WO2002020951A1 - Dispositif de cycle de rankine - Google Patents

Dispositif de cycle de rankine Download PDF

Info

Publication number
WO2002020951A1
WO2002020951A1 PCT/JP2001/007657 JP0107657W WO0220951A1 WO 2002020951 A1 WO2002020951 A1 WO 2002020951A1 JP 0107657 W JP0107657 W JP 0107657W WO 0220951 A1 WO0220951 A1 WO 0220951A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
expander
expansion
pressure
chamber
Prior art date
Application number
PCT/JP2001/007657
Other languages
English (en)
French (fr)
Inventor
Naoki Ohta
Naoki Itoh
Tsuneo Endoh
Tsutomu Takahashi
Kensuke Honma
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to AU2001282624A priority Critical patent/AU2001282624A1/en
Priority to EP01961357A priority patent/EP1316679A1/en
Priority to KR10-2003-7003164A priority patent/KR20030076974A/ko
Priority to CA002421300A priority patent/CA2421300A1/en
Priority to BR0114049-3A priority patent/BR0114049A/pt
Priority to US10/363,539 priority patent/US7000394B2/en
Publication of WO2002020951A1 publication Critical patent/WO2002020951A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an evaporator that heats a liquid to generate steam, an expander that expands steam supplied from the evaporator to output a constant shaft torque, and cools steam discharged by the expander. And a condenser for returning the liquid to a liquid.
  • Japanese Unexamined Patent Publication No. 4-17041 discloses a Rankine cycle device in which an expander is operated with steam generated by an evaporator, and the steam discharged by the expander is liquefied by a condenser and returned to the evaporator.
  • a valve that opens and closes a valve provided at the inlet of the expander according to the magnitude of the energy of the steam generated by the evaporator, and controls the timing of supplying steam to the expander to ensure maximum output torque. has been described.
  • Japanese Patent Laid-Open No. 58-48706 discloses a Rankine cycle in which an expander is operated with steam generated by an evaporator, and the steam discharged from the expander is liquefied by a condenser and returned to the evaporator.
  • the bypass passage connecting the inlet side of the condenser and the position immediately before the completion of the expansion of the expander is opened. Which is intended to reduce the overexpansion loss.
  • Japanese Patent Application Laid-Open No. 61-87990 discloses that in a vane type compressor, a rotary valve for controlling intake and exhaust to and from the vane chamber is provided on a rotating shaft of a rotor supporting the vane. It is described that the intake timing and the exhaust timing of the rotary valve are variable.
  • water is heated by an evaporator that exchanges heat with the exhaust gas of an internal combustion engine to generate steam, and this steam drives a positive displacement expander to extract the shaft output, which is then discharged from the expander.
  • a Rankine cycle system in which the steam returned to the water by the condenser is supplied to the evaporator again, the pressure and temperature of the steam supplied from the evaporator to the expander are set in advance as rated values according to the performance of the expander.
  • the temperature of steam discharged from the expander to the condenser is set in advance as a rated value according to the performance of the condenser.
  • the pressure and temperature of the steam generated in the evaporator may be
  • the pressure and temperature of the steam which fluctuates depending on the condition of the internal combustion engine, the amount of water supplied to the evaporator, etc., and the maximum performance of the condenser, are determined by the transient state of the condenser and the cooling of the condenser. It fluctuates according to conditions (outside temperature, cooling fan speed, running wind intensity), etc.
  • Fig. 21A the vertical and horizontal axes show the steam pressure p and the specific volume V, respectively.
  • the steam that had the rated pressure p1 at the inlet of the expander was preset inside the expander.
  • the outlet pressure of the expander changes from the above-mentioned ⁇ 1 to the rated value of ⁇ 2
  • the expander and the condenser can exhibit the maximum performance when the expansion is performed by the set expansion ratio ⁇ .
  • the inlet pressure of the expander fluctuates due to various factors, and the outlet pressure of the expander at which the expander and the condenser can exhibit the maximum performance also fluctuates due to various factors. Therefore, the outlet pressure of the expander may not match the pressure at which the expander and the condenser can exhibit the maximum performance at that time, and the expander and the condenser may not be able to exhibit the full performance.
  • Such failures can occur when the inlet temperature of the expander is higher or lower than the rated value, when the amount of steam leakage inside the expander is high or low, or when the expander and the condenser perform at their maximum performance. This also occurs when the outlet pressure of the expander fluctuates from the rated value ⁇ 2 due to various factors.
  • the present invention has been made in view of the above circumstances, and has as its object to maximize the performance of an expander and a condenser of a Rankine cycle device.
  • an evaporator for heating a liquid to generate steam, and an expansion for expanding a steam supplied from the evaporator to output a shaft torque.
  • the expander draws in any relationship between the pressure and temperature of the steam sucked by the expander.
  • a Rankine cycle apparatus characterized in that the pressure and temperature of steam discharged from an expander are matched with target values by setting the expansion ratio of steam discharged to a predetermined expansion ratio according to the above-mentioned arbitrary relationship. Is proposed.
  • the expansion ratio of the steam sucked and discharged by the expander is set to a predetermined expansion ratio corresponding to the arbitrary relationship.
  • the pressure and temperature of the steam discharged from the expander can be controlled. Therefore, if the expansion ratio is set with the target value being the pressure and temperature at which the expander and the condenser can exhibit the maximum performance, the pressure and temperature of the steam discharged by the expander are made to match the target values, and And the performance of the condenser can be maximized.
  • the pressure and temperature of the steam sucked by the expander are in a superheated steam region, and the pressure and temperature of the steam discharged by the expander are set.
  • a Rankine cycle device characterized by being in the saturated steam region is proposed.
  • the expander in addition to the first aspect, includes a plurality of expansion chambers connected in series, and the product of the expansion ratio of steam in each of the expansion chambers is set by the setting.
  • a Rankine cycle device characterized by an expansion ratio is proposed.
  • the product of the steam expansion ratio in each expansion chamber is set as the set expansion ratio and condensed.
  • the condensation efficiency of the vessel can be maximized.
  • a plurality of expanders are provided.
  • a Rankine cycle device is proposed, characterized in that at least the steam in the most upstream expansion chamber is in a superheated steam area and at least the steam in the most downstream expansion chamber is in a saturated steam area.
  • At least the steam in the most upstream expansion chamber of the plurality of expansion chambers is in the superheated steam region that does not include the liquid, and the steam in at least the most downstream expansion chamber of the plurality of expansion chambers is Since it is in the saturated vapor region containing liquid, the load on the condenser that returns vapor to liquid can be reduced while minimizing the effect of liquid on the operation of the expander.
  • the expansion chamber in which steam at the discharge position is in a superheated steam region is constituted by a cylinder chamber. Is proposed.
  • the expansion chamber in which steam at the discharge position is in a saturated steam region is constituted by a vane chamber.
  • An ink cycle device is proposed.
  • the liquid is mixed with the steam to improve the lubricity of the vane and the sealing property by the liquid. Can be achieved.
  • At least the suction position of the most upstream expansion chamber among the plurality of expansion chambers of the expander is variable.
  • a Rankine cycle device is proposed. .
  • the pressure of steam sucked by the expander is changed to set the expansion ratio of the entire expander. It can be varied from the expansion ratio.
  • the expander discharges the steam by changing the expansion ratio of the steam sucked and discharged by the expander from the set expansion ratio.
  • the steam pressure and temperature can be made to match the target values.
  • at least the discharge position of the most downstream expansion chamber among the plurality of expansion chambers of the expander is variable.
  • the pressure of steam discharged by the expander is changed to set the expansion ratio of the entire expander. It can be varied from the expansion ratio.
  • the expander discharges the steam by changing the expansion ratio of the steam sucked and discharged by the expander from the set expansion ratio.
  • the steam pressure and temperature can be made to match the target values.
  • the cylinder member 39 of the embodiment forms the expansion chamber and the cylinder chamber of the present invention
  • the vane chamber 54 of the embodiment forms the expansion chamber of the present invention.
  • FIG. 1 is a schematic diagram of a waste heat recovery device for an internal combustion engine
  • FIG. 2 is an expander corresponding to a cross-sectional view taken along line 2-2 of FIG.
  • Fig. 3 is an enlarged sectional view around the rotation axis in Fig. 2
  • Fig. 4 is a sectional view taken along line 4-4 in Fig. 2
  • Fig. 5 is an enlarged sectional view taken along line 5-5 in Fig. 2.
  • Fig. 6 is an enlarged sectional view taken along the line 6-6 in Fig. 5
  • Fig. 7 is an enlarged view of the main part of Fig. 5
  • Fig. 8 is an enlarged view around the rotation axis of Fig. 4, Fig.
  • FIG. 9 is a front view of the vane body
  • Fig. 10 is a side view of the vane body
  • Fig. 11 is a sectional view taken along the line 11-11 in Fig. 9
  • Fig. 12 is a front view of the seal member
  • Fig. 13 is an enlarged view around the rotation axis in Fig. 4.
  • Fig. 14, Fig. 14 shows the configuration of the control system of the expander
  • Fig. 15 shows the pressure change and expansion ratio of the first and second expansion chambers
  • Fig. 16 shows the temperature and pressure at the inlet of the expander
  • Fig. 17 is a TS diagram of the Rankine cycle device
  • FIG. 18 is an HS diagram of the Rankine cycle device
  • FIG. 19 is a graph showing the relationship between the temperature at the outlet of the expander and the dryness.
  • FIG. 20 is a diagram showing a second embodiment of the present invention.
  • FIGS. 21A to 21C are graphs showing changes in steam pressure and specific volume in the expander.
  • a waste heat recovery device 2 of an internal combustion engine 1 uses a waste heat of the internal combustion engine 1, for example, an exhaust gas as a heat source, and a high-pressure state in which the temperature is raised from a high-pressure liquid, for example, water.
  • Evaporator 3 that generates hot steam, that is, high-temperature and high-pressure steam
  • an expander 4 that generates output by expansion of the high-temperature and high-pressure steam, and a temperature and pressure after the expansion, which are discharged from the expander 4, decrease.
  • the evaporator 3 includes a condenser 5 that liquefies the vapor thus produced, that is, the temperature-reduced pressure-reduced vapor, and a supply pump 6 that pressurizes the liquid, for example, water from the condenser 5 to the evaporator 3.
  • the expander 4 has a special structure and is configured as follows.
  • the casing 7 includes first and second metal halves 8 and 9.
  • Each of the halves 8 and 9 is composed of a main body 11 having a substantially elliptical concave portion 10 and a circular flange 12 integral with the main body 11, and the two circular flanges 1 2 are stacked via a metal gasket 13.
  • the combination forms a substantially elliptical mouth chamber 14.
  • the outer surface of the main body 11 of the first half 8 is covered by a deep bowl-shaped main body 16 of a shell-shaped member 15 and a circular flange 17 integral with the main body 16.
  • the circular flange 12 is superimposed on the circular flange 12 via a gasket 18, and the three circular flanges 12, 12, 17 are fastened by bolts 19 at a plurality of positions in the circumferential direction.
  • a relay chamber 20 is formed between the main bodies 11 and 16 of the shell-shaped member 15 and the first half 8.
  • the main body 11 of the two halves 8 and 9 has hollow bearing cylinders 21 and 22 protruding outward on their outer surfaces, and the hollow bearing cylinders 21 and 22 have a mouth opening chamber 14 and The large-diameter portion 24 of the hollow output shaft 23 penetrating the shaft is rotatably supported via a bearing metal (or resin bearing) 25.
  • the axis L of the output shaft 23 passes through the intersection of the major axis and the minor axis of the rotor chamber 14 having a substantially elliptical shape.
  • the small-diameter portion 26 of the output shaft 23 projects outside from the hole 27 in the hollow bearing cylinder 22 of the second half 9 and is connected to the transmission shaft 28 via a spline connection 29. .
  • the space between the small diameter portion 26 and the hole portion 27 is sealed by two seal rings 30.
  • a circular opening 31 is accommodated in the rotor chamber 14, and the central shaft mounting hole 32 and the large-diameter portion 24 of the output shaft 23 are in a mating relationship.
  • An interlocking connection 33 is provided between the four.
  • a plurality of rotors 31 extending radially from a shaft mounting hole 32 around the rotation axis L
  • twelve slot-shaped spaces 34 are formed at regular intervals on the circumference.
  • Each space 3 4 has a narrow circumferential width, and has both end surfaces 35 and outer peripheral surface of the mouth 31.
  • a substantially U-shape is formed in an imaginary plane orthogonal to both end faces 35 so as to open in series at 36.
  • First to 12th vane piston units U1 to U12 having the same structure are mounted in each slot-like space 34 so as to be reciprocally movable in the radial direction as follows.
  • a stepped hole 38 is formed in a portion 37 that divides the inner peripheral side, and a stepped shape made of ceramic (or force) is formed in the stepped hole 38.
  • the cylinder member 39 is fitted.
  • the end surface of the small-diameter portion a of the cylinder member 39 abuts on the outer peripheral surface of the large-diameter portion 24 of the output shaft 23, and the small-diameter hole b communicates with the through hole c that opens on the outer peripheral surface of the large-diameter portion 24.
  • the guide cylinder is positioned outside the cylinder member 39 so that it is coaxial with the member 39.
  • the guide cylinder 40 is placed.
  • the outer end of the guide cylinder 40 is engaged with the opening of the space 34 existing on the outer peripheral surface 36 of the mouth 31, and the inner end is the large-diameter hole d of the stepped hole 38. And comes into contact with the cylinder member 39.
  • the guide cylinder 40 has a pair of long grooves e extending opposite to each other from the outer end to the vicinity of the inner end thereof, and both the long grooves e face the space 34.
  • a piston 41 made of ceramic is slidably fitted in the large-diameter cylinder hole f of the cylinder member 39, and the distal end portion of the piston 41 is always located in the guide cylinder 40.
  • the cross section B of the rotor chamber 14 in the virtual plane A including the rotation axis L of the rotor 31 has a pair of semicircular cross sections B 1 having diameters g facing each other. And a square cross-section B2 formed by connecting one opposing end and the other opposing end of both diameters g of the two semicircular cross-sections B1 to form a substantially track-like shape.
  • the part shown by the solid line indicates the maximum cross section including the major axis
  • the part indicated by the two-dot chain line indicates the minimum section including the minor axis.
  • the mouth 31 has a cross section D slightly smaller than the minimum cross section including the minor axis of the roto chamber 14.
  • the vane 42 has a substantially U-shaped (horshoe-shaped) vane body 43 and a substantially U-shaped body attached to the vane body 43. It is composed of a seal member 44 in the shape of a letter board and a vane spring 58.
  • the vane body 43 has a semicircular arc portion 46 corresponding to an inner peripheral surface 45 formed by a semicircular cross section B1 of the mouth chamber 14 and an opposing inner end surface 47 formed by a square cross section B2. And a corresponding pair of parallel portions 48.
  • U-shaped grooves 52 that open outward are formed continuously in the outer peripheral portion of the semicircular arc portion 46 and the parallel portions 48, and both ends of the U-shaped groove 52 are formed at both ends. Both cutouts 4 9 communicate with each other.
  • a pair of projecting ridges 53 each having a partially circular cross section are provided on both plane portions of the semicircular arc portion 46.
  • the two ridges 53 coincide with a straight line that divides the space between the two parallel portions 48 into two and divides the semicircular portion 46 into two equal parts in the circumferential direction. It is arranged as follows. Also, the inner ends of the two ridges 53 slightly protrude into the space between the two parallel portions 48.
  • the seal member 44 is made of, for example, PTFE, and has a semicircular section 55 sliding on the inner peripheral surface 45 by a semicircular cross section B1 of the mouth chamber 14 and a square cross section B. 2 and a pair of parallel portions 56 for driving opposing inner end surfaces 47.
  • a pair of elastic claws 57 are provided on the inner peripheral surface side of the semicircular portion 55 so as to bend inward.
  • a seal member 44 is mounted in the U-shaped groove 52 of the vane body 43, a vane spring 58 is fitted in each blind hole 50, and a pole bearing structure roller 59 is mounted on each short shaft 51.
  • Each vane 4 2 is slidably accommodated in each slot-shaped space 34 of the mouth 31, and at this time, both ridges 53 of the vane body 43 are in the guide cylinder 40.
  • both side portions of both ridges 53 are located in both long grooves e of the guide cylinder 40, so that the inner end surfaces of both ridges 53 can abut the outer end surface of the piston 41.
  • the two-way rollers 59 are rotatably engaged with non-circular annular grooves 60 formed on the opposed inner end faces 47 of the first and second halves 8, 9, respectively.
  • the distance between the annular groove 60 and the rotor chamber 14 is constant over their entire circumference. Further, the forward movement of the piston 41 is converted into the rotational movement of the mouth 31 by engagement of the roller 59 with the annular groove 60 via the vane 42.
  • the vane body 43 which has a substantially U-shaped plate (horse-shoe shape), is compared with a square (rectangular) vane. Since the length of the contact portion with the casing 7 in the radial direction is short, the amount of displacement can be greatly reduced, and as shown in FIG.
  • the spring force of each vane spring 58 tightly adheres to the opposing inner end surface 47 of the rotor chamber 14, and in particular, seals the annular groove 60 between the ends of the parallel portions 56 and the vanes 42.
  • the semi-circular arc-shaped portion 55 is formed so that both elastic claws 57 are in By being pressed between the surfaces 45, it comes into close contact with the inner peripheral surface 45.
  • a substantially U-shaped plate-shaped vane 42 has no inflection point with respect to a square (rectangular) vane.
  • the square vane has corners, making it difficult to maintain the sealing property, thereby improving the sealing property between the vane 42 and the mouth chamber 14.
  • the vane 4 2 and the mouth chamber 14 are deformed, and at this time, the substantially U-shaped vane 4 2 is more uniformly deformed with a similar shape to the rectangular vane. Therefore, there is little variation in the clearance between the vane 42 and the mouth chamber 14 and the sealing property can be maintained well.
  • the sealing action between the vane body 43 and the inner peripheral surface 45 of the rotor chamber 14 is based on the spring force of the seal member 44 itself, the centrifugal force acting on the seal member 44 itself, and the high pressure side.
  • the steam that has entered the U-shaped groove 52 of the vane body 43 from the roaster chamber 14 is generated by the steam pressure that pushes up the seal member 44.
  • the sealing action is not affected by the excessive centrifugal force acting on the vane body 43 according to the rotation speed of the rotor 31, so that the sealing surface pressure is applied to the vane body 43. Regardless of the centrifugal force, it is possible to always achieve both good sealing properties and low friction properties.
  • the two vane chambers 5 4 (see FIG. 4) whose volume changes with the rotation of the shaft are partitioned.
  • the large-diameter portion 24 of the output shaft 23 is connected to the second half 9. It has a thick portion 62 supported by the bearing metal 25 and a thin portion 63 extending from the thick portion 62 and supported by the bearing metal 25 of the first half 8.
  • a hollow shaft 64 made of ceramic (or metal) is fitted in the thin portion 63 so as to be able to rotate integrally with the output shaft 23.
  • a fixed shaft 65 is arranged inside the hollow shaft 64, and the fixed shaft 65 is fitted to the hollow shaft 64 so as to fit within the axial thickness of the rotor 31. 6 6, a small-diameter solid portion 6 9 fitted into the hole 6 7 in the thick portion 6 2 of the output shaft 23 via two seal rings 68, and a large-diameter solid portion 6 6 And a thin-walled hollow portion 70 fitted into the hollow shaft 64.
  • a seal ring 71 is interposed between the outer peripheral surface of the end of the hollow portion 70 and the inner peripheral surface of the hollow bearing cylinder 21 of the first half 8.
  • a hollow cylinder 72 is screwed to the left end of the fixed shaft 65 via a seal ring 73.
  • a shaft 75 protruding to the left of the hollow cylinder 72 is located at the center of the shell-shaped member 15.
  • the sliding portion between the hollow cylindrical body 72 and the shell-shaped member 15 is sealed by a seal ring 74 so as to extend outside through the provided bearing member 76.
  • the distal end of the inner pipe portion 7 extending rightward from the hollow cylindrical body 72, together with the short hollow connecting pipe 7 8 protruding therefrom, is inserted into the stepped hole h in the large-diameter solid portion 6 6 'of the fixed shaft 65. It is fitted.
  • the high-temperature and high-pressure steam introduction pipe 80 which is press-fitted into the shaft part 75 protruding to the left side of the hollow cylindrical body 72 and extends rightward in the inner pipe part 77, has a right end in the hollow connection pipe 78. It is fitted.
  • a driven gear 79 is formed on the outer periphery of the shaft portion 75 of the hollow cylindrical body 72, and a driving gear 83 provided on the rotating shaft of the motor 82 is engaged with the driven gear 79. Therefore, when the motor 82 is driven, the fixed shaft 65 rotates through the drive gear 83, the driven gear 79, and the hollow cylinder 72, and a phase difference with the output shaft 23 may be generated. it can.
  • the fixed shaft 65 has a large-diameter solid portion 66 and the first to 12th vane piston units U 1 to U 12 have cylinder members 39.
  • high-temperature and high-pressure steam is supplied through a plurality of, in this embodiment, 12 through holes c formed in series on the hollow shaft 64 and the output shaft 23.
  • a rotary valve V for discharging the temperature-reduced pressure-reducing steam through the hole c is provided as follows.
  • FIG. 13 shows the structure of a rotary valve V that supplies and discharges steam to each cylinder member 39 of the expander 4 at a predetermined timing.
  • first and second holes 86, 87 extending in opposite directions from a space 85 communicating with the hollow connection pipe 78 are formed, and the first and second holes 86, 87 are formed.
  • the first and second concave portions 88 and 89 open on the outer peripheral surface of the large-diameter solid portion 66 and open on the bottom surfaces.
  • the first and second seal blocks 92 and 93 made of Nitrocarbon having supply ports 90 and 91 are mounted in the first and second recesses 88 and 89, and the outer peripheral surfaces thereof slide on the inner peripheral surface of the hollow shaft 64. Rub.
  • Short first and second supply pipes 94 and 95 which are coaxial, are loosely inserted into the first and second holes 86 and 87, and the outer peripheral surfaces on the distal end side of the first and second supply pipes 94 and 95.
  • the taper outer surfaces i, j of the first and second seal cylinders 96, 97 fitted inside are inside the supply ports 90, 91 of the first and second seal blocks 92, 93 and are connected to the taper. Fits the inner peripheral surface of holes k and m.
  • the large-diameter solid portion 66 includes first and second annular concave portions n and o surrounding the first and second supply pipes 94 and 95, and first and second blind-hole concave portions p and q adjacent thereto.
  • first and second seal blocks 92 and 93 are formed so as to face the first and second seal blocks 92 and 93, and the first and second annular recesses n and 0 have one end fitted to the outer peripheral surface of the first and second seal cylinders 96 and 97.
  • the second bellows-like elastic bodies 98, 99, and the first and second blind hole-shaped concave portions p, the first and second coil springs 100, 101, respectively, are accommodated in the first and second bellows.
  • the first and second seal blocks 92 and 93 are pressed against the inner peripheral surface of the hollow shaft 64 by the resilient forces of the elastic members 98 and 99 and the first and second coil springs 100 and 101.
  • first seal block 92 and the second seal block 93 members of the same kind, the ones with the letters "first” and those with the letters "second” are fixed. Point-symmetrical with respect to axis 65.
  • the inside of the hollow portion r of the fixed shaft 65 and the inside of the hollow cylindrical body 72 are first passages s for the temperature-reduced pressure-reduced steam, and the passage s is formed through a plurality of through holes t penetrating the peripheral wall of the hollow cylindrical body 72. It communicates with the connection chamber 20.
  • FIG. 2 As shown in FIG. 2, FIG. 5, FIG. 6, and FIG. 7, on the outer periphery of the main body 11 of the first half body 8, they are arranged in the radial direction near both ends of the short diameter of the mouth chamber 14.
  • First and second rows of inlet holes 1 07 and 1 108 consisting of a plurality of inlet holes 1 06 are formed, and the first temperature-reduced and reduced-pressure steam in the relay chamber 20 is formed by the first and second rows of inlet holes 1 0 7 and 1. After passing through 08, it is introduced into the mouth chamber 14.
  • nine rows of a plurality of radially arranged outlet holes 109 are provided on the upstream side of the second inlet hole row 108 of the row chamber 14.
  • the first row of outlet holes 1 1 0 a to l 1 0 i are formed, and the upstream side of the first row of inlet holes 1 07 is formed of 9 rows of a plurality of radially aligned outlet holes 1 0 9.
  • the second lead-out hole array 1 11 a to l 11 i is formed.
  • Each of the nine rows of first outlet holes 11 0a to 1110i and the second row of outlet holes 11 11a to 11i are arranged in the circumferential direction with a predetermined phase difference.
  • the five outlet holes 109 communicate with the communication passage 1 16.
  • the output shafts 23 and the like are lubricated by water, and the lubricating channel is configured as follows. That is, as shown in FIG. 2 and FIG. 3, a water supply pipe 113 is connected to a water supply hole 112 formed in the hollow bearing cylinder 22 of the second half 9.
  • the water supply hole 1 1 2 is provided in the housing 1 1 4 facing the bearing metal 25 on the second half 9 side, and the housing 1 1 4 is provided in the thick portion 6 2 of the output shaft 2 3.
  • the water passage holes u are provided in a plurality of water passage grooves V (see also FIG. 13) extending in the direction of the generatrix of the outer peripheral surface of the hollow shaft 64, and each water passage groove V is provided in the second half.
  • the bearing metal 25 on the 8 side communicates with the housing 1 15 facing the housing.
  • an annular concave portion w communicating the water passage u and the sliding portion between the large-diameter solid portion 66 of the hollow shaft 64 and the fixed shaft 65 on the inner end face of the thick portion 62 of the output shaft 23. Is provided.
  • the first and seventh vane piston units U 1 and U 7 that are point-symmetric with respect to the rotation axis L of the rotor 31 perform the same operation. This is the same for the second and eighth vane piston units U 2, U 8, etc., which have a point-symmetric relationship.
  • the axis of the first supply pipe 94 is slightly displaced in the counterclockwise direction in FIG. 4 from the minor axis position E of the mouth chamber 14 and the first vane piston unit It is assumed that U1 is located at the short-diameter position E, and high-temperature and high-pressure steam is not supplied to the large-diameter cylinder hole f, so that the pistons 41 and the vanes 42 are at the retracted positions.
  • the piston 41 is operated by the expansion of the high-temperature and high-pressure steam to rotate the outlet 31 through the vane 42, and the expansion of the low-temperature and low-pressure steam due to the pressure drop of the high-temperature and high-pressure steam causes the expansion through the vane 42.
  • An output is obtained from the output shaft 23 by rotating the rotor 31.
  • the expander 4 having a positive displacement and a constant axial torque comprises a first expansion chamber composed of a cylinder chamber of a cylinder member 39 and a second expansion chamber composed of a vane chamber 54.
  • the pressure and temperature of the steam supplied to the first expansion chamber be P evp and Te vp, respectively, and let the pressure and temperature of the steam supplied to the second expansion chamber be P expl and Te xp 1 respectively.
  • the pressure and temperature of the steam discharged from the second expansion chamber are P e X p 2 and T e xp 2, respectively,?
  • the expansion ratio ⁇ 1 of the first expansion chamber determined by 6 X 1 and 6 X 1, P e X ⁇ 1 and?
  • the total expansion ratio of the expander 4 given by the product ⁇ IX ⁇ 2 with the expansion ratio ⁇ 2 of the second expansion chamber determined by e xp 2 is the predetermined expansion ratio ⁇ (132 in this embodiment). Matches.
  • the vertical axis of the graph in FIG. 15 is the steam pressure ⁇ , and the horizontal axis is the phase S of the rotor 31.
  • the steam generated by the evaporator 3, that is, the steam supplied to the first expansion chamber, is controlled such that the pressure P e V p and the temperature T e V p maintain a predetermined relationship shown by a solid line in FIG. . That is, the pressure P e V p and the temperature T ev P of the steam supplied to the first expansion chamber depend on the transient state of the evaporator 3, the operation state of the internal combustion engine 1, the amount of water supplied to the evaporator 3, and the like. Although fluctuating, the steam pressure P e vp can be controlled by the rotation speed (shaft torque) of the expander 4, and the steam temperature T e V p can be controlled by the amount of water supplied to the evaporator 3.
  • the rated pressure at which the expander 4 and the condenser 5 can exhibit the maximum performance is also set for the pressure P exp2 and temperature T eXP2 of the steam discharged from the second expansion chamber.
  • the rated values in the present embodiment are 0.05 MPa for the pressure P exp2 and 80 ° C for the temperature T eVp.
  • the optimum pressure Pexp2 and temperature Texp2 change according to the transient state of the condenser 5, the cooling state of the condenser 5 (outside air temperature, the number of rotations of the cooling fan, the intensity of the running wind), etc. However, they do not always match the above-mentioned rated values.
  • the expansion ratio of the expander 4 by changing the expansion ratio of the expander 4 from the set expansion ratio ⁇ , the pressure P e X ⁇ 2 and the temperature T exp 2 of the steam discharged from the second expansion chamber can be adjusted to the optimum values. Can be matched.
  • the expansion ratio of the expander 4 can be changed by changing the suction timing into the first expansion chamber or by changing the discharge timing from the second expansion chamber.
  • the expansion ratio ⁇ 1 of the steam in the first expansion chamber can be changed by changing the steam suction timing with the rotary valve V. That is, the fixed shaft 65 is rotated by the motor 82, the phase of the supply ports 90 and 91 is changed to the retard side in FIG. 13, and the steam is transferred from the evaporator 3 to the cylinder member 39 of the expander 4. If the timing at which steam is supplied is advanced, the volume of steam supplied to the cylinder member 39 is reduced because the piston 41 is located radially inward and the volume of the cylinder member 39 is reduced at the moment steam is introduced. The expansion ratio ⁇ 1 of the expander 4 due to the first expansion chamber (cylinder member 39) of the expander 4 increases.
  • the fixed shaft 65 is rotated by the motor 82, and the phase of the supply ports 90 and 91 is changed to the advance side in FIG.
  • the piston 41 is positioned radially outward at the moment steam is introduced, and the volume of the cylinder member 39 is reduced.
  • the amount of steam supplied to the cylinder member 39 increases, and the expansion ratio ⁇ 1 of the first expansion chamber (the cylinder member 39) of the expander 4 decreases.
  • the expansion ratio ⁇ 1 can be changed.
  • the timing at which steam is discharged from the second expansion chamber to the condenser 5 is controlled by selectively opening and closing the eight solenoid valves 117a to 117d and 118a to 118d. For example, in FIG. 7, at a position slightly before the position where the vane chamber 54 has the maximum volume, the vanes 42 on the rotation direction leading side of the pair of vanes 42 constituting the vane chamber 54 are positioned in the third row. This position is beyond the first discharge hole row 110c, and this position is the reference timing.
  • the solenoid valves 117a and 117b of the two rows of first exhaust holes 110a and 110b on the upstream side are closed, and the two rows of first exhaust holes 110c and 11.0d on the downstream side are closed.
  • the solenoid valves 117c and 117d are opened, and the moment the vane 42 on the leading side in the rotation direction crosses the third row of first discharge holes 110c, The discharge of steam is started from c.
  • the solenoid valve 117b of the first discharge hole row 11 Ob in the second row on the upstream side may be opened. It is sufficient to open the solenoid valve 111a of the first exhaust hole row 110a of the first row on the upstream side in addition to the solenoid valve 117b of the second exhaust hole row 110b of the second row. Conversely, to delay the discharge timing with respect to the reference timing, it is only necessary to close the solenoid valve 117c of the first discharge hole row 110c in the third row, and to further delay the discharge timing. In this case, the solenoid valve 117d of the first discharge hole row 110d of the fourth row on the downstream side may be closed in addition to the solenoid valve 117c of the first discharge hole row 110c of the third row.
  • the timing at which steam is discharged from the second expansion chamber to the condenser 5 is stepwise.
  • the timing at which steam is discharged from the second expansion chamber to the condenser 5 is stepwise advanced.
  • the expansion ratio ⁇ 2 by the second expansion chamber can be reduced.
  • the control of the second solenoid valve 118 a to 118 d of the second outlet hole array 111 a to L 11 d is performed by the solenoid valve 117 a to 11 1 of the first outlet hole array 110 a to 110 d described above. 'Same as 7d control.
  • the solenoid valves 117a to 117d and 118a to 118d are controlled by eight outgoing hole arrays 110a to 110d and llla to llld.
  • the pressure P exp 2 of the steam discharged from the second expansion chamber is adjusted so as to match the optimum value at which the expander 4 and the condenser 5 can exhibit the maximum performance. It is.
  • the state of steam determined by pressure, volume, and temperature includes a saturated steam region where water and steam are mixed, and a superheated steam region where only steam exists without water.
  • the area from the inlet to the outlet of the first expansion chamber is a superheated steam area, and water is not mixed in the steam. Accordingly, it is possible to reliably prevent the water S remaining inside the cylinder member 39 constituting the first expansion chamber from being compressed by the piston 41 and causing a water hammer phenomenon.
  • At least the most downstream portion of the region from the inlet to the outlet of the second expansion chamber is a saturated steam region, and water is mixed in the steam. Therefore, some water stays inside the vane chamber 54 constituting the second expansion chamber, and the lubricating performance and the sealing performance between the vane 42 and the rotatable chamber 14 are improved.
  • First expansion chamber and second expansion chamber The boundary with the tension chamber is in the superheated steam region, so that water is reliably prevented from staying in the first expansion chamber composed of the cylinder member 39, and the second expansion composed of the vane chamber 54 is ensured. It can be ensured that water stays in the room.
  • the pressure P exp 2 at the outlet of the second expansion chamber becomes higher than the rated value.
  • the expansion ratio ⁇ 1 may be decreased by delaying the suction timing at the inlet of the expansion chamber, or the expansion timing ⁇ 2 may be increased by delaying the discharge timing at the outlet of the second expansion chamber.
  • the pressure P exp 2 at the outlet of the second expansion chamber becomes lower than the rated value.
  • first, high-temperature and high-pressure steam is supplied to the cylinder member 39 serving as the first expansion chamber, and then the temperature-reduced first temperature-lowered steam is supplied to the second expansion chamber. Vane room 54 is supplied.
  • the second embodiment shown in FIG. 20 enables the solenoid valve 122 to close the through hole t for discharging the first temperature-reduced and reduced-pressure steam from the first expansion chamber to the relay chamber 20. Further, by switching off the supply of high-temperature and high-pressure steam to the first expansion chamber with the switching valve 120, the high-temperature and high-pressure steam can be directly supplied to the steam inlet port 121 of the relay chamber 20.
  • the first expansion chamber can be deactivated and only the second expansion chamber can be operated independently.
  • the expansion ratio of steam in the expansion chamber composed of the vane chamber 54 depends on the exhaust timing from the vane chamber 54 and the electromagnetic valves 1 17 a to 1 17 d and 1 18 a to 1 It is controlled by changing in 18 d.
  • the first expansion chamber and the second expansion chamber are connected in series.
  • three or more expansion chambers can be connected in series. In this case, the steam supplied to the most upstream expansion chamber must be in the superheated steam area, and the steam discharged from the most downstream expansion chamber must be in the saturated steam area.
  • the Rankine cycle device according to the present invention can be suitably applied to a device using exhaust gas of an internal combustion engine as a heat source, but the heat source is not limited to the exhaust gas of the internal combustion engine.

Description

明 細 書
'サイクル装置
発明の分野
本発明は、 液体を加熱して蒸気を発生する蒸発器と、 蒸発器から供給された蒸 気を膨張させて一定の軸トルクを出力する膨張機と、 膨張機が排出した蒸気を冷 却して液体に戻す凝縮器とを備えたランキンサイクル装置に関する。
背景技術
日本特開平 4一 4 7 1 0 4号公報には、 蒸発器で発生した蒸気で膨張機を作動 させ、 膨張機が排出した蒸気を凝縮器で液化して蒸発器に戻すランキンサイクル 装置において、 蒸発器で発生した蒸気のエネルギーの大きさに応じて膨張機の入 口に設けたバルブを開閉し、 膨張機に蒸気を供給するタイミングを制御すること により最大限の出力トルクを確保するものが記載されている。
また日本特開昭 5 8— 4 8 7 0 6号公報には、 蒸発器で発生した蒸気で膨張機 を作動させ、 膨張機が排出した蒸気を凝縮器で液化して蒸発器に戻すランキンサ ィクル装置において、 凝縮器への蒸気導入圧力が膨張機からの蒸気排出圧力より も高いときに、 凝縮器の入口側と膨張機の膨張完了直前位置とを接続するバイパ ス通路を開放し、 膨張機の過膨張損失の低減を図るものが記載されている。
また日本特開昭 6 1 - 8 7 9 9 0号公報には、 ベ一ン型圧縮機において、 ベー ンを支持するロータの回転軸にべ一ン室に対する吸気および排気を制御する回転 バルブを設け、 この回転バルブの吸気タイミングおよび排気タイミングを可変と したものが記載されている。
例えば、 内燃機関の排気ガスとの間で熱交換を行う蒸発器で水を加熱して蒸気 を発生させ、 この蒸気で容積型の膨張機を作動させて軸出力を取り出し、 膨張機 から排出された蒸気を凝縮器で水に戻して再び蒸発器に供給するランキンサイク ル装置において、 蒸発器から膨張機に供給される蒸気の圧力および温度は膨張機 の性能に応じた定格値として予め設定されており、 また膨張機から凝縮器に排出 される蒸気の温度は凝縮器の性能に応じた定格値として予め設定されている。 し かしながら、 蒸発器において発生する蒸気の圧力および温度は、 蒸発器の過渡状 態、 内燃機関の運転状態、 蒸発器に供給される水量等に応じて変動し、 また凝縮 器が最大の性能を発揮し得る蒸気の圧力および温度は、 凝縮器の過渡状態、 凝縮 器の冷却状態 (外気温、 冷却ファンの回転数、 走行風の強さ) 等に応じて変動す る。
図 2 1 Aにおいて、 縦軸および横軸はそれぞれ蒸気の圧力 pおよび比容積 Vを 示しており、 膨張機の入口で定格値の圧力 p 1であった蒸気は膨張機の内部で予 め設定した設定膨張比 εだけ膨張し、 膨張機の出口圧力が前記 ρ 1から定格値の Ρ 2へと変化するとき、 膨張機および凝縮器は最大限の性能を発揮することがで きる。 しかしながら、 前述したように膨張機の入口圧力は種々の要因で変動し、 かつ膨張機および凝縮器が最大限の性能を発揮し得る膨張機の出口圧力も種々の 要因で変動する。 従って、 膨張機の出口圧力がそのとき膨張機および凝縮器が最 大限の性能を発揮し得る圧力に一致しなくなり、 膨張機および凝縮器が充分な性 能を発揮できなくなる可能性がある。
即ち、 図 2 1 Βに示すように、 膨張比が設定膨張比 εに一致していても膨張機 の入口圧力が定格値 ρ 1よりも過大の!) 1 ' である場合には、 膨張機の出口圧力 が定格値 Ρ 2よりも高くなり、 未だ膨張機を駆動するエネルギーを残している蒸 気を無駄に捨てることになつて膨張機の性能を充分に発揮させることができなく なり、 しかも凝縮器の負荷が増加して凝縮性能が低下してしまう問題がある。 一 方、 図 2 1 Cに示すように、 膨張比が設定膨張比 εに一致していても膨張機の入 口圧力が定格値 ρ 1よりも過小の ρ 1 ' である場合には、 膨張機の出口圧力が定 格値 Ρ 2よりも低くなるため、 蒸気が膨張機の内部で負の仕事をして出力が低下 してしまう問題がある。
かかる不具合は、 膨張機の入口温度が定格値よりも高い場合や低い場合、 膨張 機内部に蒸気のリーク量が多い場合や少ない場合、 あるいは膨張機および凝縮器 が最大限の性能を発揮し得る膨張機の出口圧力が種々の要因で定格値 ρ 2から変 動した場合にも同様に発生する。
発明の開示
本発明は前述の事情に鑑みてなされたもので、 ランキンサイクル装置の膨張機 および凝縮器の性能を最大限に発揮させることを目的とする。 上記目的を達成するために、 本発明の第 1の特徴によれば、 液体を加熱して蒸 気を発生する蒸発器と、 蒸発器から供給された蒸気を膨張させて軸トルクを出力 する膨張機と、 膨張機が排出した蒸気を冷却して液体に戻す凝縮器とを備えたラ ンキンサイクル装置において、 膨張機が吸入する蒸気の圧力および温度の任意の 関係に対し、 膨張機が吸入 ·排出する蒸気の膨張比を前記任意の関係に応じた所 定の膨張比に設定することにより、 膨張機が排出する蒸気の圧力および温度を目 標値に一致させることを特徴とするランキンサイクル装置が提案される。
上記構成によれば、 膨張機が吸入する蒸気の圧力および温度が任意の関係にあ つても、 膨張機が吸入 ·排出する蒸気の膨張比を前記任意の関係に応じた所定の 膨張比に設定することで、 膨張機が排出する蒸気の圧力および温度を制御するこ とができる。 従って、 膨張機および凝縮器が最大の性能を発揮し得る圧力および 温度を目標値として膨張比を設定すれば、 膨張機が排出する蒸気の圧力および温 度を前記目標値に一致させて膨張機および凝縮器の性能を最大限に発揮させるこ とができる。
また本発明の第 2の特徴によれば、 上記第 1の特徴に加えて、 膨張機が吸入す る蒸気の圧力および温度は過熱蒸気領域にあり、 膨張機が排出する蒸気の圧力お よび温度は飽和蒸気領域にあることを特徴とするランキンサイクル装置が提案さ れる。
上記構成によれば、 膨張機が吸入する蒸気が液体を含まぬ過熱蒸気領域にあり 、 膨張機が排出する蒸気が液体を含む飽和蒸気領域にあるので、 液体が膨張機の 作動に与える影響を最小限に抑えながら、 蒸気を液体に戻す凝縮器の負荷を軽減 することができる。
また本発明の第 3の特徴によれば、 上記第 1の特徴に加えて、 膨張機は直列に 接続された複数の膨張室を備え、 各々の膨張室における蒸気の膨張比の積を前記 設定膨張比としたことを特徴とするランキンサイクル装置が提案される。
上記構成によれば、 複数の膨張室を直列に接続して各膨張機が発生する軸トル クを統合して出力しながら、 各々の膨張室における蒸気の膨張比の積を設定膨張 比として凝縮器の凝縮効率を最大限に高めることができる。
また本発明の第 4の特徴によれば、 上記第 3の特徴に加えて、 膨張機の複数の 膨張室のうち、 少なくとも最上流側の膨張室の蒸気は過熱蒸気領域にあり、 少な くとも最下流側の膨張室の蒸気は飽和蒸気領域にあることを特徴とするランキン サイクル装置が提案される。
上記構成によれば、 複数の膨張室のうちの少なくとも最上流側の膨張室の蒸気 は液体を含まぬ過熱蒸気領域にあり、 複数の膨張室のうちの少なくとも最下流側 の膨張室の蒸気は液体を含む飽和蒸気領域にあるので、 液体が膨張機の作動に与 える影響を最小限に抑えながら、 蒸気を液体に戻す凝縮器の負荷を軽減すること ができる。
また本発明の第 5の特徴によれば、 上記第 4の特徴に加えて、 排出位置におけ る蒸気が過熱蒸気領域にある膨張室はシリンダ室で構成されることを特徴とする ランキンサイクル装置が提案される。
上記構成によれば、 シリンダ室で構成された膨張室の排出位置において蒸気が 過熱蒸気領域にあるので、 蒸気に液体が混合するのを防止し、 シリンダ室内に液 体が滞留することにより発生する不具合を未然に回避することができる。
また本発明の第 6の特徴によれば、 上記第 4の特徴に加えて、 排出位置におけ る蒸気が飽和蒸気領域にある膨張室はべーン室で構成されることを特徴とするラ ンキンサイクル装置が提案される。
上記構成によれば、 ベ一ン室で構成された膨張室の排出位置において蒸気が飽 和蒸気領域にあるので、 蒸気に液体を混合させて液体によるべ一ンの潤滑性向上 およびシール性向上を図ることができる。
また本発明の第 7の特徵によれば、 上記第 3の特徴に加えて、 膨張機の複数の 膨張室のうち、 少なくとも最上流側の膨張室の吸入位置を可変としたことを特徴 とするランキンサイクル装置が提案される。 .
上記構成によれば、 複数の膨張室のうちの少なくとも最上流側の膨張室の吸入 位置を可変とすることにより、 膨張機が吸入する蒸気の圧力を変化させて膨張機 全体の膨張比を設定膨張比から変化させることができる。 これにより、 膨張機が 吸入する蒸気の圧力および温度が前記所定の関係から外れても、 膨張機が吸入 · 排出する蒸気の膨張比を前記設定膨張比から変化させることで、 膨張機が排出す る蒸気の圧力および温度を前記目標値に一致させることができる。 また本発明の第 8の特徴によれば、 上記第 3の特徴に加えて、 膨張機の複数の 膨張室のうち、 少なくとも最下流側の膨張室の排出位置を可変としたことを特徴 とするランキンサイクル装置が提案される。
上記構成によれば、 複数の膨張室のうちの少なくとも最下流側の膨張室の排出 位置を可変とすることにより、 膨張機が排出する蒸気の圧力を変化させて膨張機 全体の膨張比を設定膨張比から変化させることができる。 これにより、 膨張機が 吸入する蒸気の圧力および温度が前記所定の関係から外れても、 膨張機が吸入 · 排出する蒸気の膨張比を前記設定膨張比から変化させることで、 膨張機が排出す る蒸気の圧力および温度を前記目標値に一致させることができる。
尚、 実施例のシリンダ部材 3 9は本発明の膨張室およびシリンダ室を構成し、 実施例のベーン室 5 4は本発明の膨張室を構成する。
図面の簡単な説明
図 1〜図 1 9は本発明の第 1実施例を示すもので、 図 1は内燃機関の廃熱回収 装置の概略図、 図 2は図 5の 2— 2線断面図に相当する膨張機の縦新面図、 図 3 は図 2の回転軸線周りの拡大断面図、 図 4は図 2の 4— 4線断面図、 図 5は要部 を拡大した図 2の 5— 5線断面図、 図 6は図 5の 6— 6線拡大断面図、 図 7は図 5の要部拡大図、 図 8は図 4の回転軸線周りの拡大図、 図 9はべーン本体の正面 図、 図 1 0はべーン本体の側面図、 図 1 1は図 9の 1 1— 1 1線断面図、 図 1 2 はシール部材の正面図、 図 1 3は図 4の回転軸線周りの拡大図、 図 1 4は膨張機 の制御系の構成を示す図、 図 1 5は第 1、 第 2の膨張室の圧力変化および膨張比 を示すグラフ、 図 1 6は膨張機入口の温度および圧力の最適関係を示すグラフ、 図 1 7はランキンサイクル装置の T S線図、 図 1 8はランキンサイクル装置の H S線図、 図 1 9は膨張機出口の温度および乾き度の関係を示すグラフである。 図 2 0は本発明の第 2実施例を示す図である。
図 2 1 A〜図 2 1 Cは膨張機における蒸気の圧力および比容積の変化を示すグ ラフである。
発明を実施するための最良の形態
図 1において、 内燃機関 1の廃熱回収装置 2は、 内燃機関 1の廃熱、 例えば排 気ガスを熱源として、 高圧状態の液体、 例えば水から温度上昇を図られた高圧状 態の蒸気、 つまり高温高圧蒸気を発生する蒸発器 3と、 その高温高圧蒸気の膨張 によって出力を発生する膨張機 4と、 その膨張機 4から排出される、 前記膨張後 の温度および圧力が降下した蒸気、 つまり降温降圧蒸気を液化する凝縮器 5と、 凝縮器 5からの液体、 例えば水を蒸発器 3に加圧供給する供給ポンプ 6とを有す る。
膨張機 4は特殊な構造を有するもので、 次のように構成される。
図 2〜図 7において、 ケ一シング 7は金属製第 1、 第 2半体 8, 9より構成さ れる。 両半体 8, 9は、 略楕円形の凹部 1 0を有する主体 1 1と、 それら主体 1 1と一体の円形フランジ 1 2とよりなり、 両円形フランジ 1 2を金属ガスケット 1 3を介し重ね合せることによって略楕円形の口一夕チャンバ 1 4が形成される 。 また第 1半体 8の主体 1 1外面は、 シェル形部材 1 5の深い鉢形をなす主体 1 6により覆われており、 その主体 1 6と一体の円形フランジ 1 7力第 1半体 8の 円形フランジ 1 2にガスケット 1 8を介して重ね合せられ、 3つの円形フランジ 1 2, 1 2, 1 7は、 それらの円周方向複数箇所においてボルト 1 9によって締 結される。 これにより、 シェル形部材 1 5および第 1半体 8の両主体 1 1, 1 6 間には中継チャンバ 2 0が形成される。
両半体 8, 9の主体 1 1は、 それらの外面に外方へ突出する中空軸受筒 2 1 , 2 2を有し、 それら中空軸受筒 2 1, 2 2に、 口一夕チャンバ 1 4を貫通する中 空の出力軸 2 3の大径部 2 4が軸受メタル (または樹脂製軸受) 2 5を介して回 転可能に支持される。 これにより出力軸 2 3の軸線 Lは略楕円形をなすロータチ ャンバ 1 4における長径と短径との交点を通る。. また出力軸 2 3の小径部 2 6は 、 第 2半体 9の中空軸受筒 2 2に存する孔部 2 7から外部に突出して伝動軸 2 8 とスプライン結合 2 9を介して連結される。 小径部 2 6および孔部 2 7間は 2つ のシールリング 3 0によりシールされる。
ロータチャンバ 1 4内に円形の口一夕 3 1が収容され、 その中心の軸取付孔 3 2と出力軸 2 3の大径部 2 4とが嵌合関係にあって、 両者 3 1 , 2 4間にはかみ 合い結合部 3 3が設けられている。 これによりロー夕 3 1の回転軸線は出力軸 2 3の軸線 Lと合致するので、 その回転軸線の符号として 「L」 を共用する。
ロータ 3 1に、 その回転軸線 Lを中心に軸取付孔 3 2から放射状に延びる複数 、 この実施例では 1 2個のスロット状空間 3 4が円周上等間隔に形成されている 。 各空間 3 4は、 円周方向幅が狭く、 且つ口一夕 3 1の両端面 3 5および外周面
3 6に一連に開口するように、 両端面 3 5に直交する仮想平面内において略 U字 形をなす。
各スロット状空間 3 4内に、 同一構造の第 1〜第 1 2ベーンピストンユニット U 1〜U 1 2が、 次のように放射方向に往復動自在に装着される。 略 U字形の空 間 3 4において、 その内周側を区画する部分 3 7に段付孔 3 8が形成され、 その 段付孔 3 8に、 セラミック (または力一ボン) よりなる段付形シリンダ部材 3 9 が嵌入される。 シリンダ部材 3 9の小径部 a端面は出力軸 2 3の大径部 2 4外周 面に当接し、 その小径孔 bが大径部 2 4外周面に開口する通孔 cに連通する。 ま たシリンダ部材 3 9の外側に、 その部材 3 9と同軸上に位置するようにガイド筒
4 0が配置される。 そのガイド筒 4 0の外端部は、 口一夕 3 1の外周面 3 6に存 する空間 3 4の開口部に係止され、 また内端部は段付孔 3 8の大径孔 dに嵌入さ れてシリンダ部材 3 9に当接する。 またガイド筒 4 0は、 その外端部から内端部 近傍まで相対向して延びる一対の長溝 eを有し、 両長溝 eは空間 3 4に面する。 シリンダ部材 3 9の大径シリンダ孔 f 内にセラミックよりなるピストン 4 1が摺 動自在に嵌合され、 そのピストン 4 1の先端部側は常時ガイド筒 4 0内に位置す る。
図 2および図 8に示すように、 ロータ 3 1の回転軸線 Lを含む仮想平面 A内に おけるロータチャンバ 1 4の断面 Bは、 直径 gを相互に対向させた一対の半円形 断面部 B 1と、 両半円形断面部 B 1の両直径 gの一方の対向端相互および他方の 対向端相互をそれぞれ結んで形成される四角形断面部 B 2とよりなり、 略競技用 トラック形をなす。 図 8において、 実線示の部分が長径を含む最大断面を示し、 一方、 一部を 2点鎖線で示した部分が短径を含む最小断面を示す。 口一夕 3 1は 、 図 8に点線で示したように、 ロー夕チャンバ 1 4の短径を含む最小断面よりも 若干小さな断面 Dを有する。
図 2および図 9〜図 1 2に明示するように、 ベーン 4 2は略 U字板形 (馬蹄形 ) をなすべーン本体 4 3と、 そのべ一ン本体 4 3に装着された略 U字板形をなす シール部材 4 4と、 ベーンスプリング 5 8とより構成される。 ベ一ン本体 4 3は、 口一夕チャンバ 1 4の半円形断面部 B 1による内周面 4 5 に対応した半円弧状部 4 6と、 四角形断面部 B 2による対向内端面 4 7に対応し た一対の平行部 4 8とを有する。 各平行部 4 8の端部側にコ字形の切欠き 4 9と 、 それらの底面に開口する四角形の盲孔 5 0と、 各切欠き 4 9よりも、 さらに端 部側に在って外方へ突出する短軸 5 1とが設けられる。 また半円弧状部 4 6およ び両平行部 4 8の外周部分に、 外方に向って開口する U字溝 5 2がー連に形成さ れ、 その U字溝 5 2の両端部は両切欠き 4 9にそれぞれ連通する。 さらに半円弧 状部 4 6の両平面部分にそれぞれ欠円形断面の一対の突条 5 3が設けられている 。 両突条 5 3は、 それらによる仮想円柱の軸線 L 1が、 両平行部 4 8間の間隔を 2等分し、 且つ半円弧状部 4 6を周方向に 2等分する直線に一致するように配置 されている。 また両突条 5 3の内端部は両平行部 4 8間の空間に僅か突出してい る。
シール部材 4 4は、 例えば P T F Eより構成されたもので、 口一夕チャンバ 1 4の半円形断面部 B 1による内周面 4 5を摺動する半円弧状部 5 5と、 四角形断 面部 B 2による対向内端面 4 7を搢動する一対の平行部 5 6とを有する。 また半 円弧状部 5 5の内周面側に一対の弾性爪 5 7が、 内方へ反るように設けられてい る。
ベーン本体 4 3の U字溝 5 2にシール部材 4 4が装着され、 また各盲孔 5 0に ベーンスプリング 5 8が嵌め込まれ、 さらに各短軸 5 1にポールベアリング構造 のローラ 5 9が取付けられる。 各べーン 4 2は口一夕 3 1の各スロット状空間 3 4に摺動自在に収められており、 その際、 ベ一ン本体 4 3の両突条 5 3はガイド 筒 4 0内に、 また両突条 5 3の両側部分はガイド筒 4 0の両長溝 e内にそれぞれ 位置し、 これにより両突条 5 3の内端面がピストン 4 1の外端面と当接すること ができる。 両口一ラ 5 9は第 1、 第 2半体 8, 9の対向内端面 4 7に形成された 非円形の環状溝 6 0にそれぞれ転動自在に係合される。 これら環状溝 6 0および ロータチャンバ 1 4間の距離はそれらの全周に亘り一定である。 またピストン 4 1の前進運動をべーン 4 2を介してローラ 5 9と環状溝 6 0との係合により口一 タ 3 1の回転運動に変換する。
このローラ 5 9と環状溝 6 0との協働で、 図 5に明示するように、 ベーン本体 4 3の半円弧状部 4 6における半円弧状先端面 6 1はロータチャンバ 1 4の内周 面 4 5から、 また両平行部 4 8はロー夕チャンバ 1 4の対向内端面 4 7からそれ ぞれ常時離間し、 これによりフリクションロスの軽減が図られている。 そして、 2条一対で構成されている環状溝 6 0により軌道を規制されるため、 左右の軌道 誤差によりローラ 5 9を介してべ一ン 4 2は軸方向に微小変位角の回転を生じ、 口 "^タチャンバ 1 4の内周面 4 5との接触圧力を増大させる。 このとき、 略 U字 板形 (馬蹄形) をなすべーン本体 4 3では、 方形 (長方形) ベ一ンに比べてケー シング 7との接触部の径方向長さが短いので、 その変位量を大幅に小さくできる 。 また図 2に明示するように、 シ一ル部材 4 4において、 その両平行部 5 6は各 ベーンスプリング 5 8の弾発力によりロータチャンバ 1 4の対向内端面 4 7に密 着し、 特に両平行部 5 6の端部とベーン 4 2間を通しての環状溝 6 0へのシール 作用を行う。 また半円弧状部 5 5は、 両弾性爪 5 7がべ一ン本体 4 3およびロー 夕チャンバ 1 4内の内周面 4 5間で押圧されることによって、 その内周面 4 5に 密着する。 即ち、 方形 (長方形) ベーンに対し略 U字板形のベ一ン 4 2の方が変 曲点を持たないので、 密着が良好となる。 方形べ一ンは角部があり、 シール性維 持は困難となる。 これによりべ一ン 4 2および口一夕チャンバ 1 4間のシール性 が良好となる。 さらに熱膨張にともない、 ベーン 4 2と口一夕チャンバ 1 4は変 形する。 このとき方形べーンに対し略 U字形のベ一ン 4 2は、 より均一に相似形 を持って変形するため、 ベ一ン 4 2と口一夕チャンバ 1 4とのクリアランスのバ ラツキが少なく、 シール性も良好に維持可能となる。
ベーン本体 4 3とロータチャンバ 1 4の内周面 4 5との間のシール作用は、 シ —ル部材 4 4自体のばね力と、 シール部材 4 4自体に作用する遠心力と、 高圧側 のロー夕チャンバ 1 4からべーン本体 4 3の U字溝 5 2に浸入した蒸気がシール 部材 4 4を押し上げる蒸気圧とにより発生する。 このように、 前記シール作用は 、 ロータ 3 1の回転数に応じてべーン本体 4 3に作用する過度の遠心力の影響を 受けないので、 シール面圧はべーン本体 4 3に加わる遠心力に依存せず、 常に良 好なシール性と低フリクション性とを両立させることができる。
以上のように、 ロー夕 3 1に放射状に支持した 1 2枚のベーン 4 2と、 口一夕 チャンバ 1 4の内周面 4 5と、 口一夕 3 1の外周面 3 6とによって、 ロータ 3 1 の回転に伴って容積が変化する 1 2個のベーン室 5 4 (図 4参照) が区画される 図 2および図 3において、 出力軸 2 3の大径部 2 4は第 2半体 9の軸受メタル 2 5に支持された厚肉部分 6 2と、 その厚肉部分 6 2から延びて第 1半体 8の軸 受メタル 2 5に支持された薄肉部分 6 3とを有する。 その薄肉部分 6 3内にセラ ミック (または金属) よりなる中空軸 6 4力 出力軸 2 3と一体に回転し得るよ うに嵌着される。 その中空軸 6 4の内側に固定軸 6 5が配置され、 その固定軸 6 5は、 ロー夕 3 1の軸線方向厚さ内に収まるように中空軸 6 4に嵌合された大径 中実部 6 6と、 出力軸 2 3の厚肉部分 6 2に存する孔部 6 7に 2つのシールリン グ 6 8を介して嵌合された小径中実部 6 9と、 大径中実部 6 6から延びて中空軸 6 4内に嵌合された薄肉の中空部 7 0とよりなる。 その中空部 7 0の端部外周面 と第 1半体 8の中空軸受筒 2 1内周面との間にシールリング 7 1が介在される。 固定軸 6 5の左端に中空筒体 7 2がシールリング 7 3を介してネジ結合されて おり、 この中空筒体 7 2の左側に突出する軸部 7 5はシェル形部材 1 5の中心に 設けた軸受部材 7 6を貫通して外部に延出し、 中空筒体 7 2とシェル形部材 1 5 との摺動部がシールリング 7 4によりシールされる。 中空筒体 7 2から右方向に 延びる内管部 7 7の先端は、 そこから突出する短い中空接続管 7 8と共に固定軸 6 5の大径中実部 6 6 'に存する段付孔 hに嵌着される。 中空筒体 7 2の左側に突 出する軸部 7 5に圧入されて内管部 7 7内を右方向に延びる高温高圧蒸気用導入 管 8 0は、 その右端が中空接続管 7 8内に嵌着される。 中空筒体 7 2の軸部 7 5 外周に従動ギヤ 7 9が形成されており、 モータ 8 2の回転軸に設けた駆動ギヤ 8 3が前記従動ギヤ 7 9に嚙合する。 従って、 モー夕 8 2を駆動すると駆動ギヤ 8 3、 従動ギヤ 7 9および中空筒体 7 2を介して固定軸 6 5が回転し、 出力軸 2 3 との間に位相差を発生させることができる。
図 2〜図 4および図 1 3に示すように、 固定軸 6 5の大径中実部 6 6に、 第 1 〜第 1 2ベーンピストンュニット U 1〜U 1 2のシリンダ部材 3 9に、 中空軸 6 4および出力軸 2 3に一連に形成された複数、 この実施例では 1 2個の通孔 cを 介して高温高圧蒸気を供給し、 またシリンダ部材 3 9から膨張後の第 1の降温降 圧蒸気を通孔 cを介して排出する回転バルブ Vが次のように設けられている。 図 13には膨張機 4の各シリンダ部材 39に所定のタイミングで蒸気を供給 ' 排出する回転バルブ Vの構造が示される。 大径中実部 66内において、 中空接続 管 78に連通する空間 85から互に反対方向に延びる第 1、 第 2孔部 86, 87 が形成され、 第 1、 第 2孔部 86, 87は大径中実部 66の外周面に開口する第 1、 第 2凹部 88, 89の底面に開口する。 第 1、 第 2凹部 88, 89に、 供給 口 90, 91を有する力一ボン製第 1、 第 2シールブロック 92, 93が装着さ れ、 それらの外周面は中空軸 64内周面に摺擦する。 第 1、 第 2孔部 86, 87 内には同軸上に在る短い第 1、 第 2供給管 94, 95が遊挿され、 第 1、 第 2供 給管 94, 95の先端側外周面に嵌合した第 1、 第 2シール筒 96, 97のテ一 パ外周面 i, jが第 1、 第 2シールブロック 92, 93の供給口 90, 91より も内側に在ってそれに連なるテーパ孔 k, m内周面に嵌合する。 また大径中実部 66に、 第 1、 第 2供給管 94, 95を囲繞する第 1、 第 2環状凹部 n, oと、 それに隣接する第 1、 第 2盲孔状凹部 p, qとが第 1、 第 2シールブロック 92 , 93に臨むように形成され、 第 1、 第 2環状凹部 n, 0には一端側を第 1、 第 2シール筒 96, 97外周面に嵌着した第 1、 第 2ベローズ状弾性体 98, 99 が、 また第 1、 第 2盲孔状凹部 p, こは第 1、 第 2コイルスプリング 100, 101がそれぞれ収められ、 第 1、 第 2ベロ一ズ状弾性体 98, 99および第 1 、 第 2コイルスプリング 100, 101の弹発力で第 1、 第 2シールブロック 9 2, 93を中空軸 64内周面に押圧する。
また大径中実部 66において、 第 1コイルスプリング 100および第 2ベロー ズ状弾性体 99間ならび第 2コイルスプリング 101および第 1ベローズ状弾性 体 98間に、 常時 2つの通孔 cに連通する第 1、 第 2凹状排出部 102, 103 と、 それら排出部 102, 103から導入管 80と平行に延びて固定軸 65の中 空部 r内に開口する第 1、 第 2排出孔 104, 105とが形成されている。
これら第 1シールブロック 92と第 2シールブロック 93といったように、 同 種部材であって、 「第 1」 の文字を付されたものと 「第 2」 の文字を付されたもの とは、 固定軸 65の軸線に関して点対称の関係にある。
固定軸 65の中空部 r内および中空筒体 72内は第 1の降温降圧蒸気の通路 s であり、 その通路 sは、 中空筒体 72の周壁を貫通する複数の通孔 tを介して中 継チャンバ 2 0に連通する。
図 2、 図 5、 図 6および図 7に示すように、 第 1半体 8の主体 1 1外周部にお いて、 口一夕チャンバ 1 4の短径の両端部近傍に、 半径方向に並ぶ複数の導入孔 1 0 6よりなる第 1、 第 2導入孔列 1 0 7 , 1 0 8が形成され、 中継チヤンバ 2 0内の第 1の降温降圧蒸気がそれら導入孔列 1 0 7 , 1 0 8を経て口一夕チャン バ 1 4内に導入される。 また第 2半体 9の主体 1 1外周部において、 ロー夕チヤ ンバ 1 4の第 2導入孔列 1 0 8よりも上流側に、 半径方向に並ぶ複数の導出孔 1 0 9よりなる 9列の第 1導出孔列 1 1 0 a〜l 1 0 iが形成され、 また第 1導入 孔列 1 0 7よりも上流側に、 半径方向に並ぶ複数の導出孔 1 0 9よりなる 9列の 第 2導出孔列 1 1 1 a〜l 1 1 iが形成される。 各 9列の第 1導出孔列 1 1 0 a 〜1 1 0 iおよび第 2導出孔列 1 1 1 a〜l 1 1 iは所定の位相差をもって円周 方向に整列しており、 各列の 5個の導出孔 1 0 9が連通路 1 1 6で連通する。 下流側の 5列の第 1導出孔列 1 1 0 e〜 1 1 0 iを除く上流側の 4列の第 1導 出孔列 1 1 0 a〜l 1 O dの 4個の連通孔 1 1 6には、 それら連通孔 1 1 6を個 別に開閉し得る 4個の第 1電磁弁 1 1 7 a〜l 1 7 dがそれぞれ設けられ、 かつ 下流側の 5列の第 2導出孔列 1 1 1 e〜 1 1 1 iを除く上流側の 4列の第 2導出 孔列 1 1 1 a〜 1 1 1 dの 5個の連通孔 1 1 6には、 それら連通孔 1 1 6を個別 に開閉し得る 4個の第 2電磁弁 1 1 8 a〜l 1 8 dがそれぞれ設けられる。 そし て第 1導出孔列 1 1 0 a〜l 1 0 dおよび第 2導出孔列 1 1 1 a〜: 1 1 1 dの合 計 8個の連通路 1 1 6にそれぞれ圧力センサ 1 1 9が設けられる。
出力軸 2 3等は水により潤滑されるようになっており、 その潤滑水路は次のよ うに構成される。 即ち、 図 2および図 3に示すように第 2半体 9の中空軸受筒 2 2に形成された給水孔 1 1 2に給水管 1 1 3が接続される。 給水孔 1 1 2は、 第 2半体 9側の軸受メタル 2 5が臨むハウジング 1 1 4に、 またそのハウジング 1 1 4は出力軸 2 3の厚肉部分 6 2に形成された通水孔 uに、 さらにその通水孔 u は中空軸 6 4の外周面母線方向に延びる複数の通水溝 V (図 1 3も参照) に、 さ らにまた各通水溝 Vは第 2半体 8側の軸受メタル 2 5が臨むハウジング 1 1 5に それぞれ連通する。 また出力軸 2 3の厚肉部分 6 2内端面に、 通水孔 uと、 中空 軸 6 4および固定軸 6 5の大径中実部 6 6間の摺動部分とを連通する環状凹部 w が設けられている。
これにより、 各軸受メタル 2 5および出力軸 2 3間ならびに中空軸 6 4および 固定軸 6 5間が水により潤滑され、 また両軸受メタル 2 5および出力軸 2 3間の 間隙から口一夕チャンバ 1 4内に進入した水によって、 ケーシング 7と、 シール 部材 4 4および各口一ラ 5 9との間の潤滑が行われる。
図 4において、 ロー夕 3 1の回転軸線 Lに関して点対称の関係にある第 1およ び第 7ベーンピストンユニット U 1, U 7は同様の動作を行う。 これは、 点対称 の関係にある第 2、 第 8ベ一ンピストンユニット U 2, U 8等についても同じで ある。
例えば、 図 1 3も参照して、 第 1供給管 9 4の軸線が口一夕チヤンバ 1 4の短 径位置 Eよりも図 4において反時計方向側に僅かずれており、 また第 1ベーンピ ストンュニット U 1が前記短径位置 Eに在つて、 その大径シリンダ孔 f には高温 高圧蒸気は供給されておらず、 したがってビストン 4 1およびべーン 4 2は後退 位置に在るとする。
この状態からロータ 3 1を僅かに、 図 4反時計方向に回転させると、 第 1シ一 ルブロック 9 2の供給口 9 0と通孔 cとが連通して導入管 8 0からの高温高圧蒸 気が小径孔 bを通じて大径シリンダ孔 f に導入される。 これによりピストン 4 1 が前進し、 その前進運動はべーン 4 2がロータチャンバ 1 4の長径位置 F側へ摺 動することによって、 ベ一ン 4 2を介して該べ一ン 4 2と一体のローラ 5 9と環 状溝 6 0との係合により口一夕 3 1の回転運動に変換される。 通孔 cが供給口 9 0からずれると、 高温高圧蒸気は大径シリンダ孔: f内で膨張してピストン 4 1を なおも前進させ、 これにより口一夕 3 1の回転が続行される。 この高温高圧蒸気 の膨張は第 1ベーンピストンュニット U 1がロータチャンバ 1 4の長径位置 Fに 至ると終了する。 その後は、 ロー夕 3 1の回転に伴い大径シリンダ孔 f 内の第 1 の降温降圧蒸気は、 ベ一ン 4 2によりピストン 4 1が後退させられることによつ て、 小径孔13、 通孔じ、 第 1凹状排出部 1 0 2、 第 1排出孔 1 0 4、 通路 s (図 3参照) および各通孔 tを経て中継チャンバ 2 0に排出され、 次いで図 2および 図 5に示すように、 第 1導入孔列 1 0 7を通じてロー夕チャンバ 1 4内に導入さ れ、 相隣る両べ一ン 4 2間でさらに膨張してロータ 3 1を回転させ、 その後第 2 の降温降圧蒸気が第 1導出孔列 110 a〜l 10 f より外部に排出される。
このように、 高温高圧蒸気の膨張によりピストン 41を作動させてベ一ン 42 を介し口一夕 31を回転させ、 また高温高圧蒸気の圧力降下による降温降圧蒸気 の膨張によりべ一ン 42を介しロー夕 31を回転させることによって出力軸 23 より出力が得られる。
図 14および図 15に示すように、 容積型で軸トルクが一定の膨張機 4はシリ ンダ部材 39のシリンダ室からなる第 1の膨張室と、 ベ一ン室 54からなる第 2 の膨張室とを備える。 第 1の膨張室に供給される蒸気の圧力および温度をそれぞ れ P e vp, Te vpとし、 第 2の膨張室に供給される蒸気の圧力および温度を それぞれ P e xp l, Te xp 1とし、 第 2の膨張室から排出される蒸気の圧力 および温度をそれぞれ P e X p 2, Te xp 2としたとき、 ? 6 ぉょび 6 X 1により決まる第 1の膨張室の膨張比 ε 1と、 P e X ρ 1および? e xp 2 により決まる第 2の膨張室の膨張比 ε 2との積 ε I X ε 2で与えられる膨張機 4 のトータルの膨張比が、 予め設定された設定膨張比 ε (本実施例では 132) に 一致する。 図 15のグラフの縦軸は蒸気の圧力 Ρであり、 横軸はロータ 31の位 相 Sである。 圧力 Pを Pe vpに調整された蒸気が第 1の膨張室に供給され、 そ こで膨張して圧力 Pが P e p 1に低下したとき、 P e v pおよび P e x p 1に より決まる膨張比は前記 ε 1となる。 圧力 Ρが P exp 1の蒸気が第 2の膨張室 に供給され、 そこで膨張して圧力 Pが P e xp 2に低下したとき、 Pxvpおよ び P e xp 2により決まる膨張比は前記 ε 2となる。
蒸発器 3が発生する蒸気、 つまり第 1の膨張室に供給される蒸気は、 その圧力 P e V pおよび温度 T e V pが図 16に実線で示す所定の関係を保つように制御 される。 即ち、 第 1の膨張室に供給される蒸気の圧力 P e V pおよび温度 T e v Pは蒸発器 3の過渡状態、 内燃機関 1の運転状態、 蒸発器 3に供給される水量等 に応じて変動するが、 蒸気の圧力 P e vpは膨張機 4の回転数 (軸トルク) によ り制御可能であり、 蒸気の温度 T e V pは蒸発器 3に供給される水量により制御 可能であり、 本実施例における定格値は図 16の実線上の a点 (圧力 P e V p 16MP a, 温度 Te vp = 620°C) に設定される。 このように第 1の膨張室 に供給される蒸気の圧力 P e V pおよび温度 T e V Pが決定されれば、 それに応 じて膨張機 4の軸トルクも決定される。 図 16に破線で示すように、 第 1の膨張 室に供給される蒸気の圧力 P e V pおよび温度 T e v pが高いほど熱効率が高く なるが、 温度 Te vpが高くなると耐久性等に影響がでるため、 本実施例では定 格値を前記 620°Cに設定している。 一方、 第 2の膨張室が排出する蒸気の圧力 P e xp 2および温度 T e X p 2にも、 膨張機 4および凝縮器 5が最大の性能を 発揮し得る定格値が設定されており、 本実施例における定格値は圧力 P e xp 2 が 0. 05MP a、 温度 T e V pが 80°Cである。 しかしながら、 最適の圧力 P e xp 2および温度 T e xp 2は凝縮器 5の過渡状態、 凝縮器 5の冷却状態 (外 気温、 冷却ファンの回転数、 走行風の強さ) 等に応じて変化し、 前記定格値と必 ずしも一致しない。
第 1の膨張室に供給される蒸気の圧力 P e V pおよび温度 T e vpを定格値 ( P e vp=16MPa、 Te vp = 620°C) に設定し、 膨張機 4の膨張比を設 定膨張比 εに設定すれば、 第 2の膨張室から排出される蒸気の圧力 P e X ρ 2お よび温度 T e X p 2は定格値 (本実施例では P e x p 2 = 0. 05MP a、 Te xp 2 = 80°C) に一致し、 膨張機 4および凝縮器 5は最大の性能を発揮するこ とができる。 また第 1の膨張室に供給される蒸気の圧力 P e V pおよび温度 T e V Pが定格値から外れていても、 図 16の実線上の何れかの位置にあり、 かつ膨 張比が設定膨張比 ε = 132に一致していれば、 第 2の膨張機室から排出される 蒸気の圧力 P e X ρ 2および温度 T e x p 2は定格値に一致する。 従つて、 内燃 : 機関 1が暖機運転中であって第 1の膨張室に供給される蒸気の圧力 P e vpおよ び温度 T e vpが定格値よりも低い場合 (例えば、 図 16の実線上の b点) であ つても、 第 2の膨張室から排出される蒸気の圧力 P e xp 2および温度 Te 2は定格値に一致する。 これにより、 内燃機関 1の始動からランキンサイクル装 置が作動可能になるまでの立ち上げ時間を短縮することができる。
以上のように、 第 1の膨張室に供給される蒸気の圧力 P e V pおよび温度 Te vpが所定の関係 (図 16の実線の関係) を持つように設定し、 かつ膨張機 4の 膨張比を設定膨張比 εに設定すれば、 第 2の膨張室から排出される蒸気の圧力 Ρ e V pおよび温度 T e v は常に定格値 (本実施例では P e x p 2 = 0. 05M P a、 Te xp 2 = 80°C) に一致するため、 膨張機 4および凝縮器 5は最大の 性能を発揮することができる。
ところで、 第 1の膨張室に供給される蒸気の圧力 P e v pおよび温度 T e v p が、 種々の変動要因によって図 1 6の実線の関係から鎖線の関係に外れた場合、 膨張機 4の膨張機比が設定膨張機比 εのままだと、 第 2の膨張室から排出される 蒸気の圧力 P e x p 2および温度 T e x p 2が定格値から外れてしまい、 膨張機 4および凝縮器 5が充分な性能を発揮できなくなる可能性がある。 また第 2の膨 張室から排出される蒸気の圧力 P e p 2および温度 T e X p 2の最適値が種々 の変動要因によって定格値から外れた場合、 膨張機 4の膨張機比が設定膨張比 ε のままだと、 第 2の膨張室から排出される蒸気の圧力 P e χ ρ 2および温度 T e x p 2が定格値になって最適値から外れてしまい、 膨張機 4および凝縮器 5が充 分な性能を発揮できなくなる可能性がある。
このような場合には、 膨張機 4の膨張比を設定膨張比 εから変化させることに より、 第 2の膨張室から排出される蒸気の圧力 P e X ρ 2および温度 T e x p 2 を最適値に一致させることができる。 膨張機 4の膨張比は、 第 1の膨張室への吸 入タイミングを変更することにより、 あるいは第 2の膨張室からの排出タイミン グを変更することにより変化させることができる。
具体的には、 第 1の膨張室に供給される蒸気の圧力 P e V pが過大である場合 には (図 2 1 B参照)、 第 1の膨張室に蒸気を供給するタイミングを遅らせて膨張 比 ε 1を減少させれば良く、 また第 1の膨張室に供給される蒸気の圧力 P e ν ρ が過小である場合には (図 2 1 C参照)、 第 2の膨張室から蒸気を排出する夕イミ ングを早めて膨張比 ε 2を減少させれば良い。
第 1の膨張室における蒸気の膨張比 ε 1は回転バルブ Vで蒸気の吸入タイミン グを変更することにより可変である。 即ち、 モータ 8 2で固定軸 6 5を回転させ 、 その供給口 9 0, 9 1の位相を図 1 3の遅角側に変化させて蒸発器 3から膨張 機 4のシリンダ部材 3 9に蒸気が供給されるタイミングを早めると、 蒸気が導入 される瞬間にピストン 4 1が半径方向内側にあってシリンダ部材 3 9の容積が減 少しているため、 シリンダ部材 3 9に供給される蒸気量が減少して膨張機 4の第 1の膨張室 (シリンダ部材 3 9 ) による膨張比 ε 1が増加する。 逆に、 モータ 8 2で固定軸 6 5を回転させ、 その供給口 9 0, 9 1の位相を図 1 3の進角側に変 化させて蒸発器 3から膨張機 4のシリンダ部材 39に蒸気が供給されるタイミン グを遅めると、 蒸気が導入される瞬間にピストン 41が半径方向外側にあってシ リンダ部材 39の容積が増加し、 シリンダ部材 39に供給される蒸気量が増加し て膨張機 4の第 1の膨張室 (シリンダ部材 39) による膨張比 ε 1が減少する。 このように、 第 1の膨張室に蒸気を導入するタイミングを変化させることにより 、 その膨張比 ε 1を変化させることができる。
第 1の膨張室から排出された蒸気は中継チャンバ 20を経て第 2の膨張室 (ベ ーン室 54) に供給されるため、 第 1の膨張室からの蒸気排出量は第 2の膨張室 への蒸気供給量に一致する。 第 2の膨張室から凝縮器 5に蒸気が排出されるタイ ミングは 8個の電磁弁 117 a〜l 17 d, 118 a〜 118 dを選択的に開閉 することにより制御される。 例えば、 図 7においてベーン室 54が最大の容積を 持つ位置の若干手前位置において、 前記べ一ン室 54を構成する一対のベーン 4 2の回転方向進み側のベ一ン 42が 3列目の第 1排出孔列 110 cを越えており 、 この位置が基準タイミングとなる。 すなわち、 定格時には上流側の 2列の第 1 排出孔列 1 10 a, 110 bの電磁弁 117 a, 117 bが閉弁し、 下流側の 2 列の第 1排出孔列 110 c, 11.0 dの電磁弁 117 c, 117 dが開弁してお り、 従つて回転方向進み側のベーン 42が 3列目の第 1排出孔列 110 cを越え た瞬間に、 その第 1排出孔列 110 cから蒸気の排出が開始される。
前記基準タイミングに対して排出タイミングを早めるには、 上流側の 2列目の 第 1排出孔列 11 O bの電磁弁 117 bを開けば良く、 更に排出タイミングを早 めるには、 前記 2列目の第 2排出孔列 110 bの電磁弁 117 bに加えて上流側 の 1列目の第 1排出孔列 110 aの電磁弁 111 aを開けば良い。 逆に、 前記基 準タイミングに対して排出タイミングを遅めるには、 3列目の第 1排出孔列 1 1 0 cの電磁弁 117 cを閉じれば良く、 更に排出タイミングを遅めるには、 前記 3列目の第 1排出孔列 110 cの電磁弁 117 cに加えて下流側の 4列目の第 1 排出孔列 1 10 dの電磁弁 117 dを閉じれば良い。
このようにして閉弁する電磁弁 1 17 a〜l 17 dの数を上流側から順次増加 させてゆくことにより、 第 2の膨張室から凝縮器 5に蒸気が排出されるタイミン グを段階的に遅らすことができ、 これにより第 2膨張室による膨張比 ε 2を増加 させることができる。 逆に、 開弁する電磁弁 117 a〜l 17 eの数を下流側か ら順次増加させてゆくことにより、 第 2の膨張室から凝縮器 5に蒸気が排出され るタイミングを段階的に早めることができ、 これにより第 2膨張室による膨張比 ε 2を減少させることができる。
尚、 第 2導出孔列 111 a〜: L 1 1 dの第 2電磁弁 118 a〜l 18 dの制御 は、 上述した第 1導出孔列 110 a〜 110 dの電磁弁 117 a〜 1 1' 7 dの制 御と同一である。 また前記電磁弁 1 17 a〜l 17 d, 118 a〜l 18 dの制 御は、 8列の導出孔列 110 a〜1 10 d, l l l a〜l l l dにそれぞれ対応 して設けられた 8個の圧力センサ 1 19の出力に基づいて、 第 2の膨張室から排 出される蒸気の圧力 P exp 2が、 膨張機 4および凝縮器 5が最大の性能を発揮 し得る最適値に一致するように行なわれる。
さて、 圧力、 容積および温度により決定される蒸気の状態には、 水および蒸気 が混在する飽和蒸気領域と、 水が存在せずに蒸気だけが存在する過熱蒸気領域と がある。 第 1の膨張室の入口から出口までの領域は過熱蒸気領域であり、 蒸気に 水が混在することはない。 従って、 第 1の膨張室を構成するシリンダ部材 39の 内部に滞留した水がピストン 41により圧縮されて水撃現象が発生すること力 S確 実に防止される。 また第 2の膨張室の入口から出口までの領域のうち少なくとも 最下流部分は飽和蒸気領域であり、 蒸気に水が混在している。 従って、 第 2の膨 張室を構成するべ一ン室 54の内部に若干の水が滞留し、 ベ一ン 42およびロー 夕チヤンバ 14間の潤滑性能およびシール性能が向上する。
図 17〜図 19において、 第 1の膨張室に供給される蒸気の温度 Te vpを 4 50°Cから 650°Cの範囲で変化させたとき、 温度 Te V pが高いほど膨張機 4 の内部の過熱蒸気領域が広くなって過熱蒸気領域から飽和蒸気領域に移行する夕 イミングが遅れ (図 17参照)、 ェンタルピーの減少量が増加して膨張機 4の出力 が増加し (図 18参照)、 力つ第 2の膨張室の出口の乾き度が増加して水の発生量 が減少する (図 19参照)。 逆に、 温度 Te vpが低いほど膨張機 4の内部の過熱 蒸気領域が狭くなって過熱蒸気領域から飽和蒸気領域に移行するタイミングが早 まり、 ェンタルピーの減少量が減少して膨張機 4の出力が減少し、 かつ第 2の膨 張室の出口の乾き度が減少して水の発生量が増加する。 第 1の膨張室と第 2の膨 張室との境界は過熱蒸気領域にあり、 従ってシリンダ部材 3 9よりなる第 1の膨 張室に水が滞留することを確実に抑制し、 またべーン室 5 4よりなる第 2の膨張 室に水が滞留することを確実に保証することができる。
また検出した第 1の膨張室の入口の温度 T e V pが定格値よりも高い場合には 、 第 2の膨張室の出口の圧力 P e x p 2が定格値よりも高くなるため、 第 1の膨 張室の入口の吸入タイミングを遅らせて膨張比 ε 1を減少させるか、 あるいは第 2の膨張室の出口の排出タイミングを遅らせて膨張比 ε 2を増加させれば良い。 逆に、 検出した第 1の膨張室の入口の温度 T e V pが定格値よりも低い場合には 、 第 2の膨張室の出口の圧力 P e x p 2が定格値よりも低くなるため、 第 1の膨 張室の入口の吸入タイミングを早めて膨張比 ε 1を増加させるか、 あるいは第 2 の膨張室の出口の排出タイミングを遅らせて膨張比 ε 2を減少させれば良い。 また膨張機 4の内部のリーク量が大きいとき (低速回転時) には、 前述した第 1の膨張室の入口の温度 T e V pが定格値よりも高い場合と同様の可変膨張比制 御を行えば良く、 また逆に膨張機 4の内部のリーク量が小さいとき (高速回転時 ) には、 前述した第 1の膨張室の入口の温度 T e v pが定格値よりも低い場合と 同様の可変膨張比制御を行えば良い。
次に、 図 2 0に基づいて本発明の第 2実施例を説明する。
第 1実施例の膨張機 4では、 先ず第 1の膨張室であるシリンダ部材 3 9に高温 高圧蒸気を供給した後に、 それが降温降圧した第 1の降温降圧蒸気を第 2の膨張 室であるべーン室 5 4に供給している。 それに対し、 図 2 0に示す第 2実施例は 、 第 1の膨張室からの第 1の降温降圧蒸気を中継チャンバ 2 0に排出する通孔 t を電磁弁 1 2 2で閉鎖できるようにし、 更に切換弁 1 2 0で第 1の膨張室への高 温高圧蒸気の供給を遮断して中継チャンバ 2 0の蒸気導入口 1 2 1に高温高圧蒸 気を直接供給できるようにすることにより、 第 1の膨張室を不作動にして第 2の 膨張室だけを独立して作動させることができる。 この場合、 ベーン室 5 4で構成 される膨張室における蒸気の膨張比は、 ベ一ン室 5 4からの排気タイミングを電 磁弁 1 1 7 a ~ l 1 7 d , 1 1 8 a〜 1 1 8 dで変化させることで制御される。 以上、 本発明の実施例を詳述したが、 本発明はその要旨を逸 しない範囲で種 々の設計変更を行うことが可能である。 例えば、 実施例では第 1の膨張室および第 2の膨張室を直列に接続しているが 、 3段以上の膨張室を直列に接続することができる。 この場合、 最も上流の膨張 室に供給される蒸気は過熱蒸気領域にあり、 最も下流の膨張室から排出される蒸 気は飽和蒸気領域にあることが必要である。
産業上の利用可能性
以上のように、 本発明にかかるランキンサイクル装置は内燃機関の排気ガスを 熱源とするものに好適に適用することができるが、 その熱源は内燃機関の排気ガ スに限定されるものではない。

Claims

請求の範囲
1. 液体を加熱して蒸気を発生する蒸発器 (3) と、 蒸発器 (3) から供給され た蒸気を膨張させて軸トルクを出力する膨張機 (4) と、 膨張機 (4) が排出し た蒸気を冷却して液体に戻す凝縮器 (5) とを備えたランキンサイクル装置にお いて、 '
膨張機 (4) が吸入する蒸気の圧力 (Pe vp) および温度 (Te vp) の任 意の関係に対して、
膨張機 (4) が吸入 ·排出する蒸気の膨張比 (ε 1, ε 2) を前記任意の関係 に応じた所定の膨張比 (ε) に設定することにより、 膨張機 (4) が排出する蒸 気の圧力 (Pe xp 2) および温度 (Texp 2) を目標値に一致させることを 特徴とするランキンサイクル装置。
2. 膨張機 (4) が吸入する蒸気の圧力 (Pevp) および温度 (Tevp) は 過熱蒸気領域にあり、 膨張機 (4) が排出する蒸気の圧力 (P e xp 2) および 温度 (Te xp 2) は飽和蒸気領域にあることを特徴とする、 請求項 1に記載の ランキンサイクル装置。
3. 膨張機 (4) は直列に接続された複数の膨張室 (39, 54) を備え、 各々 の膨張室 (39, 54) における蒸気の膨張比 (ε ΐ, ε 2) の積を前記設定膨 張比 (ε) としたことを特徴とする、 請求項 1に記載のランキンサイクル装置。
4. 膨張機 (4) の複数の膨張室 (39, 54) のうち、 少なくとも最上流側の 膨張室 (39) の蒸気は過熱蒸気領域にあり、 少なくとも最下流側の膨張室 (5 4) の蒸気は飽和蒸気領域にあることを特徴とする、 請求項 3に記載のランキン サイクル装置。
5. 排出位置における蒸気が過熱蒸気領域にある膨張室 (39) はシリンダ室で 構成されることを特徴とする、 請求項 4に記載のランキンサイクル装置。
6. 排出位置における蒸気が飽和蒸気領域にある膨張室 (54) はべーン室で構 成されることを特徵とする、 請求項 4に記載のランキンサイクル装置。
7. 膨張機 (4) の複数の膨張室 (39, 54) のうち、 少なくとも最上流側の 膨張室 (39) の吸入位置を可変としたことを特徴とする、 請求項 3に記載のラ ンキンサイクル装置。
8. 膨張機 (4) の複数の膨張室 (39, 54) のうち、 少なくとも最下流側の 膨張室 (54) の排出位置を可変としたことを特徴とする、 請求項 3に記載のラ ンキンサイクル装置。
PCT/JP2001/007657 2000-09-05 2001-09-04 Dispositif de cycle de rankine WO2002020951A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2001282624A AU2001282624A1 (en) 2000-09-05 2001-09-04 Rankine cycle device
EP01961357A EP1316679A1 (en) 2000-09-05 2001-09-04 Rankine cycle device
KR10-2003-7003164A KR20030076974A (ko) 2000-09-05 2001-09-04 랭킹 사이클 장치
CA002421300A CA2421300A1 (en) 2000-09-05 2001-09-04 Rankine cycle system
BR0114049-3A BR0114049A (pt) 2000-09-05 2001-09-04 Sistema com ciclo de rankine
US10/363,539 US7000394B2 (en) 2000-09-05 2001-09-04 Rankine cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000273556 2000-09-05
JP2000-273556 2000-09-05

Publications (1)

Publication Number Publication Date
WO2002020951A1 true WO2002020951A1 (fr) 2002-03-14

Family

ID=18759473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007657 WO2002020951A1 (fr) 2000-09-05 2001-09-04 Dispositif de cycle de rankine

Country Status (8)

Country Link
US (1) US7000394B2 (ja)
EP (1) EP1316679A1 (ja)
KR (1) KR20030076974A (ja)
CN (1) CN1452687A (ja)
AU (1) AU2001282624A1 (ja)
BR (1) BR0114049A (ja)
CA (1) CA2421300A1 (ja)
WO (1) WO2002020951A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041550A1 (de) * 2009-04-29 2010-11-04 Daimler Ag Wärmenutzungsvorrichtung und Betriebsverfahren
EP2609303B1 (en) * 2010-08-26 2023-08-09 Michael Joseph Timlin III The timlin cycle- a binary condensing thermal power cycle
US20130255094A1 (en) * 2012-03-27 2013-10-03 Bsh Bosch Und Siemens Hausgerate Gmbh Clothes treatment appliance with water container and a transfer pipe
CN103742197B (zh) * 2013-10-15 2016-02-10 昆明理工大学 一种刮板转子式orc热机
US9702263B2 (en) 2014-03-10 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle device
EP2937526B1 (en) 2014-04-04 2017-03-22 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
WO2019077583A1 (en) * 2017-10-20 2019-04-25 Microsteam Inc., Dba Practical Steam ROTARY STEAM ENGINE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726363A (en) * 1980-07-24 1982-02-12 Matsushita Electric Ind Co Ltd Air conditioner
JPH0447104A (ja) * 1990-06-13 1992-02-17 Aisin Seiki Co Ltd 蒸気原動機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407131A (en) * 1980-08-13 1983-10-04 Battelle Development Corporation Cogeneration energy balancing system
JPS5848706A (ja) 1981-09-18 1983-03-22 Toshiba Corp ランキンサイクル装置
US5634339A (en) * 1995-06-30 1997-06-03 Ralph H. Lewis Non-polluting, open brayton cycle automotive power unit
WO2000053926A1 (fr) * 1999-03-05 2000-09-14 Honda Giken Kogyo Kabushiki Kaisha Machine rotative a fluide, machine a fluide a aubes, et dispositif de recuperation de chaleur de moteur a combustion interne
JP2001271609A (ja) * 2000-01-18 2001-10-05 Honda Motor Co Ltd 内燃機関の廃熱回収装置
US6598397B2 (en) * 2001-08-10 2003-07-29 Energetix Micropower Limited Integrated micro combined heat and power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726363A (en) * 1980-07-24 1982-02-12 Matsushita Electric Ind Co Ltd Air conditioner
JPH0447104A (ja) * 1990-06-13 1992-02-17 Aisin Seiki Co Ltd 蒸気原動機

Also Published As

Publication number Publication date
AU2001282624A1 (en) 2002-03-22
US7000394B2 (en) 2006-02-21
CA2421300A1 (en) 2003-03-04
US20040103661A1 (en) 2004-06-03
BR0114049A (pt) 2003-07-22
EP1316679A1 (en) 2003-06-04
KR20030076974A (ko) 2003-09-29
CN1452687A (zh) 2003-10-29

Similar Documents

Publication Publication Date Title
JP4493531B2 (ja) 膨張機付き流体ポンプおよびそれを用いたランキンサイクル
US4357800A (en) Rotary heat engine
US7726129B2 (en) Stirling cycle engine
WO2001053661A1 (fr) Dispositif de recuperation de chaleur pour moteurs a combustion interne
JP2001227616A (ja) 駆動装置
WO2000053926A1 (fr) Machine rotative a fluide, machine a fluide a aubes, et dispositif de recuperation de chaleur de moteur a combustion interne
WO2002020951A1 (fr) Dispositif de cycle de rankine
US7040872B2 (en) Rotary fluid machinery
JP4767455B2 (ja) ランキンサイクル装置
JP4730974B2 (ja) ベーンタイプ機械およびベーンタイプ機械を使用しながら廃熱を利用する方法
EP3755884B1 (en) Roticulating thermodynamic apparatus
US20100319654A1 (en) Rotary vane engines and methods
JP2000320453A (ja) 膨脹機能および圧縮機能を持つ回転式流体機械およびベーン式流体機械
JP4344453B2 (ja) 回転式流体機械
WO2002020987A1 (fr) Machine a fluide rotative
RU2362881C2 (ru) Многоцилиндровая турбина объемного расширения
JP4344452B2 (ja) 回転式流体機械
JP4344451B2 (ja) 回転式流体機械
JP2012202261A (ja) 膨張機、及び排熱回生システム
JP2022088109A (ja) 膨張機及びランキンサイクル装置
JP2002147201A (ja) 回転流体機械
RU2463531C1 (ru) Устройство теплоснабжения и роторный компрессор-детандер
JP2000320301A (ja) 内燃機関の廃熱回収装置
JP2009138552A (ja) ランキンサイクルシステム
JPS63306201A (ja) ランキンサイクル機関の膨張機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001282624

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020037003164

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001961357

Country of ref document: EP

Ref document number: 2421300

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018151957

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001961357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10363539

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037003164

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020037003164

Country of ref document: KR