WO2002028126A1 - Procede de modulation par deplacement de 8 phases (8mdp) et dispositif associe - Google Patents

Procede de modulation par deplacement de 8 phases (8mdp) et dispositif associe Download PDF

Info

Publication number
WO2002028126A1
WO2002028126A1 PCT/CN2001/001213 CN0101213W WO0228126A1 WO 2002028126 A1 WO2002028126 A1 WO 2002028126A1 CN 0101213 W CN0101213 W CN 0101213W WO 0228126 A1 WO0228126 A1 WO 0228126A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
modulation
address
symbol
unit
Prior art date
Application number
PCT/CN2001/001213
Other languages
English (en)
French (fr)
Inventor
Jing Wang
Lin Yu
Qiang Zhang
Lai Qian
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB001198564A external-priority patent/CN1135004C/zh
Priority claimed from CNB011132469A external-priority patent/CN1152539C/zh
Priority claimed from CNB011132477A external-priority patent/CN1146200C/zh
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP01983410A priority Critical patent/EP1324624A4/en
Priority to AU2002214922A priority patent/AU2002214922A1/en
Publication of WO2002028126A1 publication Critical patent/WO2002028126A1/zh
Priority to US10/373,485 priority patent/US7236543B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2092Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner with digital generation of the modulated carrier (does not include the modulation of a digitally generated carrier)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • H04L25/03859Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping shaping using look up tables for partial waveforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2075Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the data are represented by the change in carrier phase

Definitions

  • the present invention relates to digital mobile communication, and more particularly to an eight-phase phase-shift keying modulation method and device. Background technique
  • the second-generation mobile communication system represented by GSM has become very mature, with voice as the mainstream service.
  • voice As the mainstream service.
  • the demand for data communication through wireless air interfaces has developed rapidly.
  • the current standard data rate of GSM is 9.6 kbps / time slot, which cannot meet the increasing demand of society for mobile communications.
  • the International Telecommunication Union (ITU) is organizing the development of standards for third-generation mobile communication systems capable of providing high-speed data transmission.
  • ITU International Telecommunication Union
  • ETSI European Telecommunications Standards Institute
  • HSCSD High-Speed Circuit Switch Data HSCSD
  • GPRS General Packet Radio Service
  • Enhan Ce d Data rates for Global / GSM Evolution It uses high-efficiency modulation technology (eight-phase phase shift keying) to increase the transmission rate by three times.
  • Enhanced data rate GSM (EDGE, the same below) was developed based on GSM. It still uses the original frequency spectrum and 200K frequency division, and can be easily compatible with GSM. It mainly achieves data services up to 384kbps by changing the modulation mode. At the same time, enhanced data rate GSM is also supported by North American IS-136 TDMA. In the packet domain, the enhanced data rate GSM is fully compatible with the air interface of IS-136, making it a globally unified TDMA standard.
  • Digital modulation technology is one of the key technologies for the air interface of digital cellular mobile communication systems. Different digital mobile communication systems use different digital modulation techniques. The modulation methods in current digital mobile communications can be roughly divided into two categories. One type is constant envelope continuous phase modulation. The more mature ones are time-quantized frequency modulation (TFM) and Gaussian minimum frequency shift keying (GMSK) modulation. The other type is linear modulation, such as four-phase phase-shift keying (QPSK) and eight-phase phase-shift keying (8PSK).
  • Enhanced Datarate for GSM Enhanced Datarate for GSM (Enhanced Datarate for GSM)
  • EDGE enhanced data rate GSM
  • the eight-phase phase-shift modulation method specified in the above protocol is not a simple eight-phase phase-shift modulation method in the traditional sense. It is only phase modulation and cannot be used for modulation in an enhanced data rate GSM (EDGE) system.
  • EDGE enhanced data rate GSM
  • the traditional eight-phase phase-shift modulation method used in the enhanced data rate GSM (EDGE) will inevitably bring spectrum fluctuations, and because the signal may pass through the origin value, the dynamic range of the signal amplitude is increased, and the signal output is distorted. The requirements for system components and subsequent power amplifiers are high.
  • VLSI large-scale integrated circuits
  • a digital modulator In digital communication system radio transmitters, a digital modulator is essential, and the enhanced data rate GSM (EDGE) is a new wireless communication system that uses an improved eight-phase phase-shift keying (8PSK) modulation method.
  • EDGE enhanced data rate GSM
  • 8PSK eight-phase phase-shift keying
  • the purpose of the present invention is to address the shortcomings of the traditional eight-phase phase-shift keying modulation method, and provide an eight-phase phase-shift keying modulation method and device that are simple to implement and consume less resources, so as to meet the enhanced data rate GSM (EDGE) Need.
  • EDGE enhanced data rate GSM
  • the present invention adopts the following three schemes of an eight-phase phase-shift key control modulation method and device:
  • An eight-phase phase-shift keying modulation method stores a product factor of a symbol vector and a shape filter coefficient in a table, and compresses the product factor stored in the table eight times according to a rule of a trigonometric function.
  • the multiplication operation is replaced with a table lookup, and the modulation signal is output through the table lookup and accumulation and summation.
  • An eight-phase phase-shift keying modulation device which includes a symbol input unit, a symbol mapping unit, a look-up table address generation unit, a look-up table and data processing unit, and an accumulative sum output unit, which are sequentially connected. among them,
  • the symbol mapping unit performs a symbol mapping function on a signal input by the symbol input unit
  • the look-up table address generation unit converts the symbol vector output by the symbol mapping unit into a look-up table symbol address, and makes the symbol address and the coefficient address generated by this unit together form the look-up table address;
  • the table lookup and data processing unit performs table lookup and data processing, and outputs in-phase and quadrature components to the cumulative summing output unit;
  • the accumulation and summing output unit performs accumulation and summing, and outputs linear digitally modulated in-phase and quadrature signals.
  • An eight-phase phase-shift keying modulation method which stores all the eight-phase phase-shift keying modulation states after shaping and filtering in a data table, and stores them in the table according to the relationship between the triangle function rule and the level diversity
  • the modulation state data is compressed. After the symbols are input, a table lookup operation is performed. After the table lookup operation, the in-phase and quadrature signals of the modulation data are directly output.
  • An eight-phase phase-shift keying modulation device includes a symbol input unit, a symbol mapping unit, a look-up table address generation unit, and a full look-up table output unit, which are sequentially connected, wherein:
  • the symbol mapping unit performs a symbol mapping function on a signal input by the symbol input unit
  • the table lookup address generating unit converts the symbol vector output by the symbol mapping unit into a symbol address, and uses the symbol address and the coefficient address generated by the unit to form a table lookup address;
  • the table lookup output unit performs table lookup and data processing on the table according to the table lookup address generated by the table lookup address generation unit and outputs linear digitally modulated in-phase and quadrature signals.
  • the eight-phase phase-shift keying modulation method of the present invention stores a new modulation vector obtained after simple eight-phase phase-shift modulation and phase rotation in a modulation phase table, and compresses the modulation phase table four times according to the rule of trigonometric functions. After the symbol is input, a new modulation vector is obtained through table lookup and data processing. Then, the RAM coefficient filter is used to complete the shaping filtering, and finally the modulation signal is output.
  • the eight-phase phase-shift keying modulation device of the present invention includes a symbol input unit, a symbol mapping unit, a look-up table address generation unit, a look-up modulation phase table unit, and a RAM coefficient filter, which are sequentially connected.
  • the signal input by the symbol mapping unit symbol input unit completes the symbol mapping function
  • the look-up table address generating unit converts the symbol vector output by the symbol mapping unit into a symbol address to form a look-up table address of the look-up modulation phase table unit;
  • the modulation lookup phase table unit uses a symbolic address to look up the table and perform data processing, and outputs a new modulation vector after simple eight-phase phase-shift modulation and phase rotation;
  • the MM coefficient filter shapes and filters the new modulation vector, and outputs the in-phase and orthogonal signals after linear digital modulation.
  • Figure 1 is a principle block diagram of an existing linear digital modulation method.
  • FIG. 2 is a block diagram of a modulation scheme of the present invention.
  • Figure 3 is the 8PSK modulated Gray code symbol map in EDGE.
  • Figure 4 is a symbol vector diagram of 8PSK modulation after 3 ⁇ / 8 phase rotation in EDGE.
  • Figure 5 is a 8PSK modulation spectrum of random data.
  • FIG. 6 is a schematic diagram of the second modulation scheme of the method of the present invention.
  • Figure ⁇ is a block diagram of solution two of the method of the present invention.
  • FIG. 8 is a vector diagram of an in-phase, quadrature signal after modulation using scheme two of the method of the present invention.
  • FIG. 9 is a spectrum characteristic diagram of a signal after modulation according to the second solution of the method of the present invention.
  • FIG. 10 is a schematic diagram of scheme three modulation of the method of the present invention.
  • FIG. 11 is a block diagram of solution three of the method of the present invention.
  • FIG. 12 is a vector diagram of an in-phase, quadrature signal after three modulations using the solution of the method of the present invention.
  • FIG. 13 is a schematic block diagram of a structure of an AM coefficient filter according to the third aspect of the present invention.
  • FIG. 14 is a spectrum characteristic diagram of a signal after the third modulation using the method of the present invention.
  • Fig. 15 is a block diagram of the modulation device of the present invention after it is applied to a digital up-converter.
  • the baseband modulation process can be divided into three steps, namely: 1. Gray code symbol mapping; 2. Symbol 3 ⁇ / 8 phase rotation; 3. Shaping filter C0 (t) filtering. Steps 1 and 2 are collectively referred to as symbol mapping.
  • the data symbol modulation vector is obtained.
  • Ts represents a symbol period. This can be understood as the convolution operation of the data symbol vector and the shaping filter coefficients.
  • the method is to store the product factor of the symbol vector and the shaping filter coefficients in a table, and to compress the product factor stored in the table eight times according to the rule of trigonometric functions. After the symbols are input, the multiplication operation is replaced by a table lookup. The modulation signal is output by looking up the table and accumulating sum.
  • the method further includes the steps of symbol mapping, table lookup address generation, table lookup and data processing, and accumulation and output.
  • the symbol mapping step is to map a binary digital signal into a vector with the same amplitude and different phases by using a Gray code mapping and a signal constellation with 3 ⁇ / 8 phase rotation. See Figure 3 and Figure 4 for this.
  • Figure 3 is a map of 8PSK modulated Gray code symbols in EDGE
  • Figure 4 is a vector diagram after phase rotation. Every 3 binary symbols go through Gray code symbol mapping and 3 ⁇ / 8 phase rotation to become a data symbol vector ⁇ , which has 16 states.
  • the table lookup address generation step is to generate a symbol address and a coefficient address. That is, a symbol vector is mapped to a symbol address, and a coefficient address generator generates a coefficient address.
  • a symbol address and a coefficient address together form a table lookup address, and then find an eight-fold compressed table.
  • the output of the table is then restored according to the compression rule, and is controlled by several address bits.
  • the positive and negative sign operations and the I and Q component exchange operations finally output two components, I and Q.
  • the eight-fold compressed table is used as a product factor table of the symbol vector and the shape filter coefficients.
  • the step of accumulating and summing output is to perform serial accumulation and summation respectively on the I and Q components of the look-up table and data processing output to complete the convolution operation function of the shaping filter and output the final eight-phase phase shift keying. Modulated I and Q components.
  • the eight-phase phase-shift keying modulation device designed according to the method of scheme 1 includes a symbol input unit 301, a symbol mapping unit 302, a look-up table address generation unit 303, a look-up table, and data processing.
  • the unit 304 and the cumulative sum output unit 305 includes a symbol input unit 301, a symbol mapping unit 302, a look-up table address generation unit 303, a look-up table, and data processing.
  • the unit 304 and the cumulative sum output unit 305 includes a symbol input unit 301, a symbol mapping unit 302, a look-up table address generation unit 303, a look-up table, and data processing.
  • the unit 304 and the cumulative sum output unit 305 includes a symbol input unit 301, a symbol mapping unit 302, a look-up table address generation unit 303, a look-up table, and data processing.
  • the unit 304 and the cumulative sum output unit 305 includes a symbol input unit 301, a symbol mapping unit 302, a look-up table
  • a coefficient address generator is also included in the look-up table address generating unit 303 to generate a coefficient address.
  • the working process is as follows:
  • the binary digital data source is mapped by 8PSK symbols to generate data symbols. These data symbols are represented by phase vectors, that is, each symbol is orthogonal.
  • the relationship between the in-phase component I and the quadrature component Q signals is used to convert the data symbol into a look-up table address, look up a data table, and perform a certain processing to obtain two component data of I and Q.
  • the Q component data is passed through two accumulators to obtain the final digitally modulated baseband signal I and Q components.
  • the contents of the lookup table store the product factor * c of the symbol vector and the shaping filter coefficients.
  • the table lookup operation replaces the multiplication operation of the shaping filter.
  • the lookup table is compressed according to the law of trigonometric functions, and the maximum compression rate can reach eight times.
  • the table lookup address consists of the symbol address A1 and the coefficient address A2, including the 4-bit symbol address and the '/ (log 2 (5 * i?)) Bits.
  • Coefficient address, table capacity is 4 * 5 * i? * «& To.
  • the look-up table output must recover the data according to the compression rule, and part of the look-up table address control is performed on the data, including positive and negative sign conversion and I and Q component exchange operation processing.
  • the function of the accumulator is to add and decompress the decompressed look-up table output I and Q components in a serial manner to complete the convolution operation of the shaping filter and output the final linear digital modulation I and Q components.
  • the interpolation rate and value of the lookup table can be flexibly set and changed.
  • the lookup table and accumulation and summation operations are used to implement the shape filtering function, and the linear digital modulation is implemented together with the symbol mapping.
  • a random binary data generator unit 301 is connected to the unit 302.
  • the generator can be any digital data source, such as a speech encoder.
  • Unit 302 completes the symbol mapping function, and unit 303 converts the symbol vector into a lookup symbol address, which is equivalent to another mapping.
  • the symbol address A1 and the coefficient address A2 together form a look-up table address, which is used to find the product factor table of the symbol vector and the shaping filter coefficients.
  • the unit 304 is the core of the present invention: a table lookup and data processing, and outputs two components of I and Q. Finally, the data obtained in the table lookup and processing in the unit 304 is input to the unit 305 to perform accumulation and summation, and output linear digitally modulated I and Q signals.
  • the realization of the shaped filter has no multiplier, and the lookup table is compressed eight times, which greatly saves resources;
  • the table lookup operation replaces the multiplication operation of the shaping filter, greatly saving resources and reducing power consumption;
  • the look-up table data decompression logic is simple and easy to implement. Only the positive and negative sign transformation of the data and I and Q component exchange processing are performed. 4. The product data is stored directly, there is no link introduced by fixed-point multiplication, and the signal is more accurate;
  • the 8PSK modulated digital signal obtained by using the method of the scheme 1 meets the requirements of the EDGE protocol index.
  • the spectrum characteristics are shown in FIG. 6.
  • the thick broken line represents the EDGE protocol index.
  • the coordinate is the power spectral density in dB, and the abscissa is the frequency offset of the baseband modulation signal in kHz.
  • the core concept of the eight-phase phase-shift keying modulation method of the second scheme is to perform all eight-phase phase-shift keying modulation after shaping filtering All states are stored in the data table, and the modulation status data stored in the table is compressed according to the triangle function rule and the level diversity correspondence relationship. After the symbol is input, a table lookup operation is performed, and the in-phase of the modulation data is directly output after the table lookup operation. And quadrature signals I and Q.
  • the method further includes steps of symbol mapping, table lookup address generation, and table lookup output in this order (see FIG. 7).
  • the symbol mapping step is to use a Gray code mapping and a signal constellation with 3 ⁇ / 8 phase rotation to map binary digital signals into modulation vectors with the same amplitude and different phases.
  • the table lookup address generation step includes generating a symbol address and a coefficient address, SP, mapping a symbol vector into a symbol address, and generating a coefficient address by a coefficient address generator.
  • the interpolation rate of the baseband modulation signal is R
  • the data bit width When it is W bits, the look-up table address includes 4-bit symbol address and Ce j7 (log 2 (5 * R) bit coefficient address, and the table capacity is 4 * 5 * R * Wbits.
  • the table lookup output step is to find a table that has been compressed seven times from the table lookup address, and the lookup table lookup data is then restored according to the compression rule, and then controlled by the address bits to perform operations including positive and negative signs and in-phase,
  • the quadrature handshake operation finally outputs two signals in phase and quadrature (I and Q).
  • the compression according to the level diversity correspondence is that after the symbol is rotated and before the shaping and filtering, the baseband signal has a total of 9 levels. It is further divided into two subsets, one of which contains 5 levels and the other contains 4 levels. Then according to the two levels, they appear regularly in turns. Since the effective length of the impulse response of the baseband shaping filter is 5Ts, After passing through the baseband filter, the unfiltered baseband signal corresponds to two subsets of the level value of the baseband signal.
  • the compression algorithm can be used to compress the original two large-capacity tables from 3600 * R * W (bit), and finally compress the two tables into an in-phase and quadrature signal multiplex with a capacity of 1008 * R * W (bit) Form.
  • the table has a compression ratio of 7: 1.
  • Figure 8 illustrates the vectors of the baseband I and Q signals after using the modulation method of scheme two, which illustrates that the vectors of the baseband I and Q signals after using the modulation method of the present invention conform to GSM05. 04 (V8. 0. 0) Requirements specified in the agreement.
  • the eight-phase phase-shift keying modulation digital signal obtained by using the method of the second scheme meets the requirements of the enhanced data rate GSM protocol.
  • the spectrum characteristics are shown in FIG. 9, and curve A represents the enhanced data rate GSM protocol.
  • curve B is the spectral characteristics of the signal obtained by the eight-phase phase-shift keying modulation method of the present invention, the ordinate is the power spectral density, the unit is dB, and the abscissa is the frequency offset of the baseband modulation signal, the unit is kHz.
  • the eight-phase phase-shift keying modulation device of the second solution includes a symbol input unit, a symbol mapping unit, a table lookup address generation unit, and a table lookup output unit, which are connected in this order.
  • the symbol mapping unit performs a symbol mapping function on a signal input from a symbol input unit.
  • the symbol mapping unit is a binary data generator, and the generator may be any kind of digital data source, such as a speech encoder.
  • the table lookup address generation unit converts the symbol vector output by the symbol mapping unit into a symbol address, and uses the symbol address and the coefficient address generated by the unit to form a table lookup address for lookup tables.
  • the table lookup output unit performs table lookup and data processing on the table according to the table lookup address generated by the table lookup address generation unit and outputs linear digitally modulated in-phase and quadrature signals.
  • the method of the second solution only needs to use the input signal to be modulated and the input sequence as the look-up table address.
  • the enhanced data can be obtained directly from a compressed small-capacity table.
  • the baseband I / Q signal modulated by the eight-phase phase-shift keying modulation specified by the rate GSM has the following advantages: 1. No logic operation unit is needed, greatly reducing the complexity of implementation and system power consumption, and it can be easily implemented in any hardware system.
  • the full digital method is used to ensure that the modulation data obtained by this method has high accuracy.
  • the content of the look-up table is changed to realize other linear modulation modes.
  • the regulation of the eight-phase phase-shift keying modulation in EDGE can divide the baseband modulation process into three steps, SP: 1. Simple 8-phase modulation; 2. Sign rotation; 3. Shaping filter C0 (t) filtering. Therefore, the new modulation vector obtained through steps 1 and 2 is filtered by the shaping filter whose impulse response is C0 (t) to obtain the eight-phase phase-shift keyed baseband modulation signal y (t):
  • the baseband signal y (t) is obtained by convolution of the discrete modulation signal of the new modulation vector 1 3 ⁇ 4 and the shaping filter CO (t) with a delay (5 / 2Ts).
  • the function of the shaping filter required in the protocol is equivalent to a convolution process of a linear system.
  • RAM coefficient filtering also known as RCF filtering, the same below
  • RCF filtering the same below
  • the RAM coefficient filter is used to realize the shape filtering CO (t) function.
  • the modulation method of the third scheme is a new method obtained after simple eight-phase phase modulation and phase rotation.
  • the modulation vector is stored in the modulation phase table, and the modulation phase table is compressed four times according to the rule of the trigonometric function.
  • a new modulation vector is obtained through table lookup and data processing.
  • the RAM coefficient filter is used to complete the shaping filtering.
  • the modulated baseband modulation signal (I / Q) is output.
  • the method further includes the steps of symbol mapping, generating a look-up table address, looking up a modulation phase table, and outputting a modulated signal after M coefficient filtering.
  • the symbol mapping is to use a Gray code mapping and to map binary digital signals into symbol vectors with the same amplitude and different phases.
  • the table lookup address generation is to map a symbol vector generated by symbol mapping into a symbol address.
  • the querying the modulation phase table refers to finding a modulation phase table that has been compressed four times, and then recovering the output of the modulation phase table according to the compression rule to obtain a new modulation vector.
  • the RAM coefficient filtering uses the RAM coefficient filter to shape and filter the new modulation vector and outputs the in-phase and quadrature signals (I and Q) of eight-phase phase-shift keying modulation.
  • FIG. 12 illustrates the vectors of the baseband I and Q signals obtained after using the modulation method of the third scheme, and the figure illustrates that the vectors of the baseband I and Q signals obtained after using the modulation method of the present invention comply with GSM05. 04 (V8. 0. 0) The requirements specified in the agreement.
  • the modulation device of the third solution includes a symbol input unit, a symbol mapping unit, a look-up table address generation unit, a look-up modulation phase table unit, and a RAM coefficient filter connected in this order. , among them,
  • the symbol mapping unit performs a symbol mapping function on a signal input by the symbol input unit
  • the look-up table address generating unit converts the symbol vector output by the symbol mapping unit into a symbol address to form a look-up table address of the look-up modulation phase table unit;
  • the modulation lookup phase table unit uses a symbol address to look up the table and perform data processing, and outputs a new modulation vector after simple eight-phase phase-shift modulation and phase rotation;
  • the RAM coefficient filter shapes the new modulation vector and outputs the in-phase and quadrature signals (I and Q) which are modulated by linear digital modulation.
  • the RAM coefficient filter includes two data storage units (DM, the same below), two multipliers, two accumulators, and a coefficient storage unit (C should be the same as below) ), Among them, two data storage units are used to store in-phase signals of the new modulation vector, and the other is used to store quadrature signals of the new modulation vector;
  • the coefficient storage unit is configured to store the shaping filter coefficients
  • the two accumulators one accumulates a multiplication factor of the in-phase signal and the shaping filter coefficient and outputs a modulated in-phase signal, and the other accumulates the multiplication factor of the quadrature signal and the shaping filter coefficient. Accumulate and output the modulated quadrature signal.
  • the eight-phase phase-shift keying modulation vector in the enhanced data rate type GSM has only 16 limited states, and only a small capacity table is needed to store the limited number of modulated signal states. Input the binary data to be modulated directly through the look-up table to obtain a simple eight-phase phase-shifted modulation and a new modulation vector after phase rotation.
  • Figure 11 actually shows the process of finding a new modulation vector table.
  • the output of the modulation phase table is the new modulation vector to be filtered.
  • the symbol input unit is a random binary data generator.
  • the generator can be any Digital data sources, such as speech encoders.
  • the data storage unit stores the front-end input data signal to be filtered, and the two data are simultaneously multiplied with the coefficients in the coefficient memory.
  • the accumulator outputs all the multiplication factors after a certain number of accumulations and outputs.
  • the accumulated value of is each sample value of the eight-phase phase-shift keyed modulation signal.
  • the eight-phase phase-shift keying modulated digital signal obtained by using the method of the present invention meets the requirements of the enhanced data rate GSM protocol index, and its spectral characteristics are shown in FIG. 14, and the curve C represents the enhanced data rate GSM protocol index.
  • Curve D is the spectral characteristics of the signal obtained by the eight-phase phase-shift keying modulation method and device according to the present invention. The ordinate is the power spectral density in units of dB, and the abscissa is the frequency offset of the baseband modulation signal in units of KHz.
  • scheme three not only uses a table lookup to replace the vector signal modulation operation, but also compresses the table content, saving system resources; and cleverly uses the RCF filter structure to replace the multiple multipliers required by convolution, Adders, etc., greatly save system resources, greatly reduce implementation complexity and system power consumption, are simple and reliable to implement, and have high signal accuracy.
  • This method has the following advantages ⁇
  • the filter design of any coefficient can be conveniently carried out according to the different needs of the user. This method has great flexibility. As long as the coefficient value of the RCF filter is changed, other linear modulations can be easily implemented.
  • the present invention adopts an all-digital method, which ensures that the modulation data obtained by this method has high accuracy.
  • unit 401 is the three modulation apparatuses of the present invention, and unit 402 is provided with interpolation and low-pass filtering.
  • Functional cascaded integral comb filter (CIC) unit 403 is a numerically controlled oscillator (NC0), which generates complex (two orthogonal) digital intermediate frequency oscillation signals, and unit 404 is a quadrature amplitude modulation unit (QAM).
  • the unit 405 is a buffered output unit (OUT) to realize data buffered output.
  • the present invention relates to the above three scheme modulation methods and devices, and is suitable for use in an EDGE communication system transmitter. After appropriate changes can also be used to achieve other linear modulation methods.
  • the present invention is directed to the enhanced data rate type GSM regulation, the above-mentioned three eight-phase phase-shift keying modulation methods and devices are adopted, which are improved on the basis of the traditional simple eight-phase phase-shift modulation method, and the symbol rotation is increased During the shaping and filtering process, symbol rotation can prevent the signal amplitude from passing through the zero point, greatly compressing the signal amplitude dynamic range, reducing the requirements for subsequent power amplifiers, and conducive to the output of the signal without distortion.
  • the shaped filter has the effect of compressing the signal power spectrum and reducing out-of-band radiation.
  • the modulation device of the present invention greatly reduces complexity, and obtains a highly accurate modulation signal after compression.
  • the method and device of the present invention have a very small amount of system modification in GSM.
  • the running GSM system is fully compatible, and at the same time, it can provide sufficient data service capabilities, which can fully extend the life cycle of the existing GSM system. For operators, it not only saves investment but also provides competitive business services. '

Description

八相移相键控调制方法及装置 技术领域
本发明涉及数字移动通信, 更具体地指八相移相键控调制方法及装置。 背景技术
以 GSM为代表的第二代移动通信系统已经非常成熟, 主要以话音为主流 业务。 但随着互联网 (Internet) 的高速崛起, 通过无线空中接口的数据通信 的需求飞速发展, 但以目前 GSM的标准数据率为 9.6kbps/时隙, 不能满足社 会对移动通信日益增长的需求。
为此, 国际电信联盟 (ITU) 正在组织能够提供高速数据传输的第三代移动 通信系统的标准制定。 鉴于第二代 GSM已建立起庞大的基础网络并拥有巨量用户, 今后的发展趋势是两者将会在相当长时间内共存。 为向第三代移动通信系统过渡, 欧洲电信标准协会(ETSI )在保留 GSM空中接口的时隙结构和频段的基础上, 采 取分阶段演进步骤: 第一阶段提出了高速电路交换数据 (High- Speed Circuit Switch Data HSCSD)和通用分级无线业务 (General Packet Radio Service GPRS)两种工作模式,以提高数据通信容量;第二阶段,增强数据率型 GSM(EnhanCed Data rates for Global/GSM Evolution) , 其采用高效调制技术 (八相移相键控) 使传输速率提高至 3倍。
增强数据率型 GSM (EDGE,下同)是基于 GSM发展起来的。 仍然采用原有的频 谱和 200K的频率划分, 能够非常容易地与 GSM实现兼容。 它主要通过改变调制方 式,实现高达 384kbps的数据业务。同时,增强数据率型 GSM也获得了北美 IS- 136 TDMA的支持。 在分组域, 增强数据率型 GSM与 IS- 136的空中接口完全兼容, 使 之成为全球统一的 TDMA标准。
数字调制技术是数字蜂窝移动通信系统空中接口的关键技术之一。 不同 的数字移动通信系统采用的数字调制技术也不同。 目前数字移动通信中的调 制方式, 大致可分为两类。 一类为恒包络连续相位调制, 较为成熟的为时间 量化频率调制 (TFM) 和高斯最小移频键控 (GMSK) 调制。 另一类为线性调 制方式, 如四相移相键控 (QPSK) 、 八相移相键控 (8PSK) 调制。 向第三代 移动通信系统演进过渡阶段的增强数据率型 GSM (Enhanced Datarate for GSM
- l - Evolution) 采用了两种调制模式: 八相移相键控 (8PSK) 调制和高斯最小移 频键控 (GMSK) 调制 ·。 增强数据率型 GSM (EDGE)协议对该通信体制中的新增 的八相移相键控调制方式的参数作了专门而又详细的规定。
上述协议中所规定的八相移相调制方法不是传统意义上的简单的八相移 相调制方法, 它仅是相位调制, 不能用于增强数据率型 GSM (EDGE) 系统中进 行调制, 若将传统的八相移相调制方法用于增强数据率型 GSM (EDGE) 中, 必然 带来频谱波动, 而且由于信号可能经过原点值, 使得信号幅度的动态范围增大, 信号输出失真较大, 对系统器件的要求和后续功率放大器的要求均很高。
随着大规模集成电路 (VLSI ) 的飞速发展, 为生产出成本低廉、 功能更 多、 性能更好的数字器件提供了可能。
在数字通信系统无线电发射机中, 数字调制器必不可少, 而增强数据率 型 GSM (EDGE)是一种新的无线通信体制, 采用改进的八相移相键控 (8PSK) 的调制方式, 设计出节省资源、 实现简便、 信号质量高的全数字调制器, 将 使相应的专用集成电路 (ASIC ) 实现达到更高的集成度, 同时减少所消耗的 电流, 调制信号精确, 具有重要的意义。
发明内容
本发明的目的是针对传统的八相移相键控调制方法存在的不足, 提供实 现简便、 耗费资源较少的八相移相键控调制方法及装置, 以满足增强数据率型 GSM (EDGE) 的需要。
为了实现上述目的, 本发明采用如下三种方案的八相移相键控制调制方 法及装置:
方案一,
一种八相移相键控调制方法, 该方法是将符号矢量与成形滤波器系数的 乘积因子存储在表格中, 并根据三角函数规律对存储在表格中的乘积因子进 行八倍压缩, 码元输入后, 再以查表方式代替乘法操作, 通过查表以及累加 求和输出其调制信号。
一种八相移相键控调制装置, 该装置包括依次连接的码元输入单元、 符 号映射单元、 查表地址生成单元、 査表及数据处理单元以及累加求和输出单 元, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
査表地址生成单元将符号映射单元输出的符号矢量转换为査表符号地 址, 并使符号地址与本单元产生的系数地址共同构成查表地址;
査表及数据处理单元对进行查表及数据处理, 输出同相和正交两路分量 至累加求和输出单元;
累加求和输出单元进行累加求和, 输出线性数字调制的同相和正交信号。 方案二,
一种八相移相键控调制方法, 该方法将所有经过成形滤波后的八相移相键控 调制状态全部存在数据表格中, 并根据三角函数规律和电平分集对应关系将存 储在表格中的调制状态数据进行压縮, 码元输入后, 进行查表操作, 通过査表 操作后直接输出调制数据的同相和正交信号。
一种八相移相键控调制装置, 该装置包括依次连接的码元输入单元、 符号 映射单元、 查表地址生成单元以及全查表输出单元, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
查表地址生成单元将符号映射单元输出的符号矢量转换为符号地址, 并用符 号地址与本单元产生的系数地址共同构成查表地址;
查表输出单元按查表地址生成单元产生的查表地址对表格进行査表和数据处 理后输出线性数字调制的同相和正交信号。
方案三,
本发明的八相移相键控调制方法是将经过简单八相移相调制以及相位旋转后 得到的新调制矢量存储在调制相位表格中, 并根据三角函数规律对调制相位表格 进行四倍压缩,码元输入后,通过査表和数据处理得到新调制矢量,然后,利用 RAM 系数滤波器完成成形滤波, 最后输出其调制信号。
本发明的八相移相键控调制装置包括依次连接的码元输入单元、 符号映射单 元、 查表地址产生单元、 査调制相位表单元、 以及 RAM系数滤波器, 其中,
符号映射单元码元输入单元输入的信号完成符号映射功能;
査表地址产生单元将符号映射单元输出的符号矢量转换为符号地址, 构成査 调制相位表单元的查表地址; 査调制相位表单元用符号地址进行查表并进行数据处理, 输出经过简单八相 移相调制以及相位旋转后的新调制矢量;
MM系数滤波器对新调制矢量进行成形滤波, 输出经线性数字调制的同相和正 交信号。 附图说明
图 1是现有的线性数字调制方法原理框图。
图 2是本发明调制方法方案一框图。
图 3是 EDGE中 8PSK调制格雷码符号映射图。
图 4是 EDGE中 8PSK调制经过 3π/8相位旋转的符号矢量图。
图 5是随机数据 8PSK调制频谱图。
图 6是本发明方法方案二调制原理图。
图 Ί是本发明方法方案二框图。
图 8是利用本发明方法的方案二调制后同相、 正交信号矢量图。
图 9是利用本发明方法的方案二调制后的信号频谱特性图。
图 10是本发明方法的方案三调制原理图。
图 1 1是本发明方法的方案三框图。
图 12是利用本发明方法的方案三调制后同相、 正交信号矢量图。
图 13是本发明的方案三的 AM系数滤波器结构示意框图。
图 14是利用本发明方法的方案三调制后的信号频谱特性图。
图 15是本发明的调制装置应用于数字上变频器后的方框图。
本发明的最佳实施方式
根据 GSM05.04(V8.0.0 ) 协议对 EDGE 中八相移相键控 (8PSK, 下同) 调制方式的规定, 可将基带调制过程分为三个步骤, 即: 1.格雷码符号映射; 2. 符号 3π/8相位旋转; 3.成形滤波器 C0(t)滤波。 第 1、 2 步骤合称为符号映 射, 得到数据符号调制矢量 , 经过冲击响应为 C0(t)的成形滤波器滤波后, 就可得到 8PSK的基带调制信号: 0:y(O =∑&*Co(t'-Z7> + 7¾)。 其中, Ts表 示一个符号周期。 这可以理解为数据符号矢量与成形滤波器系数的卷积运算。
方案一
根据上述的协议规定, 请结合图 2 所示, 该方案的八相移相键控调制方 法的是将符号矢量与成形滤波器系数的乘积因子存储在表格中, 并根据三角 函数规律对存储在表格中的乘积因子进行八倍压缩, 码元输入后, 再以査表 方式代替乘法操作, 通过査表以及累加求和输出其调制信号。
该方法进一步依次包括符号映射、 查表地址生成、 查表及数据处理、 累 加求和输出步骤。
所述的符号映射步骤是使用一个格雷码映射和 3π/8相位旋转的信号星座 将二进制数字信号映射成为具有相同幅度、 不同相位的矢量。 对此, 请参阅 图 3、 图 4。
图 3是 EDGE中的 8PSK调制格雷 (GRAY) 码符号映射图, 图 4是经过 相位旋转的矢量图。 每 3个二进制码元经过格雷码符号映射和 3π/8相位旋转, 成为 1个数据符号矢量^, ^共有 16种状态。
所述的査表地址生成步骤是产生符号地址和系数地址两部分, 即, 将符 号矢量映射为符号地址, 并由系数地址生成器产生一个系数地址。
所述的查表及数据处理步骤是使符号地址和系数地址共同构成查表地 址, 然后查找经八倍压缩的表格, 表格的输出再根据压缩规律恢复数据, 由 几个地址位控制, 进行包括正、 负符号操作和 I、 Q分量交换操作, 最终输出 I、 Q两个分量。
将所述的经八倍压缩的表格作为符号矢量和成形滤波器系数的乘积因子 表。
所述的累加求和输出的步骤是对查表及数据处理输出的 I、 Q分量分别进 行串行累加求和, 以完成成形滤波器的卷积运算功能, 输出最终的八相移相 键控调制的 I、 Q分量。
请再结合图 2 所示, 依照方案一的方法而设计的八相移相键控调制装置 包括依次连接的码元输入单元 301、符号映射单元 302、査表地址生成单元 303、 查表及数据处理单元 304以及累加求和输出单元 305。
在查表地址生成单元 303 中还包含了系数地址生成器, 以便生成系数地 址。
其工作过程是: 将二进制数字数据源经过 8PSK符号映射, 产生各个数据 符号, 这些数据符号用相位矢量来表示, 即其中每一个符号都是用具有正交 关系的同相分量 I和正交分量 Q信号来表示的; 将数据符号转换为查表地址, 查找一张数据表格, 并作一定的处理, 得到 I、 Q两个分量数据, 再分别将 I、 Q分量数据通过两个累加器, 得到最终的数字调制基带信号 I、 Q分量。
查找表的内容存储的是符号矢量和成形滤波器系数的乘积因子 *c。, 查表操作代替了成形滤波器的乘法操作。 查找表根据三角函数规律压缩, 最 大压缩率可达八倍。 当基带调制信号的插值率为 R, 数据位宽为 nbits时, 査 表地址由符号地址 A1 和系数地址 A2 两部分组成, 包括 4 位符号地址和 '/(log2(5 *i?))位系数地址, 表格容量为 4*5 *i? *«&to。 这样, 查表输出必须根 据压缩的规律恢复数据, 以部分查表地址控制, 对数据进行包括正、 负符号 变换和 I、 Q 分量交换的操作处理。 累加器的作用是以串行方式对经过解压缩 的查表输出 I、 Q 分量累加求和, 完成成形滤波器的卷积运算功能, 输出最终 的线性数字调制 I、 Q分量。 查找表的插值率和数值可以灵活设置和改变。
本方案以査表以及累加求和操作实现成形滤波功能, 与符号映射一起实 现了线性数字调制。
—个随机的二进制数据发生器单元 301被连接到单元 302。 该发生器可以 是任何一种数字数据源,如语音编码器。单元 302完成符号映射功能,单元 303 将符号矢量转换为查表符号地址, 这相当于另一次映射, EDGE中 8PSK调制 的符号矢量共有 16种状态, 可用从 0000到 1111 的二进制数据表示, 作为符 号地址。 另外有一个系数地址生成器。 符号地址 A1 与系数地址 A2共同构成 查表地址, 用于查找符号矢量和成形滤波器系数的乘积因子表。 单元 304 是 本发明的核心一查表及数据处理, 输出 I、 Q两路分量。 最后, 单元 304中查 表和处理得到的数据输入单元 305, 进行累加求和, 输出线性数字调制的 I、 „ Q信号。
上述方案一具有以下优点:
1、 成形滤波器的实现没有乘法器, 查找表进行了八倍压缩, 大大节省资 源;
2、 查表操作代替了成形滤波器的乘法操作, 大大节省资源和降低功耗;
3、 查表数据解压縮逻辑简单, 实现简便, 只有数据的正、 负符号变换和 I、 Q分量交换处理; 4、 直接存储乘积数据, 没有定点乘法引入误差的环节, 信号更精确;
5、 参数设置灵活, 基带调制信号插值率可调, 査找表系数可变;
6、 由于参数设置灵活、 基带调制信号插值率可调以及査找表系数可变, 对查找表内容加以改变, 还可实现其它线性调制方式。
经过仿真研究验证, 采用该方案一的方法得到的 8PSK调制数字信号满足 EDGE协议指标要求, 其频谱特性如图 6所示, 粗折线表示 EDGE协议指标, 细曲线为 8PSK调制数字信号频谱特性, 纵坐标为功率谱密度, 单位 dB, 横 坐标为基带调制信号的频率偏移, 单位 kHz。
方案二
根据上述 GSM05.04(V8.0.0) 的协议规定, 请参照图 6所示, 该方案二的八 相移相键控调制方法核心构思是将所有经过成形滤波后的八相移相键控调制状态 全部存在数据表格中, 并根据三角函数规律和电平分集对应关系将存储在表格 中的调制状态数据进行压缩, 码元输入后, 进行查表操作, 通过査表操作后直 接输出调制数据的同相和正交信号 I和 Q。
具体来说, 该方法进一步依次包括符号映射、 查表地址生成、 查表输出步骤 (见图 7) 。
所述的符号映射步骤是使用一个格雷码映射和 3π/8相位旋转的信号星座, 将二进制数字信号映射成为具有相同幅度、 不同相位的调制矢量。
所述的查表地址生成步骤包括产生符号地址和系数地址, SP, 将符号矢量映 射为符号地址, 另由系数地址生成器产生一个系数地址, 当基带调制信号的插值 率为 R、 数据位宽为 W bits时, 查表地址包括 4位符号地址和 Cej7(log2(5*R)位 系数地址, 表格容量则为 4*5*R*Wbits。
所述的查表输出步骤是由查表地址查找经过七倍压縮的表格, 查找出的查表 数据再根据压缩规律恢复数据, 再由地址位控制, 进行包括正、 负符号操作和同 相、 正交信号交换操作, 最终输出同相和正交 (I和 Q)两个信号。
根据上述 GSM05. 04 (V8. 0. 0)协议, 所述根据电平分集对应关系压缩是在符 号旋转后, 成形滤波前, 基带信号的电平共有 9种电平值, 按照电平正负又分为 两个子集, 其中之一包含 5种电平, 另一种包含 4种电平。 再根据该两个电平是 有规律地轮流出现。 又由于基带成形滤波器的冲激响应有效长度为 5Ts, 所以将 未滤波的基带信号经过基带滤波器后, 对应基带信号电平值的两个子集, 其电平 组合有两类:一类是 5 * 4 * 5 *4 * 5=2000种电平组合,另一类是 4 * 5 * 4 * 5=1600 种电平组合, 两类共有 3600种电平组合。 也就是说, 可能有 3600种最终的基带 信号。 假设采样率 =R, 数据位宽 W时, 基带调制信号需数据表两张, 每张表格容 量为 3600* R* W(bit)。
通过进一步研究发现, 这 9种有限电平之间具有一定的相互关系, 即 9种电 平可压缩用 5 个电平值表示。 因此采用压缩算法, 可将原两张大容量表格从 3600*R*W(bit), 最后将该两张表格压缩为一张同相和正交信号复用且容量为 1008* R* W (bit)的表格。 该表格的压缩比可达到 7: 1。
图 8示意了利用方案二的调制方法后的基带 I和 Q信号的矢量, 该图说明了 利用本发明的调制方法后的基带 I和 Q信号的矢量符合 GSM05. 04 (V8. 0. 0)协议 规定的要求。
经过仿真研究验证, 采用该方案二的方法得到的八相移相键控调制数字信号 满足增强数据率型 GSM协议指标要求, 其频谱特性如图 9所示, 曲线 A表示增强 数据率型 GSM协议指标, 曲线 B为本发明的八相移相键控调制方法所得到的信号 频谱特性, 纵坐标为功率谱密度, 单位 dB, 横坐标为基带调制信号的频率偏移, 单位 kHz。
请再参阅图 Ί该方案二的八相移相键控调制装置包括依次连接的码元输入单 元、 符号映射单元、 査表地址生成单元以及查表输出单元, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能, 符号映射单元 是一个二进制数据发生器, 该发生器可以是任何一种数字数据源, 如语音编码器。
查表地址生成单元将符号映射单元输出的符号矢量转换为符号地址, 并用符 号地址与本单元产生的系数地址共同构成查表地址, 用于查找表。
查表输出单元按查表地址生成单元产生的查表地址对表格进行査表和数据处 理后输出线性数字调制的同相和正交信号。
综上所述, 该方案二的方法只需将输入的待调制信号和输入顺序作为査表地 址, 通过内部寻址单元, 就可直接从被压缩后的一张小容量表格中, 得到经过增 强数据率型 GSM规定的八相移相键控调制后的基带 I/Q信号, 该方案二具有以下 优点: 1、 不需要任何逻辑运算单元, 大大降低了实现的复杂度和系统功耗, 可以 非常方便地在任何硬件系统中实现。
2、 大大减少了对系统资源的占用, 增强了该方法的可实现性。
3、 直接将所有调制运算数据存储在表格中, 没有定点乘法引入误差的环节, 信号更精确。
4、 釆用了全数字方式, 保证了该方式得到的调制数据具有很高的准确性。
5、 利用本发明方法, 对查找表内容加以改变, 可实现其它线性调制方式。
6、 可适用于任何支持增强数据率型 GSM的硬件系统中。
7、 适用于任何支持增强数据率型 GSM的基站系统中。
方案三
又根据05¾105. 04 ^8. 0. 0 ) 协议, 对 EDGE中八相移相键控调制方式的规定, 可将基带调制过程分为三个步骤, SP : 1.简单 8相位调制; 2.符号旋转; 3.成形滤 波器 C0 (t)滤波。 因此, 经过第 1、 2步骤得到的新调制矢量 被冲击响应为 C0 (t) 的成形滤波器滤波, 就得到八相移相键控的基带调制信号 y (t) :
Figure imgf000011_0001
由以上分析可知:
从数学表达式角度, 基带信号 y (t)是新调制矢量1 ¾与延迟 (5/2Ts ) 的成形 滤波器 CO (t)进行离散信号卷积得到。
请结合图 10, 从实现调制的角度, 可将成形滤波器的滤波作用等效为: 将 新调制矢量 通过一个传递函数 A(0 = C0(0的线性系统, 然后延迟(5/2Ts ) , 即 实现了数学表达式的卷积运算。 将协议中要求的成形滤波器的作用等效成一个线 性系统的卷积过程。
基于以上分析结果, 可用 RAM系数滤波 (又称 RCF滤波, 下同)实现增强数据 率型 GSM规定的八相移相键控调制。 也就是将新调制矢量 用 RAM滤波器完成卷积 功能, 得到八相移相键控基带调制信号,其关键要考虑如下两点:
1、 生成新调制矢量, 直接从输入符号矢量得到新调制矢量。
2、 采用 RAM系数滤波器实现成形滤波 CO (t)功能。
由于滤波实际上是一个卷积的过程, 而 RAM系数滤波器可自动完成卷积功能。 因此, 该方案三的调制方法是将经过简单八相移相调制以及相位旋转后得到的新 调制矢量存储在调制相位表格中, 并根据三角函数规律对调制相位表格进行四倍 压缩, 码元输入后, 通过查表和数据处理得到新调制矢量, 然后, 利用 RAM系数滤 波器完成成形滤波, 最后输出被调制的基带调制信号 (I/Q)。
请参阅图 11所示, 该方法进一步依次包括符号映射、 查表地址产生、 查调制 相位表、 M系数滤波后输出调制信号步骤。
所述的符号映射是使用一个格雷 (GRAY)码映射并将二进制数字信号映射成为 具有相同幅度、 不同相位的符号矢量。
所述的査表地址产生是将经过符号映射所产生的符号矢量映射为符号地址。 所述的查调制相位表是指査找经四倍压缩的调制相位表, 再将该调制相位表 的输出根据压缩规律恢复数据得到一新调制矢量。
所述的 RAM系数滤波是利用 RAM系数滤波器对新调制矢量进行成形滤波并输出 八相移相键控调制的同相和正交信号 (I和 Q) 。
图 12示意了利用该方案三的调制方法后的得到的基带 I和 Q信号的矢量, 该图 说明了利用本发明的调制方法后得到的基带 I和 Q信号的矢量符合 GSM05. 04 (V8. 0. 0) 协议规定的要求。
请再参考图 11所示, 依照上述的调制方法, 该方案三的调制装置包括依次连 接的码元输入单元、 符号映射单元、 查表地址产生单元、 查调制相位表单元、 以 及 RAM系数滤波器, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
查表地址产生单元将符号映射单元输出的符号矢量转换为符号地址, 构成査 调制相位表单元的査表地址;
查调制相位表单元用符号地址进行査表并进行数据处理, 输出经过简单八相 移相调制以及相位旋转后的新调制矢量;
RAM系数滤波器对新调制矢量进行成形滤波, 输出经调制线性数字调制的同相 和正交信号(I和 Q)。
请继续参阅图 13所示,所述的 RAM系数滤波器中,包括二个数据存储单元(DM , 下同) 、 二个乘法器、 二个累加器、 一系数存储单元 (C應, 下同), 其中, 二个数据存储单元用于存储新调制矢量的同相信号, 另一个用于存储 新调制矢量的正交信号;
系数存储单元用于存储成形滤波系数;
二个乘法器中, 一个用于同相信号与系数存储单元中的成形滤波系数相乘, 另一个用于正交信号与系数存储单元中的成形滤波系数相乘, 并分别作为二个累 加器的输入;
二个累加器中, 一个对上述同相信号与成形滤波系数相乘后的乘积因子进行 累加并输出调制后的同相信号, 另一个对上述正交信号与成形滤波系数相乘后的 乘积因子进行累加并输出调制后的正交信号。 根据上述的协议规定可知, 增强数据率型 GSM中的八相移相键控调制矢量只 有 16个有限的状态, 只需一个小容量表格, 存储这有限个数的调制信号状态。 输 入待调制的二进制数据直接通过查表, 就可获得简单八相移相调制以及相位旋转 后的新调制矢量。
图 11实际上也给出了査找新调制矢量表的过程, 査调制相位表输出的就是待 滤波的新调制矢量, 码元输入单元是一个随机的二进制数据发生器, 该发生器可 以是任何一种数字数据源, 如语音编码器。
在图 13中, 数据存储单元存贮了前端输入待滤波的数据信号, 这两路数据同 时与系数存储器中的系数相乘, 累加器将所有的乘积因子经过一定次数的累积相 加后, 输出的累加值就是八相移相键控调制信号的每个采样值。 由此可见, RAM系 数滤波器避免了在通常的卷积滤波过程中所需要的大量的乘法器和加法器等, 极 大地节省资源, 实现成形滤波的过程, 而且该滤波器的系数设计有很大的自由度, 故选用 RAM系数滤波器来实现八相移相键控调制中的成形滤波无疑是非常有利的。
经过仿真研究验证, 采用本发明方法得到的八相移相键控调制数字信号满足 增强数据率型 GSM协议指标要求, 其频谱特性如图 14所示, 曲线 C表示增强数据率 型 GSM协议指标, 曲线 D为本发明的八相移相键控调制方法和装置所得到的信号频 谱特性, 纵坐标为功率谱密度, 单位 dB, 横坐标为基带调制信号的频率偏移, 单 位 KHz。
综上所述, 方案三不仅用查表代替矢量信号调制运算, 并压缩了表格内容, 节省了系统资源;而且巧妙利用 RCF滤波器结构,代替了卷积所要求的多个乘法器、 加法器等, 极大地节省了系统资源, 并大大降低了实现复杂度和系统功耗, 实现 简便可靠, 且信号准确度高, 该方法具有以下优点-
1、 以查表代替复数乘法运算, 极大地降低了实现复杂度和系统功耗。
2、 RAM系数滤波器的采用, 实现成形滤波, 大大节省了系统资源, 而且极大 地降低了系统功耗和复杂度。
3、 大大降低了对系统资源的占用, 增强了该方法的可实现性。
4、 直接将简单调制和旋转运算后数据存储, 没有定点乘法引入误差的环节, 信号更精确。
5、 可以根据用户的不同需求, 方便地进行任何系数的滤波器的设计, 该方 法具有极大的灵活性, 只要改动 RCF滤波器系数值, 可方便地实现其它线性调制。
6、 本发明采用了全数字方式, 保证了该方式得到的调制数据具有很高的准 确性。
7、 能适用于任何支持增强数据率型 GSM的基站系统中。
最后请继续参阅图 15所示, 该图是本发明上述三种方安的调制装置的应用实 例, 图中, 单元 401是本发明的三种调制装置, 单元 402是具有内插和低通滤波功 能的级联积分梳状滤波器(CIC) , 单元 403是数控振荡器 (NC0), 它产生复数(两 路正交) 的数字中频振荡信号, 单元 404是正交幅度调制单元 (QAM) , 实现数字 乘法功能, 单元 405是缓冲输出单元(OUT) , 实现数据缓冲输出。
本发明涉及以上三种方案调制方法和装置适用于 EDGE通信系统发射机 中。 经过适当改变也可用于实现其它线性调制方式。
工业应用性
由于本发明针对增强数据率型 GSM规定, 采用上述三种八相移相键控调制 方法和装置, 它们在传统意义上的简单八相移相调制方法的基础上作了改进, 增加了符号旋转以及成型滤波过程, 符号旋转可以避免信号幅度经过零点, 大大压缩了信号幅度动态范围, 减少了对后续功率放大器的要求, 有利于信 号无失真的输出。 而成形滤波器则具有压缩信号功率谱, 减少带外辐射的作 用。 本发明的调制装置极大地降低了复杂度, 在经过压缩后, 得到准确性很高的 调制信号; 而且可在现有的基站硬件上预留了对增强数据率型 GSM的支持。 与第 三低移动通讯相比, 本发明的方法和装置, 对 GSM中的系统改造量极小, 与目前 正在运行的 GSM系统完全兼容, 同时又能够提供足够的数据业务能力, 可以充分 延长现有 GSM体系的生命周期。 对运营商而言, 既节省了投资, 又可以提供有竞 争力的业务服务。 '

Claims

权利要求书
1、 一种八相移相键控调制方法, 其特征在于: 该方法将符号矢量与成形 滤波器系数的乘积因子存储在表格中, 并根据三角函数规律对存储在表格中 的乘积因子进行八倍压缩, 再以查表方式代替乘法操作, 通过査表以及累加 求和输出其调制信号。
2、 如权利要求 1 所述的八相移相键控调制方法, 其特征在于: 所述的方 法进一步依次包括符号映射、 查表地址生成、 查表及数据处理、 累加求和输 出步骤。
3、 如权利要求 2所述的八相移相键控调制方法, 其特征在于: 所述的符 号映射步骤是使用一个格雷码映射和 3π/8相位旋转的信号星座将二进制数字 信号映射成为具有相同幅度、 不同相位的矢量。
4、 如权利要求 2所述的八相移相键控调制方法, 其特征在于: 所述的查 表地址生成步骤是产生符号地址和系数地址两部分, gP, 将符号矢量映射为 符号地址, 并由系数地址生成器产生一个系数地址。
5、 如权利要求 2所述的八相移相键控调制方法, 其特征在于: 所述的査 表及数据处理步骤是使符号地址和系数地址共同构成查表地址, 然后査找经 八倍压縮的表格, 表格的输出再根据压缩规律恢复数据, 由几个地址位控制, 进行包括正、 负符号操作和同相、 正交分量交换操作, 最终输出同相和正交 两个分量。
6、 如权利要求 5所述的八相移相键控调制方法, 其特征在于: 将所述的 经八倍压缩的表格作为符号矢量和成形滤波器系数的乘积因子表。
7、 如权利要求 2所述的八相移相键控调制方法, 其特征在于: 所述的累 加求和输出的步骤是对查表及数据处理输出的同相和正交分量分别进行串行 累加求和, 以完成成形滤波器的卷积运算功能, 输出最终的八相移相键控调 制的同相和正交分量。
8、 一种依权利要求 1 所述方法的八相移相键控调制装置, 其特征在于: 该装置包括依次连接的码元输入单元、 符号映射单元、 査表地址生成单元、 查表及数据处理单元以及累加求和输出单元, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
查表地址生成单元将符号映射单元输出的符号矢量转换为查表符号地 址, 并使符号地址与本单元产生的系数地址共同构成查表地址;
査表及数据处理单元对进行查表及数据处理, 输出同相和正交两路分量 至累加求和输出单元;
累加求和输出单元进行累加求和, 输出线性数字调制的同相和正交信号。
9、 一种八相移相键控调制方法, 其特征在于: 该调制方法将所有经过成形 滤波后的八相移相键控调制状态全部存在数据表格中, 并根据三角函数规律和电 平分集对应关系将存储在表格中的调制状态数据进行压縮, 码元输入后, 进行 査表操作, 通过査表操作后直接输出调制数据的同相和正交信号。
10、 如权利要求 9所述的八相移相键控调制方法, 其特征在于: 该方法进一 步依次包括符号映射、 査表地址生成、 查表输出步骤。
11、 如权利要求 10所述的八相移相键控调制方法, 其特征在于: 所述的符 号映射步骤是使用一个格雷码映射和 3π/8相位旋转的信号星座, 将二进制数字 信号映射成为具有相同幅度、 不同相位的调制矢量。
12、 如权利要求 10所述的八相移相键控调制方法, 其特征在于: 所述的查 表地址生成步骤包括产生符号地址和系数地址, 将符号矢量映射为符号地址, 另 产生一个系数地址, 当基带调制信号的插值率为 R、 数据位宽为 W bits时, 查表 地址包括 4 位符号地址和 C^7(l0g2 (5*R)位系数地址, 表格容量则为
13、 如权利要求 10所述的八相移相键控调制方法, 其特征在于: 所述的查 表输出步骤是由查表地址査找经过压缩的表格, 查找出的查表数据再根据压缩规 律恢复数据, 再由地址位控制, 进行包括正、 负符号操作和同相、 正交信号交换 操作, 最终输出同相和正交两个信号。
14、 如权利要求 9所述的八相移相键控调制方法, 其特征在于: 所述根据电 平分集对应关系是将成形滤波前的基带信号的同相和正交信号的 9种电平值, 按 照电平正负分为两个子集, 其中一子集包含 5种电平, 另一子集包含 4种电平; 再根据该两个子集中的电平轮流出现的规律以及基带成形滤波器的冲激响应有效 长度为 5Ts, 将经过滤波后的基带信号的两个子集中的电平按 5 * 4 * 5 * 4 * 5和 4 * 5 * 4 * 5进行电平组合, 形成两张容量为 3600* R* W(bit)的表格, 最后将该两 张表格压缩为一张同相和正交信号复用且容量为 1008* R* W(bit)的表格。
15、 一种依权利要求 9所述方法的八相移相键控调制的装置, 其特征在于: 该装置包括依次连接的码元输入单元、 符号映射单元、 查表地址生成单元以及全 查表输出单元, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
査表地址生成单元将符号映射单元输出的符号矢量转换为符号地址, 并用符 号地址与本单元产生的系数地址共同构成查表地址;
査表输出单元按査表地址生成单元产生的査表地址对表格进行查表和数据处 理后输出线性数字调制的同相和正交信号。
16、 一种八相移相键控调制方法, 其特征在于: 该方法将经过简单八相移相 调制以及相位旋转后得到的新调制矢量存储在调制相位表格中, 并根据三角函数 规律对调制相位表格进行四倍压缩, 码元输入后通过査表和数据处理得到新调制 矢量, 然后, 利用 RAM系数滤波器完成成形滤波, 最后输出其调制信号。
17、 如权利要求 16所述的八相移相键控调制的方法, 其特征在于: 所述的方 法进一步依次包括符号映射、 査表地址产生、 查调制相位表、 M系数滤波后输出 调制信号步骤。
18、 如权利要求 17所述的八相移相键控调制的方法, 其特征在于: 所述的符 号映射是使用一个格雷 (GRAY)码映射并将二进制数字信号映射成为具有相同幅 度、 不同相位的符号矢量。
19、 如权利要求 17所述的八相移相键控调制的方法, 其特征在于: 所述的查 表地址产生是将经过符号映射所产生的符号矢量映射为符号地址。
20、 如权利要求 17所述的八相移相键控调制的方法, 其特征在于: 所述的查 调制相位表是指查找经四倍压缩的调制相位表, 再将该调制相位表的输出根据压 縮规律恢复数据得到一新调制矢量。
21、 如权利要求 17所述的八相移相键控调制的方法, 其特征在于: 所述的 MM 系数滤波是利用 RAM系数滤波器对新调制矢量进行成形滤波并输出八相移相键控调 制的同相和正交信号。
22、 一种依权利要求 16所述方法的八相移相键控调制装置, 其特征在于: 该 装置包括依次连接的码元输入单元、 符号映射单元、 査表地址产生单元、 査调制 相位表单元、 以及 RAM系数滤波器, 其中,
符号映射单元对码元输入单元输入的信号完成符号映射功能;
查表地址产生单元将符号映射单元输出的符号矢量转换为符号地址, 构成查 调制相位表单元的查表地址;
査调制相位表单元用符号地址进行查表并进行数据处理, 输出经过简单八相 移相调制以及相位旋转的新调制矢量;
RAM系数滤波器对新调制矢量进行成形滤波, 输出经线性数字调制的同相和正 交信号。
23、 如权利要求 22所述的八相移相键控调制装置, 其特征在于: 所述的 RAM系 数滤波器包括二个数据存储单元、 二个乘法器、 二个累加器、 一系数存储单元, 其中, 二个数据存储单元中, 一个用于存储新调制矢量的同相信号, 另一个 用于存储新调制矢量的正交信号;
系数存储单元用于存储成形滤波系数;
二个乘法器中, 一个用于同相信号与系数存储单元中的成形滤波系数相乘, 另一个用于正交信号与系数存储单元中的成形滤波系数相乘, 并分别作为二个累 加器的输入;
二个累加器中, 一个对上述同相信号与成形滤波系数相乘后的乘积因子进行 累加并输出调制后的同相信号, 另一个对上述正交信号与成形滤波系数相乘后的 乘积因子进行累加并输出调制后的正交信号。
PCT/CN2001/001213 2000-08-31 2001-07-30 Procede de modulation par deplacement de 8 phases (8mdp) et dispositif associe WO2002028126A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01983410A EP1324624A4 (en) 2000-08-31 2001-07-30 METHOD AND DEVICES FOR 8PSK MODULATION
AU2002214922A AU2002214922A1 (en) 2000-08-31 2001-07-30 Method and apparatuses of 8psk modulation
US10/373,485 US7236543B2 (en) 2000-08-31 2003-02-24 Method and apparatus of 8PSK modulation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN00119856.4 2000-08-31
CNB001198564A CN1135004C (zh) 2000-08-31 2000-08-31 一种八相移相键控调制方法及装置
CNB011132469A CN1152539C (zh) 2001-07-04 2001-07-04 八相移相键控调制方法及装置
CN01113246.9 2001-07-04
CNB011132477A CN1146200C (zh) 2001-07-04 2001-07-04 八相移相键控调制方法及其装置
CN01113247.7 2001-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/373,485 Continuation US7236543B2 (en) 2000-08-31 2003-02-24 Method and apparatus of 8PSK modulation

Publications (1)

Publication Number Publication Date
WO2002028126A1 true WO2002028126A1 (fr) 2002-04-04

Family

ID=27178758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/001213 WO2002028126A1 (fr) 2000-08-31 2001-07-30 Procede de modulation par deplacement de 8 phases (8mdp) et dispositif associe

Country Status (4)

Country Link
US (1) US7236543B2 (zh)
EP (1) EP1324624A4 (zh)
AU (1) AU2002214922A1 (zh)
WO (1) WO2002028126A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017590A1 (en) * 2002-08-19 2004-02-26 The Regents Of The University Of California Fpga implementation of a digital qam modulator
CN111092839A (zh) * 2018-10-24 2020-05-01 深圳市中兴微电子技术有限公司 一种调制方法、装置以及计算机存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416880B2 (en) * 2008-03-31 2013-04-09 Nxp B.V. Digital modulator
CN103595675B (zh) * 2012-08-16 2017-01-18 电子科技大学 连续相位8psk调制方法
US9325549B2 (en) 2014-03-27 2016-04-26 Freescale Semiconductor, Inc. Converter unit for an M-order digital modulation and a method thereof
CN110178321B (zh) * 2017-01-17 2021-05-18 华为技术有限公司 信号发射方法及装置、发射机、信号传输系统
WO2018200591A1 (en) * 2017-04-24 2018-11-01 Chaos Prime, Inc. Communication system employing chaotic sequence based frequency shift keying spreading signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909454A (en) * 1998-01-20 1999-06-01 General Instrument Corporation Intermediate rate applications of punctured convolutional codes for 8PSK trellis modulation over satellite channels
JPH11215200A (ja) * 1998-01-28 1999-08-06 Kenwood Corp 8pskデマッパ
EP1022874A2 (en) * 1999-01-19 2000-07-26 Matsushita Electric Industrial Co., Ltd. Apparatus and method for digital wireless communications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2968350B2 (ja) * 1991-01-11 1999-10-25 三菱電機株式会社 直交変調回路
US5838727A (en) * 1991-02-15 1998-11-17 Schlumberger Technology Corporation Method and apparatus for transmitting and receiving digital data over a bandpass channel
US5420887A (en) * 1992-03-26 1995-05-30 Pacific Communication Sciences Programmable digital modulator and methods of modulating digital data
GB9218009D0 (en) * 1992-08-25 1992-10-14 Philips Electronics Uk Ltd A method of,and transmitter for,transmitting a digital signal
US5999355A (en) * 1996-04-30 1999-12-07 Cirrus Logic, Inc. Gain and phase constrained adaptive equalizing filter in a sampled amplitude read channel for magnetic recording
US5929454A (en) * 1996-06-12 1999-07-27 Canon Kabushiki Kaisha Position detection apparatus, electron beam exposure apparatus, and methods associated with them
US5930299A (en) * 1996-08-08 1999-07-27 Motorola, Inc. Digital modulator with compensation and method therefor
US5959872A (en) * 1996-10-28 1999-09-28 Samsung Electronics Co., Ltd. Apparatus and method for bidirectional scanning of video coefficients
US6222885B1 (en) * 1997-07-23 2001-04-24 Microsoft Corporation Video codec semiconductor chip
JP2974004B1 (ja) * 1998-05-12 1999-11-08 日本電気株式会社 Cdma受信装置およびcdma通信システム
KR100326176B1 (ko) * 1998-08-06 2002-04-17 윤종용 이동통신시스템의전력증폭장치및방법
US7046738B1 (en) * 2000-02-08 2006-05-16 Ericsson Inc. 8-PSK transmit filtering using reduced look up tables

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909454A (en) * 1998-01-20 1999-06-01 General Instrument Corporation Intermediate rate applications of punctured convolutional codes for 8PSK trellis modulation over satellite channels
JPH11215200A (ja) * 1998-01-28 1999-08-06 Kenwood Corp 8pskデマッパ
EP1022874A2 (en) * 1999-01-19 2000-07-26 Matsushita Electric Industrial Co., Ltd. Apparatus and method for digital wireless communications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017590A1 (en) * 2002-08-19 2004-02-26 The Regents Of The University Of California Fpga implementation of a digital qam modulator
CN111092839A (zh) * 2018-10-24 2020-05-01 深圳市中兴微电子技术有限公司 一种调制方法、装置以及计算机存储介质
CN111092839B (zh) * 2018-10-24 2023-01-24 深圳市中兴微电子技术有限公司 一种调制方法、装置以及计算机存储介质

Also Published As

Publication number Publication date
EP1324624A4 (en) 2007-11-07
US7236543B2 (en) 2007-06-26
EP1324624A1 (en) 2003-07-02
AU2002214922A1 (en) 2002-04-08
US20030174785A1 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
JP3941039B2 (ja) マルチプロトコル変調器
JP3879935B2 (ja) アンテナアレイのための変調とディジタルビーム形成を同時に行うための効率的な装置
JP3324983B2 (ja) Ofdm送信器の信号送信方法
US5945885A (en) Digital baseband modulator adaptable to different modulation types
US7190288B2 (en) Look-up table delta-sigma conversion
WO2002028126A1 (fr) Procede de modulation par deplacement de 8 phases (8mdp) et dispositif associe
US7379509B2 (en) Digital intermediate frequency QAM modulator using parallel processing
CN1152538C (zh) 高斯最小移频键控调制方法及装置
US5768317A (en) Equalization filter compensating for distortion in a surface acoustic wave device
US5512865A (en) Digital oversampled quadrature modulator
CN1152539C (zh) 八相移相键控调制方法及装置
CN1135004C (zh) 一种八相移相键控调制方法及装置
WO2006018690A1 (en) Efficient fir filter suitable for use with high order modulation radio frequency transmitters
WO2001026224A9 (en) A simplified digital fir filter for direct sequence spread spectrum communication systems
WO2002060146A1 (en) Method of implementing modulation and modulator
CN1146200C (zh) 八相移相键控调制方法及其装置
AU2002252711B2 (en) Method and device for pulse shaping QPSK signals
JP2001527330A (ja) スペクトルが狭く、エンベロープがほぼ一定のデジタル信号の変調
Radder et al. Efficient MODEM Design For SDR Application
KR100462139B1 (ko) 직교변조기용평형트랜스버설i,q필터
KR100237432B1 (ko) π/4 - DQPSK 송신장치 및 방법
CN115022141A (zh) 一种gmsk信号数字调制发射装置及方法
Hung DQPSK modulator and demodulator for wireless network-on-chip
JPH04123637A (ja) ディジタル変調器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10373485

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001983410

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001983410

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP