WO2002022343A1 - Feuille etiree en polyolefine et son procede de production - Google Patents

Feuille etiree en polyolefine et son procede de production Download PDF

Info

Publication number
WO2002022343A1
WO2002022343A1 PCT/JP2001/007520 JP0107520W WO0222343A1 WO 2002022343 A1 WO2002022343 A1 WO 2002022343A1 JP 0107520 W JP0107520 W JP 0107520W WO 0222343 A1 WO0222343 A1 WO 0222343A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
polyolefin
stretching
stretched
rolling
Prior art date
Application number
PCT/JP2001/007520
Other languages
English (en)
French (fr)
Inventor
Katsuo Matsuzaka
Koichi Adachi
Michiaki Sasayama
Koji Yamaguchi
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to JP2002526575A priority Critical patent/JPWO2002022343A1/ja
Priority to CA002421642A priority patent/CA2421642C/en
Priority to US10/380,103 priority patent/US7025917B2/en
Priority to EP01961242A priority patent/EP1329303B1/en
Priority to DE60138206T priority patent/DE60138206D1/de
Publication of WO2002022343A1 publication Critical patent/WO2002022343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a stretched polyolefin sheet having excellent creep resistance, high strength and high elastic modulus, and a method for producing the same.
  • Conventional technology
  • the ultrahigh molecular weight ethylene / ⁇ -olefin copolymer is expensive, the cost of the stretched polyolefin sheet is high. In addition, it was difficult to obtain a shape other than a thread by the gel spinning method. Furthermore, since a step of removing the solvent is required, the productivity is low in this regard, and the manufacturing cost has to be high.
  • U.S. Pat. No. 5,505,900 discloses a manufacturing method in consideration of the improvement in productivity and creep resistance.
  • a resin composition comprising polyethylene and a photoinitiator is stretched and, at the same time, crosslinked by irradiation with ultraviolet rays.
  • the stretching method disclosed in USP 5, 505, 900 is a uniaxial stretching method without performing a rolling treatment, and it has been difficult to stretch at a high magnification.
  • the problem is that it is difficult to effectively perform cross-linking by ultraviolet light because the transmittance of the molding material during cross-linking is low.
  • an object of the present invention is to obtain a polymer without using an ultrahigh molecular weight polyolefin which is inferior in moldability such as extrusion and is expensive.
  • Another object of the present invention is to provide a stretched polyolefin sheet having excellent creep resistance, excellent strength and elastic modulus, and excellent productivity.
  • a polyolefin having a weight-average molecular weight in the range of 100,000 to 500,000 and a melting point of Tm / ° C is extruded into a sheet.
  • the film in the stretching step, is stretched at a temperature of (T m — 60) ° C. or more and less than T m ° C. to a stretching ratio of 1.3 times or more.
  • the stretching step is a multi-stage stretching step using a plurality of stretching zones, and the stretching ratio in each stretching zone is lowered as it goes to a later stage. Since a plurality of stretching zones are provided, necking due to variations in the dimensions of the rolled sheet, variations in the rolling ratio, uneven heating, fluctuations in the outlet and rotation speed of the take-up roll, etc. can be suppressed. ⁇
  • a delivery roll and a take-up roll as the roll, a delivery roll and a take-up roll;
  • a plurality of contact rolls rotating at a constant speed are used, and the sheet is stretched by applying a frictional force in a stretching direction to the sheet by the feeding port, the take-off roll, and the plurality of contact rolls.
  • a continuous contact length L in a stretching direction between each roll used for stretching and the sheet is set to 500 mm or less. I have. Since the contact length between each roll and the sheet in the stretching zone is 50 Omm or less, cracks and cracks in the stretched sheet are less likely to occur, and stable stretching can be performed.
  • the raw sheet having a thickness of t mm is rolled at a rolling magnification of X times, and x / 5 t is applied to the raw sheet before rolling.
  • Rolling is performed while applying a tensile stress in the range of MPa to 2 OMPa. Since a constant tensile stress is applied to the raw sheet, rolling and wrinkling are unlikely to occur in the raw sheet, and rolling can be performed stably.
  • a raw sheet having a thickness of t mm is rolled at a rolling magnification of X times, and a rolled sheet has Xt / 5 OMP a
  • the rolling sheet is taken in such a manner that the above tensile stress is applied.
  • slip between the roll and the sheet in the rolling process is reduced, so that the rolling can be performed stably and the productivity is increased.
  • the polyolefin is crosslinked in the stretching step or after the stretching. By performing the cross-linking treatment in the stretching step or after the stretching, the cleave resistance and the heat resistance are further enhanced.
  • a photoinitiator in the step of obtaining the raw sheet, a photoinitiator is mixed with polyolefin to form a photoinitiator-containing raw material.
  • An anti-sheet is obtained, and after the stretching step or after the stretching, the sheet is irradiated with ultraviolet rays to crosslink the polyolefin. .
  • the sheet has a total light transmittance of 60% or more upon irradiation with ultraviolet rays.
  • a stretched sheet having a high total light transmittance can be obtained. Therefore, the ultraviolet energy at the time of ultraviolet irradiation is effectively used for the crosslinking reaction, and particularly when a thick stretched sheet is obtained, the crosslinking can be performed to the inside in the thickness direction.
  • the polyolefin in the stretching step or after the stretching, is crosslinked by irradiating the sheet with an electron beam.
  • a polyfunctional unsaturated compound in the extrusion step, is blended with polyolefin to obtain a polyfunctional unsaturated compound-containing raw sheet, and the stretching step Alternatively, after stretching, the polyolefin is crosslinked by the polyfunctional unsaturated compound. Since the crosslinking reaction is performed using a polyfunctional unsaturated compound having higher reactivity than polyolefin, the polyfunctional unsaturated compound becomes a crosslinking point, and the polyolefin molecule is effectively crosslinked.
  • polyethylene or polypropylene is used as the polyolefin.
  • the polyolefin is an ethylene- ⁇ -olefin copolymer, and the amount of ⁇ -olefin having 3 or more carbon atoms copolymerized per mole of the copolymer molecule is as follows. 0.1 to 3 moles are used.
  • an ethylene ⁇ -olefin copolymer in particular, an ethylene propylene copolymer or an ethylene 1-butene copolymer, in which a predetermined amount of phosphorein is copolymerized, may be used.
  • a stretched polyolefin sheet having excellent cleave resistance can be obtained.
  • ethylene 0.0! -Olefin copolymer an ethylene / propylene copolymer or an ethylene / 1-butene copolymer is preferably used.
  • a polyolefin having a weight average molecular weight in the range of 100,000 to 500,000, a thickness stretching ratio of 5 times or more of a width stretching ratio, and a stretching ratio of 15 times is provided.
  • the polyolefin is crosslinked.
  • the gel fraction of the stretched polyolefin sheet is 20% or more.
  • FIG. 1 is a diagram showing a schematic configuration of an apparatus for producing a stretched polyolefin sheet used in the production method of Example 1.
  • FIG. 2 is a diagram showing a schematic configuration of an apparatus for producing a stretched polyolefin sheet used in the production method of Example 2.
  • FIG. 3 is a diagram showing a schematic configuration of a polyolefin stretched sheet manufacturing apparatus used in the manufacturing method of Example 12.
  • FIG. 4 is a diagram showing a schematic configuration of a polyolefin stretched sheet manufacturing apparatus used in the manufacturing method of Example 15;
  • FIG. 5 is a schematic configuration diagram for explaining a method of performing a surface melting treatment on the surface of a stretched polyolefin sheet.
  • FIG. 6 is a schematic perspective view showing a polyolefin stretched sheet provided with an adhesive layer.
  • FIG. 7 is a partially cutaway perspective view showing an example of the configuration of a high-pressure pipe in which the stretched polyolefin sheet according to the present invention is used as a reinforcing material.
  • FIG. 8 is a perspective view showing a laminate obtained using the stretched polyolefin sheet according to the present invention. Description of the invention
  • the polyolefin used in the present invention includes ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene having a weight average molecular weight of 100,000 to 500,000.
  • ⁇ -olefins alone or two or more polymers, such as polyethylene, polypropylene, and ethylene / ⁇ -olefin copolymers.
  • an ethylene / ⁇ -olefin copolymer is used.
  • Examples of the above-mentioned olefin include propylene, 1-butene, 11-pentene, 4-methyl-1-pentene, 11-otaten, 1-decene and the like.
  • propylene or 1-butene having 3 to 4 carbon atoms is preferably used as ⁇ -olefin, and among them, creep resistance can be effectively increased.
  • 1-butene is particularly preferred.
  • monoolefin only one kind may be used, or two or more kinds may be used in combination.
  • the content of ⁇ -olefin in the ethylene / ⁇ -olefin copolymer is 0.1 to 3.0 mol, preferably 0.3 to 1.0, per 1 mol of ethylene / ⁇ -olefin copolymer. It is a monole. If the amount is less than 0.1 mol, the fatigue resistance and cracking resistance of the finally obtained polyolefin stretched sheet are reduced. In some cases, the effect of enhancing the reapability is not sufficient, and if it exceeds 3 mol, the stretch formability and the roll formability are deteriorated, and it may be difficult to obtain a polyolefin stretch sheet having a draw ratio of 15 times or more. is there.
  • the method for measuring the content of ⁇ -olefin in the copolymer is as follows: in the MNR spectrum measured by a nuclear magnetic resonance apparatus, the vicinity of the peak of the tertiary carbon of hyolefin and the methylene chain of the main chain. A method of calculating from the area ratio near the carbon peak is used.
  • the polyolefin has a weight average molecular weight of 100,000 to 500,000. If the weight average molecular weight is less than 100,000, it becomes brittle, the stretchability becomes poor, and a stretched polyolefin sheet having sufficient strength or creep resistance cannot be obtained. Conversely, if it exceeds 500,000, the melt viscosity increases, and the heat-melt molding processability such as extrusion molding decreases, and it becomes necessary to perform stretching using a large amount of a solvent or a plasticizer, and the stretching process becomes complicated. Become.
  • MI is preferably in the range of 0.01 to 10 gZ10 minutes.
  • Ml refers to an index indicating the melt viscosity of a thermoplastic resin defined in JIS K6706.
  • the above-mentioned polyolefin may further be copolymerized with other components, for example, vinyl acetate, vinyl alcohol, (meth) acrylic acid, (meth) acrylate and the like. If the content of such other components is too large, stretch moldability will be poor, and high-magnification stretch mold will be difficult. Therefore, when other components are further copolymerized, it is desirable that the amount of the other components is 1 mol or less, more preferably 0.5 mol or less, per 1 mol of polyolefin.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the ethylene / ⁇ -olefin copolymer is desirably 20 or more.
  • Hiolefi As the content of the resin increases, the melt viscosity increases, and the hot-melt molding processability such as extrusion molding becomes poor, and the stretch moldability becomes poor. For this reason, it may be difficult to stretch-mold the film in a uniaxial direction with a draw ratio of 15 times or more. In addition, a large stretching tension is required at the time of the stretching molding, and a load is applied to the apparatus.
  • a photoinitiator is added to the polyolefin.
  • the photoinitiator thioxanthone, benzophenone, acetophenone, benzylbenzoine, Michler's ketone and the like are used without particular limitation.
  • a hydrogen abstraction type photoinitiator is preferred, and benzophenone, thioxanthone and the like are therefore preferably used.
  • the amount of the photoinitiator to be added is usually preferably in the range of 0:! To 5 parts by weight based on 100 parts by weight of the polyolefin.
  • a polyfunctional unsaturated compound may be used to crosslink polyolefin.
  • the polyfunctional unsaturated compound gives a crosslinked structure inside the polyolefin stretched sheet, and also has an effect of improving the hot melt processability and the stretch formability at the time of extrusion.
  • the polyfunctional unsaturated compound include polyfunctional (meth) acrylates, gen-based oligomers, and olefin-based oligomers obtained by polymerizing unsaturated compounds.
  • polyfunctional (meth) acrylates examples include diaryl phthalate, arylated hexyl di (meth) acrylate, acrylated isocyanurate, bis (atalyloxy neopentyl glycol) adipate, and bisphenol phenol.
  • the gen-based oligomer examples include a butadiene oligomer, an isoprene oligomer, and a lip-mouthed pren oligomer.
  • the double bonds of these gen-based oligomers may be partially saturated by the addition of hydrogen or other compounds, but at least 2 moles per mole of gen-based oligomer are required to give a crosslinked structure to the stretched sheet. It is preferable that the above double bonds remain.
  • the molecular weight of the gen oligomer is too large In addition to this, not only the dispersibility in polyolefins, especially in ethylene- ⁇ -olefin copolymer, is deteriorated, but also the stretch moldability is deteriorated. Therefore, the weight average molecular weight of the gen-based oligomer is preferably 50,000 or less, more preferably 10,000 or less.
  • Examples of the oligomer based on which the unsaturated compound is copolymerized include propylene oligomers, ethylene-propylene random copolymers, ethylene-butylene copolymers, and molecular terminals of olefin-based oligomers such as gen-based oligomers.
  • Examples include compounds modified with (meth) atalylate such as methacrylic acid methyl ester or a maleic acid compound such as maleic anhydride, and compounds modified with epoxy or urethane.
  • the weight average molecular weight is preferably 50,000 or less, more preferably 10,000 or less, from the viewpoint of dispersibility in an ethylene- ⁇ -olefin copolymer and stretch moldability.
  • polyfunctional unsaturated compounds they are particularly excellent in dispersibility, heat resistance in the production process, polymerization reactivity, non-volatility, etc., and therefore ethylene glycol methacrylate, dilinolephthalate, trimethylolpropane Trimethacrylate, triaryl cyanurate, triaryl isocyanurate and the like are preferred.
  • the addition amount is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of polyolefin. If the amount is less than 0.1 part by weight, the number of cross-linking points of the polyolefin may be insufficient and a sufficient cross-linked structure may not be provided. If the amount exceeds 20 parts by weight, the polyfunctional unsaturated compound may be used. May remain without reacting sufficiently.
  • the stretched polyolefin sheet according to the present invention first, weight The polyolefin having an average molecular weight in the range of 100,000 to 500,000 is extruded to obtain a sheet-shaped raw sheet.
  • the above-described polyolefin is charged into an extruder, melt-kneaded in an extruder, and formed into a sheet.
  • the sheet forming method is not particularly limited, and a normal roll forming method, a calendar forming method, a molding method using a cooling mold, or the like can be used.
  • the thickness of the raw sheet is preferably in the range of 0.5 to 15 mm. If the raw sheet is too thick, a large pressing force or pulling force is required to crush the raw sheet with rolling rolls, etc. in the subsequent rolling process, and uniform rolling in the width direction due to bending of the rolling roll etc. Can be difficult. Conversely, if the raw sheet is too thin, the thickness of the compact after rolling, that is, the thickness of the rolled sheet, becomes too thin, making uniform rolling difficult, and the life of the rolling rolls due to contact between the rolling rolls. May be shorter.
  • a photoinitiator and / or a polyfunctional unsaturated compound are added to the polyolefin in the step of obtaining the raw sheet, and the mixture is melt-kneaded in an extruder.
  • the photoinitiator and Z or the polyfunctional unsaturated compound are generally degraded by heat and easily gelled, a shorter residence time in the extruder is preferred.
  • a method of injecting the photoinitiator and / or the polyfunctional unsaturated compound into polyolefin in a molten state in an extruder is preferably used.
  • the melting temperature is preferably at least 130 ° C, more preferably 14 ° C. 0 ° C or more. If the melting temperature is lower than 13'0 ° C, the melting of the polyolefin becomes incomplete, the compatibility with the polyfunctional unsaturated compound is deteriorated, and the stretchability in the subsequent stretching step is reduced. May decrease. Also, if the melting temperature is too high, the polyolefin and the photoinitiator may decompose or evaporate, so the melting temperature is desirably 250 ° C or less.
  • the raw sheet is rolled (roll-drowing) so that the rolling magnification is at least 5 times, whereby a rolled sheet is obtained.
  • rolling refers to a process of deforming a sheet by applying pressure so as to reduce the thickness of the sheet without substantially changing the width of the sheet.
  • This rolling method is not particularly limited, a method that is usually performed, that is, throwing the raw sheet between a pair of rolling rolls rotating in opposite directions having a clearance smaller than the thickness of the raw sheet, Examples of the method include reducing the thickness of the raw material and taking out the raw material while extending the raw material.
  • the temperature of the rolling roll is preferably in the range of (Tm ⁇ 40) ° C or higher and lower than Tm ° C, more preferably (Tm ⁇ 30) ° C. As described above, the temperature is lower than Tm ° C, and more preferably (Tm ⁇ 20) ° C to (Tm ⁇ 5) ° C.
  • the melting point of polyolefin refers to the maximum point of the endothermic peak associated with melting, which is observed when performing thermal analysis with a differential scanning calorimeter (DSC).
  • the temperature of the raw sheet is preferably in the range of (T m ⁇ 60) ° C. to (T m ⁇ 5) ° C., more preferably (T m ⁇ 50) ° C. to (T m ⁇ 10). ) ° C, more preferably (Tm_40) to (Tm-15) ° C.
  • the pressure is preferably in the range of 100 kgf Zmm to 300 kgf / mm, and more preferably in the range of 30 to 100 kgf gmm.
  • the rolling ratio for rolling the raw sheet is at least 5 times, preferably 7 times or more. If the rolling ratio is less than 5 times, the effect of suppressing necking during subsequent stretching cannot be obtained, or the high-magnification stretching cannot be performed, and the effect of performing the rolling process cannot be obtained. May not be possible. In addition, the subsequent stretching process will be burdensome.
  • the rolling ratio is defined by the following equation. There is no particular upper limit to the rolling ratio, but the higher the rolling ratio, the more load is applied to the rolling equipment.
  • Rolling ratio (cross-sectional area of raw sheet) / (cross-sectional area of rolled sheet obtained by rolling)
  • rolling ratio (thickness of raw sheet) / (thickness of rolled sheet obtained from rolling) may be used. That is, in the rolling step, the thickness of the sheet is reduced without substantially changing the width of the sheet.
  • the rolling ratio is determined by rolling conditions such as the temperature of the rolling roll, the temperature of the raw sheet, and the pressing force of the rolling roll.
  • Rolling roll diameter Although the rolling ratio slightly depends on the thickness of the sheet, the effects of the temperature of the rolling roll, the temperature of the raw sheet and the pressing force of the rolling roll on the rolling ratio are considerably large. In comparison, it seems that the effect of the temperature of the rolling roll on the rolling ratio is greater.
  • rolling is performed while applying a constant tension to the raw sheet to be rolled.
  • the original sheet does not meander, and the rolling is performed stably.
  • Such a constant tension depends on the thickness of the raw sheet, and the thinner the raw sheet, the more difficult it is to stabilize during rolling. In any case, if the tension is applied to the material sheet too much, the material sheet is stretched before the pressure is obtained, which may cause problems such as necking.
  • slip may occur between the raw sheet and the rolling roll during roll forming. If the slip is too large, not only productivity is reduced, but also stable rolling becomes difficult. Therefore, in order to prevent slippage or reduce slippage, it is preferable to install a take-up roll or the like behind the rolling mill to take up the rolled sheet.
  • the tensile stress by the take-off roll is preferably Xt / 50 MPa or more.
  • the rotation speed of the pair of rolling rolls used for rolling may be the same or different. It is preferable that the rotation speeds of the two rolling rolls be different from each other in order to easily perform the rolling at a high rolling ratio and to reduce the required pressing force.
  • the ratio of the speed of the relatively high-speed roll to the speed of the low-speed roll is preferably in the range of 1.1 to 3.0.
  • the above-mentioned rolling treatment may be performed only once, or may be performed twice or more.
  • the cross-sectional area of the rolled sheet in the above equation for calculating the rolling ratio refers to the cross-sectional area of the rolled sheet after the final rolling.
  • the rolled sheet obtained in the rolling step is then stretched and stretched so that the total stretch ratio becomes 15 times or more.
  • the stretching method is not particularly limited, and a usual roll stretching method or zone stretching method can be used.
  • a special equipment is not required, and since the draw ratio can be easily controlled, a roll drawing method excellent in productivity is used.
  • an appropriate method such as hot air heating, hot water heating, infrared heating, and microwave heating can be used.
  • hot air heating is preferably used because the device is simple and temperature control is easily performed.
  • the temperature of the sheet at the time of stretching is preferably in the range of (T m ⁇ 60) ° C. or more and less than T m ° C., and more preferably (T m ⁇ 50) to (T m ⁇ 5).
  • the range of C is preferable, and the range of (T m ⁇ 40) to (T m ⁇ 10) ° C. is more preferable.
  • the sheet may be easily broken at the time of stretching, and the sheet may be whitened and the density may be reduced. Conversely, if the temperature of the sheet is too high, not only the sheet tends to break, but also necking (partial variation in the draw ratio), which causes local stretch, tends to occur.
  • the above-mentioned total stretching ratio refers to the product of the rolling ratio in the rolling step and the stretching ratio in the stretching step.
  • Total stretching ratio (rolling ratio) X (stretching ratio in the stretching step) Further, the stretching ratio in the tensile stretching in the stretching step is preferably 1.3 to 4 times. If the stretching ratio in the stretching step is too small, the strength, elastic modulus and grease resistance of the obtained polyolefin sheet may not be able to be increased, while if too large, the sheet tends to break during stretching. Sometimes.
  • the number of times of stretching in the stretching step is not particularly limited, but preferably, a multi-stage stretching method is used.
  • the multi-stage stretching method is a method in which stretching is performed at a low magnification in each of a plurality of stretching zones. If the number of stretching is small, netting may easily occur. However, if the number of stretching zones is too large, the uniform stretching property is enhanced and stable molding is possible, but the equipment becomes large.
  • the number of stretching is 2 to 20 times, preferably 3 to 15 times, and more preferably 4 to 10 times.
  • a feeding pinch roll In the case of performing multi-stage stretching, it is desirable to provide a feeding pinch roll, a take-off pinch roll, and at least one, preferably a plurality of contact rolls rotating at a constant speed between these rolls.
  • a contact hole By providing such a contact hole, uniform stretchability can be enhanced, and stable stretch molding can be performed.
  • the contact roll stretches by applying a frictional force to the sheet without being pinched.
  • the contact roll may be connected to the feeding roll and the z or take-up roll by a connecting member composed of a gear, a chain, a pulley, a belt, or a combination thereof.
  • a connecting member composed of a gear, a chain, a pulley, a belt, or a combination thereof.
  • Load may be applied.
  • the sheet In the stretching process, the sheet is stretched while receiving frictional force in the stretching direction (MD direction) from each roll. At this time, since the width of the sheet is reduced while being in contact with each roll, the sheet receives a frictional force in a direction perpendicular to the stretching direction (TD direction). Also, as the stretching ratio increases and the shrinkage in the width direction due to stretching increases, the sheet tends to be vertically torn or cracked due to a large frictional force in the TD direction due to the roll. This problem becomes more pronounced as the sheet width increases. For example, it becomes very difficult to form a stretched sheet having a width of 100 mm or more.
  • the contact length L is 50 Omm or less, more preferably. Is less than 350 mm.
  • the continuous contact length of one roll is within the above range.
  • the raw sheet is stretched so that the total stretching ratio becomes 15 times or more, and the stretched polyolefin sheet according to the present invention is obtained.
  • the rolling step of rolling the raw sheet to 5 times or more as described above the tensile stretching is performed in the stretching step, so that the stretching ratio of the tensile stretching in the stretching step can be reduced, and accordingly, A raw sheet comprising a polyolefin raw material having a molecular weight in the range of 100,000 to 500,000 can be stably drawn to a total draw ratio of 15 times or more.
  • the polyolefin stretched sheet thus obtained is described later.
  • the crosslinked structure is preferably introduced into the stretched polyolefin sheet.
  • the crosslinking method is not particularly limited. (1) An ultraviolet crosslinking method in which the above-mentioned photoinitiator is contained in the raw sheet and crosslinking is performed by irradiating ultraviolet rays, and (2) a method of irradiating an electron beam. (3) a method in which a silane graft polymer is contained in a sheet and a hot water treatment is performed; and (4) a peroxide is contained in the sheet and the sheet is heated to a decomposition temperature of the peroxide. A heating method and the like can be given.
  • the radical generated by irradiation is effectively used for the crosslinking reaction. Therefore, the above-mentioned polyfunctional unsaturated compound is contained in the raw sheet as a crosslinking aid. It is preferable to keep it.
  • the methods (1) and (2) are preferable because they are easy to control.
  • the cross-linking treatment is preferably performed during or after the stretching, and is preferably performed after the stretching of 0.8 times or more of the total stretching ratio. If the cross-linking treatment is performed at a time point less than 0.8 times the total stretching ratio, the load in subsequent stretching increases, and the sheet may be broken.
  • the above-mentioned photoinitiator is contained in the raw sheet in advance. It is preferable that the above-mentioned polyfunctional unsaturated compound is also contained in the sheet in order to increase the crosslinking efficiency.
  • the amount of ultraviolet irradiation depending on the sheet thickness and permeability, peak irradiance 2 OmW / cm 2 or more, the amount of light 5 0 m J / cm 2 or more. If the amount of UV irradiation is small, the crosslinking reaction does not proceed sufficiently, and the creep resistance may not be sufficiently increased.
  • the irradiation amount of the electron beam is usually 1 to 5 OMrad, preferably 3 to 30 Mrad, which varies depending on the composition and thickness of the sheet. If the amount of electron beam irradiation is less than IMrad, the cross-linking reaction may not proceed sufficiently and the creep resistance may not be sufficiently increased.If it is larger than 50 Mrad, the strength is reduced due to cleavage of the polyolefin main chain. Sometimes. Further, in order to enhance the crosslinking efficiency, it is preferable that the above-mentioned polyfunctional unsaturated compound is contained in the sheet also in the electron beam irradiation method.
  • the silane graft polymer is not particularly limited, and examples thereof include silane graft polyethylene and silane graft polypropylene.
  • the silane graft polymer can be obtained, for example, by graft-modifying the polymer with an unsaturated silane compound.
  • the above-mentioned unsaturated silane compound refers to a compound represented by the general formula Rl S i R2 m Y 3 _ m.
  • m is 0, 1, or 2.
  • R1 represents an alkenyl group such as a vinyl group, an aryl group, a propenyl group, a cyclohexenyl group; a glycidyl group; an amino group; a methacryl group; a ⁇ -chloroethyl group; Organic functional groups such as alkyl groups.
  • R2 represents an aliphatic saturated hydrocarbon group or an aromatic hydrocarbon group, for example, a methyl group, an ethyl group, a propyl group, a decyl group, a phenyl group and the like.
  • represents a hydrolyzable organic functional group, such as a methoxy group, Examples thereof include an ethoxy group, a formyloxy group, an acetoxy group, and a propionoxyarylamino group.
  • Ys may be the same or different.
  • A is preferably an aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
  • a general production method is used and is not particularly limited.
  • polyethylene Rl Si R2 Y 2 (where R1 is an olefinic unsaturated monovalent hydrocarbon group or hydrocarbonoxy group, and each ⁇ is a hydrolyzable organic functional group. And R2 is a group R1 or a group 2.)
  • R1 is an olefinic unsaturated monovalent hydrocarbon group or hydrocarbonoxy group, and each ⁇ is a hydrolyzable organic functional group.
  • R2 is a group R1 or a group 2.
  • the silane graft polymer having a silyl group is hydrolyzed into a hydroxyl group by contact with water, and the hydroxyl groups of different molecules react with each other. , Si— ⁇ —Si bonds are formed, and the silane graft polymers are crosslinked.
  • the method for mixing the silane graft polymer is not particularly limited as long as it can be uniformly mixed.
  • a method in which the polyolefin and the silane-graft polymer are supplied to a single-screw or twin-screw extruder and melt-kneaded, a method of melt-kneading using a roll, a method of melt-kneading using a kneader, and the like are exemplified.
  • the above-mentioned water treatment methods include immersion in water and exposure to steam.
  • the treatment when the treatment is performed at a temperature higher than 10 ° C., the treatment may be performed under pressure.
  • the crosslinking reaction may not proceed completely, so the water treatment time is preferably in the range of 5 to 12 hours.
  • a silane crosslinking catalyst may be used as necessary.
  • the silane cross-linking catalyst is not particularly limited as long as it promotes a cross-linking reaction between silane-graft polymers. Examples include lead octane tin, zinc 2-ethylhexanoate, cobalt octoate, lead naphthenate, zinc caprylate, and zinc stearate.
  • the peroxide used is not particularly limited, and examples thereof include dibutyl peroxide, dicumyl peroxide, tertiary butyl cumyl peroxide, diisopropyl peroxide, and the like. Since the decomposition temperature is in the range of the resin extrusion temperature, dicumyl peroxide and tert-butyl cumyl peroxide are preferred, and dicumyl peroxide is particularly preferred.
  • the amount of the peroxide added is preferably 0.5 to 5 parts by weight, more preferably 1 to 3 parts by weight, based on the weight of the peroxide. (Treatment for imparting adhesion to other substrates)
  • the orientation of the polyolefin molecules in the surface layer is relaxed.
  • the surface opposite to the surface layer to be melted is brought into contact with the cooling port, and the surface to be melted is brought into line contact with the heating roll.
  • a material having a lower melting point than polyolefin and having an affinity for polyolefin is heat-fused as an adhesive layer in a state where the polyolefin stretched sheet has been subjected to the surface heating and melting treatment, There is a method of further fusing another base material.
  • the material constituting such an adhesive layer include polyethylenes (low-density polyethylene, linear low-density polyethylene, high-density polyethylene, etc.). Polyethylene is preferred, so-called meta mouth feel A linear low-density polyethylene polymerized by a medium is particularly preferably used.
  • the surface melting treatment may be performed on one side or both sides depending on the use of the stretched polyolefin sheet.
  • FIG. 5 is a schematic configuration diagram for explaining the surface melting treatment method.
  • the polyolefin stretched sheet 5 A is supplied between the cooling roll 5 C and the heating roll 5 D, and the base material 5 B is supplied. It is supplied between the cooling roll 5C and the heating roll 5E so as to be adhered to the melted surface of the stretched polyrefin sheet 5A.
  • FIG. 6 is a schematic perspective view showing a stretched polyolefin sheet provided with the adhesive layer.
  • adhesive layers 6A and 6C are formed on both sides of the polyolefin stretched sheet 6B.
  • the surface dissolution treatment reduces the orientation of polyolefin molecules in the surface layer of the stretched polyolefin sheet. Specifically, it is a method of dissolving the surface of a stretched polyolefin sheet with a low molecular compound.
  • a material having high compatibility with polyolefin that is, a compound having a solubility parameter near the solubility parameter (SP value) of polyolefin is preferably used.
  • SP value solubility parameter
  • octane, nonane, decane, or nonpolar benzene, toluene, xylene and the like having a similar molecular structure to polyolefin can be mentioned.
  • a polymerizable monomer for example, styrene; divinylbenzene; diaryl phthalate; trimethylol pulp trimethacrylate, tripropylene glycol diacrylate or glycidyl methacrylate; Acrylic monomers can be used.
  • styrene divinylbenzene
  • diaryl phthalate trimethylol pulp trimethacrylate, tripropylene glycol diacrylate or glycidyl methacrylate
  • Acrylic monomers can be used.
  • an adhesive is applied to one or both sides of a stretched polyolefin sheet, and another substrate is adhered.
  • an appropriate adhesive having excellent adhesiveness to both the polyolefin and another substrate may be used.
  • the stretched polyolefin sheet according to the present invention not only has excellent strength and elastic modulus, but also can impart creep resistance by using an appropriate polyolefin such as ethylene and 1-butene copolymer. Therefore, it can be effectively used as an application requiring creep resistance, for example, as a reinforcing material for high pressure pipes.
  • an appropriate polyolefin such as ethylene and 1-butene copolymer. Therefore, it can be effectively used as an application requiring creep resistance, for example, as a reinforcing material for high pressure pipes.
  • the stretched polyolefin sheet obtained by the present invention on a tube made of a thermoplastic resin, preferably a polyolefin, the stretched polyolefin sheet can be used as a reinforcing material. It is preferable to provide an outer layer to protect the stretched polyolefin sheet.
  • Fig. 7 shows an example of the configuration of the high-pressure pipe.
  • a stretched polyolefin sheet 7B obtained by the present invention is wound around the outer peripheral surface of a pipe 7A made of thermoplastic resin, and an outer layer 7C is further formed outside the stretched sheet. ing.
  • the stretched polyolefin sheet according to the present invention has a high elastic modulus, it can be applied to both sides of a plate-like substrate, for example, a substrate having a low flexural modulus such as a foam. It is suitably used for forming a laminate by bonding. In such a laminate, a high flexural modulus can be obtained by the stretched polyolefin sheet according to the present invention.
  • the linear expansion coefficient of the polyolefin expanded sheet according to the present invention can be less than 0, and thus such a laminate has a low linear expansion coefficient and extremely high dimensional stability. It will be excellent.
  • FIG. 8 shows an example of such a laminate. In a laminate 8 shown in FIG. 8, stretched polyolefin sheets 8A and 8E obtained by the present invention are bonded to both sides of a plate-shaped base material 8C via adhesive layers 8B and 8D.
  • a laminate may be formed by laminating only a plurality of the stretched polyolefin sheets according to the present invention, and such a laminate has particularly high bending elastic modulus, strength and elastic modulus, and Has impact resistance.
  • a stretched polyolefin sheet was obtained.
  • This raw material is melted and kneaded in an extruder 1A, and a raw sheet having a thickness of 3 mm and a width of 27 Omm is formed in a molding machine 1B, and a take-up roll 1C is formed at a speed of 1 m / min. taking over at 1 C 2, or one was fed to a pair between the rolling rolls 1 D Medical 1 D 2.
  • the rolled sheet obtained as described above, the next feed roll 1 E!, Arranged a plurality of contact rolls 1 F between 1 E 2 and a pair of take-up rolls 1 1 G 2 multistage Stretching was performed using a stretching apparatus.
  • Each role 1 E Medical 1 E 2, 1 G physician 1 G 2, 1 F are each driven by an independent motor.
  • the stretching zone was set to 9 stages, and the stretching was performed so that the stretching ratio in the stretching step was 2 times.
  • the continuous contact length L between each roll and the sheet in the stretching step was 25 Omm.
  • the sheet conveying speed in the stretching process is 2 Om / min.
  • the apparatus shown in FIG. 2 was used.
  • the stretching step is performed using a one-stage stretching apparatus 2F. That is, in the stretching device 2 F, a pair of Repetitive outlet Lumpur 2 E, 2 E only 2 and a pair of take-up rolls 2 G 15 2 G 2 is used, the stretching zone is a first stage.
  • a polyolefin extended sheet having a total stretching ratio of 20 was produced in the same manner as in Example 1 except for the above points. In the obtained stretched polyolefin sheet, some netting was observed.
  • a polyolefin stretched sheet having a total stretch ratio of 20 times was obtained in the same manner as in Example 1 except that the temperature of the sheet in the stretching step was 85 ° C. Was.
  • a polyolefin stretched sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in the stretching step was 70 ° C. and the total stretching ratio was 18 times. Whitening was observed in the obtained stretched polyolefin sheet. When the total stretching ratio was to be further increased, the sheet was broken. (Example 5)
  • a stretched polyolefin sheet was obtained in the same manner as in Example 1, except that the temperature of the sheet in the stretching step was 40 ° C. and the total stretching ratio was 16 times. Whitening was observed in the obtained stretched polyolefin sheet. '
  • Example 5 when the total stretching ratio was to be further increased, the sheet was broken.
  • Example 6 In the same manner as in Example 1, except that the temperature of the raw sheet in the rolling process was set to 80 ° C, the rolling ratio was set to 9 times, and the total stretching ratio was set to 18 times. A polyolefin stretched sheet was obtained. In Example 6, when the total stretching ratio was to be further increased, the sheet was broken.
  • a stretched polyolefin sheet was obtained in the same manner as in Example 1, except that the temperature of the raw sheet in the rolling step was set at 60 ° C and the rolling ratio was set at 8.5 times. Therefore, the total draw ratio is 17 times.
  • Example 6 Although the rolling pressure in Example 6 was increased to 18 O mm / kg, the rolling ratio was hardly changed.
  • a tensile stress of 0.5 MPa is applied to the rolled sheet.
  • a polyolefin stretched sheet was obtained. The sheet slipped during the rolling process and did not reach the constant speed. Also, the seat speed was stable.
  • a stretched polyolefin sheet was produced in the same manner as in Example 1, except that rolling was performed so that a tensile stress of 0.5 MPa was applied to the raw sheet.
  • the raw sheet was wavy before the rolling step, and a stretched polyolefin sheet was initially obtained, but the sheet broke after about 10 minutes.
  • the stretched polyolefin sheet was the same as in Example 1. Was prepared. In the obtained stretched polyolefin sheet, a vertical crack was partially generated near the center of the sheet.
  • Example 2 In the stretching process, except that the feeding roll 1 E or 1 E 2 , the take-up roll 1 G or 1 G 2 and the contact roll 1 F were connected to each other by a gear and a chain, and were driven by one motor, In the same manner as in Example 1, a stretched polyolefin sheet was produced. In the obtained stretched polyolefin sheet, necking was severe, the sheet was whitened in some places, and breakage of the sheet was observed in the stretching step 10 minutes after the production of the stretched polyolefin sheet was started.
  • the device shown in Fig. 3 was used.
  • the device shown in Figure 3 is behind the device shown in Figure 1.
  • the apparatus is the same as the apparatus of Example 1, except that four mercury lamps 3H for performing the crosslinking treatment are added to the step.
  • Example 12 as a raw material, 0.6 parts by weight of benzophenone as a photoinitiator was added to 100 parts by weight of the ethylene 1-butene copolymer used in Example 1, and a polyfunctional unsaturated compound. And 1.2 parts by weight of triaryl isocyanurate. Further, 1 2 0 W / cm 2 of a high pressure mercury lamp 3 H and 4 light ready for output after the stretching step, is arranged by two lamps above and below the sheet, the sheet conveying speed 2 O m / min and, subjected to a crosslinking treatment was. The total light transmittance of the stretched sheet upon irradiation with ultraviolet rays from this mercury lamp was 80%. The other points were the same as in Example 1.
  • the stretching temperature in the stretching step was 90 ° C.
  • a cross-linking treatment was performed after the stretching step in the same manner as in Example 12
  • the polyolefin stretched sheet was produced in the same manner as in Example 12. I got The sheet had a total light transmittance of 55% when irradiated with ultraviolet light.
  • a stretched polyolefin sheet was obtained in the same manner as in Example 12, except that the polyfunctional unsaturated compound was not blended.
  • a stretched polyolefin sheet was produced using the apparatus shown in FIG.
  • the device shown in FIG. 4 is the same as the device of Example 1 except that an electron beam irradiation device 4H is added as a crosslinking treatment device after the device shown in FIG.
  • Example 15 1.2 parts by weight of the polyfunctional unsaturated compound was added to 100 parts by weight of the ethylene / 1-butene copolymer, and an electron beam irradiation apparatus 4 H was used instead of the ultraviolet ray irradiation. From 10 OM rad Then, a stretched polyolefin sheet was produced in the same manner as in Example 12 except that the crosslinking treatment was performed.
  • a stretched polyolefin sheet was obtained in the same manner as in Example 15 except that the polyfunctional unsaturated compound was not blended.
  • a stretched polyolefin sheet was obtained in the same manner as in Example 17, except that the crosslinking treatment was carried out by irradiating ultraviolet rays using a mercury lamp in the same manner as in Example 12. The total light transmittance of the sheet upon irradiation with ultraviolet light was 92%.
  • the rolling roll temperature was 150 ° C
  • the pressing force was 100 kgf / mm
  • the rolling factor was 6 times
  • the sheet speed was 6 m / min
  • a stretched polyolefin sheet was obtained in the same manner as in Example 1 except that the sheet temperature was 145 ° C, the stretching zone was 9 steps, the stretching ratio was 2.8 times, and the sheet speed was 17 mZ.
  • the thickness of the rolled sheet obtained in the rolling step was about 0.5 mm.
  • the total draw ratio is 17 times.
  • Example 21 0.6 parts by weight of benzophenone as a photoinitiator and 1.2 parts by weight of triallyl isocyanurate as a polyfunctional unsaturated compound were mixed with 100 parts by weight of the homopolypropylene used in Example 21, and A stretched polyolefin sheet was obtained in the same manner as in Example 21, except that ultraviolet crosslinking was performed in the same manner as in Example 12. The total light transmittance of the sheet when irradiated with ultraviolet rays is 88%.
  • the temperature of the raw sheet is 120 ° C
  • the rolling roll temperature is 130 ° C
  • the pressing force is 100 kgf / mm
  • the rolling ratio is 6 times
  • the rolling sheet is The sheet thickness was 0.5 mm and the sheet speed was 6 m / min.
  • the sheet temperature in the stretching step was 130 ° C, the stretching zone was 9 steps, the stretching magnification was 2.8 times, and the sheet speed was 17 mZ.
  • Example 12 To 100 parts by weight of random polypropylene, 0.6 parts by weight of benzophenone as a photoinitiator and 1.2 parts by weight of triallyl isocyanurate as a polyfunctional unsaturated compound were added, and as in Example 12. Then, a stretched polyolefin sheet was obtained in the same manner as in Example 23, except that the crosslinking treatment was performed by ultraviolet irradiation. The total light transmittance of the sheet upon irradiation with ultraviolet light was 88%.
  • the temperature of the raw sheet is 10 oC
  • the rolling roll temperature is 120 C
  • the pressing force is 100 kgf / mm
  • the rolling magnification is 6 times
  • the thickness of the rolled sheet is 0.5 mm
  • the sheet speed is Was set to 6 m / min.
  • the sheet temperature was 115 ° C
  • the stretching zone was 9 steps
  • the stretching ratio was 2.8 times
  • the sheet speed was 17 m / min.
  • Example 1 was repeated except that ethylene / 1-butene copolymer (melting point: 133 ° C, weight average molecular weight: 1020,000, 1-butene content: 0.5 mol / molecule) was used as a raw material. An attempt was made to produce a stretched polyolefin sheet in the same manner as in 1, but the sheet broke during the rolling process and no stretched sheet was obtained.
  • ethylene / 1-butene copolymer melting point: 133 ° C, weight average molecular weight: 1020,000, 1-butene content: 0.5 mol / molecule
  • a polyolefin stretched sheet was obtained in the same manner as in Example 12, except that the stretching ratio in the stretching step was 1.3 times and the sheet speed was 13 m / min. The total draw ratio is 13 times.
  • Example 12 Except that the rolling step was not performed, and that the sheet temperature in the stretching step was 120 ° C, the stretching zone was 9 steps, the stretching ratio was 15 times, and the sheet speed was 15 m / min, In the same manner as in Example 12, a polyolefin expanded sheet was produced. The total stretching ratio is 15 times. The necking was severe, and the sheet broke 5 minutes after the start of sheet production.
  • the rolling ratio in the rolling process was set to 4 times, and the sheet speed was set to 4 mZ.
  • Polyolefin stretching was performed in the same manner as in Example 12 except that the sheet temperature in the stretching process was set to 120 ° C, the stretching zone was set to 9 steps, the stretching ratio was set to 4 times, and the sheet speed was set to 16 m / min. A sheet was prepared. The total stretching ratio is 16 times. The resulting stretched polyolefin sheet showed severe necking, and the sheet broke about 8 minutes after the start of sheet production.
  • Table 1 below shows the total elongation ratio and gel fraction in each of the polyolefin stretched sheets obtained as described above.
  • the tensile modulus, tensile strength and creep rupture time were measured as follows.
  • a tensile test according to JISK 711 was performed using a tensile tester (trade name: “Tensilon”, manufactured by Orientec). The tensile direction was the same as the stretching direction. Through this tensile test, the tensile modulus and tensile strength were determined.
  • Creep rupture time A constant stress of 24 OMPa was applied to each stretched polyolefin sheet in the stretching direction using the tensile tester used for the tensile test, and the time required for the stretched sheet to break was measured. was taken as the cleave rupture time.
  • Example 1 20 times 0% 15.4 GPa 582 MPa 37.1 hour ⁇
  • Example 2 20 times 0% 15.2 GPa 577 MPa 35.5 hours ⁇
  • Example 3 20 times 0% 15.1 GPa 580 MPa 34.1 hour ⁇
  • Example 4 18 i 0% 13.4 GPa 542 MPa 25.2 Hidama interval ⁇
  • Example 6 18 in 0% 12.8 GPa 512 MPa 24.
  • Example 7 17 times 0% 11.5 GPa 490 MPa 18.5 hours ⁇
  • Example 8 20 times 0% 15.1 GPa 580 MPa 36.1 hours ⁇
  • Example 9 20 times 0% 15.0 GPa 570 MPa 34.2 hours
  • Example 1 0 20 times 0% 15.3 GPa 575 MPa 33.0 hours ⁇
  • Example 1 1 20 times 0% 15.0 GPa 566 MPa 32.0 Time
  • Example 1 2 20 times 40% 15.1 GPa 580 MPa 196.5 0 hours
  • Example 1 3 20 times 25% 14.5 GPa 558 MPa 324.0 hours
  • Example 1 4 20 times 20% 15.2 GPa 575 MPa 213.0 hours
  • Example 1 6 20 times 28% 15.1 GPa 561 MPa 556.0 B gap
  • Example 1 7 20 times 0 % 19.8 GPa 612 MPa 3.5 hours
  • Example 1 8 20 i 41% 19.3 GPa 60
  • Comparative Example 3 13 times 58% 9.8 GPa 431 MPa 1.5 hours Comparative Example 4 15 times 11% 10.8 GPa 460 MPa 1.8 hours Comparative Example 5 16 times 27% 12.1 GPa 523 MPa 0.8 time The invention's effect
  • a polyolefin having a weight average molecular weight of 100,000 to 500,000 is formed into a raw sheet, and then the raw sheet is rolled 5 times or more. Since the rolled sheet is stretched so as to have a total stretching ratio of 15, it is possible to obtain a polyolefin stretched sheet according to the present invention which is excellent not only in opportunity strength and elastic modulus but also in creep resistance. .
  • the moldability is excellent and a wide and wide polyolefin stretched sheet can be obtained with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 ポリオレフィン延伸シート及ぴその製造方法 発明の分野
本発明は、 耐クリープ性に優れ、 高強度及び高弾性率を有するポリオ レフイン延伸シート及びその製造方法に関する。 従来の技術
高強度及び高弾性率を有するポリオレフインの製造方法としては、 従 来、 延伸や紡糸によりポリオレフイン分子を配向させる方法が広く用い られている。 また、 ポリオレフインとして理論弾性率が高いポリェチレ ンを用いると、 延伸配向による強度の向上及び弾性率の向上が容易であ ることも広く知られている。
延伸成形は断面積が小さい材料ほど容易であるため、 1 5倍以上の高 倍率延伸を行う場合は紡糸延伸が主として採用されていた。 もっとも、 圧延及ぴ延伸を組み合わせることにより、 テープ状の延伸成形体が得ら れることが例えば特開昭 5 2 - 7 7 1 8 0号に開示されている。 しかし ながら、 この方法においても、 幅 5 O mm以上の広幅延伸シートを得る ことは非常に難しく、 延伸中にシートが割れたり、 幅 .厚みが変動する ネッキングが生じたり、さらにはシートが破断するという問題があった。 上記ポリエチレンとして、 側鎖をほとんど有しない高密度ポリエチレ ンを用いた場合、 分子鎖間でのすべりが起こり易くなり、 高倍率の延伸 が可能である。 従って、 高強度化及び高弾性率化が特に容易である。 し かしながら、 延伸配向後においても、 分子鎖間におけるすべりが生じ易 いため、 耐クリープ性が悪くなるという問題があった。 耐クリープ性を高める方法として、 適度の側鎖を有する超高分子量ェ チレン . α—ォレフイン共重合体を、 溶剤や各種ワックス等により希釈 'した後、 ゲル紡糸する方法が、 特開平 2— 2 9 6 7 5 6号公報ゃ特開平 6 - 2 8 0 1 1 1号公報に開示されている。
しかしながら、 超高分子量エチレン · α—ォレフィン共重合体は高価 であるため、 ポリオレフイン延伸シートのコストが高くつく。 加えて、 ゲル紡糸法では、 糸状以外の形状を得ることが困難であった。 更に溶剤 を除去する工程を必要とするため、 その点においても生産性が低く、 製 造コストが高くつかざるをえなかった。
そこで、生産性を高める方法として、超高分子量ポリエチレンを圧縮、 圧延及ぴ延伸することにより、 溶剤等を用いずに、 ポリエチレン延伸テ ープを製造する方法が、 特開平 2— 2 5 8 2 3 7号公報に開示されてい る。 しかしながら、 この先行技術では、 耐クリープ性に優れた延伸テー プ等は得られていない。
他方、 生産性及び耐クリープ性の向上を考慮した製造方法が、 U S P 5, 5 0 5, 9 0 0に開示されている。 ここでは、 ポリエチレンと光開 始剤とからなる樹脂組成物が延伸され、 同時に紫外線の照射により架橋 が施されている。 しかしながら、 U S P 5 , 5 0 5, 9 0 0に開示され ている延伸方法は、 圧延処理を施さない一軸延伸法であり、 高倍率に延 伸することが困難であった。 加えて、 架橋時の成形材料の透過率が低い ため、 効果的に紫外線による架橋を施すことが困難であるという問題が めつに。 発明の概要
本発明の目的は、 上述した従来技術の現状に鑑み、 押出等の成形性に 劣り、 かつ高価である超高分子量ポリオレフインを用いることなく得ら れ、 耐クリープ性に優れ、 強度及び弾性率においても優れており、 更に 生産性に優れたポリオレフイン延伸シート及びその製造方法を提供する ことにある。
本発明に係るポリオレフイン延伸シートの製造方法の広い局面によれ ば、 重量平均分子量が 1 0万〜 5 0万の範囲にあり、 融点が T m/°Cで あるポリオレフィンを押出成形し、シート状の原反シートを得る工程と、 前記原反シートを圧延倍率が少なくとも 5倍となるように圧延し、 圧延 シートを得る工程と、 前記圧延シートを少なくとも 1つのロールを用い て引張延伸し、 前記圧延倍率と該引張延伸による延伸倍率の積である総 延伸倍率が 1 5倍以上となるように延伸する工程とを備える方法が提供 される。
本発明の製造方法のある特定の局面では、 前記圧延シートを得る工程 において、 (T m— 6 0 ) °C〜 (T m— 5 ) °Cの温度の前記原反シート 力 (T m— 4 0 ) °C以上、 T m°C未満の温度とされた一対の圧延ロー ル間に挿入され、 1 0 k g f /mm〜 5 0 0 k g f Zmmの範囲の加圧 力で圧延される。
本発明の他の特定の局面では、前記延伸工程において、(T m _ 6 0 ) °C 以上、 T m°C未満の温度で、延伸倍率 1 . 3倍以上に引張り延伸される。 本発明の更に他の特定の局面では、 前記延伸工程が、 複数の延伸ゾー ンを用いた多段延伸工程であり、 各延伸ゾーンにおける延伸倍率が後段 にいくほど低くされている。 複数の延伸ゾーンが設けられているので、 圧延シートの寸法ばらつき、 圧延倍率のばらつき、 加熱むら、 繰出口一 ル及ぴ引取ロールの回転数の変動などによるネッキングを抑制すること が出来る。 ■
本発明の他の特定の局面では、 前記多段延伸工程において、 前記ロー ルとして、 繰出ロールと引取ロールと、 繰出ロールと引取ロールとの間 に、 一定速度で回転する複数の接触ロールとが用いられ、 前記繰出口一 ル、 前記引取ロール及び前記複数の接触ロールにより、 シートに延伸方 向の摩擦力が与えられながら延伸が行われる。
本発明に係る製造方法の更に別の特定の局面では、 前記延伸工程にお いて、 延伸に用いられる各ロールと、 シートとの延伸方向の連続的接触 長 Lが 5 0 0 mm以下とされている。 延伸ゾーンにおける、 各ロールと シートとの接触長 が 5 0 O mm以下とされるので、 延伸シートにおけ る亀裂や割れが生じ難く、 安定に延伸成形を行うことが出来る。
本発明に係る製造方法の更に他の特定の局面では、 前記圧延工程にお いて、 厚み t mmの原反シートが圧延倍率 X倍で圧延され、 かつ圧延前 の原反シートに x / 5 t M P a〜2 O M P aの範囲の引張応力が与えら れながら圧延が行われる。 原反シートに一定の引張応力が与えられるの で、 原反シートに波打ちや皺などが生じ難く、 安定に圧延を行うことが 出来る。
本発明に係る製造方法の更に別の特定の局面では、 前記圧延工程にお いて、 厚み t mmの原反シートが圧延倍率 X倍で圧延され、 かつ圧延シ ートに X t / 5 O M P a以上の引張応力が与えられるようにして圧延シ ートが引取られる。 圧延シートが上記一定の引張応力が与えられて引取 られることにより、 圧延工程におけるロールとシートとの間のすべりが 低減され、 安定に圧延を行うことが出来、 かつ生産性も高めるられる。 本発明に係るポリオレフイン延伸シートの製造方法の更に他の特定の 局面では、 前記延伸工程または延伸後において、 ポリオレフインが架橋 される。延伸工程または延伸後において架橋処理が行われることにより、 耐クリーブ性能及び耐熱性能がより一層高めるられる。
本発明に係る製造方法の別の特定の局面では、 前記原反シートを得る 工程において、 ポリオレフインに光開始剤が配合されて光開始剤含有原 反シートが得られ、 前記延伸工程または延伸後において、 シートに紫外 線が照射されてポリオレフインが架橋される。 .
本発明に係る製造方法の他の特定の局面では、 前記紫外線照射時のシ 一トの全光線透過率が 6 0 %以上である。 延伸時の温度条件及ぴ延伸速 度条件等を制御することにより全光線透過率の高い延伸シートが得られ る。 従って、 紫外線照射時の紫外線エネルギーが有効に架橋反応に利用 され、 特に厚みの厚い延伸シートを得る場合には、 厚み方向の内部まで 架橋させることが出来る。
本発明に係る製造方法の更に他の特定の局面では、 前記延伸工程また は延伸後において、 シートに電子線が照射されることによりポリオレフ ィンが架橋される。
本発明に係る製造方法の更に別の特定の局面では、 前記押出工程にお いて、 ポリオレフインに対し多官能不飽和化合物が配合されて多官能不 飽和化合物含有原反シートが得られ、 前記延伸工程または延伸後におい て、 ポリオレフインが多官能不飽和化合物により架橋される。 ポリオレ フィンよりも反応性の高い多官能不飽和化合物を用いて架橋反応が行わ れるので、 多官能不飽和化合物が架橋点となり、 ポリオレフイン分子が 効 fl果的に架橋される。
本発明のある特定の局面では、 上記ポリオレフインとして、 ポリェチ レンまたはポリプロピレンが用いられる。
本発明の別の特定の局面では、上記ポリオレフインとして、エチレン · α—ォレフィン共重合体であって、 共重合体分子 1モル当たりに共重合 されている炭素数 3以上の α—ォレフィンの量が 0 . 1〜 3モルのもの が用いられる。 ポリオレフインとして、 所定量のひーォレフインが共重 合されているエチレン ' α—ォレフイン共重合体、 特にエチレン 'プロ ピレン共重合体、 またはエチレン ' 1ーブテン共重合体が用いられるこ とにより、 耐クリーブ性に優れたポリオレフイン延伸シートを得ること が出来る。
上記エチレン . 0!—ォレフイン共重合体としては、 好ましくは、 ェチ レン ·プロピレン共重合体またはエチレン · 1—ブテン共重合体が用い られる。
本発明の別の広い局面によれば、 重量平均分子量が 1 0万〜 5 0万の 範囲にあるポリオレフインカ、厚み延伸比が幅延伸比の 5倍以上であり、 かつ延伸倍率が 1 5倍以上に延伸されている、 ポリオレフイン延伸シー トが提供される。
本発明に係るポリオレフイン延伸シートのある特定の局面では、 上記 ポリオレフインが架橋されている。 好ましくは、 該ポリオレフイン延伸 シートのゲル分率は 2 0 %以上とされる。 図面の簡単な説明
図 1は、 実施例 1の製造方法で用いられるポリオレフイン延伸シート 製造装置の概略構成を示す図である。
図 2は、 実施例 2の製造方法で用いられるポリオレフィン延伸シート 製造装置の概略構成を示す図である。
図 3は、 実施例 1 2の製造方法で用いられるポリオレフイン延伸シー ト製造装置の概略構成を示す図である。
図 4は、 実施例 1 5の製造方法で用いられるポリオレフイン延伸シー ト製造装置の概略構成を示す図である。
図 5.は、 ポリオレフイン延伸シートの表面に表面融解処理を行う方法 を説明するための概略構成図である。
図 6は、 接着層が設けられたポリオレフイン延伸シートを示す略図的 斜視図である。 図 7は、 本発明に係るポリオレフイン延伸シートが補強材として用い られている高圧管の構成の一例を示す部分切欠斜視図である。
図 8は、 本発明に係るポリオレフイン延伸シートを用いて得られた積 層体を示す斜視図である。 発明の説明
(ポリオレフイン)
本発明で用いられるポリオレフインとしては、 重量平均分子量 1 0万 〜 5 0万の、 エチレン、 プロピレン、 1 ーブテン、 1一ペンテン、 1― へキセン、 1一オタテン、 1 ーデセン、 4ーメチル一 1—ペンテン等の α—ォレフィン単独、 または 2種以上の重合体が用いられ、 具体的には ポリエチレン、 ポリプロピレン、 エチレン · α—ォレフィン共重合体が 用いられる。 好ましくは、 エチレン . α—ォレフイン共重合体が用いら れる。
上記 ーォレフインとしては、 例えば、 プロピレン、 1ープテン、 1 一ペンテン、 4ーメチルー 1—ペンテン、 1一オタテン、 1—デセン等 が挙げられる。
延伸成形性を高めるには、 α—ォレフインとして炭素数 3〜 4のプロ ピレンや 1—ブテンが好ましく用いられ、 なかでも、 耐クリープ性を効 果的に高めることが出来るので、炭素数 4の 1—ブテンが特に好ましい。 上記ひ 一ォレフィンは、 1種のみが用いられてもよく、 2種以上併用 されてもよい。
上記エチレン · α—ォレフィン共重合体中の α—ォレフィン含有量は、 エチレン · α—ォレフイン共重合体 1モル当たり、 0 . 1 〜 3 . 0モル であり、 好ましくは 0 . 3 〜 1 . 0モノレである。 0 . 1モルより も少な いと、 最終的に得られたポリオレフイン延伸シートの耐疲労性及び耐ク リープ性を高める効果が十分でないことがあり、 3モルを超えると、 延 伸成形性や圧延成形性が悪くなり、 延伸倍率 1 5倍以上のポリオレフィ ン延伸シートを得ることが困難となることがある。
なお、 α—ォレフインの共重合体中の含有量の測定方法としては、 核 磁気共鳴装置において測定された MN Rスペク トルにおいて、 ひ —ォレ フィンの 3級炭素のピーク近傍と、 主鎖メチレン炭素のピーク近傍の面 積比により算出する方法が用いられる。
上記ポリオレフインの重量平均分子量は、 1 0万〜 5 0万である。 重 量平均分子量が 1 0万未満の場合には、 脆くなり、 延伸性が悪くなつた り、 十分な強度または耐クリープ性を有するポリオレフイン延伸シート を得ることが出来ない。 逆に、 5 0万を超えると、溶融粘度が高くなり、 押出成形等の熱溶融成形加工性が低下し、 多量の溶媒もしくは可塑剤を 用いて延伸する必要が生じ、 延伸成形工程が煩雑になる。
上記重量平均分子量の範囲を、 メルトインデックス (以下、 M l ) の 観点から考慮すると、 M Iは 0 . 0 1 〜 1 0 g Z 1 0分の範囲が好まし レ、。 なお、 本明細書における M l とは、 J I S K 6 7 6 0に規定さ れている熱可塑性樹脂の溶融粘度を表す指標をいうものとする。
なお、 上記ポリオレフインには、 他の成分、 例えば酢酸ビュル、 ビニ ルアルコール、 (メタ) アクリル酸、 (メタ) アクリル酸エステル等が 更に共重合されていてもよい。 このような他の成分の含有量が多すぎる と、 延伸成形性が悪くなり、 高倍率延伸成形が困難となる。 従って、 他 の成分を更に共重合する場合には、 ポリオレフイン 1モル当たり、 他の 成分は 1モル以下、 より好ましくは、 0 . 5モル以下とすることが望ま しい。
上記エチレン · α—ォレフィン共重合体の分子量分布 (重量平均分子 量/数平均分子量) は、 2 0以上であることが望ましい。 ひーォレフィ ン含有量が多くなるほど、 溶融粘度が高くなり、 押出成形等の熱溶融成 形加工性が悪くなつたり、 延伸成形性が悪くなつたりする。 そのため、 一軸方向に延伸倍率 1 5倍以上の延伸成形が難しくなることがある。 ま た、 延伸成形時に大きな延伸張力が必要となり、 装置に負担がかかるこ と力、ある。
(光開始剤)
本発明に係るポリオレフィン延伸シートの製造に際し、 紫外線架橋に より架橋を施す場合には、上記ポリオレフインに光開始剤が添加される。 光開始剤として、 特に限定される訳ではないが、 チォキサントン、 ベン ゾフエノン、 ァセ トフエノン、 ベンジルベンゾィン、 ミヒラーケトン等 が用いられる。 上記光開始剤の中では、 水素引き抜き型光開始剤が好ま しく、 従ってベンゾフヱノンやチォキサントン等が好適に用いられる。 光開始剤の添加量は、 上記ポリオレフイン 1 0 0重量部に対し、 通常、 0 . :!〜 5重量部の範囲が好ましい。
(多官能不飽和化合物)
本発明に係る製造方法においては、ポリオレフインを架橋するために、 多官能不飽和化合物が用いられてもよい。 多官能不飽和化合物は、 ポリ ォレフィン延伸シート内部に架橋構造を与えるとともに、 押出成形時の 熱溶融成形加工性や延伸成形性を高める効果を与える。 上記多官能不飽 和化合物としては、 例えば、 多官能 (メタ) アタリレート、 ジェン系才 リ ゴマー、 または不飽和化合物が重合されたォレフイン系オリゴマ一等 が挙げられる。
上記多官能 (メタ) アタリレートとしては、 ジァリルフタレート、 ァ リル化シク口へキシルジ (メタ) アタリレート、 アクリル化イソシァヌ レート、 ビス (アタリロキシネオペンチルグリコール) アジペート、 ビ スフエノ一ノレ Aジ (メタ) アタリレート、 1, 4ーブタンジオールジ (メ タ) アタリ レート、 1, 3一プチレンダリコールジ (メタ) アタリレー ト、 ジシクロペンタニノレジ (メタ) アタリ レート、 エチレングリコール ジ (メタ) アタリ レー ト、 ジエチレングリコールジ (メタ) アタリレー ト、 グリセロールジ (メタ) アタリ レート、 1, 6一へキサンジオール ジ (メタ) ァクリレート、 長鎖脂肪族ジ (メタ) ァクリレート、 メ トキ シ化シク口へキシルジ (メタ) アタリ レート、 ネオンペンチルグリコー ルジ (メタ) アタリ レート、 ヒ ドロキシパバリン酸ネオペンチルグリコ ールジ (メタ) アタリレー ト、 力プロラタ トン変性ヒ ドロキシパバリン 酸ネオペンチルグリコールジ (メタ) ァクリレート、 ペンタエリスリ ト ールト リ (メタ) アタリ レー ト、 ペンタエリスリ トールテトラアタリレ 一ト、 ペンタエリスリ トールテトラメタタリレート、 ステアリン酸変性 ペンタエリスリ トールジァクリレート、 テトラエチレンジグリコールジ (メタ) アタリレート、 トリエチレングリコールジ (メタ) アタリレー ト、 トリエチレングリ コーノレジビニノレエーテノレ、 トリメチローノレプロパ ントリ (メタ) アタリレート、 トリプロピレンダリコールジ (メタ) 了 クリ レート、 トリス (アタリ口キシェチル) イソシァヌレート、 力プロ ラク トン変性トリス (アタリ口キシェチル) イソシァヌレート、 トリス (メタクリロキシェチル) イソシァヌレート、 亜鉛ジアタリレート、 亜 鉛ジメタタリ レー ト、 ト リァリルシアヌ レート、 ト リァリルイソシァヌ レー ト等が挙げられる。
上記ジェン系オリゴマーとしては、 ブタジエンオリゴマー、 イソプレ ンオリゴマー、 ク口口プレンオリゴマ一等が挙げられる。 これらジェン 系オリゴマーの二重結合は、 水素や他の化合物の添加等により一部飽和 されていてもよいが、 延伸シートに架橋構造を与えるためには、 少なく ともジェン系オリゴマー 1モル当たり 2モル以上の二重結合が残留して いることが好ましい。 また、 ジェン系オリゴマーの分子量が大き過ぎる と、 ポリオレフイン、 特にエチレン ' α—ォレフイン共重合体への分散 性が悪くなるだけでなく、 延伸成形性が悪くなる。 従って、 ジェン系ォ リゴマーの重量平均分子量は、 5万以下が好ましく、 更に好ましくは 1 万以下である。
上記不飽和化合物が共重合されたォレフイン系オリゴマーとしては、 プロピレンオリ ゴマー、 エチレン一プロピレンランダム共重合体、 ェチ レンーブチレン共重合体、 またはジェン系オリゴマ一等のォレフィン系 オリゴマーの分子末端等が、 メタクリル酸メチルエステル等の (メタ) アタリレート、 または無水マレイン酸等のマレイン酸化合物で修飾され た化合物や、 エポキシ変性もしくはウレタン変性された化合物等が挙げ られる。 また、 エチレン ' α—ォレフイン共重合体への分散性、 延伸成 形性の点で、 重量平均分子量は、 5万以下が好ましく、 更に好ましくは 1万以下である。
上記多官能不飽和化合物のなかでも特に、 分散性、 製造工程における 耐熱性、 重合反応性及び不揮発性等に優れているので、 エチレングリコ ーノレジメタク リ レート、 ジァリノレフタレー ト、 ト リメチロールプロパン 卜リメタク リ レート、 トリァリルシアヌレート、 トリァリルイソシァヌ レート等が好ましい。
上記多官能不飽和化合物を用いる場合の添加量は、 ポリオレフイン 1 0 0重量部に対し、 0 . 1〜2 0重量部が好ましく、 より好ましくは 0 . 3〜5重量部である。 0 . 1重量部未満の場合には、 ポリオレフインの 架橋点の数が不十分となり、 十分な架橋構造を与えることが出来ないこ とがあり、 2 0重量部を超えると、 多官能不飽和化合物が十分に反応せ ずに残存することがある。
(ポリオレフイン延伸シートの製造)
本発明に係るポリオレフイン延伸シートの製造に際して、 まず、 重量 平均分子量が 1 0万〜 5 0万の範囲にある、 上記ポリオレフインが押出 成形され、 シート状の原反シートが得られる。
この原反シートを得る工程においては、 上述したポリオレフインが押 出機内に投入され、 押出機内で溶融混練され、 シート状に成形される。 シート成形方法は特に限定されず、 通常のロール成形法、 カレンダ成形 法、 あるいは冷却金型による賦型方法等を用いることが出来る。
原反シートの厚みは 0 . 5〜 1 5 mmの範囲が望ましい。 原反シート が厚過ぎると、 後で行われる圧延工程において、 原反シートを圧延ロー ル等で押しつぶすのに大きな加圧力や引取力が必要となり、 圧延ロール の撓みなどにより幅方向に均一な圧延が困難となることがある。 逆に、 原反シートが薄過ぎると、 圧延後の成形体、 すなわち圧延シートの厚み が薄くなり過ぎ、 均一な圧延が困難となるだけでなく、 圧延ロール同士 が接触して圧延ロールの寿命が短くなることがある。
また、 延伸シートに架橋構造を導入する場合には、 原反シートを得る 工程において、 ポリオレフインに光開始剤及び/または多官能不飽和化 合物が添加され、 押出機内で溶融混練される。
光開始剤及び Zまたは多官能不飽和化合物は、 一般的に熱により劣化 し、ゲル化し易いため、押出機内における滞留時間が短い方が好ましレ、。 例えば、 光開始剤及ぴ/または多官能不飽和化合物が液状の場合には、 押出機内で溶融状態のポリオレフインに光開始剤及び/または多官能不 飽和化合物を圧入する方法が好適に用いられる。
ポリオレフインと光開始剤及び/または多官能不飽和化合物とを含む ポリオレフイン系組成物を押出機等で溶融成形する場合には、 その溶融 温度は 1 3 0 °C以上が好ましく、 より好ましくは 1 4 0 °C以上である。 溶融温度は 1 3' 0 °C未満では、 ポリオレフインの溶融が不完全となり、 多官能不飽和化合物との相溶性が悪化し、 後の延伸工程における延伸性 が低下する恐れがある。 また、 溶融温度が高過ぎると、 ポリオレフイン や光開始剤が分解または蒸発する恐れがあるため、 溶融温度は 250°C 以下であることが望ましい。
(圧延工程)
本発明においては、 上記原反シートを得た後に、 原反シートが、 圧延 倍率が少なくとも 5倍となるように圧延 (r o l l— d r ow i n g) され、 それによつて圧延シートが得られる。
なお、 用語 「圧延」 は、 シートの幅をほとんど変化させることなく、 シートの厚みを薄くするようにシートを加圧により変形させる処理をい うものとする。 この圧延方法は特に限定されず、通常行われている方法、 すなわち、 原反シートの厚みよりも狭いクリアランスを有する一対の互 いに反対方向に回転する圧延ロール間に原反シートを投入し、 該原反の 厚みを減少させるとともに原反を伸長しながら引き取る方法等が挙げら れる。
圧延ロールの温度が低過ぎると、 圧延に大きな加圧力が必要となるた め、 均一な圧延が困難となることがある。 逆に、 圧延ロールの温度が高 過ぎると、 原反シートが圧延中に破断することがある。 従って、 ポリオ レフインの融点を Tm°Cとした場合に、 圧延ロールの温度は (Tm— 4 0) °C以上、 Tm°C未満の範囲が好ましく、 より好ましくは (Tm— 3 0) °C以上、 Tm°C未満、 さらに好ましくは (Tm— 20) °C〜 (Tm 一 5) °Cである。
なお、 ポリオレフインの融点は、 示差走査型熱量測定機 (DS C) に おける熱分析を行つた際に認められる、 融解に伴う吸熱ピークの最大点 をいうものとする。
原反シートの温度が低過ぎると、 圧延に大きな加圧力が必要となり、 均一な圧延が困難となることがある。 逆に、 原反シートの温度が高過ぎ ると、 原反シートが圧延されて、 幅や厚みが長手方向に変動する、 いわ ゆるネッキングが生じたり、 原反シートが圧延中に破断されたりするこ とがある。従って、原反シートの温度は(T m— 6 0 ) °C〜(T m— 5 ) °C の範囲が好ましく、 より好ましくは(T m— 5 0 ) °C〜 (T m— 1 0 ) °C、 更に好ましくは (T m _ 4 0 ) 〜 (T m— 1 5 ) °Cである。
圧延ロールにより原反に付与される加圧力 (線圧) が小さ過ぎると所 定の圧延倍率を得ることが出来なくなることがあり、 逆に大き過ぎると 圧延ロールの橈みが生じるだけでなく、 圧延ロールと原反シートとの間 ですべりが生じ易くなり、均一な圧延が困難となることがある。従って、 上記加圧力は、 1 0 k g f Zmm〜 3 0 0 k g f /mmの範囲が好まし く、 より好ましくは、 3 0〜 1 0 0 k. g f Zmmの範囲である。
上記原反シートを圧延するに際しての圧延倍率は少なくとも 5倍であ り、 好ましくは 7倍以上である。 圧延倍率が 5倍未満の場合には、 後で 行われる延伸時のネッキングを抑制する効果が得られなかったり、 高倍 率延伸成形を行うことが出来なかったりし、 圧延工程を行う効果が得ら れないことがある。 加えて、 後の延伸工程に負担がかかることになる。 なお、 圧延倍率とは、 次式により定義されるものである。 圧延倍率に特 に上限はないが、 圧延倍率が高いほど圧延設備に負荷がかかる。
圧延倍率 = (原反シートの断面積) / (圧延により得られた圧延シー トの断面積)
但し、 圧延の前後においてシートの幅は殆ど変化しない。 従って、 圧延倍率 = (原反シートの厚み) / (圧延から得られた圧延シートの 厚み) を用いてもよい。 すなわち、 圧延工程では、 シートの幅を殆ど変 ィ匕させずにシートの厚みが薄くされる。
上記圧延倍率は、 圧延ロールの温度、 原反シートの温度、 圧延ロール による加圧力等の圧延条件により決定される。 圧延ロールの径ゃ原反シ ートの厚みにも圧延倍率は若干依存するが、 圧延ロールの温度、 原反シ 一トの温度及ぴ圧延ロールの加圧力の圧延倍率に及ぼす影響がかなり大 きく、 原反シートの温度に比べれば、 圧延ロールの温度の方が圧延倍率 に及ぼす影響は大きいと思われる。
好ましくは、 圧延される原反シートに一定の張力を与えつつ圧延が行 われる。 この場合には、原反シートが蛇行せず、安定に圧延が行われる。 このような一定の張力とは、 原反シートの厚みに依存し、 原反シートが 薄いほど圧延に際して安定し難いため、 大きな張力を与えればよい。 も つとも、 原反シートに大き過ぎる張力を与えると、 圧得前に原反シート が延伸され、 ネッキング等の問題を生じる恐れがある。
従って、 好ましくは、 厚み t mmの原反シートを圧延倍率 X倍で圧延 する場合、 原反シートに x Z 5 t M P a〜2 0 M P aの引張張力を与え つつ圧延することが望ましい。
また、 圧延成型時に原反シートと圧延ロールとの間にすべりが生じる ことがあり、 このすべりが大き過ぎると生産性が低下するだけでなく、 安定に圧延することが困難となる。 従って、 すべりが生じないように、 またはすベりを低減するために、 圧延機の後方に引取ロール等を設置し て圧延シートを引取ることが好ましい。 この場合、 厚み t mmの原反シ 一ト圧延倍率 X倍で圧延する場合、 引取ロールによる引張応力を X t / 5 0 M P a以上とすることが好ましい。
なお、 圧延に用いられる一対の圧延ロールの回転速度は同じであって もよく、 異なっていてもよい。 高い圧延倍率で圧延を容易に行うため、 並びに必要な加圧力を小さくすることが出来るため、 2つの圧延ロール の回転速度は異なっている方が好ましい。 この場合、 相対的に高速の圧 延ロールの速度と低速の圧延ロールの速度比は、 1 . 1〜3 . 0の範囲 が望ましい。 また、 上記圧延処理は 1度だけ行われてもよく、 2度以上行われても よい。 また、 複数回の圧延処理を施す場合、 上述した圧延倍率を求める 式における圧延シートの断面積とは、 最終的な圧延処理の後の圧延シー トの断面積をいうものとする。
(延伸工程)
本発明においては、 上記圧延工程で得られた圧延シートが、 次に、 総 延伸倍率が 1 5倍以上となるように引張延伸される。
延伸方法は特に限定されず、 通常のロール延伸法やゾーン延伸法を用 いることが出来る。 好ましくは、 特別な装置を必要としないため、 並ぴ に延伸倍率の制御が容易であるため、 生産性に優れたロール延伸法が用 いられる。
延伸に際しての、 圧延シートの加熱方法については、 熱風加熱、 熱水 加熱、 赤外線加熱、 マイクロ波加熱法等の適宜の方法を用いることが出 来る。 なかでも、 装置が簡易であり、 温度制御が容易に行われるため熱 風加熱が好適に用いられる。
延伸される際のシートの温度は、 (T m— 6 0 ) °C以上、 T m°C未満 の範囲が好ましく、 より好ましくは (T m— 5 0 ) 〜 (T m— 5 ) 。Cの 範囲が好ましく、 更に好ましくは、 (T m— 4 0 ) 〜 (T m— 1 0 ) °C の範囲である。
シートの温度が低過ぎると、 延伸に際してシートが破断し易くなり、 かつシートが白化し、 密度が低下することがある。 逆に、 シートの温度 が高過ぎると、 シートが破断し易くなるだけでなく、 局所的得延伸が生 じるネッキング (延伸倍率の部分的な変動) が起こり易くなる。
なお、 上記総延伸倍率とは、 前述した圧延工程における圧延倍率と延 伸工程における延伸倍率の積をいうものとする。
すなわち、
6 総延伸倍率 = (圧延倍率) X (延伸工程における延伸倍率) また、 延伸工程における引張り延伸の延伸倍率は 1 . 3〜4倍が好ま しい。 延伸工程における延伸倍率が小さ過ぎると、 得られたポリオレフ ィンシートの強度、 弾性率及び耐グリーブ性を高めることが出来ないこ とがあり、 逆に大き過ぎると、 延伸中にシートが破断し易くなること 'が ある。 なお、 延伸工程における延伸倍率は次の式により定義される。 延伸倍率 = (延伸前の圧延シートの断面積) / (延伸により得られる 最終的なポリオレフイン延伸シートの断面積)
延伸工程における延伸の回数は特に限定されないが、 好ましくは、 多 段延伸法が用いられる。 多段延伸法とは、 複数の延伸ゾーンで、 それぞ れ低倍率の延伸を行う方法をい.う。 延伸回数が少ない場合には、 ネツキ ングが生じ易くなる恐れがある。 もっとも、 延伸ゾーンを多くし過ぎる と、 均一延伸性が高められ、 安定な成形は可能となるものの、 装置が大 きくなる。
従って、 延伸回数は 2〜 2 0回、 好ましくは 3〜1 5回、 更に好まし くは 4〜 1 0回である。
また、 多段延伸を行う場合には、 繰出ピンチロール、 引取ピンチロー ル及ぴこれらのロール間に一定速度で回転する少なくとも 1つの、 好ま しくは複数の接触ロールを設置することが望ましい。 このような接触口 ールを設置することにより、 均一延伸性が高められ、 安定な延伸成形を 行うことが出来る。
上記接触ロールは、 ピンチされることなく、 シートに摩擦力を与える ことにより延伸を行う。 また、 接触ロールは、 繰出ロール及ぴ zまたは 引取ロールに対し、 ギア、 チェーン、 プーリー、 ベルトもしくはこれら の組み合わせからなる連結部材により連結されていてもよい。 しかしな がら、 各ロール間の速度比が適切でない場合には、 装置の一部に過度な 負荷が加わることがある。 このような場合には、 個々の接触ロールに、 独立に駆動モーターを連結することが望ましく、 それによつて個々の接 触ロールの速度を任意に設定することが出来る。
延伸工程においては、 シートは各ロールから延伸方向 (MD方向) の 摩擦力を受けながら延伸される。 この時、 各ロールに接触しつつシート の幅が狭くなるため、 シートは延伸方向と垂直方向 (T D方向) の摩擦 力を受けることになる。 また、 延伸倍率が高くなるほど、 かつ延伸によ る幅方向の収縮が大きくなるほど、 ロールによる T D方向の大きな摩擦 力等により、 シートが縦に裂けたり、 割れたりし易くなる。 この問題は シートの幅が大きいほど顕著となり、 例えば、 幅 1 0 0 mm以上の延伸 シートの成形は非常に困難となる。
これらの問題を避けるには、 シートがロールに接触する間の幅方向の 収縮量を小さくする必要がある。 具体的には延伸ゾーンにおけるシート と各ロールとの連続的な MD方向における接触長さ Lを短くする方法が 挙げられ、 好ましくは、 この接触長さ Lが 5 0 O mm以下、 より好まし くは 3 5 0 mm以下とされる。 また、 ピンチロールのように 2つのロー ルでシ一トを挟み込んでいる場合には、 一方のロールにおける連続的な 接触長さを上記範囲にすることが好ましい。 '
本発明においては、 上記圧延工程及び延伸工程を終えた後、 総延伸倍 率が 1 5倍以上となるように原反シートが延伸され、 本発明に係るポリ ォレフィン延伸シートが得られる。 上記のように原反シートを 5倍以上 に圧延する圧延工程を実施してから、 延伸工程において引張り延伸が行 われるので、 延伸工程における引張り延伸の延伸倍率を低くすることが 出来、 それによつて分子量 1 0万〜 5 0万の範囲のポリオレフイン原材 料からなる原反シートを、 総延伸倍率 1 5倍以上に安定に延伸すること が出来る。 このようにして得られたポリオレフイン延伸シートは、 後述
8 の実施例から明らかなように、 強度及び弾性率に優れ、 かつ耐クリープ 性に優れている。
しかも、 従来法では得ることが困難であった、 幅寸法が 1 00mm以 上のポリオレフイン延伸シートも安定に得ることができる。
(架橋)
本発明に係る製造方法では、 好ましくは、 架橋構造がポリオレフイン 延伸シートに導入される。 架橋方法については特に限定されず、 (1) 前述した光開始剤を原反シートに含有させておき、 紫外線を照射するこ とにより架橋する、紫外線架橋方法、 (2)電子線を照射ずる方法、 (3) シラングラフト重合体をシートに含有させておき、熱水処理を行う方法、 (4) シートに過酸化物を含有させておき、 該過酸化物の分解温度に以 上にシートを加熱する方法等が挙げられる。 (1) 及び (2) の方法で は、 照射により発生したラジカルが架橋反応に有効に利用されることが 好ましく、 従って、 架橋助剤として前述した多官能不飽和化合物を原反 シートに含有させておくことが好ましい。
また、 上記各種架橋方法のなかでも、 (1) 及び (2) の方法が、 制 御が容易であるため望ましい。
架橋処理は、 延伸中または延伸後に行うことが好ましく、 総延伸倍率 の 0. 8倍以上の延伸が行われた後に行うことが望ましい。 総延伸倍率 の 0. 8倍未満の時点で架橋処理を行った場合には、 以後の延伸におけ る負荷が大きくなり、 シートが破断する恐れがある。
次に、 (1 ) 〜 (4) の架橋方法の詳細を説明する。
(1) 紫外線照射法
紫外線照射法では、 上述した光開始剤があらかじめ原反シートに含有 される。 架橋効率を高めるために前述した多官能不飽和化合物もシート に含有させておくことが好ましい。 紫外線照射量については、 シートの厚みや透過率にもよるが、 ピーク 照度 2 OmW/c m2以上、 光量 5 0 m J / c m 2以上が好ましい。 こ れょりも紫外線照射量が少ない場合には、 架橋反応が十分に進行せず、 耐クリープ性が十分に高まらないことがある。
(2) 電子線照射法
電子線照射法では、 電子線の照射量は、 シートの組成及び厚みによつ ても異なる力 通常 1〜5 OM r a d、 好ましくは、 3〜30Mr a d である。 電子線照射量が IMr a d未満では、 架橋反応が十分に進行せ ず、 耐クリープ性が十分に高まらないことがあり、 50Mr a dよりも 大きいと、 ポリオレフイン主鎖の切断のために強度が低下することがあ る。 また、 架橋効率を高めるためには、 電子線照射法においても、 上述 した多官能不飽和化合物をシートに含有させておくことが好ましい。
(3) シラングラフト重合体を用いた架橋方法
上記シラングラフト重合体としては、 特に限定されず、 例えば、 シラ ングラフトポリエチレンゃシラングラフトポリプロピレン等を例示する ことができる。 上記シラングラフト重合体は、 例えば、 重合体を不飽和 シラン化合物でグラフト変性することにより得ることができる。
上記不飽和シラン化合物とは、 一般式 Rl S i R2mY3_mで表される 化合物をいう。 但し、 mは 0、 1、 または 2である。 式中、 上記 R1は ビニル基、 ァリル基、 プロぺニル基、 シクロへキセニル基等のアルケニ ル基; グリシジル基;ァミノ基; メタクリル基; γ—クロ口ェチル基、 —づロモェチル基等のハ口ゲン化アルキル基等の有機官能基である。 式中、 R2 は脂肪族飽和炭化水素基または芳香族炭化水素基を示し、 例えば、 メチル基、 ェチル基、 プロピル基、 デシル基、 フヱニル基等が 挙げられる。
式中、 Υは加水分解可能な有機官能基を示し、 例えば、 メ トキシ基、 エトキシ基、 ホルミルォキシ基、 ァセトキシ基、 プロピオノキシァリー ルァミノ基等が挙げられ、 mが 0または 1のとき、 Y同士は同一であつ ても、 異なっていてもよい。
架橋反応速度向上のためには、 上記不飽和シラン化合物としては、 一 般式 CH2=CHS i (OA) 3で表されるものが好ましい。 式中、 Aは 好ましくは、 炭素数 1〜 8、 さらに好ましくは炭素数 1〜 4の脂肪族飽 和炭化水素基である。 CH2=CHS i (OA) 3で表される好ましい不 飽和シラン化合物としては、 例えば、 ビニルトリメ トキシシラン、 ビニ ルトリエトキシシラン、 ビュルトリァセトキシシラン等が挙げられる。 上記シラングラフト重合体の製造方法としては、 一般的な製法が用い られ、 特に限定されるものではない。 例えば、 ポリエチレン、 Rl S i R2 Y2 (式中、 R1 は、 ォレフィン性の不飽和な 1価の炭化水素基 またはハイ ドロカーボンォキシ基であり、 各 Υは、 加水分解し得る有機 官能基であり、 R2 は基 R1 か基 Υである。 ) で表される不飽和シラ ン化合物及び有機過酸化物を反応させ、 シラン変性ポリエチレンを得る 方法が挙げられる。
シリル基を有する上記シラングラフト重合体は、 例えば、 Υがメ トキ シ基である場合には、 これが水と接触することにより、 加水分解して水 酸基となり、 異なる分子の水酸基同士が反応し、 S i— Ο— S i結合を 形成して、 シラングラフト重合体同士が架橋する。
シラングラフト重合体を混合する方法は、 均一に混合し得る方法であ れば、 特に限定されない。 例えば、 該ポリオレフインおよびシラングラ フト重合体を 1軸または 2軸押出機に供給し、 溶融混練する方法、 ロー ルを用いて溶融混練する方法、 ニーダーを用いて溶融混練する方法等が 挙げられる。
前述の水処理方法は、 水中に浸漬する方法のほか、 水蒸気にさらす方
2 法も含まれ、 かかる場合、 1 0 o °cより高い温度で処理する場合には、 加圧下において行えばよい。
上記水処理の際の水及び水蒸気の温度が低いと、 架橋反応速度が低下 し、また、高すぎるとシートが軟化融着してしまうので、 5 0〜 1 3 0 °C が好ましく、 9 0〜: L 2 0 °Cが特に好ましい。
また、 水処理する際の時間が短いと、 架橋反応が完全に進行しない場 合があるので、水処理時間は 5〜 1 2時間の範囲とすることが好ましい。 また、 シラングラフト重合体を用いてシラン架橋する場合には、 必要に 応じてシラン架橋触媒を用いてもよい。 シラン架橋触媒は、 シラングラ フ ト重合体同士の架橋反応を促進するものであれば、 特に限定されず、 例えば、 ジブチル錫ジァセテート、 ジブチル錫ジラゥレート、 ジォクチ ル錫ジラウレート、 オクタン酸錫、 ォレイン酸錫、 オクタン錫鉛、 2— ェチルへキサン酸亜鉛、 オクタン酸コバルト、 ナフテン酸鉛、 力プリル 酸亜鉛、 ステアリン酸亜鉛等が挙げられる。
( 4 ) 過酸化物を用いた方法
用いられる過酸化物は特に限定されず、 例えば、 ジブチルパーォキサ イ ド、 ジクミルパーォキサイ ド、 ターシャルブチルクミルパーォキサイ ド、 ジイソプロピルパーオキサイ ド等が挙げられ、 過酸化物の分解温度 が樹脂の押出し温度の範囲にあるので、 ジクミルパーオキサイド、 ター シャルプチルクミルパーォキサイ ドが好ましく、 ジクミルパーォキサイ ドが特に好ましい。
過酸化物の添加量が多すぎると、 樹脂分解反応が進行しやすくなって シートが着色し、 逆に少なすぎると、 該ポリオレフインの架橋が不十分 となることがあるので、 該ポリオレフイン 1 0 0重量部に対して、 過酸 化物の添加量は 0 . 5〜 5重量部が好ましく、 1〜 3重量部が特に好ま しい。 (他の基材との接着性を付与するための処理)
本発明により得られたポリオレフイン延伸シートと、 他の基材との複 合材料を製造する場合には、 両者を接着する必要がある。 ポリオレフィ ン延伸シートでは、 ポリオレフイン分子が一方向に強く配向されている ため、 他の基材との親和性や接着性等が乏しい。 この問題を解決するた めには、 (a ) 表面融解処理、 (b ) 表面溶解処理、 (c ) 接着剤塗布 等の各種方法を用いることが出来る。 なかでも、 処理が比較的容易であ り、 かつ製造コス トが安くなるため、 (a ) 表面融解処理が好適に用い られる。
次に、 これらの接着性付与処理の詳細を説明する。
( a ) 表面融解処理
ポリオレフイン延伸シートの表面層のみを加熱融解することにより、 表面層のポリオレフイン分子の配向を緩和させる。 具体的には、 融解さ れる表面層とは反対側の面を冷却口ールに接触させ、 融解される面を加 熱ロールに線接触させる方法が挙げられる。 表面層が加熱融解されたポ リオレフイン延伸シートを、 他の基材と熱接着させる場合、 ポリオレフ ィンの融点程度にポリオレフィン延伸シートを加熱することが必要で あるため、 ポリオレフイン延伸シート全体の分子配向が緩和される恐れ がある。
これを解決するには、 ポリオレフイン延伸シートの表面加熱融解処理 を行った状態で、 ポリオレフインよりも低融点を有し、 かつポリオレフ ィンに対する親和性を有する材料を接着層として加熱融着して、 他の基 材をさらに融着する方法が挙げられる。 このような接着層を構成する材 料としては、 例えば、 ポリエチレン類 (低密度ポリエチレン、 直鎖状低 密度ポリエチレン、 高密度ポリエチレン等) が挙げられるが、 なかでも、 低融点の直鎖状低密度ポリエチレンが好ましく、 いわゆるメタ口セン触 媒により重合された直鎖状低密度ポリエチレンが特に好ましく用いられ る。 接着層を設けた場合、 接着層を設けなかった場合よりも低温で接着 を行うことが出来るだけでなく、 接着強度がより一層高められる。
また、 ポリオレフイン延伸シートの用途に応じて片面に、 または両面 にこの表面融解処理を行ってもよい。 図 5は、 表面融解処理法を説明す るための概略構成図であり、 ここでは、 ポリオレフイン延伸シート 5 A 力 冷却ロール 5 Cと加熱ロール 5 Dとの間に供給され、 基材 5 Bがポ リォレフィン延伸シート 5 Aの融解処理された面に接着されるように、 冷却ロール 5 Cと加熱ロール 5 Eとの間に供給される。
また、 図 6は、 上記接着層が設けられたポリオレフイン延伸シートを 示す略図的斜視図である。 ここでは、 ポリオレフイン延伸シート 6 Bの 両面に、 接着層 6 A、 6 Cが形成されている。
( b ) 表面溶解処理法
表面融解処理法と同様に、 表面溶解処理法では、 ポリオレフイン延伸 シートの表面層においてポリオレフイン分子の配向が緩和される。 具体 的には、 低分子化合物によりポリオレフイン延伸シートの表面を溶解す る方法である。 上記低分子化合物としては、 ポリオレフインに対して親 和性の高い材料、 すなわち、 ポリオレフインの溶解度パラメーター (S P値) 近傍の溶解度パラメーターを有するものが好適に用いられる。 例 えば、 ポリオレフインと分子構造が類似している、 オクタン、 ノナン、 デカン、 あるいは無極性であるベンゼン、 トルエン、 キシレン等を挙げ ることが出来る。 また、 接着性を高める点で、 重合モノマー、 例えば、 スチレン ; ジビニルベンゼン; ジァリルフタレート ; トリメチロールプ 口パントリメタタリレート、 トリプロピレングリコールジァクリ レート もしくはグリシジルメタタリ レート等の (メタ) ァクリル系モノマーを 用いることが出来る。 また、 表面溶解処理法に'おいても、 表面融解処理法の場合と同様に接 着層を設けることが望ましい。
( C ) 接着剤塗布法
接着剤塗布法では、 ポリオレフイン延伸シートの片面もしくは両面に 接着剤が塗布されて他の基材が接着される。 この場合には、 ポリオレフ インと他の基材の双方に対する接着性に優れた適宜の接着剤を用いれば よい。
(ポリオレフイン延伸シートの用途)
本発明に係るポリオレフイン延伸シートは、 強度及び弾性率に優れて いるだけでなく、 エチレン、 1ーブテン共重合体のような適当なポリオ レフインを用いることにより、 耐クリーブ性を付与することが出来る。 従って、 耐クリープ性が要求される用途、 例えば高圧用管材の強化材料 として効果的に用いられる。 例えば、 熱可塑性樹脂好ましくはポリオレ フィンからなる管に本発明により得られたポリオレフイン延伸シートを 卷回することにより、 ポリオレフイン延伸シートを強化材料として用い ることが出来る。 また、 ポリオレフイン延伸シートを保護するために、 外層を設けることが好ましい。 熱可塑性樹脂からなる管材とポリオレフ ィン延伸シート、 あるいはポリオレフイン延伸シートと外層とが接着さ れていてもよく、 接着されていなくともよい。 もっとも、 管の端部から の水の侵入を防止するには、 接着されていることが好ましく、 それによ つて継手等に用いることが出来る。 高圧管の構成の一例を図 7示す。 図 7に示す高圧管 7では、 熱可塑性榭脂からなる管 7 Aの外周面に本発明 で得られたポリオレフイン延伸シート 7 Bが卷回されており、 更にその 外側に外層 7 Cが形成されている。
また、 本発明に係るポリオレフイン延伸シートは、 高い弾性率を有す るので、 板状の基材、 例えば発泡体等の低い曲げ弾性率の基材の両面に 貼り合わせて積層体を構成するのに好適に用いられる。 このような積層 体では、 本発明に係るポリオレフイン延伸シートにより高い曲げ弾性率 が得られる。 加えて、 延伸倍率や使用するポリオレフインにもよるが、 本発明に係るポリオレフイン延伸シートの線膨張率は 0未満とされ得る ため、 このような積層体は線膨張率が低く、 極めて寸法安定性に優れた ものとなる。 図 8に、 このような積層体の例を示す。 図 8に示す積層体 8では、 板状の基材 8 Cの両面に本発明によって得られたポリオレフィ ン延伸シート 8 A、 8 Eが接着層 8 B、 8 Dを介して貼り合わされてい る。
更に複数枚の本件発明に係るポリオレフイン延伸シートのみが貼り合 わされた積層体を構成してもよく、 このような積層体は特に高い曲げ弾 性率、 強度及び弾性率を有し、 更に高い耐衝擊性を有する。
(実施例)
以下、 本発明の具体的な実施例及び比較例を挙げることにより、 本発明 を具体的に説明する。 なお、 本発明は以下の実施例に限定されるもので はない。
(実施例 1 )
図 1に示す装置を用いてポリオレフイン延伸シートを得た。 原材料と して、 エチレン ' 1ーブテン共重合体 (融点 1 3 5°C、 重量平均分子量 34万、 メルトインデックス M I = 0. 1 6 g/1 0分、 1ーブテン含 有量 0. 4モル Z1分子) を用いた。 この原材料を押出機 1 A内におい て溶融混練し、 成形機 1 Bにて厚さ 3 mm及ぴ幅 27 Ommの原反シー トを成形し、 1 m/分の速度で引取ロール 1 Cい 1 C2で引取り、 か つ一対の圧延ロール 1 Dい 1 D2間に供給した。
圧延ロール 1 D 1 D2間においては、 原反シートの温度を 1 1 0°C、 圧延ロールの温度を 1 2 5°C、 加圧力を 1 00 k g f Zmrnとして圧延 倍率が 1 0倍となるように、 さらにシートに 3MP aの引張り応力を加 えつつ圧延を行った。得られた圧延シートの厚みは 0. 3 mmであった。 また、 圧延に際してのシートの搬送速度は 1 OmZ分とし、 圧延シート は、 シートに 6 OMP aの引張り応力が与えられるように繰出しロール 1 E !, 1 E 2で引取った。
次に、 上記のようにして得られた圧延シートを、 次の繰出ロール 1 E !, 1 E2と一対の引取ロール 1 1 G2との間に複数の接触ロール 1 Fが配置された多段延伸装置を用いて、 延伸を行った。 なお、 各ロー ル 1 Eい 1 E 2, 1 Gい 1 G2, 1 Fは各々、 独立のモータで駆動し た。 この多段延伸装置では、 延伸ゾーンは 9段とされており延伸工程に おける延伸倍率が 2倍となるように延伸を行った。 なお、 延伸工程にお ける各ロールとシートの連続接触長さ Lは 25 Ommとした。 また、 延 伸工程におけるシート搬送速度は 2 Om/分である。
上記のようにして総延伸倍率が 20倍のポリオレフイン延伸シートを 得た。
(実施例 2)
図 2に示す装置を用いた。 ここでは、 延伸工程が、 1段の延伸装置 2 Fを用いて行われている。 すなわち、 延伸装置 2 Fでは、 一対の繰出口 ール 2 E , 2 Ε2と一対の引取ロール 2 G15 2 G2のみが用いられ、 延伸ゾーンは 1段とされている。 この延伸装置を用い、 その他の点につ いては実施例 1と同様にして、 総延伸倍率が 20倍のポリオレフイン延 伸シートを作製した。 得られたポリオレフイン延伸シートでは、 ネツキ ングが若干みられた。
(実施例 3 )
延伸工程におけるシートの温度を 8 5 °Cとしたことを除いては、 実施 例 1と同様にして総延伸倍率が 20倍のポリオレフイン延伸シートを得 た。
(実施例 4 )
延伸工程におけるシートの温度を 7 0 °Cとし、 かつ総延伸倍率を 1 8 倍としたことを除いては、 実施例 1と同様にしてポリオレフイン延伸シ ートを得た。 得られたポリオレフイン延伸シートでは白化がみられた。 なお、総延伸倍率を更に高めようとした場合には、シートが破断した。 (実施例 5 )
延伸工程におけるシートの温度を 4 0 °Cとし、 総延伸倍率を 1 6倍と したことを除いては、 実施例 1と同様にしてポリオレフイン延伸シート を得た。 なお、 得られたポリオレフイン延伸シートでは白化が認められ た。 '
なお、 実施例 5において、 総延伸倍率を更に高めようとした場合には シートが破断した。
(実施例 6 )
圧延工程における原反シートの温度を 8 0 °Cとしたこと、 並びに圧延 倍率を 9倍としたこと、 総延伸倍率を 1 8倍としたことを除いては、 実 施例 1と同様にしてポリオレフイン延伸シートを得た。 なお、 実施例 6 において、総延伸倍率を更に高めようとした場合にはシートは破断した。
(実施例 7 )
圧延工程における原反シートの温度を 6 0 °Cとしたこと、 並びに圧延 倍率を 8 . 5倍としたことを除いては、 実施例 1と同様にしてポリオレ フィン延伸シートを得た。 従って、 総延伸倍率は 1 7倍である。
なお、実施例 6における圧延の加圧力を 1 8 O mm/ k gに高めたが、 圧延倍率はほとんど変わらなかった。
(実施例 8 )
圧延工程において、 圧延されたシートに引張応力 0 . 5 M P aが加え られるように、 圧延シートを引取り、 シート速度を 3 . 6〜4 . 5 m/ 分(圧延ロールの速度設定は 1 O m/分とした) としたことを除いては、 実施例 1 と同様にしてポリオレフイン延伸シートを得た。 圧延工程にお いてシートがすべり、 ^定速度に達しなかった。 また、 シート速度が安 定しな力 つた。
(実施例 9 )
圧延工程において、 原反シートに引張応力 0 . 5 M P aが与えられる ように圧延を行ったことを除いては、 実施例 1と同様にしてポリオレフ ィン延伸シートを作製した。
なお、 圧延工程前に原反シートが波打ち、 ポリオレフイン延伸シート が当初は得られたが、 約 1 0分後にシートが破断した。
(実施例 1 0 )
延伸工程における接触ロールのロール径を 3 5 O mm, シートとの連 続的接触長 Lの長さを 5 5 O m mとしたことを除いては、 実施例 1と同 様にしてポリオレフイン延伸シートを作製した。 得られたポリオレフィ ン延伸シートでは、 部分的にシート中央付近に縦割れが生じた。
(実施例 1 1 )
延伸工程において、 繰出ロール 1 Eい 1 E 2、 引取ロール 1 Gい 1 G 2及び接触ロール 1 Fを相互にギア及びチェーンにより連結し、 一つ のモーターで駆動させたことを除いては、 実施例 1と同様にしてポリオ レフィン延伸シートを作製した。 得られたポリオレフイン延伸シートで は、 ネッキングがひどく、 所々シートが白化し、 ポリオレフイン延伸シ ートを作製し始めてから 1 0分後に延伸工程においてシートの破断が認 められた。
(実施例 1 2 )
図 3に示す装置を用いた。 図 3に示す装置は、 図 1に示した装置の後 段に架橋処理を行うための 4つの水銀灯 3 Hが付加されていることを除 いては、 実施例 1の装置と同様である。
実施例 1 2においては、 原材料として、 実施例 1で用いたエチレン ' 1ーブテン共重合体 1 0 0重量部に対し、 光開始剤としてべンゾフエノ ン 0 . 6重量部と、 多官能不飽和化合物としてトリァリルイソシァヌレ ート 1 . 2重量部とを配合したものを用いた。 また、 延伸工程後に 1 2 0 W/ c m 2の出力の高圧水銀灯 3 Hを 4灯用意し、 シートの上下に 2 灯ずつ配置し、 シート搬送速度を 2 O m/分とし、 架橋処理を行った。 なお、 この水銀灯からの紫外線の照射に際しての延伸シートの全光線透 過率は 8 0 %であった。 その他の点については実施例 1と同様とした。
(実施例 1 3 ) ·
延伸工程における延伸温度を 9 0 °Cとしたこと、 並びに実施例 1 2と 同様にして延伸工程後に架橋処理を施したことを除いては、 実施例 1 2 と同様にしてポリオレフィ'ン延伸シートを得た。 なお、 紫外線照射時の シートの全光線透過率は 5 5 %であった。
(実施例 1 4 )
多官能不飽和化合物を配合しなかったことを除いては、 実施例 1 2と 同様にしてポリオレフイン延伸シートを得た。
(実施例 1 5 )
図 4に示した装置を用いてポリオレフイン延伸シートを製造した。 図 4に示す装置は、 図 1 に示す装置の後段に架橋処理装置として、 電子 線照射装置 4 Hが付加されていることを除いては、 実施例 1の装置と同 様である。
実施例 1 5においては、 多官能不飽和化合物をエチレン · 1ーブテン 共重合体 1 0 0重量部に対し、 1 . 2重量部添加したこと、 並びに紫外 線照射に代えて電子線照射装置 4 Hから 1 0 O M r a dの電子線を照射 し、 架橋処理を行ったことを除いては、 実施例 1 2と同様にしてポリオ レフイン延伸シートを作製した。
(実施例 1 6)
多官能不飽和化合物を配合しなかったことを除いては、 実施例 1 5と 同様にしてポリオレフイン延伸シートを得た。
(実施例 1 7)
原材料としてエチレン ·プロピレン共重合体 (融点 1 34°C、 重量平 均分子量 28万、 メルトインデックス M I = 0. S S gZl O分、 プロ ピレン含有量 0. 8モル /1分子) を用いたことを除いては、 実施例 1 と同様にしてポリオレフイン延伸シートを得た。 なお、 総延伸倍率は 2 0倍である。
(実施例 1 8 )
光開始剤としてべンゾフエノン 0. 6重量部と、 多官能不飽和化合物 としてトリアリルイソシァヌレート 1. 2重量部とを、 エチレン 'プロ ピレン共重合体 1 00重量部に対して添加したこと、 実施例 1 2と同様 に水銀灯を用いて紫外線照射を行い架橋処理を行ったことを除いては、 実施例 1 7と同様にしてポリオレフイン延伸シートを得た。 なお、 紫外 線照射時のシートの全光線透過率は 9 2 %であった。
(実施例 1 9 )
原材料として、 ポリエチレン (融点 1 35°C、 重量平均分子量 29万、 メルドインデックス M I = 0. 4 gZl O分、 ーォレフィン含有量測 定出来ず) を用いたことを除いては、 実施例 1と同様にしてポリオレフ ィン延伸シートを得た。
(実施例 20)
光架橋剤としてべンゾフエノン 0. 6重量部と、 多官能不飽和化合物 としてトリアリルイソシァヌレート 1. 2重量部とを、 ポリエチレン 1 00重量部に対して添加したこと、 並びに実施例 1 2と同様に紫外線照 射を行ったことを除いては、 実施例 1 9と同様にしてポリオレフイン延 伸シートを得た。 なお、 紫外線照射時のシートの全光線透過率は 9 3 % である。
(実施例 2 1 )
原材料として、 ホモポリプロピレン (融点 1 6 7°C、 重量平均分子量 3 2万、 メルトインデックス M I = 0. 3 3 g/1 0分) を用いたこと、 圧延工程における原反シートの温度を 1 20°Cとし、 圧延ロール温度を 1 50°Cとしたこと、 加圧力を 1 00 k g f /mmとしたこと、 圧延倍 率を 6倍、 シート速度を 6 m/分としたこと、 並びに延伸工程における シート温度を 145°C、 延伸ゾーンを 9段、 延伸倍率 2. 8倍、 シート 速度 1 7mZ分としたことを除いては、 実施例 1と同様にしてポリオレ フィン延伸シートを得た。 なお、 圧延工程により得られた圧延シートの 厚みほ 0. 5mmであった。 また、 総延伸倍率は 1 7倍である。
(実施例 22)
光開始剤としてべンゾフエノン 0. 6重量部と、 多官能不飽和化合物 としてトリアリルイソシァヌレート 1. 2重量部とを、 実施例 21で用 いたホモポリプロピレン 1 00重量部に配合したこと、 並びに実施例 1 2と同様にして紫外線架橋を行ったことを除いては、 実施例 21と同様 にしてポリオレフイン延伸シートを得た。 なお、 紫外線照射時のシート の全光線透過率は 88 %である。
(実施例 23)
原材料として、 ランダムポリプロピレン (融点 141°C、 重量平均分 子量 3 2万、 メルトインデックス M I = 0. 8 g/10分) を用いた。 また、 圧延工程における原反シートの温度を 1 20°C、 圧延ロール温度 を 1 30°C、 加圧力を 1 00 k g f /mm, 圧延倍率を 6倍、 圧延シー トの厚みを 0. 5mm、 シート速度を 6 m/分とした。
延伸工程におけるシート温度を 1 30°C、 延伸ゾーンを 9段、 延伸倍 率 2. 8倍、 シート速度 1 7 mZ分とした。
上記の点以外については実施例 1と同様にしてポリオレフイン延伸シ ートを得た。 なお、 総延伸倍率は 1 7倍である。
(実施例 24)
ランダムポリプロピレン 1 00重量部に対し、 光開始剤としてべンゾ フエノン 0. 6重量部と、 多官能不飽和化合物としてトリアリルイソシ ァヌレート 1. 2重量部とを添加し こと、 並びに実施例 1 2と同様に して紫外線照射による架橋処理を行ったことを除いては、 実施例 23と 同様にしてポリオレフイン延伸シートを得た。 なお、 紫外線照射時のシ 一トの全光線透過率は 8 8 %であつた。
(実施例 25 )
原材料として、 ポリ 1ーブテン (融点 1 27°C、 重量平均分子量 38 万、 メルトインデックス M l = 0. 5 g / 1 0分) を用いた。
圧延工程において、 原反シートの温度を 1 0 o°c、 圧延ロール温度を 1 20°C、 加圧力を 1 00 k g f /mm、 圧延倍率を 6倍、 圧延シート の厚み 0. 5mm、 シート速度を 6 m/分とした。
延伸工程において、 シート温度を 1 1 5°C、 延伸ゾーンを 9段、 延伸 倍率を 2. 8倍、 シート速度を 1 7m/分とした。
上記の以外については、 実施例 1と同様にしてポリオレフイン延伸シ ートを得た。 なお、 総延伸倍率は 1 7倍である。
. (実施例 26 )
ポリ 1ーブテン 1 00重量部に対し、 光架橋剤としてべンゾフエノン 0. 6重量部と、 多官能不飽和化合物としてトリァリルイソシァヌレー ト 1. 2重量部とを添加したこと、 並びに実施例 1 2と同様にして紫外 線照射により架橋処理を施したことを除いては、 実施例 2 5と同様にし てポリオレフイン延伸シートを得た。 なお、 紫外線照射時のシートの全 光線透過率は 8 5 %であった。
(比較例 1 )
原材料として、 ポリエチレン (融点 1 3 4 °C、 重量平均分子量 1 0 5 万、 ひーォレフイン含有量測定出来ず) を用いたことを除いては実施例 1と同様にしてポリオレフイン延伸シートの作製を試みたが、 圧延工程 において、 シートが破断し、 延伸シートは得られなかった。
(比較例 2 )
原材料として、 エチレン · 1—ブテン共重合体 (融点 1 3 3 °C、 重量 平均分子量 1 0 2万、 1—ブテン含有量 0 . 5モル / 1分子) を用いた ことを除いては実施例 1 と同様にしてポリオレフイン延伸シートの作製 を試みたが、 圧延工程においてシートが破断し、 延伸シートは得られな かった。
(比較例 3 )
延伸工程における延伸倍率を 1 . 3倍及びシート速度を 1 3 m/分と したことを除いては、 実施例 1 2と同様にしてポリオレフイン延伸シー トを得た。 なお、 総延伸倍率は 1 3倍である。
(比較例 4 )
圧延工程を行わなかったこと、 並びに延伸工程におけるシート温度を 1 2 0 °C、 延伸ゾーンを 9段、 延伸倍率を 1 5倍、 シート速度を 1 5 m /分としたことを除いては、 実施例 1 2と同様にしてポリオレフイン延 伸シートを作製した。 総延伸倍率は 1 5倍である。 ネッキングがひどく 現れ、 シート作製開始 5分後にシートが破断した。
(比較例 5 )
圧延工程における圧延倍率を 4倍、シート速度を 4 mZ分としたこと、 延伸工程におけるシート温度を 1 2 0 °C、 延伸ゾーンを 9段、 延伸倍率 を 4倍、 シート速度を 1 6 m/分としたことを除いては、 実施例 1 2と 同様にしてポリオレフイン延伸シートを作製した。 総延伸倍率は 1 6倍 である。 得られたポリオレフィン延伸シートではネッキングがひどく現 れ、 シート製造を開始してから約 8分後にシートが破断した。
(実施例及び比較例の評価)
上記のようにして得られた各ポリオレフイン延伸シートにおける総延 伸倍率及ぴゲル分率を下記の表 1に示す。
また、 引張弾性率、 引張強度及びクリープ破断時間を以下の要領で測 定した。
引張弾性率及び引張強度…得られたポリオレフイン延伸シートに対し、
J I S K 7 1 1 3に準じた引張試験を引張試験機 (オリエンテック 社製、 商品名 : 「テンシロン」 ) で行った。 なお、 引張方向は延伸方向 と同一方向とした。 この引張試験により、 引張弾性率及び引張強度をも とめた。
クリープ破断時間…各ポリオレフイン延伸シートに対し、 引張試験に 用いた引張試験機を用い、 2 4 O M P aの一定応力を延伸方向に加え、 延伸シートが破壌されるまでの時間を測定し、 これをクリーブ破断時間 とした。
表 1 リープ 総延伸倍率 ゲノレ分率 ク
強度
破断時間 実施例 1 20倍 0 % 15. 4 GPa 582 MPa 37. 1 時間 夹施例 2 20倍 0 % 15. 2 GPa 577 MPa 35. 5 時間 夹施例 3 20倍 0 % 15. 1 GPa 580 MPa 34. 1 時間 夹施例 4 18 i 0 % 13. 4 GPa 542 MPa 25. 2 日寺間 夹施例 5 16 in 0 % 12. 8 GPa 533 MPa 2b. 0 時間 実施例 6 18 in 0 % 12. 8 GPa 512 MPa 24. 1 時間 夹施例 7 17倍 0 % 11. 5 GPa 490 MPa 18. 5 時間 夹施例 8 20倍 0 % 15. 1 GPa 580 MPa 36. 1 時間 夹施例 9 20倍 0 % 15. 0 GPa 570 MPa 34. 2 時間 実施例 1 0 20倍 0 % 15. 3 GPa 575 MPa 33. 0 時間 夹施例 1 1 20倍 0 % 15. 0 GPa 566 MPa 32. 0 時間 実施例 1 2 20倍 40 % 15. 1 GPa 580 MPa 1965. 0 時間 実施例 1 3 20倍 25 % 14. 5 GPa 558 MPa 324. 0 時間 実施例 1 4 20倍 20 % 15. 2 GPa 575 MPa 213. 0 時間 実施例 1 5 20倍 38 % 15. 0 GPa 565 MPa 1583. 0 時間 実施例 1 6 20倍 28 % 15. 1 GPa 561 MPa 556. 0 Bき間 実施例 1 7 20倍 0 % 19. 8 GPa 612 MPa 3. 5 時間 実施例 1 8 20 i 41 % 19. 3 GPa 603 MPa 19. 2 時間 夹施例 1 9 20倍 0 % 20. 5 GPa 610 MPa 0. 9 時間 夹施例 2 0 20倍 40 % 19. 8 GPa 605 MPa 7. 5 時間 夹施例 2 1 1 怡 0 % 8. 3 GPa 345 MPa 0. 1 時間 夹施例 2 2 17倍 7 % 8. 2 GPa 338 MPa 0. 3 時間 夹施例 2 3 17借 0 % 6. 9 GPa 312 MPa 0. 1 時間 実施例 2 4 17 1首 8 % 6. 5 GPa 305 MPa 0. 2 時間 実施例 2 5 5. 8 GPa 0 MFa 0. 1 時「 実施例 2 6 17倍 5 % 5. 7 GPa 295 MPa 0. 2 時間 比較例 1 圧延で破断
比較例 2 圧延で破断
比較例 3 13倍 58 % 9. 8 GPa 431 MPa 1. 5 時間 比較例 4 15倍 11 % 10. 8 GPa 460 MPa 1. 8 時間 比較例 5 16倍 27 % 12. 1 GPa 523 MPa 0. 8 時間 発明の効果
本発明に係るポリオレフィン延伸シートの製造方法では、 重量平均分 子量が 1 0万〜 5 0万のポリオレフインを原反シートに成形した後、 該 原反シートを 5倍以上に圧延し、 次に圧延シートを総延伸倍率 1 5とな るように延伸するため、機会的強度及び弾性率に優れているだけでなく、 耐クリープ性に優れた本発明に係るポリオレフイン延伸シートを得るこ とが出来る。
また、 本発明では、 超高分子量ポリオレフインを用いる必要がないた め成形性に優れており、 広い.幅のポリオレフイン延伸シートを高い生産 性で得ることが出来る。

Claims

請 求 の 範 囲
1. 重量平均分子量が 1 0万〜 5 0万の範囲にあり、 融点が Tm/°C であるポリオレフインを押出成形し、 シート状の原反シートを得る工程 と、
前記原反シートを圧延倍率が少なくとも 5倍となるように圧延し、 圧 延シートを得る工程と、
前記圧延シートを少なくとも 1つのロールを用いて引張延伸し、 前記 圧延倍率と該引張延伸による延伸倍率の積である総延伸倍率が 1 5倍以 上となるように延伸する工程とを備える、 ポリオレフイン延伸シートの 製造方法。
2. 前記圧延シートを得る工程において、 (Tm— 6 0) °C〜 (Tm - 5) °Cの温度の前記原反シートを、 (Tm— 40) °C以上、 Tm°C未 満の温度とされた一対の圧延ロール間に挿入し、 1 0 k g f./mm〜5 00 k g f /mmの範囲の加圧力で圧延することを特徴とする、 請求項 1に記載のポリオレフイン延伸シートの製造方法。
3. 前記延伸工程において、 (Tm_ 60) °C以上、 Tm°C未満の温 度で、 延伸倍率 1. 3倍以上に引張延伸する、 請求項 1または 2に記載 のポリオレフイン延伸シートの製造方法。
4. 前記延伸工程が、複数の延伸ゾーンを用いた多段延伸工程であり、 各延伸ゾーンにおける延伸倍率が後段にいくほど低くされている、 請求 項 1〜 3のいずれかに記載のポリオレフイン延伸シートの製造方法。
5. 前記多段延伸工程において、 前記ロールとして、 繰出ロールと引 取ロールと、 繰出ロールと引取ロールとの間に、 一定速度で回転する複 数の接触ロールとが用いられ、 前記繰出ロール、 前記引取ロール及ぴ前 記複数の接触ロールにより、 シートに延伸方向の摩擦力が与えられなが ら延伸が行われる、 請求項 4に記載のポリオレフイン延伸シートの製造 方法。
6. 前記延伸工程において、 延伸に用いられる各ロールと、 シートと の延伸方向の連続的接触長 Lが 5 0 Omm以下とされている、 請求項 1 〜 5のいずれかに記載のポリオレフイン延伸シートの製造方法。
7. 前記圧延工程において、 厚み t mmの原反シートが圧延倍率 X倍 で圧延され、 かつ圧延前の原反シートに x/5 tMP a〜20MP aの 範囲の引張応力が与えられながら前記圧延が行われる、 請求項 1〜 6の いずれかに記載のポリオレフイン延伸シートの製造方法。
8. 前記圧延工程において、 厚み t mmの原反シートが圧延倍率 X倍 で圧延され、 かつ圧延シートが X t /5 OMP a以上の引張応力が与え られるようにして引取られる、 請求項 1〜7のいずれかに記載のポリオ レフイン延伸シートの製造方法。
9. 前記延伸工程または延伸後において、 ポリオレフインが架橋され る、 請求項 1〜8のいずれかに記載のポリオレフイン延伸シートの製造 方法。
1 0. 前記原反シートを得る工程において、 ポリオレフインに光開始 剤が配合されて光開始剤含有原反シートが得られ、 前記延伸工程または 延伸後において、 シートに紫外線が照射されてポリオレフインが架橋さ れる、 請求項 9に記載のポリオレフイン延伸シートの製造方法。
1 1. 前記紫外線照射時のシートの全光線透過率が 60 %以上である、 請求項 1 0に記載のポリオレフイン延伸シートの製造方法。
1 2. 前記延伸工程または延伸後において、 シートに電子線が照射さ れることによりポリオレフインが架橋される、 請求項 9に記載のポリオ レフイン延伸シートの製造方法。
1 3. 前記原反シートを得る工程において、 ポリオレフインに対し多 官能不飽和化合物が配合されて多官能不飽和化合物含有原反シートが得 られ、 前記延伸工程または延伸後において、 ポリオレフインが多官能不 飽和化合物により架橋される、 請求項 9〜1 2のいずれかに記載のポリ ォレフィン延伸シートの製造方法。
1 4. 前記ポリオレフインが、 ポリエチレンまたはポリプロピレンで ある、 請求項 1〜 1 3のいずれかに記載のポリオレフイン延伸シートの 製造方法。
1 5. 前記ポリオレフィンが、 エチレン · α—ォレフィン共重合体で あり、 共重合体分子 1モル当たりに共重合されている炭素数 3以上の a —ォレフインの量が 0. 1〜 3モルである、 請求項 1〜 1 3のいずれか に記載のポリオレフイン延伸シートの製造方法。
1 6. 前記エチレン · α—ォレフィン共重合体が、 エチレン · プロピ レン共重合体またはエチレン . 1—ブテン共重合体である、 請求項 1 5 に記載のポリオレフイン延伸シートの製造方法。
1 7. 重量平均分子量が 1 0万〜 5 0万の範囲にあるポリオレフイン 力 厚み延伸比が幅延伸比の 5倍以上であり、 かつ延伸倍率が 1 5倍以 上に延伸されている、 ポリオレフイン延伸シート。
1 8. 前記ポリオレフインが架橋されている、 請求項 1 7に記載のポ リオレフイン延伸シート。 .
1 9. ゲル分率が 2 0 %以上である、 請求項 1 8に記載のポリオレフ ィン延伸シート。
2 0. 紫外線照射により架橋されている、 請求項 1 8または 1 9に記 載のポリオレフイン延伸シート。
2 1. 電子線照射により架橋されている、 請求項 1 8または 1 9に記 載のポリオレフイン延伸シート。
2 2. 前記ポリオレフインが、 多官能不飽和化合物により架橋されて いる、 請求項 1 8に記載のポリオレフイン延伸シート。
2 3 . 前記ポリオレフインが、 ポリエチレンまたはポリプロピレンで ある、請求項 1 7 〜 2 2のいずれかに記載のポリオレフイン延伸シート。
2 4 . 前記ポリオレフインが、 エチレン ' α—ォレフィン共重合体で あり、 該共重合体分子 1モル当たりに共重合されている炭素数 3以上の ひ 一ォレフィンの量が、 0 . 1 〜 3モルである、 請求項 1 7〜 2 2のい ずれかに記載のポリオレフイン延伸シート。
2 5 . 前記エチレン · ひ 一ォレフィン共重合体が、 エチレン 'プロピ レン共重合体またはエチレン ' 1—ブテン共重合体である、 請求項 2 4 に記載のポリオレフイン延伸シート。
4
PCT/JP2001/007520 2000-09-11 2001-08-31 Feuille etiree en polyolefine et son procede de production WO2002022343A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002526575A JPWO2002022343A1 (ja) 2000-09-11 2001-08-31 ポリオレフィン延伸シート及びその製造方法
CA002421642A CA2421642C (en) 2000-09-11 2001-08-31 Oriented polyolefin sheet and method for production thereof
US10/380,103 US7025917B2 (en) 2000-09-11 2001-08-31 Polyolefin stretched sheet and method for producing the same
EP01961242A EP1329303B1 (en) 2000-09-11 2001-08-31 Method for producing a polyolefin stretched sheet
DE60138206T DE60138206D1 (de) 2000-09-11 2001-08-31 Verfahren zur herstellung einer verstreckten folie aus polyolefin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000275273 2000-09-11
JP2000-275273 2000-09-11

Publications (1)

Publication Number Publication Date
WO2002022343A1 true WO2002022343A1 (fr) 2002-03-21

Family

ID=18760922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007520 WO2002022343A1 (fr) 2000-09-11 2001-08-31 Feuille etiree en polyolefine et son procede de production

Country Status (7)

Country Link
US (1) US7025917B2 (ja)
EP (1) EP1329303B1 (ja)
JP (1) JPWO2002022343A1 (ja)
AT (1) ATE427207T1 (ja)
CA (1) CA2421642C (ja)
DE (1) DE60138206D1 (ja)
WO (1) WO2002022343A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283555A (ja) * 2006-04-13 2007-11-01 Sekisui Seikei Ltd 延伸ポリオレフィン樹脂シートの製造方法
WO2008139838A1 (ja) * 2007-05-08 2008-11-20 Mitsui Chemicals, Inc. プロピレン系重合体の架橋体
JP2009286109A (ja) * 2008-05-01 2009-12-10 Sekisui Chem Co Ltd ポリオレフィン系樹脂架橋体とその融着接合物
WO2010038907A1 (en) * 2008-10-01 2010-04-08 Fujifilm Corporation Film and method for producing film
JP2010216924A (ja) * 2009-03-16 2010-09-30 Tokai Rika Co Ltd 装飾部材、レーダユニット、装飾部材製造方法
JP2010274492A (ja) * 2009-05-27 2010-12-09 Sekisui Chem Co Ltd 延伸熱可塑性樹脂シートの製造方法
JP2011522199A (ja) * 2008-04-28 2011-07-28 テイジン・アラミド・ビー.ブイ. テープを含有する防弾製品
JP2014520589A (ja) * 2011-06-30 2014-08-25 エスセーアー・ハイジーン・プロダクツ・アーベー 弾性積層体を形成する方法
JP2015021040A (ja) * 2013-07-17 2015-02-02 大日本印刷株式会社 半導体発光装置の製造方法、成形体の製造方法、電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、およびリフレクター
JP2015504106A (ja) * 2011-12-23 2015-02-05 オルフィット インダストリーズ 固定要素として使用するためのポリマーシートの製造方法
JP2016188374A (ja) * 2016-05-23 2016-11-04 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池
KR101886417B1 (ko) * 2018-05-30 2018-09-11 (주)범민케미칼 친환경 pvc 필름 제조방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329303B1 (en) * 2000-09-11 2009-04-01 Sekisui Seikei Ltd. Method for producing a polyolefin stretched sheet
DE102004061985A1 (de) * 2004-12-23 2006-07-06 Rehau Ag + Co TPV-Alternative
BRPI1012714A2 (pt) 2009-03-31 2016-04-05 Dsm Ip Assets Bv método e dispositivo para a produção de uma fita de polímero
GB2525453A (en) * 2014-04-23 2015-10-28 Uponor Innovation Ab Polyolefin pipe
WO2017026347A1 (ja) * 2015-08-07 2017-02-16 三井化学東セロ株式会社 光架橋性エチレン系樹脂組成物
WO2024023720A1 (en) * 2022-07-28 2024-02-01 Colines S.P.A. Plant for the production of plastic films to be then subjected to a stretching process and related method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122772A (ja) * 1974-08-16 1976-02-23 Nippon Petrochemicals Co Ltd Netsukasoseijushinoshiito mataha fuirumunohaikohoho
JPS5277180A (en) * 1975-12-23 1977-06-29 Nippon Petrochemicals Co Ltd Method of manufacturing highly elongated poly olefin film
JPS5323372A (en) * 1976-08-16 1978-03-03 Sekisui Jushi Kk Process for making thermoplastic bands
JPH08174658A (ja) * 1994-12-27 1996-07-09 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH1044235A (ja) * 1996-07-31 1998-02-17 Sekisui Chem Co Ltd ポリオレフィン成形体の製造方法
JPH10100246A (ja) * 1996-09-26 1998-04-21 Sekisui Chem Co Ltd ポリオレフィン成形体の製造方法
JPH10296849A (ja) * 1997-04-24 1998-11-10 Sekisui Chem Co Ltd ポリオレフィン延伸シートの製造方法及びポリオレフィン成形体の製造方法
JPH10298305A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd ポリオレフィンシートの製造方法
JPH10323892A (ja) * 1997-05-23 1998-12-08 Sekisui Chem Co Ltd ポリオレフィンシートの製造方法
EP0933189A1 (en) * 1996-10-31 1999-08-04 Sekisui Chemical Co., Ltd. Process for the production of polyolefin moldings
JP2000117828A (ja) * 1998-10-19 2000-04-25 Sekisui Chem Co Ltd 延伸ポリエチレンシートの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651196A (en) * 1969-07-29 1972-03-21 Du Pont Preparation of oriented polymeric strapping
JPH0761687B2 (ja) * 1988-07-09 1995-07-05 日本石油株式会社 高強度・高弾性率ポリエチレン材料の製造方法
CA2015629C (en) * 1989-05-08 1996-07-09 Seizo Kobayashi Laminate
DE69018332T2 (de) * 1989-07-28 1995-10-26 Nippon Oil Co Ltd Verfahren zur kontinuierlichen Herstellung eines Polyethylenmaterials mit hoher Festigkeit und hohem Modul.
CA2127746A1 (en) * 1993-07-09 1995-01-10 Dedo Suwanda Continuous process for manufacturing crosslinked, oriented polyethylene products
DE69725729T2 (de) * 1996-06-10 2004-08-05 Fluoron, Inc. Folien, rohre und rollenbeschichtungen aus wärmeschrumpfbarem uhmv-polymer
EP0934812A3 (en) * 1998-02-04 2000-01-05 Sekisui Seikei Ltd. Polyolefin strip and method for manufacture thereof
EP1329303B1 (en) * 2000-09-11 2009-04-01 Sekisui Seikei Ltd. Method for producing a polyolefin stretched sheet
AU2002239446A1 (en) * 2000-12-06 2002-06-18 Omlidon Technologies Llc Melt-processible, wear resistant polyethylene

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122772A (ja) * 1974-08-16 1976-02-23 Nippon Petrochemicals Co Ltd Netsukasoseijushinoshiito mataha fuirumunohaikohoho
JPS5277180A (en) * 1975-12-23 1977-06-29 Nippon Petrochemicals Co Ltd Method of manufacturing highly elongated poly olefin film
JPS5323372A (en) * 1976-08-16 1978-03-03 Sekisui Jushi Kk Process for making thermoplastic bands
JPH08174658A (ja) * 1994-12-27 1996-07-09 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH1044235A (ja) * 1996-07-31 1998-02-17 Sekisui Chem Co Ltd ポリオレフィン成形体の製造方法
JPH10100246A (ja) * 1996-09-26 1998-04-21 Sekisui Chem Co Ltd ポリオレフィン成形体の製造方法
EP0933189A1 (en) * 1996-10-31 1999-08-04 Sekisui Chemical Co., Ltd. Process for the production of polyolefin moldings
JPH10296849A (ja) * 1997-04-24 1998-11-10 Sekisui Chem Co Ltd ポリオレフィン延伸シートの製造方法及びポリオレフィン成形体の製造方法
JPH10298305A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd ポリオレフィンシートの製造方法
JPH10323892A (ja) * 1997-05-23 1998-12-08 Sekisui Chem Co Ltd ポリオレフィンシートの製造方法
JP2000117828A (ja) * 1998-10-19 2000-04-25 Sekisui Chem Co Ltd 延伸ポリエチレンシートの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283555A (ja) * 2006-04-13 2007-11-01 Sekisui Seikei Ltd 延伸ポリオレフィン樹脂シートの製造方法
WO2008139838A1 (ja) * 2007-05-08 2008-11-20 Mitsui Chemicals, Inc. プロピレン系重合体の架橋体
JP5406020B2 (ja) * 2007-05-08 2014-02-05 三井化学株式会社 プロピレン系重合体の架橋体
JP2011522199A (ja) * 2008-04-28 2011-07-28 テイジン・アラミド・ビー.ブイ. テープを含有する防弾製品
JP2009286109A (ja) * 2008-05-01 2009-12-10 Sekisui Chem Co Ltd ポリオレフィン系樹脂架橋体とその融着接合物
US8501065B2 (en) 2008-10-01 2013-08-06 Fujifilm Corporation Film and method for producing film
WO2010038907A1 (en) * 2008-10-01 2010-04-08 Fujifilm Corporation Film and method for producing film
JP2010216924A (ja) * 2009-03-16 2010-09-30 Tokai Rika Co Ltd 装飾部材、レーダユニット、装飾部材製造方法
JP2010274492A (ja) * 2009-05-27 2010-12-09 Sekisui Chem Co Ltd 延伸熱可塑性樹脂シートの製造方法
JP2014520589A (ja) * 2011-06-30 2014-08-25 エスセーアー・ハイジーン・プロダクツ・アーベー 弾性積層体を形成する方法
US9199410B2 (en) 2011-06-30 2015-12-01 Sca Hygiene Products Ab Method of forming an elastic laminate
JP2015504106A (ja) * 2011-12-23 2015-02-05 オルフィット インダストリーズ 固定要素として使用するためのポリマーシートの製造方法
US10343309B2 (en) 2011-12-23 2019-07-09 Orfit Industries Method for manufacturing a polymer sheet for use as an immobilization element
JP2015021040A (ja) * 2013-07-17 2015-02-02 大日本印刷株式会社 半導体発光装置の製造方法、成形体の製造方法、電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、およびリフレクター
JP2016188374A (ja) * 2016-05-23 2016-11-04 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池
KR101886417B1 (ko) * 2018-05-30 2018-09-11 (주)범민케미칼 친환경 pvc 필름 제조방법

Also Published As

Publication number Publication date
EP1329303B1 (en) 2009-04-01
US20030175539A1 (en) 2003-09-18
EP1329303A4 (en) 2007-08-01
US7025917B2 (en) 2006-04-11
ATE427207T1 (de) 2009-04-15
JPWO2002022343A1 (ja) 2004-01-22
CA2421642A1 (en) 2002-03-21
EP1329303A1 (en) 2003-07-23
CA2421642C (en) 2009-11-03
DE60138206D1 (de) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2002022343A1 (fr) Feuille etiree en polyolefine et son procede de production
RU2529517C2 (ru) Содержащая множество микрослоев многослойная термоусадочная пленка и способ ее изготовления
EP2046887B1 (en) Photo-crosslinkable polyolefin compositions
JPS60240451A (ja) ヒートシール可能な多層フイルム
JP5735004B2 (ja) 変性ポリプロピレン組成物およびそれを用いた積層体
JP4236416B2 (ja) シート状補強材及びその製造方法
US7093620B2 (en) Reinforced plastic pipe and process for manufacturing the said pipe
AU723284B2 (en) Coated optical fiber and method of making the same
JP2010100032A (ja) 太陽電池用接着シートの製造方法
JPH09174773A (ja) 強化ポリオレフィンシート及びその製造方法
JP3735204B2 (ja) 延伸ポリエチレンシートの製造方法
WO2018097145A1 (ja) ロール状体
CN115926658B (zh) 一种环保透明自粘膜及其制备方法
JP2002326327A (ja) 熱可塑性複合発泡体の製造方法
JPH05117422A (ja) シリコーン架橋フイルムの製造方法
JPH0784034B2 (ja) 繊維強化樹脂成形体及びその製法
JPH08323855A (ja) 強化樹脂シートの製造方法
JP2000085009A (ja) 延伸熱可塑性樹脂シートの製造方法及び積層体
JPH10130409A (ja) ポリオレフィンシートの製造方法
TW202340361A (zh) 用於相容化聚烯烴之組合物及方法
WO2023234417A1 (ja) 離型フィルム
JP2002347108A (ja) 延伸架橋ポリエチレンシートの製造方法
JP4851028B2 (ja) ポリオレフィン延伸シート積層体の製造方法
WO2000021732A1 (fr) Tuyau en polyolefine a orientation biaxiale
JP2000296553A (ja) 2軸配向ポリオレフィン系樹脂管状体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002526575

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001961242

Country of ref document: EP

Ref document number: 2421642

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10380103

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001961242

Country of ref document: EP