. In the high voltage safe state, the voltage discharge circuit 103 performs high voltage power discharge between the positive power line P and the negative power line N, and further controls the operation of the inverter circuit 107 through the gate drive circuit 108. Then, the inverter circuit 107 is short-circuited in three phases of the lower arm or the three phases of the upper arm.
The control power supply unit 102 generates power for the control circuit 101 using the low voltage DC power supplied from the low voltage DC power supply 500 .
 ゲート電源部105は、例えば、絶縁型のDC-DCコンバータにより構成される。車両側で高電圧コンタクタ300がONされ、電力変換装置100に高電圧直流電力が供給されている場合に、この高電圧直流電力を用いてゲート駆動回路108用の電源を生成する。また、高電圧コンタクタ300がOFFされても、詳細は後述するが、電動機400の中性点電圧の変動によりバックアップ電源を生成する。 The gate power supply unit 105 is composed of, for example, an insulated DC-DC converter. When high voltage contactor 300 is turned on on the vehicle side and high voltage DC power is supplied to power converter 100 , this high voltage DC power is used to generate power for gate drive circuit 108 . Further, even if the high-voltage contactor 300 is turned off, a backup power supply is generated due to fluctuations in the neutral point voltage of the electric motor 400, although the details will be described later.
 整流回路106は、第1ダイオードD1、第2ダイオードD2、第3ダイオードD3、第4ダイオードD4、コンデンサC1より構成される。高電圧コンタクタ300がONであり、高電圧直流電源200が供給されている場合は、第1ダイオードD1、第4ダイオードD4により、ゲート電源部105には高電圧直流電力が供給され、ゲート電源部105はこの高電圧直流電力を用いてゲート駆動回路108用の電源を生成する。 The rectifier circuit 106 is composed of a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a capacitor C1. When the high voltage contactor 300 is ON and the high voltage DC power supply 200 is supplied, the high voltage DC power is supplied to the gate power supply unit 105 by the first diode D1 and the fourth diode D4, and the gate power supply unit 105 uses this high voltage DC power to generate a power supply for gate drive circuit 108 .
 高電圧コンタクタ300がOFFされている場合は、整流回路106は、インバータ回路107の三相短絡時に高電圧電源の負極を基準にして正負に振動する中性点電圧を全波整流する。すなわち、中性線Lの電圧が低い場合は、第1ダイオードD1を介して、インバータ回路107の正極側電源線Pからゲート電源部105へ電流が流れ、第2ダイオードD2を介して、ゲート電源部105から中性線Lへ電流が流れる。また、中性線Lの電圧が高い場合は、第3ダイオードD3を介して、中性線Lからゲート電源部105へ電流が流れ、第4ダイオードD4を介してゲート電源部105からインバータ回路107の負極側電源線Nへ電流が流れる。ゲート電源部105と並列に接続されているコンデンサC1は、三相短絡時に高電圧電源の負極基準で正負に振動する中性点電圧を全波整流した際の電圧を平滑化する。これにより、ゲート電源部105は供給された電力を基にゲート駆動回路108用の電源を生成する。 When the high-voltage contactor 300 is turned off, the rectifier circuit 106 full-wave rectifies the neutral point voltage oscillating positively and negatively with reference to the negative electrode of the high-voltage power supply when the inverter circuit 107 is three-phase short-circuited. That is, when the voltage of the neutral line L is low, a current flows from the positive power supply line P of the inverter circuit 107 to the gate power supply unit 105 through the first diode D1, and the gate power supply through the second diode D2. A current flows from the portion 105 to the neutral wire L. Further, when the voltage of the neutral wire L is high, current flows from the neutral wire L to the gate power supply unit 105 via the third diode D3, and from the gate power supply unit 105 to the inverter circuit 107 via the fourth diode D4. current flows to the negative power supply line N of . A capacitor C1 connected in parallel with the gate power supply unit 105 smoothes the voltage obtained by full-wave rectifying the neutral point voltage, which oscillates positively and negatively with respect to the negative electrode of the high-voltage power supply during a three-phase short circuit. Thereby, the gate power supply unit 105 generates power for the gate driving circuit 108 based on the supplied power.
 インバータ回路107は、平滑コンデンサC2と6つのスイッチング素子S1~S6を有する。正極側電源線Pと負極側電源線Nの間には平滑コンデンサC2が設けられている。さらに、正極側電源線Pと負極側電源線Nの間には三相分のスイッチングレグRu、Rv、Rwが接続されている。各スイッチングレグRu、Rv、Rwは、上アームUaのスイッチング素子S1、S3、S5及び下アームLaのスイッチング素子S2、S4、S6より構成される。スイッチング素子S1~S6は、パワー半導体素子と、パワー半導体素子と並列に設けられたダイオードとを有している。パワー半導体素子は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)である。スイッチング素子S1~S6は、ゲート駆動回路108からのゲート信号によりスイッチング動作する。通常動作時には、正極側電源線Pと負極側電源線Nより供給された直流電圧は三相交流電流に変換され、スイッチングレグRu、Rv、Rwから各相の交流出力線を介して、電動機400の各相の巻線にそれぞれ出力される。 The inverter circuit 107 has a smoothing capacitor C2 and six switching elements S1 to S6. A smoothing capacitor C2 is provided between the positive power line P and the negative power line N. As shown in FIG. Furthermore, between the positive power line P and the negative power line N, switching legs Ru, Rv, and Rw for three phases are connected. Each switching leg Ru, Rv, Rw is composed of switching elements S1, S3, S5 of the upper arm Ua and switching elements S2, S4, S6 of the lower arm La. The switching elements S1 to S6 each have a power semiconductor element and a diode provided in parallel with the power semiconductor element. Power semiconductor devices are, for example, MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors). The switching elements S1 to S6 are switched by gate signals from the gate drive circuit 108. FIG. During normal operation, the DC voltage supplied from the positive power supply line P and the negative power supply line N is converted into a three-phase AC current, which is supplied from the switching legs Ru, Rv, and Rw through the AC output lines of each phase to the electric motor 400. are output to the windings of each phase.
 本実施例では、上アームUaのスイッチング素子S1、S3、S5を同時にONし、下アームLaのスイッチング素子S2、S4、S6を同時にOFFした状態を上アーム三相短絡と称する。また、上アームUaのスイッチング素子S1、S3、S5を同時にOFFし、下アームLaのスイッチング素子S2、S4、S6を同時にONした状態を下アーム三相短絡と称する。また、上アームUaのスイッチング素子S1、S3、S5および下アームLaのスイッチング素子S2、S4、S6を同時にOFFした状態を全相開放と称する。 In this embodiment, the state in which the switching elements S1, S3 and S5 of the upper arm Ua are turned ON simultaneously and the switching elements S2, S4 and S6 of the lower arm La are turned OFF simultaneously is referred to as an upper arm three-phase short circuit. A state in which the switching elements S1, S3 and S5 of the upper arm Ua are simultaneously turned off and the switching elements S2, S4 and S6 of the lower arm La are simultaneously turned on is referred to as a lower arm three-phase short circuit. A state in which the switching elements S1, S3 and S5 of the upper arm Ua and the switching elements S2, S4 and S6 of the lower arm La are simultaneously turned off is referred to as all-phase open.
 平滑コンデンサC2は、スイッチング素子S1~S6のON/OFFによって生じる電流を平滑化し、高電圧直流電源200から電力変換装置100へ供給される直流電流のリップルを抑制する。この平滑コンデンサC2は、例えば電解コンデンサやフィルムコンデンサである。 The smoothing capacitor C2 smoothes the current generated by ON/OFF of the switching elements S1 to S6, and suppresses the ripple of the DC current supplied from the high-voltage DC power supply 200 to the power converter 100. This smoothing capacitor C2 is, for example, an electrolytic capacitor or a film capacitor.
 図1の図中に、ゲート電源部105への電力供給の経路を矢印で示している。実線の矢印で経路1を、破線の矢印で経路2を、一点鎖線の矢印で経路3を示す。
 経路1は高電圧コンタクタ300がONしている場合である。この場合、正極側電源線P、第1ダイオードD1、ゲート電源部105とコンデンサC1、第4ダイオードD4、負極側電源線Nの順に電流が通電する。
In the diagram of FIG. 1, the paths of power supply to the gate power supply unit 105 are indicated by arrows. A solid line arrow indicates route 1, a broken line arrow indicates route 2, and a dashed line arrow indicates route 3. FIG.
Path 1 is when the high voltage contactor 300 is ON. In this case, current flows through the positive power supply line P, the first diode D1, the gate power supply unit 105 and the capacitor C1, the fourth diode D4, and the negative power supply line N in this order.
 経路2と経路3は高電圧安全状態で、電動機400は回転中である。高電圧安全状態とは、高電圧コンタクタがOFFされ、電圧放電回路103により正極側電源線Pと負極側電源線Nとの間の高電圧電力が放電され、インバータ回路107が下アーム三相短絡もしくは上アーム三相短絡されている状態である。経路2と経路3の違いは、中性線Lと負極側電源線Nとの間の電圧が正の場合か負の場合かの違いである。正の場合が経路2、負の場合が経路3である。   Paths 2 and 3 are in a high voltage safe state, and the electric motor 400 is rotating. The high voltage safe state means that the high voltage contactor is turned off, the voltage discharge circuit 103 discharges the high voltage power between the positive power line P and the negative power line N, and the inverter circuit 107 causes the lower arm three-phase short circuit. Alternatively, the upper arm three-phase short-circuit state. The difference between path 2 and path 3 is whether the voltage between neutral line L and negative power line N is positive or negative. Path 2 is positive and path 3 is negative.
 経路2の場合、中性線L、第3ダイオードD3、ゲート電源部105とコンデンサC1、第4ダイオードD4、スイッチング素子S2、電動機400のU相の順で電流が通電する。なお、スイッチング素子の通電に関しては、例えばIGBTの場合、下アーム三相短絡時はIGBTを介して通電し、上アーム三相短絡時はダイオードを介して通電する。 In the case of route 2, the current flows through the neutral wire L, the third diode D3, the gate power supply unit 105 and the capacitor C1, the fourth diode D4, the switching element S2, and the U phase of the electric motor 400 in that order. Regarding the energization of the switching element, for example, in the case of an IGBT, energization is performed via the IGBT when the lower arm three-phase short circuit is performed, and energization is performed via the diode when the upper arm three-phase short circuit is performed.
 経路3の場合、電動機400のU相、スイッチング素子S1、第1ダイオードD1、ゲート電源部105とコンデンサC1、第2ダイオードD2、中性線Lの順で電流が通電する。また、スイッチング素子の通電に関しては、例えばIGBTの場合、下アーム三相短絡時はダイオードを介して通電し、上アーム三相短絡時はIGBTを介して通電する。 In the case of route 3, the current flows through the U phase of the electric motor 400, the switching element S1, the first diode D1, the gate power supply unit 105, the capacitor C1, the second diode D2, and the neutral wire L in this order. As for energization of the switching element, for example, in the case of an IGBT, energization is performed via a diode when the lower arm three-phase short circuit is performed, and energization is performed via the IGBT when the upper arm three-phase circuit is short-circuited.
 以上の説明では、U相の場合の経路を例に説明したが、他の相の場合の経路も同様である。なお、通常動作時にインバータ回路107をPWM制御して電動機400を回転駆動している場合には、中性線Lと負極側電源線Nとの間の電圧は、正極側電源線Pと負極側電源線Nとの間の電圧(以下、電源線間電圧と称する)をEとした際に、E/2±E/6となるため、中性線Lに不要な電流は流れず、PWM制御に悪影響を与えない。なお、電源線間電圧Eはインバータ回路107に供給されている電圧と言い換えることもできる。 In the above explanation, the route for the U phase was explained as an example, but the route for other phases is the same. When the motor 400 is rotationally driven by PWM-controlling the inverter circuit 107 during normal operation, the voltage between the neutral line L and the negative power line N is the positive power line P and the negative power line P. When the voltage between the power line N (hereinafter referred to as the power line voltage) is E, it is E / 2 ± E / 6, so unnecessary current does not flow in the neutral line L, PWM control does not adversely affect Note that the power line voltage E can also be rephrased as the voltage supplied to the inverter circuit 107 .
 バックアップ電源部104は、高電圧安全状態移行時において、電源線間電圧Eが低下した場合に、電動機400の中性点電圧の変動により、経路2と経路3によりゲート駆動回路108の電源を生成する。 The backup power supply unit 104 generates power for the gate drive circuit 108 through paths 2 and 3 according to fluctuations in the neutral point voltage of the electric motor 400 when the power supply line voltage E drops during transition to the high-voltage safe state. do.
 図2(A)、図2(B)は、電動機400の電機子を示す図である。
 図2(A)に示すように、電動機400の電機子の中性点P1の電圧が中性点電圧として中性線Lより導出される。
 図2(B)は変形例であるが、同図に示すように、電動機400の電機子の巻線の中間点P2の電圧が中性点電圧として中性線Lより導出される。中間点P2は、電機子の巻線の中間位置のみならず、中間位置の近傍を含む。
2A and 2B are diagrams showing the armature of electric motor 400. FIG.
As shown in FIG. 2A, the voltage at the neutral point P1 of the armature of the electric motor 400 is derived from the neutral line L as the neutral point voltage.
FIG. 2B is a modified example, but as shown in the same drawing, the voltage at the middle point P2 of the armature winding of the electric motor 400 is derived from the neutral line L as the neutral point voltage. The intermediate point P2 includes not only the intermediate position of the winding of the armature, but also the vicinity of the intermediate position.
 本実施形態では、図2(A)、図2(B)に示すいずれの場合でも適用でき、中性線Lより導出される電圧を中性点電圧と称する。すなわち、後述するように、インバータ回路107の三相短絡による電流通電時には中性点電圧が変動するため、この電圧変動を整流することでゲート駆動回路108に供給する電源が生成される。 This embodiment can be applied to either case shown in FIGS. 2(A) and 2(B), and the voltage derived from the neutral line L is called the neutral point voltage. That is, as will be described later, the neutral point voltage fluctuates when a current is passed through the inverter circuit 107 due to a three-phase short circuit.
 図3(A)、図3(B)は、本実施形態における電動機400の回転数ωと電源線間電圧Eのタイミングチャートである。図3(A)は縦軸に回転数ωを、図3(B)は縦軸に電源線間電圧Eを、横軸は共に同じスケールの時間である。 3(A) and 3(B) are timing charts of the rotation speed ω of the electric motor 400 and the power line voltage E in this embodiment. In FIG. 3A, the vertical axis represents the rotational speed ω, in FIG. 3B, the vertical axis represents the power line voltage E, and the horizontal axis represents time on the same scale.
 期間aは通常動作期間を表す。この期間aでは、外部ECU600からの通常動作の指令により、高電圧コンタクタ300はONされている。電力変換装置100および電動機400を車両に搭載し、電動機400を車両の駆動源としている場合は、車両の通常運転に相当する。図3(A)に示すように、電動機400の回転数ωは車両の運転条件により変動する。図3(B)に示すように、電源線間電圧Eは高電圧直流電源200のバッテリ電圧に依存する。期間aに示す通常動作では、図1の実線の矢印で示す経路1によりゲート電源部105へ電力が供給され、ゲート電源部105はゲート駆動回路108へ電力を供給している。そして、インバータ回路107は、PWM制御を行っている。 The period a represents the normal operation period. During this period a, the high-voltage contactor 300 is turned on by a normal operation command from the external ECU 600 . When the power conversion device 100 and the electric motor 400 are mounted on the vehicle and the electric motor 400 is used as the driving source of the vehicle, this corresponds to normal operation of the vehicle. As shown in FIG. 3A, the rotation speed ω of the electric motor 400 varies depending on the operating conditions of the vehicle. As shown in FIG. 3B, the power supply line voltage E depends on the battery voltage of the high voltage DC power supply 200 . In the normal operation shown in period a, power is supplied to the gate power supply unit 105 through path 1 indicated by the solid arrow in FIG. The inverter circuit 107 performs PWM control.
 期間bは高電圧安全状態への移行期間である。外部ECU600からの高電圧安全状態への移行指令により、高電圧コンタクタ300はOFFされる。制御回路101は、インバータ回路107を下アーム三相短絡もしくは上アーム三相短絡にする。三相短絡することにより、電動機400の出力トルクが0Nmになるため、図3(A)に示すように、電動機400の回転数ωは徐々に低下する。また、三相短絡することにより、回生電力が0W(ワット)になる。さらに、図3(B)に示すように、電源線間電圧Eは、電圧放電回路103で放電されて急速に電圧が低下する。  Period b is the transition period to the high voltage safe state. The high-voltage contactor 300 is turned off by a transition command from the external ECU 600 to the high-voltage safe state. The control circuit 101 sets the inverter circuit 107 to a lower arm three-phase short circuit or an upper arm three-phase short circuit. Since the output torque of the electric motor 400 becomes 0 Nm by short-circuiting the three phases, the rotational speed ω of the electric motor 400 gradually decreases as shown in FIG. 3(A). Also, by short-circuiting the three phases, the regenerative power becomes 0 W (watts). Furthermore, as shown in FIG. 3B, the power supply line voltage E is discharged by the voltage discharge circuit 103 and rapidly drops.
 期間cは三相短絡期間である。電動機400の回転数ωが閾値の回転数N2以上であれば、電動機400の中性点電圧の変動によりバックアップ電源部104は、電源を生成する。すなわち、バックアップ電源部104は、図1に示した経路2と経路3によりゲート駆動回路108の電源を生成する。電動機400の回転数ωが閾値回転数N2以上であれば、電動機400の中性点電圧の変動によりゲート駆動回路108への電源が生成できるため、制御回路101の制御により三相短絡状態を保持できる。図3(A)に示すように、三相短絡により、出力トルクが0Nmになるため、電動機400の回転数ωは徐々に低下する。さらに、図3(B)に示すように、電源線間電圧Eは、ゼロである。 A period c is a three-phase short-circuit period. If the rotation speed ω of the electric motor 400 is equal to or higher than the threshold rotation speed N2, the backup power supply unit 104 generates power according to the fluctuation of the neutral point voltage of the electric motor 400 . That is, the backup power supply unit 104 generates power for the gate drive circuit 108 through the paths 2 and 3 shown in FIG. If the rotation speed ω of the electric motor 400 is equal to or higher than the threshold rotation speed N2, the power supply to the gate drive circuit 108 can be generated by the fluctuation of the neutral point voltage of the electric motor 400, so that the three-phase short-circuit state is maintained by the control of the control circuit 101. can. As shown in FIG. 3A, the output torque becomes 0 Nm due to the three-phase short circuit, so the rotation speed ω of the electric motor 400 gradually decreases. Furthermore, as shown in FIG. 3B, the power supply line voltage E is zero.
 なお、三相短絡を行う理由は、次のとおりである。電動機400が外力によって回転されている場合に、バッテリである高電圧直流電源200への直流電力の入力が遮断されると、インバータ回路107の正極と負極の間に設けられた平滑コンデンサC2が電動機400の誘起電力によって充電され、その電圧が上昇する。このような場合に、インバータ回路107の各相の上アームもしくは下アームのすべてのスイッチング素子をオンにして三相短絡することにより、スイッチング素子を保護する。 The reason for performing the three-phase short circuit is as follows. When the electric motor 400 is rotated by an external force and the DC power input to the high-voltage DC power supply 200, which is a battery, is cut off, the smoothing capacitor C2 provided between the positive and negative electrodes of the inverter circuit 107 It is charged by the induced power of 400 and its voltage rises. In such a case, the switching elements are protected by turning on all the switching elements of the upper arm or the lower arm of each phase of the inverter circuit 107 to short-circuit the three phases.
 期間dは三相開放期間1である。三相開放は、ゲート駆動回路108からスイッチング素子S1~S6へのゲート信号は出力されず、インバータ回路107の全てのスイッチング素子S1~S6がOFF状態になる。電動機400の回転数ωが閾値の回転数N2未満になると、電動機400の中性点電圧の変動によるゲート駆動回路108の電源を生成できなくなる。このため、三相開放に移行する。三相開放では電動機400による回生電力により電動機400に減速トルクが発生するため、図3(A)に示すように、徐々に電動機400の回転数ωは低下する。さらに、図3(B)に示すように、三相開放では、電動機400による回生電力により電源線間電圧Eが上昇する。 The period d is the three-phase open period 1. In the three-phase open state, no gate signal is output from the gate drive circuit 108 to the switching elements S1 to S6, and all the switching elements S1 to S6 of the inverter circuit 107 are turned off. When the rotation speed ω of the electric motor 400 becomes less than the threshold rotation speed N2, it becomes impossible to generate power for the gate drive circuit 108 due to fluctuations in the neutral point voltage of the electric motor 400 . Therefore, it shifts to three-phase open. In the three-phase open state, the electric power regenerated by the electric motor 400 generates a deceleration torque in the electric motor 400, so the rotation speed ω of the electric motor 400 gradually decreases as shown in FIG. 3(A). Furthermore, as shown in FIG. 3(B), in the three-phase open circuit, the power regenerated by the electric motor 400 causes the voltage E between the power supply lines to rise.
 期間eは三相開放期間2である。電動機400の回転数ωが、閾値回転数N1を下回ると三相開放しても、電源線間電圧Eを上昇させるだけの回生電力が得られなくなるため、電源線間電圧Eが低下する。 The period e is the three-phase open period 2. When the rotation speed ω of the electric motor 400 falls below the threshold rotation speed N1, even if the three phases are opened, the regenerated power sufficient to raise the power supply line voltage E cannot be obtained, so the power supply line voltage E decreases.
 本実施形態によれば、高電圧安全状態の移行などにより高電圧直流電源200より供給される直流電力が低下した場合でも、ゲート駆動回路108に電源が供給され、インバータ回路107のスイッチング素子を適切に制御することができる。例えば、高電圧安全状態移行時に高電圧コンタクタをOFFし、インバータ回路107のスイッチング素子を三相短絡することにより、電源線間電圧Eが低下しても、バックアップ電源部104は、電源線間電圧Eが中性点電圧より低くなると自動的に中性点電圧により電源が生成する。このため、ゲート駆動回路108へ電源を供給するための低電圧直流電源が不要になり、また、高電圧直流電源と低電圧直流電源との間の電源切り替え制御も不要になる。通常動作時は電源線間電圧Eが中性点電圧より大きいため、中性線Lに不要な電流は流れず、電動機400の通常動作に悪影響を与えない。 According to this embodiment, even if the DC power supplied from the high-voltage DC power supply 200 is reduced due to transition to the high-voltage safe state or the like, power is supplied to the gate drive circuit 108, and the switching elements of the inverter circuit 107 are properly controlled. can be controlled to For example, by turning off the high-voltage contactor when transitioning to the high-voltage safe state and short-circuiting the switching elements of the inverter circuit 107 in three phases, even if the power line voltage E drops, the backup power supply unit 104 maintains the power line voltage When E drops below the neutral voltage, the power supply will automatically generate the neutral voltage. This eliminates the need for a low-voltage DC power supply for supplying power to the gate drive circuit 108, and also eliminates the need for power supply switching control between the high-voltage DC power supply and the low-voltage DC power supply. Since the power supply line voltage E is higher than the neutral point voltage during normal operation, unnecessary current does not flow in the neutral line L, and the normal operation of the electric motor 400 is not adversely affected.
 図4は、比較例における電力変換装置100’の回路構成図である。図4に示す比較例は、本発明を適用しない例を本実施形態との比較のために例示したものである。図1に示した電力変換装置100と同一の箇所には同一の符号を付してその説明を省略する。
 比較例における電力変換装置100’は、電動機400より導出される中性線Lや整流回路106が無い点が図1に示した電力変換装置100とは相違する。
FIG. 4 is a circuit configuration diagram of a power conversion device 100' in a comparative example. A comparative example shown in FIG. 4 illustrates an example to which the present invention is not applied for comparison with the present embodiment. The same parts as those of the power conversion device 100 shown in FIG.
A power conversion device 100' in the comparative example differs from the power conversion device 100 shown in FIG.
 ゲート電源部105は、例えば、絶縁型のDC-DCコンバータにより構成される。車両側で高電圧コンタクタ300がONされて、電力変換装置100に高電圧直流電力が供給されている場合に、この高電圧直流電力を用いてゲート駆動回路108用の電源を生成する。 The gate power supply unit 105 is composed of, for example, an insulated DC-DC converter. When high voltage contactor 300 is turned on on the vehicle side and high voltage DC power is supplied to power converter 100 , this high voltage DC power is used to generate power for gate drive circuit 108 .
 図5(A)、図5(B)は、比較例における電動機400の回転数ωと電源線間電圧Eのタイミングチャートである。図5(A)は縦軸に回転数ωを、図5(B)は縦軸に電源線間電圧Eを、横軸は共に同じスケールの時間である。 FIGS. 5(A) and 5(B) are timing charts of the rotational speed ω of the electric motor 400 and the power line voltage E in the comparative example. In FIG. 5A, the vertical axis represents the rotation speed ω, in FIG. 5B, the vertical axis represents the power supply line voltage E, and the horizontal axis represents time on the same scale.
 期間aは通常動作期間を表す。この期間aでは、外部ECU600からの通常動作の指令により、高電圧コンタクタ300はONされている。図3(A)、図3(B)で示した期間aと同様である。図5(A)に示すように、電動機400の回転数ωは車両の運転条件により変動する。図5(B)に示すように、電源線間電圧Eは高電圧直流電源200のバッテリ電圧に依存する。インバータ回路107は、PWM制御を行っている。 The period a represents the normal operation period. During this period a, the high-voltage contactor 300 is turned on by a normal operation command from the external ECU 600 . This is the same as the period a shown in FIGS. 3A and 3B. As shown in FIG. 5A, the rotation speed ω of the electric motor 400 varies depending on the operating conditions of the vehicle. As shown in FIG. 5B, the power supply line voltage E depends on the battery voltage of the high voltage DC power supply 200 . The inverter circuit 107 performs PWM control.
 期間bは高電圧安全状態への移行期間である。外部ECU600からの高電圧安全状態への移行指令により、高電圧コンタクタ300はOFFされる。制御回路101は、インバータ回路107を下アーム三相短絡もしくは上アーム三相短絡にする。三相短絡することにより、電動機400の出力トルクが0Nmになるため、図5(A)に示すように、電動機400の回転数ωは徐々に低下する。また、三相短絡することにより、回生電力0W(ワット)になる。さらに、図5(B)に示すように、電源線間電圧Eは、電圧放電回路103で放電されて急速に電圧が低下する。  Period b is the transition period to the high voltage safe state. The high-voltage contactor 300 is turned off by a transition command from the external ECU 600 to the high-voltage safe state. The control circuit 101 sets the inverter circuit 107 to a lower arm three-phase short circuit or an upper arm three-phase short circuit. By short-circuiting the three phases, the output torque of the electric motor 400 becomes 0 Nm, so the rotational speed ω of the electric motor 400 gradually decreases as shown in FIG. 5(A). Also, by short-circuiting the three phases, the regenerative power becomes 0 W (watts). Furthermore, as shown in FIG. 5(B), the power supply line voltage E is discharged by the voltage discharge circuit 103 and rapidly drops.
 期間cは三相開放期間である。制御回路101の制御によりインバータ回路107の全てのスイッチング素子S1~S6をOFF状態にする。三相開放では電動機400による回生電力により電動機400に減速トルクが発生するため、図5(A)に示すように、徐々に電動機400の回転数ωは低下する。さらに、図5(B)に示すように、三相開放では、電動機400による回生電力により電源線間電圧Eが上昇する。 A period c is a three-phase open period. Under the control of the control circuit 101, all the switching elements S1 to S6 of the inverter circuit 107 are turned off. In the three-phase open state, the electric power regenerated by the electric motor 400 generates deceleration torque in the electric motor 400, so that the rotational speed ω of the electric motor 400 gradually decreases as shown in FIG. 5(A). Furthermore, as shown in FIG. 5(B), in the three-phase open circuit, the regenerated electric power by the electric motor 400 increases the voltage E between the power supply lines.
 期間dは三相短絡期間である。制御回路101の制御により電源線間電圧Eが閾値電圧V2を上回る前に、三相短絡状態に移行する。図5(A)に示すように、徐々に電動機400の回転数ωは低下する。さらに、図5(B)に示すように、三相短絡では、電動機400による回生電力が0Wになり、電源線間電圧Eが低下する。 A period d is a three-phase short-circuit period. Under the control of the control circuit 101, before the power supply line voltage E exceeds the threshold voltage V2, the three-phase short-circuit state is entered. As shown in FIG. 5A, the rotation speed ω of the electric motor 400 gradually decreases. Furthermore, as shown in FIG. 5(B), in the three-phase short circuit, the regenerated electric power by the electric motor 400 becomes 0 W, and the voltage E between the power supply lines decreases.
 期間eは電源線間電圧保持制御期間である。電源線間電圧保持制御期間では、電動機400の回転数ωが閾値回転数N1以下になるまで、期間cと期間dと同様の制御を交互に繰り返す。すなわち、制御回路101は、三相開放と三相短絡の制御を交互に繰り返す。制御回路101は、この電源線間電圧保持制御を行うことによって、電源線間電圧Eを保持し、ゲート電源部105よりゲート駆動回路108への電源を確保する。換言すれば、ゲート駆動回路108への電源が確保されるので、電源線間電圧保持制御が可能になる。 A period e is a power supply line voltage retention control period. During the power line voltage retention control period, the control similar to period c and period d is alternately repeated until the rotation speed ω of the electric motor 400 becomes equal to or lower than the threshold rotation speed N1. That is, the control circuit 101 alternately repeats control of the three-phase open and three-phase short circuits. The control circuit 101 holds the power supply line voltage E by performing this power supply line voltage hold control, and secures the power supply from the gate power supply unit 105 to the gate drive circuit 108 . In other words, since the power supply to the gate drive circuit 108 is ensured, it is possible to control the voltage between the power supply lines.
 期間fは三相開放期間である。電動機400の回転数ωが、閾値回転数N1を下回ると三相開放しても、電源線間電圧Eを上昇させるだけの回生電力が得られなくなるため、電源線間電圧Eが低下する。 A period f is a three-phase open period. When the rotation speed ω of the electric motor 400 falls below the threshold rotation speed N1, even if the three phases are opened, the regenerated power sufficient to raise the power supply line voltage E cannot be obtained, so the power supply line voltage E decreases.
 この比較例に対して本実施形態によれば、電源線間電圧保持制御を行うことなく三相短絡状態を保持できるので、電源線間電圧保持制御が不要となり電力変換装置100の信頼性が向上する。 In contrast to this comparative example, according to the present embodiment, the three-phase short-circuit state can be maintained without performing the power supply line voltage holding control, so the power supply line voltage holding control becomes unnecessary, and the reliability of the power converter 100 is improved. do.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置100は、上アームのスイッチング素子S1、S3、S5及び下アームのスイッチング素子S2、S4、S6より構成される少なくとも1つのスイッチングレグRu、Rv、Rwと、高電圧直流電源200より供給された直流電力をスイッチングレグRu、Rv、Rwにより交流電力に変換して電動機400へ出力するインバータ回路107と、スイッチング素子S1~S6を駆動するゲート駆動回路108と、ゲート駆動回路108に供給するゲート電源を高電圧直流電源200に基づいて生成するゲート電源部105と、電動機400の中性点電圧よりバックアップ電源を生成するバックアップ電源部104とを備え、バックアップ電源部104は、直流電力が低下した場合に、ゲート電源に替えてバックアップ電源をゲート駆動回路108に供給する。これにより、供給されている直流電力が低下した場合でも、ゲート駆動回路108に電源が供給され、スイッチング素子S1~S6を適切に制御することができる。
According to the embodiment described above, the following effects are obtained.
(1) The power conversion device 100 includes at least one switching leg Ru, Rv, and Rw composed of upper arm switching elements S1, S3, and S5 and lower arm switching elements S2, S4, and S6, and a high-voltage DC power supply. An inverter circuit 107 that converts the DC power supplied from 200 into AC power by switching legs Ru, Rv, and Rw and outputs it to the electric motor 400, a gate drive circuit 108 that drives the switching elements S1 to S6, and a gate drive circuit 108. and a backup power supply unit 104 for generating a backup power supply from the neutral point voltage of the electric motor 400. The backup power supply unit 104 is provided with a DC A backup power supply is supplied to the gate drive circuit 108 in place of the gate power supply when the power drops. As a result, even when the supplied DC power drops, power is supplied to the gate drive circuit 108, and the switching elements S1 to S6 can be appropriately controlled.
(変形例)
 本発明は、以上説明した実施形態を次のように変形して実施することができる。
(1)インバータ回路107および電動機400は、3相の場合を例に説明したが、3相に限らず、多相の構成であってもよい。
(Modification)
The present invention can be implemented by modifying the embodiments described above as follows.
(1) Although the inverter circuit 107 and the electric motor 400 have been described as having three phases, they are not limited to three phases and may have a multi-phase configuration.
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the features of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a modification.
 100・・・電力変換装置、101・・・制御回路、102・・・制御電源部、103・・・電圧放電回路、104・・・バックアップ電源部、105・・・ゲート電源部、106・・・整流回路、107・・・インバータ回路、108・・・ゲート駆動回路、200・・・高電圧直流電源、300・・・高電圧コンタクタ、400・・・電動機、500・・・低電圧直流電源、600・・・外部ECU、S1、S3、S5・・・上アームのスイッチング素子、S2、S4、S6・・・下アームのスイッチング素子、Ru、Rv、Rw・・・スイッチングレグ。
 
 
DESCRIPTION OF SYMBOLS 100... Power converter, 101... Control circuit, 102... Control power supply part, 103... Voltage discharge circuit, 104... Backup power supply part, 105... Gate power supply part, 106... Rectifier circuit 107 Inverter circuit 108 Gate drive circuit 200 High voltage DC power supply 300 High voltage contactor 400 Motor 500 Low voltage DC power supply , 600 .

Claims (6)

  1.  上アームのスイッチング素子及び下アームのスイッチング素子より構成される少なくとも1つのスイッチングレグと、直流電源より供給された直流電力を前記スイッチングレグにより交流電力に変換して電動機へ出力するインバータ回路と、前記スイッチング素子を駆動するゲート駆動回路と、前記ゲート駆動回路に供給するゲート電源を前記直流電源に基づいて生成するゲート電源部と、前記電動機の中性点電圧よりバックアップ電源を生成するバックアップ電源部とを備え、
     前記バックアップ電源部は、前記直流電力が低下した場合に、前記ゲート電源に替えて前記バックアップ電源を前記ゲート駆動回路に供給する電力変換装置。
    at least one switching leg composed of a switching element of an upper arm and a switching element of a lower arm; an inverter circuit that converts DC power supplied from a DC power supply into AC power by the switching leg and outputs the AC power to a motor; a gate drive circuit that drives a switching element; a gate power supply that generates gate power to be supplied to the gate drive circuit based on the DC power; and a backup power supply that generates backup power from a neutral point voltage of the motor. with
    The backup power supply unit supplies the backup power supply to the gate drive circuit in place of the gate power supply when the DC power drops.
  2.  請求項1に記載の電力変換装置において、
     前記ゲート電源部はDC-DCコンバータを備え、
     前記バックアップ電源部は、前記電動機の前記中性点電圧を整流する整流回路を前記DC-DCコンバータへ接続して構成される電力変換装置。
    In the power converter according to claim 1,
    The gate power supply unit comprises a DC-DC converter,
    The backup power supply unit is a power conversion device configured by connecting a rectifier circuit for rectifying the neutral point voltage of the electric motor to the DC-DC converter.
  3.  請求項2に記載の電力変換装置において、
     前記整流回路は、前記スイッチングレグの正極側電源線から前記DC-DCコンバータへ接続する第1ダイオードと、前記DC-DCコンバータから前記電動機の前記中性点電圧が導出される中性線へ接続する第2ダイオードと、前記中性線から前記DC-DCコンバータへ接続する第3ダイオードと、前記DC-DCコンバータから前記スイッチングレグの負極側電源線へ接続する第4ダイオードと、前記DC-DCコンバータと並列に接続されるコンデンサとにより構成される電力変換装置。
    In the power converter according to claim 2,
    The rectifier circuit includes a first diode connected from a positive power line of the switching leg to the DC-DC converter, and a neutral line from which the neutral point voltage of the electric motor is derived from the DC-DC converter. a third diode connected from the neutral line to the DC-DC converter; a fourth diode connected from the DC-DC converter to the negative power line of the switching leg; and the DC-DC A power converter comprising a converter and a capacitor connected in parallel.
  4.  請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
     前記中性点電圧は、前記電動機の電機子の中性点の電圧である電力変換装置。
    In the power converter according to any one of claims 1 to 3,
    The neutral point voltage is the voltage at the neutral point of the armature of the electric motor.
  5.  請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
     前記中性点電圧は、前記電動機の電機子の巻線の中間点の電圧である電力変換装置。
    In the power converter according to any one of claims 1 to 3,
    The power conversion device, wherein the neutral point voltage is the voltage at the midpoint of the windings of the armature of the electric motor.
  6.  請求項2または請求項3に記載の電力変換装置において、
     前記インバータ回路の動作を制御する制御回路を備え、
     前記インバータ回路は、前記スイッチングレグを3相分備え、
     前記制御回路は、前記直流電力が低下した場合に、前記インバータ回路を三相短絡状態にし、
     前記バックアップ電源部は、前記インバータ回路に供給されている電圧が前記中性点電圧より低下した場合に自動的に前記バックアップ電源を前記ゲート駆動回路に供給する電力変換装置。
    In the power conversion device according to claim 2 or 3,
    A control circuit that controls the operation of the inverter circuit,
    The inverter circuit includes the switching legs for three phases,
    The control circuit places the inverter circuit in a three-phase short-circuit state when the DC power drops,
    The backup power supply unit automatically supplies the backup power supply to the gate drive circuit when the voltage supplied to the inverter circuit drops below the neutral point voltage.
PCT/JP2021/046339 2021-12-15 2021-12-15 Power conversion device WO2023112220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046339 WO2023112220A1 (en) 2021-12-15 2021-12-15 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046339 WO2023112220A1 (en) 2021-12-15 2021-12-15 Power conversion device

Publications (1)

Publication Number Publication Date
WO2023112220A1 true WO2023112220A1 (en) 2023-06-22

Family

ID=86773860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046339 WO2023112220A1 (en) 2021-12-15 2021-12-15 Power conversion device

Country Status (1)

Country Link
WO (1) WO2023112220A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048923A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Inverter system for driving polyphase motor, and its control method
JP2007089393A (en) * 2005-09-21 2007-04-05 Internatl Rectifier Corp Safety circuit for permanent magnet synchronous generator actuated by weak field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048923A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Inverter system for driving polyphase motor, and its control method
JP2007089393A (en) * 2005-09-21 2007-04-05 Internatl Rectifier Corp Safety circuit for permanent magnet synchronous generator actuated by weak field

Similar Documents

Publication Publication Date Title
US10003295B2 (en) Inverter control device
JP5359637B2 (en) Power converter
JP6237671B2 (en) Power converter
CN110829376B (en) Motor active short circuit control device and method and automobile
JP6253850B2 (en) AC rotating electrical machine control device
JP2006149153A (en) Controller for motor
US10903772B2 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
JP2017225279A (en) Power conversion system
JP2018098872A (en) Controller for rotary electric machine and rotary electric machine system
KR101853600B1 (en) Charger common inverter
JP6201867B2 (en) Inverter control device
WO2011004588A1 (en) Electric vehicle control device
JP2009232672A (en) Motor driving system
JP6289597B1 (en) VEHICLE POWER DEVICE AND CONTROL METHOD FOR VEHICLE POWER DEVICE
JP4723743B2 (en) Power output device
JP2007104789A (en) Power conversion system and electric vehicle equipped therewith
WO2020116226A1 (en) Power conversion device
JP4946106B2 (en) Power converter
WO2023112220A1 (en) Power conversion device
JP2017189053A (en) Motor device
JPH08168101A (en) Power conversion device
JP2011244557A (en) Power conversion device
JP2005094922A (en) Power supply system
JP2015065788A (en) Rotary electric machine for vehicle
JP7415969B2 (en) Rotating electrical machine control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968135

Country of ref document: EP

Kind code of ref document: A1