WO2002022904A1 - Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production - Google Patents

Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production Download PDF

Info

Publication number
WO2002022904A1
WO2002022904A1 PCT/JP2001/007822 JP0107822W WO0222904A1 WO 2002022904 A1 WO2002022904 A1 WO 2002022904A1 JP 0107822 W JP0107822 W JP 0107822W WO 0222904 A1 WO0222904 A1 WO 0222904A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
tensile strength
cold
ultra
Prior art date
Application number
PCT/JP2001/007822
Other languages
English (en)
French (fr)
Inventor
Kohei Hasegawa
Toshiaki Urabe
Akihide Yoshitake
Hideyuki Tsurumaru
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to DE60138204T priority Critical patent/DE60138204D1/de
Priority to EP01963547A priority patent/EP1325966B1/en
Publication of WO2002022904A1 publication Critical patent/WO2002022904A1/ja
Priority to US10/108,749 priority patent/US6695933B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present invention relates to an ultra-high-strength cold-rolled steel sheet, in particular, a hole expansion ratio of 75 or more after punching specified by the Japan Iron and Steel Federation Standard JFST1001-1996,
  • the present invention relates to an ultra-high tensile strength cold-rolled steel sheet having a strength of 880-1170 MPa and a method for producing the same.
  • BACKGROUND ART In recent years, in response to the need for reducing the weight of automobiles, ultra-high tensile strength cold-rolled steel sheets having a tensile strength of 880 to 1170 MPa have been applied to framework members for automobile seats. Because the frame members for automobile sheets are manufactured by press working, ultra-high tensile cold rolled steel sheets are required to have excellent stretch flangeability with a hole expansion ratio of 75 or more after punching as specified in JFST100 1996. Have been.
  • ultra-high tensile cold rolled steel sheets with a tensile strength of 880 MPa or more have been used for bumpers and door reinforcements.
  • Various studies have been made for the purpose of improving workability and weldability.
  • Japanese Patent Publication No. 2-1894 discloses that an ultra-high tensile strength cold rolled steel sheet containing 0.10 to 0.20% of C, having excellent cold workability and weldability and having a tensile strength of around 1000 MPa.
  • a manufacturing method is disclosed.
  • Japanese Patent Publication No. 8-26401 and Japanese Patent No. 2528387 disclose excellent workability and impact properties by forming a fine martensite single-phase structure or controlling the volume ratio of martensite to 80-97%.
  • Patent No. 2826058 discloses an ultra-high tensile cold-rolled steel sheet having a tensile strength of 1000 MPa or more, which does not cause hydrogen embrittlement by controlling the martensite structure and Fe-C-based precipitates. ing.
  • Japanese Patent Publication No. Hei 5-10418 discloses a high-strength steel sheet for laser processing with excellent stretch flangeability, but its tensile strength is as low as 800 Pa or less, and it is used as a skeleton member for current automobile seats. Is not applicable.
  • DISCLOSURE OF THE INVENTION The present invention provides an ultra-high tensile cold-rolled steel sheet having a hole expansion ratio of not less than 75% and a tensile strength of 880-1170 MPa after punching as defined in IFST1001-1996, and a method for producing the same. Aim.
  • the object of the present invention is essentially: mass: C: 0.01-0.07%, Si: 0.3% or less, P: 0.1% or less, S: 0.01% or less, SoLAl: 0.01-0.13 ⁇ 4, N: 0.0050% or less, the total of at least one element selected from Mn, Cr, and Mo is 1.6-2.5%, and / or B: 0.0005-0. 0050%,
  • Such an ultra-high tensile cold-rolled steel sheet is manufactured by a process of manufacturing a steel slab having the above-described composition, a process of hot-rolling the slab, and then cold-rolling the steel plate, and a continuous annealing method. After cooling to 800-890 ° C, the primary cooling is performed at a cooling rate of 20 ° C / sec or less, and the secondary cooling is performed from 680-750 to 50 ° C or less at a cooling rate exceeding 500 ° C / sec. It can be manufactured by the existing method.
  • FIG. 1 is a diagram schematically showing an example of an existing continuous annealing furnace.
  • FIGS. 2A to 2C are views schematically showing one example of a mechanical joining method.
  • FIG. 3 is a diagram schematically illustrating a peeling test method after mechanical bonding.
  • MODES FOR CARRYING OUT THE INVENTION The present inventors examined ultra-high tensile cold-rolled steel sheets having a hole expansion ratio of not less than 75 and a tensile strength of 880-1170 MPa after punching as specified in JFST100-1996. It has been found that it is necessary to optimize the crystal structure and obtain a fine martensitic single-phase structure. The details are described below.
  • the existing continuous annealing furnace has a heating zone 1 for heating the steel sheet S, a soaking zone 2 for soaking the heated steel sheet S, and a primary cooling of the steel sheet S after the soaking. It has a slow cooling zone 3 for cooling, a quenching zone 4 for secondary cooling (quenching) of the steel sheet S after the primary cooling, and an overaging zone 5 for overaging (tempering) the steel sheet S after the secondary cooling. are doing.
  • the steel sheet S is supplied from the rewinding machine 7 on the entrance side, passes through the heating zone 1, soaking zone 2, slow cooling zone 3, quenching zone 4 and overageing zone 5, and is tempered by the temper rolling mill 6 on the exit side. After being rolled, it is wound into a coil by a winder 8. At this time, since the slow cooling zone 3 is provided between the average tropical zone 2 and the rapid cooling zone 4, the temperature of the steel sheet S inevitably drops by 100 ° C or more.
  • the steel sheet S is made to have an austenitic single-phase structure in the soaking zone 2 and passed through the annealing zone 3 at a temperature not lower than the Ar3 transformation point. It is necessary to quench from there.
  • the Ar3 transformation point is high, making it difficult to pass the annealing zone 3 above the Ar3 transformation point. Therefore, the formation of ferrite cannot be suppressed in the slow cooling zone 3, and a martensitic single-phase SI layer cannot be obtained.
  • C is appropriately adjusted in accordance with the amounts of Mn, Cr, and Mo described later to make the tensile strength 880-1170 MPa. However, if C is less than 0.01%, the steelmaking cost increases, and if it exceeds 0.07%, the tensile strength exceeds 1170 MPa regardless of the amount of Mn, etc., so C is 0.01-0.07%, more preferably 0.03-0.07%.
  • Si Since Si is an element that raises the Ar3 transformation point, it is desirable to reduce it as much as possible. If the Si content exceeds 0.3%, it becomes difficult to obtain a martensitic single phase structure of 880-1170 MPa, so the Si content should be 0.3% or less.
  • P can be added for the purpose of adjusting the strength. However, if it exceeds 0.1%, the toughness of the spot welded portion is deteriorated, so that P is set to 0.1% or less.
  • S If S exceeds 0.01%, a large amount of MnS precipitates and deteriorates stretch flangeability. Therefore, S is set to 0.01% or less.
  • Sol. A1 is added as a deoxidizer. If Sol. A1 is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1, the effect is saturated and uneconomical. Therefore, Sol. A1 is 0.01-0.1%.
  • N When N exceeds 0.0050%, the strength in the coil varies, so N is set to 0.0050% or less.
  • Mn, Cr, Mo These elements are the most important constituent elements in the present invention. If the sum of at least one element selected from these elements is less than 1.6 mass%, the Ar3 transformation point cannot be sufficiently lowered, and a fine martensitic single phase structure cannot be obtained. Further, when the content exceeds 2.5 mass, the tensile strength exceeds 1170 MPa. Therefore, the total of at least one element selected from Mn, Cr, and Mo is 1.6-2.5 mass%.
  • B is also 0.0005-0.0050 mass. The effect is obtained. If the B content is less than 0.0005 mass%, the Ar3 transformation point cannot be sufficiently lowered, resulting in a fine martensite. If a single-phase structure cannot be obtained, and if it exceeds 0.0050 raass%, the deformation resistance of hot rolling increases, and it becomes difficult to manufacture a steel sheet.
  • the total of at least one element selected from Mn, Cr and Mo is 1.6-2.5 mass% and B is 0.0005-0.0050 mass% at the same time, B is not contained.
  • the amount of Mn, Cr, and Mo can be reduced as compared with the case, and the increase in tensile strength due to these elements can be reduced. Therefore, the allowable range of C can be expanded and the increase in steelmaking costs can be suppressed.
  • Ti When B is added, Ti should be added in the range of (48/14) X [N] -3 X (48/14) X [N] mass3 ⁇ 4 (where [N] indicates the N amount). , B can be more effective. The effect of B described above is obtained when B is in a solid solution state, and the effect is reduced when B is combined with N to form M. Therefore, if Ti is added and N is preliminarily precipitated as TiN, B is in a solid solution state and its effect can be further exhibited. For this purpose, Ti needs to be added in an amount of (48/14) X [N] mass% or more. However, if it exceeds 3 (48/14) X [N] mass%, TiC is formed and ductility is reduced.
  • the temperature during continuous annealing It can suppress coarsening of the austenitic structure and prevent deterioration of the bendability and toughness of the steel sheet.
  • a fine martensitic single-phase structure can be obtained in any case, but the inner part exceeding 10 m in depth from the steel sheet surface is substantially martensitic.
  • the site has a single-phase structure, an excellent stretch flangeability with a hole expansion rate of 75% or more as determined by fFST100 is obtained.
  • the “substantially martensitic single-phase structure” is defined as a microstructure determined by an optical microscope, a scanning electron microscope, an X-ray diffraction method or the like. It means a martensite organization not included above. However, precipitates in steel such as A1N, MnS, and TiN, and fine iron carbides precipitated by tempering martensite may be included. In addition, the surface layer within 10 m in the depth direction from the steel sheet surface due to decarburization of the surface layer, etc.
  • the ultra-high-tensile cold-rolled steel sheet of the present invention includes a step of producing a steel slab having the above-described composition, a step of hot-rolling the slab, and a step of cold-rolling the slab to produce a steel sheet.
  • the steel slab can be manufactured by continuous forming or the like.
  • the slab should be directly or reheated, hot-rolled in the temperature range above the Ar3 transformation temperature, cooled to 700 ° C or less at a cooling rate of 30 ° C / sec or more, and wound at 620 ° C or less. Is desirable.
  • the hot-rolled steel sheet is descaled, cold-rolled to the target thickness, and continuously annealed.
  • the heating temperature during continuous annealing is lower than 800 ° C, it is difficult to increase the quenching start temperature to the Ar3 transformation point or higher, and a martensitic single phase structure cannot be obtained.
  • the temperature exceeds 890 ° C, the austenitic steel becomes coarse and the bendability and toughness of the steel sheet deteriorate. Therefore, the heating temperature is 800-890 ° C.
  • the steel sheet After heating, the steel sheet must pass through the annealing zone at a temperature higher than the Ar3 transformation point in order to obtain a martensitic single-phase structure.
  • the primary cooling rate in the annealing zone is 20 ° C / sec. It must be: If the primary cooling rate exceeds 20 ° C / sec, the steel sheet temperature falls below the Ar3 transformation point, and a ferrite structure is formed, and a martensitic single phase structure cannot be obtained.
  • the steel sheet After slow cooling, the steel sheet is cooled to 50 ° C or less at a secondary cooling rate exceeding 500 ° C / sec to obtain a martensitic single phase structure.
  • the cooling start temperature is lower than 680 ° C, a ferrite structure is formed and a martensitic single phase structure cannot be obtained. If the cooling start temperature is higher than 750 ° C, the shape of the steel sheet deteriorates. 750 ° C, preferably 700-750 ° C It is necessary to The cooling method is not limited, but it is preferable to quench in jet water in order to suppress the variation in the material in the width direction and the length direction.
  • the steel sheet after secondary cooling to 50 ° C or less be tempered at 100-250 ° C for 3 minutes or more to improve toughness. If the temperature is less than 100 ° C or less than 3 minutes, the effect of the tempering treatment is small.
  • Temper rolling can be applied to the steel sheet after continuous annealing.
  • the temper reduction ratio is desirably 0.3% or more from the viewpoint of shape correction and 1.0% or less from the viewpoint of preventing elongation of elongation.
  • the ultrahigh-tensile cold-rolled steel sheet manufactured by such a method can be subjected to metal plating such as zinc plating and / or surface treatment for applying various organic lubricating films.
  • a steel slab having the chemical composition shown in Table 1 was manufactured by continuous casting, reheated at 1250 ° C, hot-rolled to a thickness of 3.0 mm at a finishing temperature of about 870 ° C, and heated at 560-600 ° C. Wound up. After hot rolling, the steel sheet is pickled, cold rolled to a thickness of 1.2 strokes, heated to 850 ° C, and cooled primarily in a slow cooling zone at a cooling rate of 7 ° C / sec. Approximately 40 ° C to about 40 ° C, and the water was quenched in the jet water to perform continuous annealing under the condition of secondary cooling. At this time, the cooling rate of the secondary cooling was 1000 ° C / sec or more.
  • the steel sheet after continuous annealing was tempered at 200 ° C for about 10 minutes, and then temper-rolled at an elongation of 0.5%. Then, the cross section parallel to the rolling direction of the steel sheet is polished, subjected to natural etching, and observed with a scanning electron microscope to determine the volume fraction of martensite in the inner part exceeding 10 m in the depth direction from the steel sheet surface. I asked.
  • a JIS No. 5 test piece was sampled by cutting in a direction perpendicular to the rolling direction of the steel sheet, and a tensile test was performed. The hole expansion ratio was measured according to JFSTlOm-1996.
  • Each of the steel sheets of Steel No. 6 which is an example of the present invention has a tensile strength of 880 to 1170 MPa and a hole expansion ratio of 75% or more, and has extremely excellent stretch flangeability.
  • the minimum bending radius is also less than 1.0 thigh and the bending characteristics are good.
  • Example 1 Using a steel slab having the same composition as steel No. 3 in Example 1, cold rolling was performed under the same conditions as in Example 1, and then continuous annealing and temper rolling were performed under the conditions shown in Table 3. A-H was manufactured. Then, the martensite volume ratio, tensile strength, and hole expansion ratio were measured in the same manner as in Example 1. In addition, applicability to mechanical bonding that can be performed without heating, which has recently attracted attention, was evaluated based on the peel strength measured by the method described below.
  • the steel sheet AD which is an example of the present invention, has a martensite volume ratio of 100%, a tensile strength of about 1000 MPa, a hole expansion rate of 100 or more, and has extremely good stretch flangeability. However, the mechanical bondability is excellent at 2.0 kN or more.
  • the steel sheet E which is a comparative example, had a heating temperature of less than 800 ° C during annealing, and the steel sheet F was primarily cooled at a cooling rate exceeding 20 ° C / sec after heating. Is 500 ° C / sec or less, and in steel sheet H, the ultimate temperature of cooling at a secondary cooling rate exceeding 500 ° C / sec exceeds 50 ° C, so that a martensitic single phase structure cannot be obtained and tensile strength Is less than 880 MPa, the hole expansion rate is less than 75%, and the peel strength is less than 2.0 kN.
  • Table 3 Table 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明細書 超高張力冷延鋼板およびその製造方法 技術分野 本発明は、 超高張力冷延鋼板、 特に、 日本鉄鋼連盟規格 JFST1001- 1996で定める 打ち抜き加工後の穴拡げ率が 75 以上であり、 引張強度が 880- 1170 MPaの超高張力 冷延鋼板およびその製造方法に関する。 背景技術 近年、 自動車軽量化のニーズを受けて、 引張強度が 880- 1170 MPaの超高張力冷延 鋼板が自動車シート用骨格部材に適用されるようになって来ている。 この自動車 シ一ト用骨格部材はプレス加工で製造されるため、 超高張力冷延鋼板には JFST100卜 1996で定める打ち抜き加工後の穴拡げ率が 75 以上となる優れた伸びフ ランジ性が要求されている。
一方、 従来より、 バンパーやドアの補強材等には引張強度が 880 MPa以上の超高 張力冷延鋼板が用いられている。 そして、 その加工性や溶接性等の向上を目的に、 種々の検討が行われている。 例えば、 特公平 2- 1894号公報には、 Cを 0. 10-0. 20 %含 有し、 冷間加工性や溶接性に優れた引張強度が 1000 MPa前後の超高張力冷延鋼板の 製造方法が開示されている。 また、 特公平 8- 26401号公報や特許第 2528387号公報に は、 微細なマルテンサイト単相組織にしたり、 マルテンサイトの体積率を 80- 97 % にコントロールすることにより加工性や衝撃特性に優れる引張強度が 1470 MPa以上 の超高張力冷延鋼板が開示ざれている。 さらに、 特許第 2826058号公報には、 マル テンサイト組織と Fe- C系析出物をコントロールすることにより水素脆化が発生しな い引張強度が 1000 MPa以上の超高張力冷延鋼板が開示されている。
しかしながら、 こうした従来の超高強度冷延鋼板は、 上述したように、 バンパー やドアの補強材等に用いられるため、 口一ルフォ一ミングによる逐次加工を受ける 場合が多く、 打ち抜き加工後の優れた伸びフランジ性が要求されることはなかった。 そのため、 いずれも JFSnO(H- 1996で定める穴拡げ率は高々 50 %程度であり、 プレ ス加工で製造される自動車シート用骨格部材に適用できるものではなかった。
なお、 特公平 5- 10418号公報には、 伸びフランジ性に優れたレ一ザ加工用高張力 鋼板が開示されているが、 引張強度が 800 Pa以下と低く、 現行の自動車シート用 骨格部材には適用できない。 発明の開示 本発明は、 IFST1001- 1996で定める打ち抜き加工後の穴拡げ率が 75 %以上で、 引 張強度が 880-1170 MPaの超高張力冷延鋼板、 およびその製造方法を提供することを 目的とする。 本発明の目的は、 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 SoLAl: 0. 01-0. 1 ¾, N: 0. 0050 %以下、 Mn、 Cr、 Moの 中から選ばれた少なくとも 1種の元素の合計が 1. 6-2. 5 %、 および/または B: 0. 0005-0. 0050 %、 残部力 eからなり、 かつ鋼板表面より深き方向に 10 mを超え る内側部分が実質的にマルテンサイト単相組織からなる引張強度が 880-1170 MPaの 超高張力冷延鋼板によつて達成される。
こうした超高張力冷延鋼板は、 上記のような成分組成を有する鋼スラブを製造す る工程と、 スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、 鋼板を連続 焼鈍法により 800- 890 °Cに加熱後、 20 °C/sec以下の冷却速度で一次冷却し、 680- 750 から 500 °C/secを超える冷却速度で 50 °C以下まで二次冷却する工程とを有 する方法によつて製造できる。 図面の簡単な説明 図 1は、 既存の連続焼鈍炉の一例を模式的にに示す図である。
図 2A- 2Cは、 機械接合方法の一例を模式的に示す図である。
図 3は、 機械接合後の剥離試験方法を模式的に示す図である。 発明を実施するための形態 本発明者等が、 JFST100卜 1996で定める打ち抜き加工後の穴拡げ率が 75 以上で、 引張強度が 880- 1170 MPaの超高張力冷延鋼板について検討したところ、 成分の最適 化を図り、 微細なマルテンサイト単相組織にすればよいことを見出した。 以下に、 その詳細を説明する。
既存の連続焼鈍炉は、 図 1に示すように、 鋼板 Sを加熱する加熱帯 1と、 加熱した 鋼板 Sを均熱保持する均熱帯 2と、 均熱保持後の鋼板 Sを一次冷却 (徐冷) する徐冷 帯 3と、 一次冷却後の鋼板 Sを二次冷却 (急冷) する急冷帯 4と、 二次冷却後の鋼板 S に過時効 (焼戻し) 処理する過時効帯 5とを有している。 鋼板 Sは、 入側の巻き戻し 機 7から供給され、 加熱帯 1、 均熱帯 2、 徐冷帯 3、 急冷帯 4および過時効帯 5を通過し、 出側で調質圧延機 6により調質圧延された後、 巻取機 8でコイル状に巻き取られる。 このとき、 均熱帯 2と急冷帯 4との間には徐冷帯 3が設けられているため、 そこで鋼 板 Sの温度は不可避的に 100 °C以上低下する。
このような既存の連続焼鈍炉でマルテンサイト単相組織を得るためには、 鋼板 S を、 均熱帯 2でオーステナイト単相組織とし、 Ar3変態点以上の温度で徐冷帯 3を通 過させ、 そこから急冷する必要がある。 しかし、 従来の 880- 1170 MPaの引張強度が 得られるような C当量の低い鋼では、 Ar3変態点が高いため、 徐冷帯 3を Ar3変態点以 上で通過させることが困難となる。 したがって、 徐冷帯 3でフェライトの生成を抑 制することができず、 マルテンサイ卜単相 SI哉が得られない。
そこで、 本発明者等は、 引張強度が 880-1170 MPaで、 かつマルテンサイト単相組 織の超高張力冷延鋼板を既存の連続焼鈍炉で製造するための検討を行った。 その結 果、 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6- 2. 5 ¾ および ¾部が Feからなる鋼を用いるこ とにより、 既存の連続焼鈍炉で微細なマルテンサイト単相組織が得られることが明 らかになつた。
次に、 各元素量の限定理由を説明する。
C : Cは、 引張強度を 880- 1170 MPaにするために、 後述する Mn、 Cr、 Moの量に応じ て適宜調整される。 ただし、 Cが 0. 01 %未満だと製鋼コストが高くなり、 0. 07 %を 超えると Mn等の量に関わらず引張強度が 1170 MPaを超えるため、 Cは 0.01-0.07 %、 より好ましくは 0.03-0.07 %とする。
Si : Siは、 Ar3変態点を上昇させる元素であるので、 できるだけ低減することが 望ましい。 Siが 0. 3 %を超えると 880-1170 MPaのマルテンサイト単相組織を得るこ とが困難になるため、 Siは 0. 3 %以下とする。
P : Pは、 強度調整の目的で添加できるが、 0. 1 %を超えるとスポット溶接部の靱 性を劣ィ匕させるため、 Pは 0. 1 %以下とする。
S : Sが 0. 01 %を超えると MnSが多量に析出し、 伸びフランジ性を劣ィヒさせるため、 . Sは 0. 01 %以下とする。
' Sol. Al: A1は、 脱酸剤として添加される。 Sol. A1が 0. 01 %未満だとその効果が十 分でなく、 0. 1 を超えると効果が飽和し不経済なため、 Sol. A1は 0. 01- 0. 1 %とす る。
N : Nが 0. 0050 %を超えるとコイル内の強度のばらつきをもたらすため、 Nは 0. 0050 %以下とする。
Mn、 Cr、 Mo :これらの元素は、 本発明で最も重要な構成要件である。 これらの元 素の中から選ばれた少なくとも 1種の元素の合計が 1. 6 mass%未満だと Ar3変態点を 十分に低温化できず、 微細なマルテンサイト単相組織が得られない。 また、 2. 5 mass を超えると引張強度が 1170 MPaを超えるため、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計は 1. 6-2. 5 mass%とする。
また、 Mn、 Cr、 Moの中から選ばれた少なくとも 1種の元素の合計を 1. 6 - 2. 5 mass%にする代わりに、 Bを 0. 0005- 0. 0050 mass としても、 同様な効果が得られる。 B量が 0. 0005 mass%未満だと Ar3変態点を十分に低温化できず、 微細なマルテンサイ ト単相組織が得られず、 0. 0050 raass%を超えると熱間圧延の変形抵抗が大きくなり 鋼板の製造が困難となる。
Mn、 Cr、 Moの中から選ばれた少なくとも 1種の元素の合計を 1. 6 - 2. 5 mass%、 同 時に Bを 0. 0005- 0. 0050 mass%含有させると、 Bを含有させない場合よりも Mn、 Cr、 Moの量を少なくすることができ、 これらの元素による引張強度の上昇を少なくする ことができる。 したがって、 Cの許容範囲を拡大でき製鋼コストの上昇を抑えるこ とができる。
Bを含有させる場合には、 Tiを (48/14) X [N] -3 X (48/14) X [N] mass¾ (ただし、 [N]は N量を示す) の範囲で複合添加すると、 Bの効果をより高めることができる。 上記した Bの効果は、 Bが固溶状態にあるときに得られ、 Bが Nと結合して Mとなると その効果は減少する。 したがって、 Tiを添加し、 あらかじめ Nを TiNとして析出させ れば、 Bは固溶状態にありその効果をより発揮できることになる。 そのために は、 Tiを (48/14) X [N] mass%以上添加する必要があるが、 3 (48/14) X [N] mass% を超えると TiCを形成して延性を低下させる。
こうした Mn、 Cr、 Moの中から選ばれた少なくとも 1種の元素や B、 あるいはさら に Tiを含有した鋼板に、 Nbを 0. 00卜 0. 04 raass%添加すると、 連続焼鈍の均熱時に オーステナィト組織の粗大化を抑制し、 鋼板の曲げ性ゃ靱性の劣化を防止すること ができる。 上記した本発明である超高張力冷延鋼板の成分系では、 いずれの場合も微細なマ ルテンサイト単相組織が得られるが、 鋼板表面より深さ 10 mを超える内側部分 が実質的にマルテンサイト単相組織であれば、 ; fFSTl 00卜 1996で定める穴拡げ率が 75 %以上の優れた伸びフランジ性が得られる。 ここで、 実質的にマルテンサイト単 相組織とは、 光学顕微鏡、 走査型電子顕微鏡、 X線回折法等で組織を定量し、 フエ ライト組織、 'ペイナイト組織、 残留オーステナイト組織等が合わせて 1 %以上含ま れないマルテンサイト組織のことを意味する。 ただし、 A1N、 MnS、 TiN等の鋼中の 析出物、 マルテンサイトの焼き戻しに伴い析出する微細な鉄炭化物は含まれていて もよい。 また、'表層の脱炭等により鋼板表面から深さ方向に 10 m以内の表層に フェライト組織が生成することがあるが、 これは伸びフランジ性に影響をほとんど 及ぼさず、 むしろ曲げ性を向上させる。 したがって、 鋼板表面より深さ方向に 10 mを超える内側部分が実質的にマルテンサイト単相組織であれば、 880-1170 MPa の引弓長強度と 75 %以上の穴拡げ率を確保できる。 本発明の超高張力冷延鋼板は、 上記のような成分組成を有する鋼スラブを製造す る工程と、 スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、 鋼板を連続 焼鈍法により 800- 890 °Cに加熱後、 20 °C/sec以下の冷却速度で一次冷却し、 680 - 750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次冷却する工程とを有 する方法によって、 製造できる。 .
ここで、 上記鋼スラブは連続铸造などにより製造できる。
また、 スラブは、 直接または再加熱後、 Ar3変態点以上の温度域で熱間圧延後、 30 °C/sec以上の冷却速度で 700 °C以下まで冷却し、 620 °C以下で巻き取ることが 望ましい。
熱間圧延後の鋼板は、 スケールが除去され、 目標とする板厚まで冷間圧延され、 連続焼鈍される。
連続焼鈍時の加熱温度を 800 °C未満にすると、 急冷開始温度を Ar3変態点以上に することが困難となりマルテンサイト単相組織が得られない。 一方、 890 °Cを超え るとオーステナイト 哉が粗大化するため鋼板の曲げ性ゃ靱性が劣化する。 したが つて、 加熱温度は 800- 890 °Cとする。
加熱後の鋼板は、 マルテンサイト単相組織を得るために徐冷帯を Ar3変態点以上 の温度で通過させる必要があるが、 そのためには徐冷帯での一次冷却速度を 20 °C /sec以下にする必要がある。 一次冷却速度が 20 °C/secを超えると鋼板温度が Ar3変 態点を下回り、 フェライト組織が生成してマルテンサイト単相組織が得られない。 徐冷後の鋼板は、 マルテンサイト単相組織を得るために 500 °C/secを超える二次 冷却速度で 50 °C以下まで冷却される。 このとき、 冷却開始温度が 680 °C未満では フェライト組織が生成するためマルテンサイト単相組織が得られず、 750 °Cを超え ると鋼板形状が劣ィ匕するため、 冷却開始温度は 680- 750 °C、 好ましくは 700-750 °C とする必要がある。 なお、 冷却方法は限定しないが、 板幅方向、 長手方向の材質変 動を抑制するためには、 噴流水中に焼入れることが望ましい。
50 °C以下まで二次冷却後の鋼板は、 靱性を向上させるため 100-250 °Cで 3分以 上の焼き戻し処理を行うことが望ましい。 100 °C以下または 3分未満では焼き戻し 処理の効果が少なく、 250 °Cを超えると低温焼き戻し脆性により延性が著しく劣ィ匕 する。
連続焼鈍後の鋼板には、 調質圧延することができる。 このとき、 調質圧延率は、 形状矯正の観点から 0. 3 %以上、 伸びの劣ィ匕防止の観点から 1. 0 %以下が望ましい。 なお、 このような方法で製造された超高張力冷延鋼板には、 Znめっき等の金属め つき、 および/または有機系の各種潤滑被膜を塗布する表面処理を行うことができ る。 実施例 1
表 1に示す化学組成を有する鋼スラブを連続铸造により製造し、 1250 °Cで再加熱 後、 仕上温度約 870 °Cで板厚 3. 0 mmまで熱間圧延し、 560-600 °Cで巻き取った。 熱 間圧延後の鋼板を、 酸洗し、 板厚 1. 2画まで冷間圧延後、 850 °Cに加熱し、 徐冷帯 で冷却速度 7 °C/secで一次冷却し、 720 °Cから約 40 °Cまで噴流水中に水焼き入れ して二次冷却を行う条件で連続焼鈍した。 このとき、 二次冷却の冷却速度は 1000 °C/sec以上であった。 連続焼鈍後の鋼板を、 200 °Cで約 10分間の焼き戻し処理後、 0. 5 %の伸長率で調質圧延した。 そして、 鋼板の圧延方向に平行な断面を研磨し、 ナイ夕一ルエッチングを行い、 走査型電子顕微鏡で観察して鋼板表面より深さ方向 に 10 mを超える内側部分におけるマルテンサイトの体積率を求めた。 また、 鋼 板の圧延方向に対して直角方向に JIS 5号試験片を切削加工により採取し、 引張試 験を行った。 JFSTlOm-1996にしたがって穴拡げ率を測定した。 さらに、.圧延方向 と平行に 30X 100 醒の矩形の試験片を切削加工により切り出し、 0. 5■ピッチの先 端 Rを有するポンチで 180 ° 曲げを行い、 割れが発生しない最小の曲げ半径を求め た。 結果を表2に示す。
本発明例である鋼番号卜 6の鋼板は、 いずれも引張強度が 880- 1170 MPaであり、 穴拡げ率が 75 %以上と極めて優れた伸びフランジ性を有している。 最小曲げ半径も 1. 0 腿以下と曲げ特性も良好である。
一方、 比較例である鋼番号 7の鋼板では、 Mn、 Moおよび Crの合計が 1. 6 %未満であ るためマルテンサイト単相組織が得られず、 このために穴拡げ率が低く、 伸びフラ ンジ性に劣る。 鋼番号 8の鋼板では、 Cが 0. 07 %を超えるため強度が高過ぎ、 穴拡げ 率が低く、 最小曲げ半径が大きくなり、 伸びフランジ性ゃ曲げ性に劣る。 鋼番号 9 の鋼板では、 Cが 0. 07 %を超えるとともに Siが 0. 3 %を超えるためマルテンサイト単 相組織が得られず、 穴拡げ率が低く、 伸びフランジ性に劣る。 鋼番号 10の鋼板では、 Mn、 Moおよび Crの合計が 2. 5 %を超えるため引張強度が高過ぎ、 穴拡げ率が低く、 最小曲げ半径が大きくなり、 伸びフランジ性や曲げ性に劣る。
表 1
Figure imgf000011_0001
iiL: mass%
表 2
鋼 マノレテンサイト 降伏強度 引張強度 伸び 穴拡げ率 最小曲げ
sxt. 備考 畨 体積率(%) YP (MPa) TS (MPa) EI (%) (%) 半径
1 100 892 1029 7.3 105 1.0 本発明例
2 100 872 1000 7.5 1 10 1.0 本発明例
3 100 882 990 7.9 1 15 Ϊ .0 本発明例
4 100 862 980 8.3 120 1.0 本発明例
5 100 882 1039 フ.2 102 1.0 本発明例
6 00 91 1 1058 7.0 100 0.5 本発明例
7 70 686 882 15.0 35 0.5 比較例
8 100 1 176 1470 6.0 60 4.0 比較例
9 50 882 1274 8.0 32 3.5 比較例
10 100 1078 1372 7.0 30 3.0 比較例
実施例 2
実施例 1の鋼番号卜 3と同じ組成を有する鋼スラブを用いて、 実施例 1と同じ条件 で冷間圧延まで行った後、 表 3に示す条件で連続焼鈍および調質圧延を行い、 鋼板 A- Hを製造した。 そして、 実施例 1と同様な方法でマルテンサイトの体積率、 引張 強度、 穴拡げ率を測定した。 また、 最近注目されている非加熱で行える機械接合へ の適用性を、 次に述べる方法で測定した剥離強度により評価した。
機械接合部の剥離強度測定:
まず、 2枚の矩形の試験片を、 長手方向が直交し、 中央部で交差するように重ね た後、 その中央部を、 図 2Aに示す円筒状のポンチ (ボンチ径: 5. 6 mm) と図 2Bに示 す底部の周辺にリング状の溝のあるダイ (ダイ径: 8 匪、 ダイ深さ: 1. 2 誦) を用 いてプレス成形する。 このとき、 2枚の試験片は、 図 2Cに示すように、 ダイ底部の 溝中へ塑性流動するので機械的に接合される [Von Hanns Peter Liebig et al : VDI-Z, 131 (1989) 95]。 その後、 図 3に示すような接合部を試験片面に垂直方向へ 弓 Iつ張って接合部が剥離するときの強度を求める。 この剥離強度と機械接合性の関 係を予め調査したところ、 剥離強度が 2. 0 kN以上であれば機械接合性が十分であつ た。
結果を表 3に示す。
本発明例である鋼板 A-Dは、 いずれもマルテンサイ卜の体積率が 100 %, 引張強度 が約 1000 MPaであり、 穴拡げ率が 100 以上と極めて良好な伸びフランジ性を有し ており、 剥離強度が 2. 0 kN以上で機械接合性にも優れている。
一方、 比較例である鋼板 Eでは焼鈍時の加熱温度が 800 °C未満のため、 鋼板 Fでは 加熱後に 20 °C/secを超える冷却速度で一次冷却されたため、 鋼板 Gでは二次冷却速 度が 500 °C/sec以下のため、 鋼板 Hでは 500 °C/secを超える二次冷却速度で冷却す る到達温度が 50 °Cを超えるため、 マルテンサイト単相組織が得られず、 引張強度 が 880 MPa未満、 穴拡げ率が 75 %未満、 剥離強度が 2. 0 kN未満である。 表 3
加熱 一次冷却二次冷却二次冷却 二次冷却 焼戻 調質 マルテン YP TS El 穴拡 剥離
鋼板 '皿 iス 迷度 開始温度 is度 終了温度 圧延 サイト体積 げ率 強度 備考
奋" (MPa) (MPa)
c) (%)
(°C) (°C/s) (°C) (°C/s) (。c) (° (%) 率(%) (%) (kN)
A 1 860 5 720 2000 20 200 0.5 100 860 1040 7.5 1 10 2.2 本発明例
B 2 870 10 740 2000 50 150 0.3 100 870 1020 8.0 1 15 2.1 本発明例
C 3 860 8 ' 730 2000 40 220 0.4 100 850 1000 7.8 1 10 2.0 本発明例
D 1 840 7 720 2000 45 180 0.5 100 900 1050 7.3 105 2.3 本発明例
E 2 780 4 670 2000 40 200 0.5 80 780 860 15.0 45 0.9 比較例
t
F 1 850 25 660 2000 40 200 0.5 70 740 840 16.0 40 0.8 比較例
G 2 830 3 720 50 40 200 0.3 50 450 750 22.0 35 0.7 比較例
H 3 840 10 700 2000 250 200 0.5 40 700 850 13.0 25 0.9 比較例

Claims

請求の範囲
1. 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 Sol.Al: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6-2. 5 %、 および残部が Feからなり、 かつ鋼板表 面より深さ方向に 10 mを超える内側部分が実質的にマルテンサイト単相組織か らなる弓 I張強度が 880-1170 MPaの超高張力冷延鋼板。
2. 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 B: 0. 0005-0. 0050 %、 および 残部が Feからなり、 かつ鋼板表面より深さ方向に 10 mを超える内側部分が実質 的にマルテンサイト単相組織からなる引張強度が 880- 1 170 MPaの超高張力冷延鋼板。
3.本質的に、 mass%で、 C: 0.01-0.07 、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 % 以下、 SoLAl: 0. 01-0. 1 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた少なく とも 1種の元素の合計が 1. 6-2. 5 B: 0. 0005-0. 0050 %, および残部が Feからな り、 かつ鋼板表面より深さ方向に 10 mを超える内側部分が実質的にマルテンサ ィト単相紙織からなる引張強度が 880 - 1170 MPaの超高張力冷延鋼板。
4. 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6-2. 5 %、 B: 0. 0005-0. 0050 %、 Ti : (48/14) X [N] -3 X (48/14) X [N] %、 および残部が Feからなり、 かつ鋼板表面より深さ方向に 10 mを超える内側部分が実質的にマルテンサイト単相組織からなる引張強度が 880-1170 MPaの超高張力冷延鋼板。
5. 本質的に、 mass%で、 C: 0.01-0.07 、 Si: 0.3 %以下、 P: 0.1 %以下、 S 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6-2. 5 、 Nb: 0. 001-0. 04 %、 および残部が Feか らなり、 かつ鋼板表面より深さ方向に 10 を超える内側部分が実質的にマルテ ンサイト単相組織からなる引張強度が 880-1170 MPaの超高張力冷延鋼板。
6. 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S: 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6-2. 5 ° B: 0. 0005-0. 0050 %、 Nb: 0. 001- 0. 04 °ん および残部が Feからなり、 かつ鋼板表面より深さ方向に 10 mを超える 内側部分が実質的にマルテンサイト単相組織からなる引張強度が 880- 1170 MPaの超 高張力冷延鋼板。
7. 本質的に、 mass%で、 C: 0.01-0.07 %、 Si: 0.3 %以下、 P: 0.1 %以下、 S 0.01 %以下、 SoLAl: 0. 01-0. 1 %、 N: 0. 0050 %以下、 Mn、 Cr、 Moの中から選ばれた 少なくとも 1種の元素の合計が 1. 6-2. 5 %、 B: 0. 0005-0. 0050 ¾, Ti: (48/14) X [N] -3 X (48/14) X [N] ° Nb: 0. 001-0. 04 %、 および残部が Feからなり、 かつ鋼板 表面より深さ方向に 10 mを超える内側部分が実質的にマルテンサイト単相組織 からなる引張強度が 880- 1170 MPaの超高張力冷延鋼板。
8. 請求の範囲 1の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800-890 °Cに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度が 880-1170 MPaの超高張力冷延鋼板の製造方法。
9. 請求の範囲 2の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800-890 °Cに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度力880-1170 MPaの超高張力冷延鋼板の製造方法。
10. 請求の範囲 3の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800- 890 °Cに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度が 880- 1170 MPaの超高張力冷延鋼板の製造方法。
11. 請求の範囲 4の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800-890 °Cに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度が 880- 1170 MPaの超高張力冷延鋼板の製造方法。
12. 請求の範囲 5の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800- 890 DCに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度が 880- 1170 MPaの超高張力冷延鋼板の製造方法。
13. 請求の範囲 6の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800- 890 °Cに加熱後、 20 °C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する弓 I張強度が 880- 1170 MPaの超高張力冷延鋼板の製造方法。
1 . 請求の範囲 7の成分組成を有する鋼スラブを製造する工程と、
前記スラブを熱間圧延後、 冷間圧延して鋼板を製造する工程と、
前記鋼板を連続焼鈍法により 800-890 °Cに加熱後、 20 "C/sec以下の冷却速度 で一次冷却し、 680-750 °Cから 500 °C/secを超える冷却速度で 50 °C以下まで二次 冷却する工程と、
を有する引張強度が 880- 1170 MPaの超高張力冷延鋼板の製造方法。
15. 請求の範囲 1の超高張力冷延鋼板を用いた自動車シート用骨格部材。
16. 請求の範囲 2の超高張力冷延鋼板を用いた自動車シ一ト用骨格部材。
17. 請求の範囲 3の超高張力冷延鋼板を用いた自動車シ一ト用骨格部材。
18. 請求の範囲 4の超高張力冷延鋼板を用いた自動車シ一ト用骨格部材。
19. 請求の範囲 5の超高張力冷延鋼板を用いた自動車シ一ト用骨格部材。
20. 請求の範囲 6の超高張力冷延鋼板を用いた自動車シート用骨格部材。
21. 請求の範囲 7の超高張力冷延鋼板を用いた自動車シート用骨格部材。
PCT/JP2001/007822 2000-09-12 2001-09-10 Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production WO2002022904A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60138204T DE60138204D1 (de) 2000-09-12 2001-09-10 Ultra hochfestes kaltgewalztes stahlblech und sein herstellungsverfahren
EP01963547A EP1325966B1 (en) 2000-09-12 2001-09-10 Super-high strength cold-rolled steel sheet and method for production thereof
US10/108,749 US6695933B2 (en) 2000-09-12 2002-03-28 Ultra-high strength cold rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000276891 2000-09-12
JP2000-276891 2000-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/108,749 Continuation US6695933B2 (en) 2000-09-12 2002-03-28 Ultra-high strength cold rolled steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2002022904A1 true WO2002022904A1 (fr) 2002-03-21

Family

ID=18762294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007822 WO2002022904A1 (fr) 2000-09-12 2001-09-10 Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production

Country Status (5)

Country Link
US (1) US6695933B2 (ja)
EP (1) EP1325966B1 (ja)
CN (1) CN1146672C (ja)
DE (1) DE60138204D1 (ja)
WO (1) WO2002022904A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104499A1 (ja) * 2002-06-10 2003-12-18 Jfeスチール株式会社 超高強度冷延鋼板の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593133B1 (en) * 1998-07-06 2003-07-15 Nsgene A/S Neurotrophic factors
US20040238082A1 (en) * 2002-06-14 2004-12-02 Jfe Steel Corporation High strength cold rolled steel plate and method for production thereof
US20060037677A1 (en) * 2004-02-25 2006-02-23 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
US20060191603A1 (en) * 2005-02-25 2006-08-31 Popielas Frank W Lower strength material for MLS active layers
KR100716342B1 (ko) 2005-06-18 2007-05-11 현대자동차주식회사 마르텐사이트형 초고강도 냉연강판 조성물 및 이의 제조방법
US7846275B2 (en) * 2006-05-24 2010-12-07 Kobe Steel, Ltd. High strength hot rolled steel sheet having excellent stretch flangeability and its production method
JP5637342B2 (ja) * 2008-09-18 2014-12-10 国立大学法人 岡山大学 ホットプレス加工を施した鋼板部材及びその製造方法
EP2341799A4 (en) * 2008-10-16 2012-04-04 Johnson Controls Tech Co SEAT STRUCTURE OF A SINGLE STRENGTH AND METHOD USING COLD FORMING TO CREATE SEAT STRUCTURES
DE102010012830B4 (de) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
EP2649192A4 (en) 2010-12-08 2014-05-14 Expression Pathology Inc SRM / MRM TEST FOR TRUNKED HER2
JP2013181183A (ja) * 2012-02-29 2013-09-12 Jfe Steel Corp 降伏強度の面内異方性の小さい高強度冷延鋼板およびその製造方法
KR101630975B1 (ko) * 2014-12-05 2016-06-16 주식회사 포스코 구멍 확장성이 우수한 고항복비형 고강도 냉연강판 및 그 제조방법
CN109652625B (zh) * 2019-01-15 2021-02-23 象山华鹰塑料工程有限公司 一种汽车车窗用超高强度冷轧钢板制造工艺
CN112063816B (zh) * 2019-06-10 2021-11-19 育材堂(苏州)材料科技有限公司 一种高强度钢的热处理方法和由此获得的产品
CN114107794B (zh) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法
US20230313332A1 (en) * 2020-08-31 2023-10-05 Baoshan Iron & Steel Co., Ltd. High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130782A (ja) * 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713145A (en) * 1980-06-23 1982-01-23 Sumitomo Metal Ind Ltd High-tensile steel sheet
JPS60224717A (ja) 1984-04-20 1985-11-09 Nippon Steel Corp 冷間加工性と溶接性の優れた高張力冷延鋼板の製造方法
JPS61261462A (ja) 1985-05-13 1986-11-19 Kobe Steel Ltd 伸びフランジ加工性にすぐれたレ−ザ加工用鋼板
JPH0826401B2 (ja) 1990-12-29 1996-03-13 日本鋼管株式会社 加工性及び衝撃特性に優れた超高強度冷延鋼板の製造法
JP2528387B2 (ja) 1990-12-29 1996-08-28 日本鋼管株式会社 成形性及びストリップ形状の良好な超高強度冷延鋼板の製造法
US5123969A (en) * 1991-02-01 1992-06-23 China Steel Corp. Ltd. Bake-hardening cold-rolled steel sheet having dual-phase structure and process for manufacturing it
JP2826058B2 (ja) 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
CN1087357C (zh) * 1997-07-28 2002-07-10 埃克森美孚上游研究公司 具有良好韧性的超高强度、可焊接、基本无硼的钢
TW459053B (en) * 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength dual phase steels with excellent cryogenic temperature toughness
JP3718348B2 (ja) * 1998-07-31 2005-11-24 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130782A (ja) * 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1325966A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104499A1 (ja) * 2002-06-10 2003-12-18 Jfeスチール株式会社 超高強度冷延鋼板の製造方法
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength

Also Published As

Publication number Publication date
US6695933B2 (en) 2004-02-24
DE60138204D1 (de) 2009-05-14
EP1325966A1 (en) 2003-07-09
EP1325966A4 (en) 2006-05-31
CN1386139A (zh) 2002-12-18
CN1146672C (zh) 2004-04-21
EP1325966B1 (en) 2009-04-01
US20030005986A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
EP3555336B1 (en) High strength and high formability cold-rolled and heat-treated steel sheet, manufacturing method, and resistance spot welded joint
JP3729108B2 (ja) 超高張力冷延鋼板およびその製造方法
JP4306202B2 (ja) 高張力冷延鋼板及びその製造方法
KR102119332B1 (ko) 고강도 강판 및 그 제조 방법
JP5251208B2 (ja) 高強度鋼板とその製造方法
US20080000555A1 (en) High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
JP4530606B2 (ja) スポット溶接性に優れた超高強度冷延鋼板の製造方法
WO2002022904A1 (fr) Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production
KR102020407B1 (ko) 고항복비형 고강도 강판 및 이의 제조방법
JPH07197183A (ja) 水素脆化の発生しない超高強度薄鋼板及び製造方法
EP3561121B1 (en) Cold-rolled steel sheet having excellent bendability and hole expandability and method for manufacturing same
JPH1060593A (ja) 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JP4156889B2 (ja) 伸びフランジ性に優れた複合組織鋼板およびその製造方法
JP4525383B2 (ja) 焼付硬化特性に優れる低降伏比高強度鋼板およびその製造方法
JP4265152B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP4265153B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
KR102440772B1 (ko) 성형성이 우수한 고강도강판 및 그 제조방법
JP2002241897A (ja) 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
KR20230049074A (ko) 성형성이 우수한 고강도 냉연강판 및 그 제조 방법
JPH10237547A (ja) 高延性高強度冷延鋼板及びその製造方法
KR102698066B1 (ko) 고강도 강판, 고강도 부재 및 그것들의 제조 방법
JPH0790488A (ja) 耐水素脆化特性の優れた超高強度冷延鋼板とその製造方法
JP3551878B2 (ja) 高延性高穴拡げ性高張力鋼板およびその製造方法
CN116601315A (zh) 高强度冷轧钢板、熔融镀锌钢板及合金化熔融镀锌钢板、以及它们的制造方法
JP2621744B2 (ja) 超高張力冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018021611

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10108749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001963547

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001963547

Country of ref document: EP