JP4344453B2 - 回転式流体機械 - Google Patents

回転式流体機械 Download PDF

Info

Publication number
JP4344453B2
JP4344453B2 JP2000072441A JP2000072441A JP4344453B2 JP 4344453 B2 JP4344453 B2 JP 4344453B2 JP 2000072441 A JP2000072441 A JP 2000072441A JP 2000072441 A JP2000072441 A JP 2000072441A JP 4344453 B2 JP4344453 B2 JP 4344453B2
Authority
JP
Japan
Prior art keywords
rotor
energy
conversion means
pressure
energy conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000072441A
Other languages
English (en)
Other versions
JP2001254664A (ja
Inventor
恒雄 遠藤
健介 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000072441A priority Critical patent/JP4344453B2/ja
Publication of JP2001254664A publication Critical patent/JP2001254664A/ja
Application granted granted Critical
Publication of JP4344453B2 publication Critical patent/JP4344453B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Hydraulic Motors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ランキンサイクル装置の膨脹器として使用可能な回転式流体機械に関する。
【0002】
【従来の技術】
特開昭58−48076号公報にはベーン型の膨張器を備えたランキンサイクル装置が記載されている。このものは、ガスバーナを熱源とする蒸発器で発生した高温高圧蒸気のエネルギーをベーン型の膨張器を介して機械エネルギーに変換し、その結果として発生した降温降圧蒸気を凝縮器で復水した後に供給ポンプで再度蒸発器に戻すようになっている。
【0003】
【発明が解決しようとする課題】
ところで、前記特開昭58−48076号公報に開示されたものは、膨張器として単純なベーンモータを用いているため、蒸発器で発生した高温高圧蒸気のエネルギーを膨張器で効率良く機械エネルギーに変換することが難しいという問題があった。
【0004】
本発明は前述の事情に鑑みてなされたもので、ランキンサイクル装置の膨張器の効率を高め、高温高圧蒸気のエネルギーを効率的に機械エネルギーに変換することを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するため請求項1に記載された発明によれば、原動機の廃熱で水を加熱して発生した高温高圧蒸気の圧力エネルギーを機械エネルギーに変換し、その結果発生した降温降圧蒸気を復水して再度前記廃熱で加熱するランキンサイクル装置に設けられ、圧力エネルギーを機械エネルギーに変換する容積型の膨張器よりなる回転式流体機械において、前記膨張器は少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを第1、第2エネルギー変換手段に入力して機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力するものであり、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面にシール部材を介して摺接するベーンから構成され、これらベーンおよびピストンに連動するローラが、ロータチャンバを区画するケーシングに形成した非円形の環状溝に係合されていて、その係合により、ピストンの往復運動とロータの回転運動とが相互に変換されると共に、ベーンの外周面とロータチャンバの内周面との間隙が規制されることを特徴とする回転式流体機械が提案される。
【0006】
上記構成によれば、原動機の廃熱で水を加熱して発生した高温高圧蒸気の圧力エネルギーを機械エネルギーに変換し、その結果発生した降温降圧蒸気を液化して再度前記廃熱で加熱するランキンサイクル装置において、圧力エネルギーを機械エネルギーに変換する膨張器を容積型のもので構成したので、タービンのような非容積型の膨張器に比べて、低速から高速までの広い回転数領域において高い効率でエネルギー回収を行い、ランキンサイクルによる熱エネルギーの回収効率を更に向上させることが可能となり、しかも原動機の回転数の増減に伴う廃熱のエネルギーの変化に対する追従性や応答性にも優れている。更に前記容積型の膨張器は第1エネルギー変換手段の出力および第2エネルギー変換手段の出力を統合して出力するので、高温高圧蒸気の圧力エネルギーを無駄なく機械エネルギーに変換できるだけでなく、膨張器を小型軽量化してスペース効率の向上を図ることができる。
【0007】
た、第1エネルギー変換手段を、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成したので、高圧の蒸気のシール性を高めてリークによる効率低下を最小限に抑えることができる。また第2エネルギー変換手段を、ロータに放射方向移動自在に支持されてロータチャンバの内周面にシール部材を介して摺接するベーンから構成したので、圧力エネルギーおよび機械エネルギーの変換機構の構造が簡単であり、コンパクトな構造でありながら大流量の蒸気を処理できる。このように、ピストンおよびシリンダを持つ第1エネルギー変換手段とベーンを持つ第2エネルギー変換手段とを組み合わせたことにより、両者の特長を兼ね備えた高性能な回転式流体機械を得ることができる。
【0008】
更に、ロータチャンバの内部で回転するロータに対して放射方向に移動するベーンおよびピストンに連動するローラを、ロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させたので、ローラおよび環状溝よりなる簡単な構造で、ピストンの往復運動をロータの回転運動に変換することができ、しかもローラの移動軌跡を環状溝で案内することにより、ベーンの外周面とロータチャンバの内周面との間隙を規制して異常摩耗の発生やリークの発生を防止することができる。
【0009】
また請求項に記載された発明によれば、請求項1の構成に加えて、前記第1、第2エネルギー変換手段を備えたロータを回転自在に収納するロータチャンバの中心側に高温高圧蒸気を配置し、前記ロータチャンバの外周側に降温降圧蒸気を配置したことを特徴とする回転式流体機械が提案される。
【0010】
上記構成によれば、ロータを回転自在に収納するロータチャンバの中心側および外周側にそれぞれ高温高圧蒸気および降温降圧蒸気を配置したので、ロータチャンバの中心側からリークした高温高圧蒸気をロータチャンバの外周側の降温降圧蒸気で捕捉回収し、リークした前記高温高圧蒸気を無駄なく利用して回転式流体機械全体の効率を高めることができる。しかもロータチャンバの外周側に降温降圧蒸気を配置したので、ロータチャンバから外部への蒸気のリークを防止するためのシールが容易になると共に、ロータチャンバから外部への熱のリークを防止するための断熱が容易になる。
【0011】
尚、実施例の内燃機関1は本発明の原動機に対応し、また実施例のシリンダ部材39は本発明のシリンダに対応する。
【0012】
【発明の実施の形態】
図1において、内燃機関1の廃熱回収装置2は、内燃機関1の廃熱、例えば排気ガスを熱源として、高圧状態の液体、例えば水から温度上昇を図られた高圧状態の蒸気、つまり高温高圧蒸気を発生する蒸発器3と、その高温高圧蒸気の膨脹によって出力を発生する膨脹器4と、その膨脹器4から排出される、前記膨脹後の、温度および圧力が降下した蒸気、つまり降温降圧蒸気を液化する凝縮器5と、凝縮器5からの液体、例えば水を蒸発器3に加圧供給する供給ポンプ6とを有する。
【0013】
膨脹器4は特殊な構造を有するもので、次のように構成される。
【0014】
図2〜図5において、ケーシング7は金属製第1、第2半体8,9より構成される。両半体8,9は、略楕円形の凹部10を有する主体11と、それら主体11と一体の円形フランジ12とよりなり、両円形フランジ12を金属ガスケット13を介し重ね合せることによって略楕円形のロータチャンバ14が形成される。また第1半体8の主体11外面は、シェル形部材15の深い鉢形をなす主体16により覆われており、その主体16と一体の円形フランジ17が第1半体8の円形フランジ12にガスケット18を介して重ね合せられ、3つの円形フランジ12,12,17は、それらの円周方向複数箇所においてボルト19によって締結される。これにより、シェル形部材15および第1半体8の両主体11,16間には中継チャンバ20が形成される。
【0015】
両半体8,9の主体11は、それらの外面に外方へ突出する中空軸受筒21,22を有し、それら中空軸受筒21,22に、ロータチャンバ14を貫通する中空の出力軸23の大径部24が軸受メタル(または樹脂製軸受)25を介して回転可能に支持される。これにより出力軸23の軸線Lは略楕円形をなすロータチャンバ14における長径と短径との交点を通る。また出力軸23の小径部26は、第2半体9の中空軸受筒22に存する孔部27から外部に突出して伝動軸28とスプライン結合29を介して連結される。小径部26および孔部27間は2つのシールリング30によりシールされる。
【0016】
ロータチャンバ14内に円形のロータ31が収容され、その中心の軸取付孔32と出力軸23の大径部24とが嵌合関係にあって、両者31,24間にはかみ合い結合部33が設けられている。これによりロータ31の回転軸線は出力軸23の軸線Lと合致するので、その回転軸線の符号として「L」を共用する。
【0017】
ロータ31に、その回転軸線Lを中心に軸取付孔32から放射状に延びる複数、この実施例では12個のスロット状空間34が円周上等間隔に形成されている。各空間34は、円周方向幅が狭く、且つロータ31の両端面35および外周面36に一連に開口するように、両端面35に直交する仮想平面内において略U字形をなす。
【0018】
各スロット状空間34内に、同一構造の第1〜第12ベーンピストンユニットU1〜U12が、次のように放射方向に往復動自在に装着される。略U字形の空間34において、その内周側を区画する部分37に段付孔38が形成され、その段付孔38に、セラミック(またはカーボン)よりなる段付形シリンダ部材39が嵌入される。シリンダ部材39の小径部a端面は出力軸23の大径部24外周面に当接し、その小径孔bが大径部24外周面に開口する通孔cに連通する。またシリンダ部材39の外側に、その部材39と同軸上に位置するようにガイド筒40が配置される。そのガイド筒40の外端部は、ロータ31外周面に存する空間34の開口部に係止され、また内端部は段付孔38の大径孔dに嵌入されてシリンダ部材39に当接する。またガイド筒40は、その外端部から内端部近傍まで相対向して延びる一対の長溝eを有し、両長溝eは空間34に面する。シリンダ部材39の大径シリンダ孔f内にセラミックよりなるピストン41が摺動自在に嵌合され、そのピストン41の先端部側は常時ガイド筒40内に位置する。
【0019】
図2および図6に示すように、ロータ31の回転軸線Lを含む仮想平面A内におけるロータチャンバ14の断面Bは、直径gを相互に対向させた一対の半円形断面部B1と、両半円形断面部B1の両直径gの一方の対向端相互および他方の対向端相互をそれぞれ結んで形成される四角形断面部B2とよりなり、略競技用トラック形をなす。図6において、実線示の部分が長径を含む最大断面を示し、一方、一部を2点鎖線で示した部分が短径を含む最小断面を示す。ロータ31は、図6に点線で示したように、ロータチャンバ14の短径を含む最小断面よりも若干小さな断面Dを有する。
【0020】
図2および図7〜図10に明示するように、ベーン42は略U字板形(馬蹄形)をなすベーン本体43と、そのベーン本体43に装着された略U字板形をなすシール部材44と、ベーンスプリング58とより構成される。
【0021】
ベーン本体43は、ロータチャンバ14の半円形断面部B1による内周面45に対応した半円弧状部46と、四角形断面部B2による対向内端面47に対応した一対の平行部48とを有する。各平行部48の端部側にコ字形の切欠き49と、それらの底面に開口する四角形の盲孔50と、各切欠き49よりも、さらに端部側に在って外方へ突出する短軸51とが設けられる。また半円弧状部46および両平行部48の外周部分に、外方に向って開口するU字溝52が一連に形成され、そのU字溝52の両端部は両切欠き49にそれぞれ連通する。さらに半円弧状部46の両平面部分にそれぞれ欠円形断面の一対の突条53が設けられている。両突条53は、それらによる仮想円柱の軸線L1が、両平行部48間の間隔を2等分し、且つ半円弧状部46を周方向に2等分する直線に一致するように配置されている。また両突条53の内端部は両平行部48間の空間に僅か突出している。
【0022】
シール部材44は、例えばPTFEより構成されたもので、ロータチャンバ14の半円形断面部B1による内周面45を摺動する半円弧状部55と、四角形断面部B2による対向内端面47を摺動する一対の平行部56とを有する。また半円弧状部55の内周面側に一対の弾性爪57が、内方へ反るように設けられている。
【0023】
ベーン本体43のU字溝52にシール部材44が装着され、また各盲孔50にベーンスプリング58が嵌め込まれ、さらに各短軸51にボールベアリング構造のローラ59が取付けられる。各ベーン42はロータ31の各スロット状空間34に摺動自在に収められており、その際、ベーン本体43の両突条53はガイド筒40内に、また両突条53の両側部分はガイド筒40の両長溝e内にそれぞれ位置し、これにより両突条53の内端面がピストン41の外端面と当接することができる。両ローラ59は第1、第2半体8,9の対向内端面47に形成された略楕円形の環状溝60にそれぞれ転動自在に係合される。これら環状溝60およびロータチャンバ14間の距離はそれらの全周に亘り一定である。またピストン41の前進運動をベーン42を介してローラ59と環状溝60との係合によりロータ31の回転運動に変換する。
【0024】
このローラ59と環状溝60との協働で、図5に明示するように、ベーン本体43の半円弧状部46における半円弧状先端面61はロータチャンバ14の内周面45から、また両平行部48はロータチャンバ14の対向内端面47からそれぞれ常時離間し、これによりフリクションロスの軽減が図られている。そして、2条一対で構成されている環状溝60により軌道を規制されるため、左右の軌道誤差によりローラ59を介してベーン42は軸方向に微小変位角の回転を生じ、ロータチャンバ14の内周面45との接触圧力を増大させる。このとき、略U字板形(馬蹄形)をなすベーン本体43では、方形(長方形)ベーンに比べてケーシング7との接触部の径方向長さが短いので、その変位量を大幅に小さくできる。また図2に明示するように、シール部材44において、その両平行部56は各ベーンスプリング58の弾発力によりロータチャンバ14の対向内端面47に密着し、特に両平行部56の端部とベーン42間を通しての環状溝60へのシール作用を行う。また半円弧状部55は、両弾性爪57がベーン本体43およびロータチャンバ14内の内周面45間で押圧されることによって、その内周面45に密着する。即ち、方形(長方形)ベーンに対し略U字板形のベーン42の方が変曲点を持たないので、密着が良好となる。方形ベーンは角部があり、シール性維持は困難となる。これによりベーン42およびロータチャンバ14間のシール性が良好となる。さらに熱膨脹にともない、ベーン42とロータチャンバ14は変形する。このとき方形ベーンに対し略U字形のベーン42は、より均一に相似形を持って変形するため、ベーン42とロータチャンバ14とのクリアランスのバラツキが少なく、シール性も良好に維持可能となる。
【0025】
図2および図3において、出力軸23の大径部24は第2半体9の軸受メタル25に支持された厚肉部分62と、その厚肉部分62から延びて第1半体8の軸受メタル25に支持された薄肉部分63とを有する。その薄肉部分63内にセラミック(または金属)よりなる中空軸64が、出力軸23と一体に回転し得るように嵌着される。その中空軸64の内側に固定軸65が配置され、その固定軸65は、ロータ31の軸線方向厚さ内に収まるように中空軸64に嵌合された大径中実部66と、出力軸23の厚肉部分62に存する孔部67に2つのシールリング68を介して嵌合された小径中実部69と、大径中実部66から延びて中空軸64内に嵌合された薄肉の中空部70とよりなる。その中空部70の端部外周面と第1半体8の中空軸受筒21内周面との間にシールリング71が介在される。
【0026】
シェル形部材15の主体16において、その中心部内面に、出力軸23と同軸上に在る中空筒体72の端壁73がシールリング74を介して取付けられる。その端壁73の外周部から内方へ延びる短い外筒部75の内端側は第1半体8の中空軸受筒21に連結筒76を介して連結される。端壁73に、それを貫通するように小径で、且つ長い内管部77が設けられ、その内管部77の内端側は、そこから突出する短い中空接続管78と共に固定軸65の大径中実部66に存する段付孔hに嵌着される。内管部77の外端部分はシェル形部材15の孔部79から外方へ突出し、その外端部分から内管部77内に挿通された第1の高温高圧蒸気用導入管80の内端側が中空接続管78内に嵌着される。内管部77の外端部分にはキャップ部材81が螺着され、そのキャップ部材81によって、導入管80を保持するホルダ筒82のフランジ83が内管部77の外端面にシールリング84を介して圧着される。
【0027】
図2〜図4および図11に示すように、固定軸65の大径中実部66に、第1〜第12ベーンピストンユニットU1〜U12のシリンダ部材39に、中空軸64および出力軸23に一連に形成された複数、この実施例では12個の通孔cを介して高温高圧蒸気を供給し、またシリンダ部材39から膨脹後の第1の降温降圧蒸気を通孔cを介して排出する回転バルブVが次のように設けられている。
【0028】
図11には膨張器4の各シリンダ部材39に所定のタイミングで蒸気を供給・排出する回転バルブVの構造が示される。大径中実部66内において、中空接続管78に連通する空間85から互に反対方向に延びる第1、第2孔部86,87が形成され、第1、第2孔部86,87は大径中実部66の外周面に開口する第1、第2凹部88,89の底面に開口する。第1、第2凹部88,89に、供給口90,91を有するカーボン製第1、第2シールブロック92,93が装着され、それらの外周面は中空軸64内周面に摺擦する。第1、第2孔部86,87内には同軸上に在る短い第1、第2供給管94,95が遊挿され、第1、第2供給管94,95の先端側外周面に嵌合した第1、第2シール筒96,97のテーパ外周面i,jが第1、第2シールブロック92,93の供給口90,91よりも内側に在ってそれに連なるテーパ孔k,m内周面に嵌合する。また大径中実部66に、第1、第2供給管94,95を囲繞する第1、第2環状凹部n,oと、それに隣接する第1、第2盲孔状凹部p,qとが第1、第2シールブロック92,93に臨むように形成され、第1、第2環状凹部n,oには一端側を第1、第2シール筒96,97外周面に嵌着した第1、第2ベローズ状弾性体98,99が、また第1、第2盲孔状凹部p,qには第1、第2コイルスプリング100,101がそれぞれ収められ、第1、第2ベローズ状弾性体98,99および第1、第2コイルスプリング100,101の弾発力で第1、第2シールブロック92,93を中空軸64内周面に押圧する。
【0029】
また大径中実部66において、第1コイルスプリング100および第2ベローズ状弾性体99間ならび第2コイルスプリング101および第1ベローズ状弾性体98間に、常時2つの通孔cに連通する第1、第2凹状排出部102,103と、それら排出部102,103から導入管80と平行に延びて固定軸65の中空部r内に開口する第1、第2排出孔104,105とが形成されている。
【0030】
これら第1シールブロック92と第2シールブロック93といったように、同種部材であって、「第1」の文字を付されたものと「第2」の文字を付されたものとは、固定軸65の軸線に関して点対称の関係にある。
【0031】
固定軸65の中空部r内および中空筒体72の外筒部75内は第1の降温降圧蒸気の通路sであり、その通路sは、外筒部75の周壁を貫通する複数の通孔tを介して中継チャンバ20に連通する。
【0032】
以上のように回転バルブVを膨張器4の中心に配置し、回転バルブVの中心に配置した固定軸65の内部を通して供給した高温高圧蒸気をロータ31の回転に伴って各シリンダ部材39に配分しているので、通常のピストン機構に使用される吸排気バルブが不要になって構造が簡略化される。また回転バルブVは固定軸65と中空軸64とが周速が小さい小径部で相互に摺動するため、シール性および耐摩耗性を両立させることができる。
【0033】
図2および図5に示すように、第1半体8の主体11外周部において、ロータチャンバ14の短径の両端部近傍に、半径方向に並ぶ複数の導入孔106よりなる第1、第2導入孔群107,108が形成され、中継チャンバ20内の第1の降温降圧蒸気がそれら導入孔群107,108を経てロータチャンバ14内に導入される。また第2半体9の主体11外周部において、ロータチャンバ14の長径の一端部と第2導入孔群108との間に、半径方向および周方向に並ぶ複数の導出孔109よりなる第1導出孔群110が形成され、また長径の他端部と第1導入孔群107との間に、半径方向および周方向に並ぶ複数の導出孔109よりなる第2導出孔群111が形成される。これら第1、第2導出孔群110,111からは、相隣る両ベーン42間での膨脹により、さらに温度および圧力が降下した第2の降温降圧蒸気が外部に排出される。
【0034】
出力軸23等は水により潤滑されるようになっており、その潤滑水路は次のように構成される。即ち、図2および図3に示すように第2半体9の中空軸受筒22に形成された給水孔112に給水管113が接続される。給水孔112は、第2半体9側の軸受メタル25が臨むハウジング114に、またそのハウジング114は出力軸23の厚肉部分62に形成された通水孔uに、さらにその通水孔uは中空軸64の外周面母線方向に延びる複数の通水溝v(図11も参照)に、さらにまた各通水溝vは第2半体8側の軸受メタル25が臨むハウジング115にそれぞれ連通する。また出力軸23の厚肉部分62内端面に、通水孔uと、中空軸64および固定軸65の大径中実部66間の摺動部分とを連通する環状凹部wが設けられている。
【0035】
これにより、各軸受メタル25および出力軸23間ならびに中空軸64および固定軸65間が水により潤滑され、また両軸受メタル25および出力軸23間の間隙からロータチャンバ14内に進入した水によって、ケーシング7と、シール部材44および各ローラ59との間の潤滑が行われる。
【0036】
図4において、ロータ31の回転軸線Lに関して点対称の関係にある第1および第7ベーンピストンユニットU1,U7は同様の動作を行う。これは、点対称の関係にある第2、第8ベーンピストンユニットU2,U8等についても同じである。
【0037】
例えば、図11も参照して、第1供給管94の軸線がロータチャンバ14の短径位置Eよりも図4において反時計方向側に僅かずれており、また第1ベーンピストンユニットU1が前記短径位置Eに在って、その大径シリンダ孔fには高温高圧蒸気は供給されておらず、したがってピストン41およびベーン42は後退位置に在るとする。
【0038】
この状態からロータ31を僅かに、図4反時計方向に回転させると、第1シールブロック92の供給口90と通孔cとが連通して導入管80からの高温高圧蒸気が小径孔bを通じて大径シリンダ孔fに導入される。これによりピストン41が前進し、その前進運動はベーン42がロータチャンバ14の長径位置F側へ摺動することによって、ベーン42を介して該ベーン42と一体のローラ59と環状溝60との係合によりロータ31の回転運動に変換される。通孔cが供給口90からずれると、高温高圧蒸気は大径シリンダ孔f内で膨脹してピストン41をなおも前進させ、これによりロータ31の回転が続行される。この高温高圧蒸気の膨脹は第1ベーンピストンユニットU1がロータチャンバ14の長径位置Fに至ると終了する。その後は、ロータ31の回転に伴い大径シリンダ孔f内の第1の降温降圧蒸気は、ベーン42によりピストン41が後退させられることによって、小径孔b、通孔c、第1凹状排出部102、第1排出孔104、通路s(図3参照)および各通孔tを経て中継チャンバ20に排出され、次いで図2および図5に示すように、第1導入孔群107を通じてロータチャンバ14内に導入され、相隣る両ベーン42間でさらに膨脹してロータ31を回転させ、その後第2の降温降圧蒸気が第1導出孔群110より外部に排出される。
【0039】
このように、高温高圧蒸気の膨脹によりピストン41を作動させてベーン42を介しロータ31を回転させ、また高温高圧蒸気の圧力降下による降温降圧蒸気の膨脹によりベーン42を介しロータ31を回転させることによって出力軸23より出力が得られる。
【0040】
尚、実施例以外にも、ピストン41の前進運動をロータ31の回転運動に変換する構成として、ベーン42を介さず、ピストン41の前進運動を直接ローラ59で受け、環状溝60との係合で回転運動に変換することもできる。またベーン42もローラ59と環状溝60との協働により、前述の如くロータチャンバ14の内周面45および対向内端面47から略一定間隔で常時離間していればよく、ピストン41とローラ59、およびベーン42とローラ59との各々が格別に環状溝60と協働しても良い。
【0041】
前記膨脹器4を圧縮機として使用する場合には、出力軸23によりロータ31を図4時計方向に回転させて、ベーン42により、流体としての外気を第1、第2導出孔群110,111からロータチャンバ14内に吸込み、このようにして得られた低圧縮空気を第1、第2導入孔群107,108から中継チャンバ20、各通孔t、通路s、第1、第2排出孔104,105、第1、第2凹状排出部102,103、通孔cを経て大径シリンダ孔fに供給し、またベーン42によりピストン41を作動させて低圧空気を高圧空気に変換し、その高圧空気を通孔c、供給口90,91、および第1、第2供給管94,95を経て導入管80に導入するものである。
【0042】
前記各種構成要素を用いて、図5から明らかなようにベーン式流体機械、例えばベーンポンプ、ベーンモータ、送風機、ベーン圧縮機等を構成することが可能である。即ち、そのベーン式流体機械は、ロータチャンバ14を有するケーシング7と、そのロータチャンバ14内に収容されたロータ31と、ロータ31に、その回転軸線L回りに放射状に配置されて放射方向に往復動自在である複数のベーン42とを備え、ロータ31の回転軸線Lを含む仮想平面Aにおけるロータチャンバ14の断面Bは、直径gを相互に対向させた一対の半円形断面部B1と、両直径gの一方の対向端相互および他方の対向端相互をそれぞれ結んで形成される四角形断面部B2とよりなり、各ベーン42はベーン本体43と、そのベーン本体43に装着されてロータチャンバ14にばね力、遠心力および蒸気力を以て押圧されるシール部材44とよりなり、そのシール部材44は、ロータチャンバ14の半円形断面部B1による内周面45を摺動する半円弧状部55と、四角形断面部B2による対向内端面47をそれぞれ摺動する一対の平行部56とを有する。この場合、各ベーン本体43は、シール部材44の両平行部56に対応する一対の平行部48を有し、各ベーン本体43の先端面をロータチャンバ14の内周面45から常時離間すべく、両平行部48に設けられたローラ59を、ケーシング7の対向内端面47に形成された両環状溝60にそれぞれ転動自在に係合させる。
【0043】
従って、ベーン本体43とロータチャンバ14の内周面との間のシール作用は、シール部材44自体のばね力と、シール部材44自体に作用する遠心力と、高圧側のロータチャンバ14からベーン本体43のU字溝52に浸入した蒸気がシール部材44を押し上げる蒸気圧とにより発生する。このように、前記シール作用は、ロータ31の回転数に応じてベーン本体43に作用する過度の遠心力の影響を受けないので、シール面圧はベーン本体43に加わる遠心力に依存せず、常に良好なシール性と低フリクション性とを両立させることができる。
【0044】
ところで特開昭59−41602号公報には二重マルチベーン型回転機械が記載されている。このものは、楕円形の外側カムリングと楕円形の内側カムリングとの間に円形のベーン支持リングを配置し、このベーン支持リングに半径方向に摺動自在に支持した複数のベーンの外端および内端を、それぞれ外側のカムリングの内周面および内側のカムリングの外周面に当接させたものである。従って、外側カムリングおよび内側カムリングに対してベーン支持リングが相対回転すると、外側カムリングおよびベーン支持リング間でベーンにより区画された複数の作動室の容積が拡大・縮小して膨張器あるいは圧縮器として機能し、また内側カムリングおよびベーン支持リング間でベーンにより区画された複数の作動室の容積が拡大・縮小して膨張器あるいは圧縮器として機能するようになっている。
【0045】
この二重マルチベーン型回転機械では、外側および内側の回転機械をそれぞれ独立した膨張器として使用したり、外側および内側の回転機械をそれぞれ独立した圧縮器として使用したり、外側および内側の回転機械の一方および他方をそれぞれ膨張器および圧縮器として使用したりすることができる。
【0046】
また特開昭60−206990号公報には膨張器あるいは圧縮器として使用可能なベーン型回転機械が記載されている。このものは、同心に配置した円形の外側カムリングと円形の内側カムリングとの間に円形の中間シリンダを偏心させて配置し、この中間シリンダに半径方向に摺動自在に支持した複数のベーンの外端および内端を、それぞれ外側のカムリングの内周面および内側のカムリングの外周面に当接させたものである。従って、外側カムリングおよび内側カムリングに対して中間シリンダが相対回転すると、外側カムリングおよびベーン支持リング間でベーンにより区画された複数の作動室の容積が拡大・縮小して膨張器あるいは圧縮器として機能し、また内側カムリングおよびベーン支持リング間でベーンにより区画された複数の作動室の容積が拡大・縮小して膨張器あるいは圧縮器として機能するようになっている。
【0047】
このベーン型回転機械では、外側および内側の回転機械をそれぞれ独立した膨張器として使用したり、外側および内側の回転機械をそれぞれ独立した圧縮器として使用したりできるほか、外側および内側の回転機械の一方を通過した作動流体を他方を通過させることにより、外側および内側の回転機械を直列に接続して2段膨張器あるいは2段圧縮器として作動させることができる。
【0048】
また特開昭57−16293号公報にはベーン型のロータリコンプレッサが記載されている。このものは、非円形のカムリングの内部に円形のロータを回転自在に配置し、このロータに放射状に支持した複数のベーンの先端がカムリングの内周面に沿って移動するように、各ベーンの中間に設けたローラをケーシングに設けたローラ軌道に係合させてガイドするようになっている。
【0049】
また特開昭64−29676号公報にはラジアルプランジャポンプが記載されている。このものは、円形のカムリングの内部に偏心して配置したロータに複数のシリンダを放射状に形成し、これらシリンダに摺動自在に嵌合するプランジャの先端をカムリングに内周面に当接させて往復動させることによりポンプとして作動させるようになっている。
【0050】
ところで、前記特開昭59−41602号公報、特開昭60−206990号公報に開示されたものは半径方向の内外に配置された複数のベーン型回転機械を備えているが、ベーン型回転機械は圧力エネルギーおよび機械エネルギーの変換機構の構造が簡単であり、コンパクトな構造でありながら大流量の作動流体を処理できる反面、ベーンの摺動部からの作動流体のリーク量が大きいために高効率化が難しいという問題がある。
【0051】
また前記特開昭64−29676号公報に開示されたラジアルプランジャポンプは、シリンダに摺動自在に嵌合するピストンで作動流体の圧縮を行うために作動流体のシール性が高く、高圧の作動流体を用いてもリークによる効率低下を最小限に抑えることができる反面、ピストンの往復運動を回転運動に変換するクランク機構やや斜板機構が必要になって構造が複雑化するという問題がある。
【0052】
従って、回転式流体機械においてピストン式のものが持つ利点とベーン式のものが持つ利点とを併せ持たせることが望ましい。
【0053】
そこで、以上説明した膨張器4では、シリンダ部材39およびピストン41から構成される第1エネルギー変換手段と、ベーン42から構成される第2エネルギー変換手段とが共通のロータ31に設けられており、直列に接続された第1、第2エネルギー変換手段の協働により高温高圧蒸気のエネルギーを機械エネルギーとして出力軸23に取り出すようになっている。従って、第1エネルギー変換手段が出力する機械エネルギーと第2エネルギー変換手段が出力する機械エネルギーとをロータ31を介して自動的に統合することができ、ギヤ等の動力伝達手段を有する特別のエネルギー統合手段が不要となる。
【0054】
第1エネルギー変換手段は作動流体のシールが容易でリークが発生し難いシリンダ39およびピストン41の組み合わせからなるため、高温高圧蒸気のシール性を高めてリークによる効率低下を最小限に抑えることができる。一方、第2エネルギー変換手段はロータ31に放射方向移動自在に支持したベーン42からなるため、ベーン42に加わる蒸気圧が直接ロータ31の回転運動に変換され、往復運動を回転運動に変換するための特別の変換機構が不要になって構造が簡略化される。しかも低圧で大流量の蒸気を効果的に機械エネルギーに変換し得る第2エネルギー変換手段を第1エネルギー変換手段の外周を囲むように配置したので、膨張器4全体の寸法をコンパクト化することができる。
【0055】
シリンダ39およびピストン41よりなる第1エネルギー変換手段は高温高圧蒸気を作動流体とした場合に圧力エネルギーおよび機械エネルギー間の変換効率が高く、またベーン42よりなる第2エネルギー変換手段は比較的に低温低圧の蒸気を作動流体とした場合でも圧力エネルギーおよび機械エネルギー間の変換効率が高いという特性を有している。従って、第1、第2エネルギー変換手段を直列に接続し、先ず高温高圧蒸気を第1エネルギー変換手段を通過させて機械エネルギーに変換し、その結果として圧力の低下した第1の降温降圧蒸気を第2エネルギー変換手段を通過させて再度機械エネルギーに変換することにより、当初の高温高圧蒸気に含まれるエネルギーを余すところ無く有効に機械エネルギーに変換することができる。
【0056】
尚、本実施例の膨張器4を圧縮器として使用する場合でも、外部からの機械エネルギーでロータ31を回転させてロータチャンバ14に吸入した空気を、比較的に低温低圧の作動流体でも有効に作動する第2エネルギー変換手段で圧縮して昇温させ、その圧縮・昇温した空気を、比較的に高温高圧の作動流体により有効に作動する第1エネルギー変換手段で更に圧縮して昇温させることにより、機械エネルギーを圧縮空気の圧力エネルギー(熱エネルギー)に効率的に変換することができる。而して、シリンダ39およびピストン41よりなる第1エネルギー変換手段とベーン42よりなる第2エネルギー変換手段とを組み合わせたことにより、両者の特長を兼ね備えた高性能な回転式流体機械を得ることができる。
【0057】
またロータ31の回転軸線L(つまり出力軸23の回転軸線L)がロータチャンバ14の中心に一致しており、かつ図4および図5でロータ31を上下左右に90°ずつ4分割したとき、回転軸線Lに対して点対称な右上の四半部と左下の四半部とで圧力エネルギーから機械エネルギーへの変換が行われるため、ロータ31に偏荷重が加わるのを防止して振動の発生を抑えることができる。即ち、作動流体の圧力エネルギーを機械エネルギーに変換する部分、あるいは機械エネルギーを作動流体の圧力エネルギーに変換する部分が、ロータ31の回転軸線Lを中心として180°ずれた2個所に配置されるので、ロータ31に加わる荷重が偶力となってスムーズな回転が可能になり、しかも吸気タイミングおよび排気タイミングの効率化を図ることができる。
【0058】
即ち、少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械において、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面に摺接するベーンから構成されるようにする。
【0059】
上記第1の構成によれば、第1エネルギー変換手段を、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成したので、高圧の作動流体のシール性を高めてリークによる効率低下を最小限に抑えることができる。また第2エネルギー変換手段を、ロータに放射方向移動自在に支持されてロータチャンバの内周面に摺接するベーンから構成したので、圧力エネルギーおよび機械エネルギーの変換機構の構造が簡単であり、コンパクトな構造でありながら大流量の作動流体を処理できる。このように、ピストンおよびシリンダを持つ第1エネルギー変換手段とベーンを持つ第2エネルギー変換手段とを組み合わせたことにより、両者の特長を兼ね備えた高性能な回転式流体機械を得ることができる。
【0060】
また上記第1の構成に加えて、前記第1エネルギー変換手段は、ピストンの往復運動と回転軸の回転運動とを相互に変換すると共に、前記第2エネルギー変換手段は、ベーンの円周方向の移動と前記回転軸の回転運動とを相互に変換するようにする。
【0061】
上記第2の構成によれば、第1エネルギー変換手段はピストンの往復運動と回転軸の回転運動とを相互に変換し、第2エネルギー変換手段はベーンの円周方向の移動と前記回転軸の回転運動とを相互に変換するので、回転軸からの外力の入力により第1、第2エネルギー変換手段で流体を圧縮し、また高圧流体の供給により第1、第2エネルギー変換手段で回転軸を駆動することができる。これにより第1、第2エネルギー変換手段で機械エネルギーを統合して出力し、あるいは第1、第2エネルギー変換手段で作動流体の圧力エネルギーを統合して出力することができる。
【0062】
また上記第2の構成に加えて、前記回転軸はロータを支持するようにする。
【0063】
上記第3の構成によれば、回転軸にロータを支持したので、ロータに設けたピストンおよびシリンダ、あるいはベーンにより発生した機械エネルギーを効率的に回転軸に出力することができ、また回転軸に機械エネルギーを入力するだけで、該回転軸に支持したロータに設けたピストンおよびシリンダ、あるいはベーンにより作動流体を効率的に圧縮することができる。
【0064】
また上記第1の構成に加えて、て膨張器として機能するときは前記第1エネルギー変換手段を通過した作動流体の全量が前記第2エネルギー変換手段を通過し、圧縮器として機能するときは前記第2エネルギー変換手段を通過した作動流体の全量が前記第1エネルギー変換手段を通過するようにする。
【0065】
上記第4の構成によれば、第1、第2エネルギー変換手段を直列に接続し、膨張器として機能するときは、先ず高圧の作動流体を第1エネルギー変換手段を通過させて圧力エネルギーの一部を機械エネルギーに変換し、その結果として圧力の低下した作動流体を更に第2エネルギー変換手段を通過させて圧力エネルギーの残部を機械エネルギーに変換することにより、作動流体の圧力エネルギーを機械エネルギーに効率的に変換することができる。逆に、圧縮器として機能するときは、機械エネルギーで回転軸を回転させて作動流体を第2エネルギー変換手段で圧縮し、その圧縮された作動流体を第1エネルギー変換手段で更に圧縮することにより、機械エネルギーを作動流体の圧力エネルギーに効率的に変換することができる。
【0066】
また上記第1の構成に加えて、膨張器として機能するときはロータの位相が180°ずれた2個所で作動流体の圧力エネルギーを機械エネルギーに変換し、圧縮器として機能するときはロータの位相が180°ずれた2個所で機械エネルギーを作動流体の圧力エネルギーに変換するようにする。
【0067】
上記第5の構成によれば、作動流体の圧力エネルギーを機械エネルギーに変換する部分、あるいは機械エネルギーを作動流体の圧力エネルギーに変換する部分がロータの位相が180°ずれた2個所に配置されるので、ロータに加わる荷重が偶力となって該ロータのスムーズな回転が可能になり、しかも吸気タイミングおよび排気タイミングの効率化を図ることができる。
【0068】
また前記特開昭59−41602号公報、特開昭60−206990号 公報に開示されたものは高圧流体の圧力でベーンを円周方向に押圧してロータを回転駆動し、あるいはロータを外力で回転駆動してベーンで流体を圧縮するようになっているが、ベーン以外にロータに放射状に設けたシリンダに摺動自在に嵌合するピストンを備え、ベーンと連動してシリンダ内を往復運動するピストンで機械エネルギーと作動流体の圧力エネルギーとの変換を行うものでは、ピストンの往復運動をロータの回転運動に変換する機構(例えば、クランク機構や斜板機構)が必要になり、装置全体の構造が複雑になって大型化や大重量化の原因となる問題がある。
【0069】
また前記特開昭57−16293号公報に開示されたものは各ベーンの中間に設けたローラをケーシングに設けたローラ軌道に係合させてガイドするようになっているが、前記ベーンは円周方向の荷重を発生するだけで半径方向の荷重を発生するものではないため、ローラおよびローラ軌道の係合は機械エネルギーと作動流体の圧力エネルギーとの変換には寄与していない。
【0070】
また前記特開昭64−29676号公報に開示されたものはラジアルプランジャポンプであり、円形のカムリングの内部に偏心してロータが配置されているために、回転軸に偏荷重が加わって振動が発生する要因となる問題がある。
【0071】
従って、ロータに設けられて一体に移動するピストンおよびベーンを備えた回転式流体機械において、機械エネルギーと作動流体の圧力エネルギーとの変換を簡単な構造でスムーズに行うと共に、ベーンの外周面とロータチャンバの内周面との間隙を的確に管理することが望ましい。
【0072】
そこで、以上説明した膨張器4では、シリンダ部材39およびピストン41から構成される第1エネルギー変換手段と、ベーン42から構成される第2エネルギー変換手段とが共通のロータ31に設けられており、第1、第2エネルギー変換手段の協働により高温高圧蒸気のエネルギーを機械エネルギーとして出力軸23に取り出すようになっている。シリンダ部材39およびピストン41から構成される第1エネルギー変換手段は、ピストン41により放射方向に往復運動するベーンピストンユニットU1〜U12に設けたローラ59が、第1、第2半体8,9に設けた略楕円形の環状溝60に転動可能に係合している。従って、ピストン41の往復運動、つまりベーンピストンユニットU1〜U12の往復運動はローラ59および環状溝60を介してロータ31の回転運動に変換される。このようにローラ59および環状溝60を用いたことにより、往復運動を回転運動に変換するための複雑で大型なクランク機構や斜板機構が不要になり、膨張器4の構造を簡略化してコンパクト化を図るとともに、フリクションによるエネルギー損失を最小限に抑えることができる。
【0073】
またベーン42から構成される第2エネルギー変換手段は、第1エネルギー変換手段で降温降圧した第1の降温降圧蒸気の圧力を受けてロータ31を回転させる極めてシンプルな構造でありながら、大流量の蒸気を効率的に処理することができる。そして高温高圧蒸気で作動する第1エネルギー変換手段が出力する機械エネルギーと、第1の降温降圧蒸気で作動する第2エネルギー変換手段が出力する機械エネルギーとを統合して出力することにより、当初の高温高圧蒸気のエネルギーを余すところなく利用して膨張器4のエネルギー変換効率を高めることができる。
【0074】
またベーンピストンユニットU1〜U12がロータ31に対して放射方向に往復運動する際に、ベーンピストンユニットU1〜U12に設けたローラ59を環状溝60で案内することにより、ベーン42の外周面とロータチャンバ14の内周面との間の間隙を一定に確保することが可能となる。しかもベーン本体43とロータチャンバ14の内周面との間のシール作用は、シール部材44自体のばね力と、シール部材44自体に作用する遠心力と、高圧側のロータチャンバ14からベーン本体43のU字溝52に浸入した蒸気がシール部材44を押し上げる蒸気圧とにより発生するので、前記シール作用はロータ31の回転数に応じてベーン本体43に作用する過度の遠心力の影響を受けず、常に良好なシール性と低フリクション性とを両立させることができ、ベーン42およびロータチャンバ14間のベーン本体43の遠心力による過剰な面圧による異常摩耗の発生やフリクションロスの発生を防止すると共に、ベーン42およびロータ室14の間隙からの蒸気のリークの発生を最小限に抑えることができる。
【0075】
またロータ31の回転軸線L(つまり出力軸23の回転軸線L)がロータチャンバ14の中心に一致しており、かつ図4および図5でロータ31を上下左右に90°ずつ4分割したとき、回転軸線Lに対して点対称な右上の四半部と左下の四半部とで圧力エネルギーから機械エネルギーへの変換が行われるため、ロータ31に偏荷重が加わるのを防止して振動の発生を抑えることができる。
【0076】
即ち、少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械であって、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面に摺接するベーンから構成された回転式流体機械において、少なくともピストンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させることにより、ピストンの往復運動とロータの回転運動とを相互に変換するようにする。
【0077】
上記第6の構成によれば、ロータチャンバの内部で回転する少なくともロータに対して放射方向に移動するピストンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させたので、ローラおよび環状溝よりなる簡単な構造で、膨張器として機能する場合にはピストンの往復運動をロータの回転運動に変換することができ、圧縮器として機能する場合にはロータの回転運動をピストンの往復運動に変換することができる。
【0078】
また少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械であって、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面に摺接するベーンから構成された回転式流体機械において、少なくともベーンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させることにより、ベーンの外周面とロータチャンバの内周面との間隙を規制するようにする。
【0079】
上記第7の構成によれば、ロータチャンバの内部で回転する少なくともロータに対して放射方向に移動するベーンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させたので、ローラの移動軌跡を環状溝で案内することにより、ベーンの外周面とロータチャンバの内周面との間隙を規制して異常摩耗の発生やリークの発生を防止することができる。
【0080】
また、少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械であって、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面に摺接するベーンから構成された回転式流体機械において、ベーンおよびピストンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させることにより、ピストンの往復運動とロータの回転運動とを相互に変換すると共に、ベーンの外周面とロータチャンバの内周面との間隙を規制するようにする。
【0081】
上記第8の構成によれば、ロータチャンバの内部で回転する少なくともロータに対して放射方向に移動するベーンおよびピストンに連動するローラを設け、このローラをロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させたので、ローラおよび環状溝よりなる簡単な構造で、膨張器として機能する場合にはピストンの往復運動をロータの回転運動に変換することができ、圧縮器として機能する場合にはロータの回転運動をピストンの往復運動に変換することができる。しかもローラの移動軌跡を環状溝で案内することにより、ベーンの外周面とロータチャンバの内周面との間隙を規制して異常摩耗の発生やリークの発生を防止することができる。
【0082】
また上記第6〜第8の何れかの構成に加えて、ロータの回転軸をロータチャンバの中心に一致させる。
【0083】
上記第9の構成によれば、ロータの回転軸がロータチャンバの中心に一致しているので、ロータに偏荷重が加わるのを防止してロータの回転に伴う振動を防止することができる。
【0084】
ところで、膨張器として機能するベーン型回転機械に供給された高温高圧蒸気は、その圧力エネルギー(熱エネルギー)がベーンで機械エネルギーに変換されるに伴って温度および圧力が低下する。一方、圧縮器として機能するベーン型回転機械では、機械エネルギーで駆動されるベーンで圧縮された作動流体の温度および圧力が次第に増加する。
【0085】
従って、複数の回転機械を半径方向内外に配置した場合に、内側の回転機械に低圧の作動流体が供給され、外側の回転機械に高圧の作動流体が供給されると、高圧の作動流体がケーシングの外部にリークし易いために作動流体の圧力が無駄に消費されてしまう問題がある。また複数の回転機械を半径方向内外に配置した場合に、内側の回転機械に低温の作動流体が供給され、外側の回転機械に高温の作動流体が供給されると、作動流体の熱がケーシングの外部にリークし易いために熱効率が低下してしまう問題がある。
【0086】
従って、少なくとも第1エネルギー変換手段および第2エネルギー変換手段を半径方向内外に配置した回転式流体機械において、作動流体の熱および圧力のリークを最小限に抑えて回転式流体機械の効率を高めることが望ましい。
【0087】
そこで、以上説明した膨張器4では、シリンダ部材39およびピストン41から構成される第1エネルギー変換手段がロータチャンバ14の中心側に配置されており、ベーン42から構成される第2エネルギー変換手段が前記第1エネルギー変換手段を囲むように半径方向外側に配置されている。従って、高温高圧蒸気が先ず中心側の第1エネルギー変換手段(シリンダ部材39およびピストン41)に供給され、そこで機械エネルギーに変換された後の第1の降温降圧蒸気が外周側の第2エネルギー変換手段(ベーン42)に供給されることになる。このように、第1、第2エネルギー変換手段を半径方向内外に配置した場合に、内側の第1エネルギー変換手段に高温高圧蒸気を供給し、外側の第2エネルギー変換手段に降温降圧蒸気を供給することにより、内側の第1エネルギー変換手段からリークした高温高圧蒸気の圧力や熱を外側の第2エネルギー変換手段で捕捉回収し、リークした高温高圧蒸気を無駄なく利用して膨張器4全体の効率を高めることができる。しかもロータチャンバ14の外周側に比較的に低圧かつ低温の第1の降温降圧蒸気が供給される第2エネルギー変換手段を配置したので、ロータチャンバ14から外部への作動流体のリークを防止するためのシールが容易になるだけでなく、ロータチャンバ14から外部への熱のリークを防止するための断熱も容易になる。
【0088】
尚、本発明の回転式流体機械を圧縮器として使用する場合には、外側の第2エネルギー変換手段であるベーン42により第1段の圧縮を受けて圧縮された圧縮空気は圧力および温度が上昇し、その圧縮空気は内側の第1エネルギー変換手段であるシリンダ手段39およびピストン41で第2段の圧縮を受けて圧力および温度が更に上昇する。従って、回転式流体機械を圧縮器として使用した場合にも、内側の第1エネルギー変換手段からリークした高温高圧の圧縮空気の圧力や熱を外側の第2エネルギー変換手段で捕捉回収して圧縮器全体の効率を高めることができるだけでなく、ロータチャンバ14から外部への圧縮空気のリークを防止するためのシールが容易になり、しかもロータチャンバ14から外部への熱のリークを防止するための断熱も容易になる。
【0089】
即ち、少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械において、前記第1、第2エネルギー変換手段を備えたロータを回転自在に収納するロータチャンバの中心側に高圧の作動流体を配置し、前記ロータチャンバの外周側に低圧の作動流体を配置するようにする。
【0090】
上記第10の構成によれば、ロータを回転自在に収納するロータチャンバの中心側および外周側にそれぞれ高圧の作動流体および低圧の作動流体を配置したので、ロータチャンバの中心側からリークした高圧の作動流体をロータチャンバの外周側の低圧の作動流体で捕捉回収し、リークした前記高圧の作動流体を無駄なく利用して回転式流体機械全体の効率を高めることができ、しかもロータチャンバから外部への作動流体のリークを防止するためのシールが容易になる。
【0091】
また少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械において、前記第1、第2エネルギー変換手段を備えたロータを回転自在に収納するロータチャンバの中心側に高温の作動流体を配置し、前記ロータチャンバの外周側に低温の作動流体を配置するようにする。
【0092】
上記第11の構成によれば、ロータを回転自在に収納するロータチャンバの中心側および外周側にそれぞれ高温の作動流体および低温の作動流体を配置したので、ロータチャンバの中心側からリークした高温の作動流体をロータチャンバの外周側の低温の作動流体で捕捉回収し、リークした前記高温の作動流体を無駄なく利用して回転式流体機械全体の効率を高めることができ、しかもロータチャンバから外部への熱のリークを防止するための断熱が容易になる。
【0093】
また少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを有する作動流体を第1、第2エネルギー変換手段に入力して前記圧力エネルギーを機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力する膨張器として機能することが可能であり、かつ機械エネルギーを第1、第2エネルギー変換手段に入力して前記機械エネルギーを作動流体の圧力エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した作動流体の圧力エネルギーを統合して出力する圧縮器として機能することが可能である回転式流体機械において、前記第1、第2エネルギー変換手段を備えたロータを回転自在に収納するロータチャンバの中心側に高圧かつ高温の作動流体を配置し、前記ロータチャンバの外周側に低圧かつ低温の作動流体を配置するようにする。
【0094】
上記第12の構成によれば、ロータを回転自在に収納するロータチャンバの中心側および外周側にそれぞれ高圧かつ高温の作動流体および低圧かつ低温の作動流体を配置したので、ロータチャンバの中心側からリークした高圧かつ高温の作動流体をロータチャンバの外周側の低圧かつ低温の作動流体で捕捉回収し、リークした前記高圧かつ高温の作動流体を無駄なく利用して回転式流体機械全体の効率を高めることができる。しかもロータチャンバの外周側に低圧かつ低温の作動流体を配置したので、ロータチャンバから外部への作動流体のリークを防止するためのシールが容易になると共に、ロータチャンバから外部への熱のリークを防止するための断熱が容易になる。
【0095】
また前記第10〜第12のいずれかの構成に加えて、前記第1エネルギー変換手段は、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成され、前記第2エネルギー変換手段は、ロータから放射方向に出没し、外周面がロータチャンバの内周面に摺接するベーンから構成されるようにする。
【0096】
上記第13の構成によれば、第1エネルギー変換手段を、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成したので、高圧の作動流体のシール性を高めてリークによる効率低下を最小限に抑えることができ、また第2エネルギー変換手段を、ロータに放射方向移動自在に支持されてロータチャンバの内周面に摺接するベーンから構成したので、圧力エネルギーおよび機械エネルギーの変換機構の構造が簡単であり、コンパクトな構造でありながら大流量の作動流体を処理できる。このように、ピストンおよびシリンダを持つ第1エネルギー変換手段とベーンを持つ第2エネルギー変換手段とを組み合わせたことにより、両者の特長を兼ね備えた高性能な回転式流体機械を得ることができる。
【0097】
而して、本実施例では内燃機関1の排気ガスの熱エネルギーで水を加熱して高温高圧蒸気を発生する蒸発器3と、蒸発器3から供給された高温高圧蒸気を一定トルクの軸出力に変換する膨張器4と、膨張器4が排出した降温降圧蒸気を液化する凝縮器5と、凝縮器5で液化された水を蒸発器3に供給する供給ポンプ6とから構成されるランキンサイクルにおいて、その膨張器4として容積型のものを採用している。この容積型の膨張器4は、タービンのような非容積型の膨張器に比べて、低速から高速までの広い回転数領域において高い効率でエネルギー回収を行うことが可能であるばかりか、内燃機関1の回転数の増減に伴う排気ガスの熱エネルギーの変化(排気ガスの温度変化や流量変化)に対する追従性や応答性にも優れている。しかも膨張器4を、シリンダ部材39およびピストン41から構成される第1エネルギー変換手段と、ベーン42から構成される第2エネルギー変換手段とを直列に接続して半径方向内外に配置した二重膨張型としたので、膨張器4を小型軽量化してスペース効率の向上を図りながらランキンサイクルによる熱エネルギーの回収効率を更に向上させることができる。
【0098】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0099】
例えば、実施例の膨張器4では、先ず第1エネルギー変換手段であるシリンダ部材39およびピストン41に高温高圧蒸気を供給した後に、それが降温降圧した第1の降温降圧蒸気を第2エネルギー変換手段であるベーン42に供給しているが、例えば、図2で示す第1エネルギー変換手段からの第1の降温降圧蒸気を排出する通孔tと、中継チャンバ20とを連通または非連通とし、更に中継チャンバ20にシェル型部材16を介して第2エネルギー変換手段に独立して蒸気を個別に供給可能とする手段を構成することにより、第1、第2エネルギー変換手段にそれぞれ温度および圧力の異なる蒸気を個別に供給しても良い。更に、第1、第2エネルギー変換手段のそれぞれ温度および圧力の異なる蒸気を個別に供給すると共に、第1エネルギー変換手段を通過して降温降圧した蒸気を更に第2エネルギー変換手段に供給しても良い。
【0100】
また実施例はベーンピストンユニットU1〜U12のベーン本体43にローラ59を設けているが、ベーンピストンユニットU1〜U12の他の部分、例えばピストン41にローラ59を設けても良い。
【0101】
【発明の効果】
以上のように請求項1に記載された発明によれば、原動機の廃熱で水を加熱して発生した高温高圧蒸気の圧力エネルギーを機械エネルギーに変換し、その結果発生した降温降圧蒸気を液化して再度前記廃熱で加熱するランキンサイクル装置において、圧力エネルギーを機械エネルギーに変換する膨張器を容積型のもので構成したので、タービンのような非容積型の膨張器に比べて、低速から高速までの広い回転数領域において高い効率でエネルギー回収を行い、ランキンサイクルによる熱エネルギーの回収効率を更に向上させることが可能となり、しかも原動機の回転数の増減に伴う廃熱のエネルギーの変化に対する追従性や応答性にも優れている。更に前記容積型の膨張器は第1エネルギー変換手段の出力および第2エネルギー変換手段の出力を統合して出力するので、高温高圧蒸気の圧力エネルギーを無駄なく機械エネルギーに変換できるだけでなく、膨張器を小型軽量化してスペース効率の向上を図ることができる。
【0102】
た、第1エネルギー変換手段を、ロータチャンバの内部に回転自在に収容されたロータに放射状に形成されたシリンダと、このシリンダ内を摺動するピストンとから構成したので、高圧の蒸気のシール性を高めてリークによる効率低下を最小限に抑えることができる。また第2エネルギー変換手段を、ロータに放射方向移動自在に支持されてロータチャンバの内周面にシール部材を介して摺接するベーンから構成したので、圧力エネルギーおよび機械エネルギーの変換機構の構造が簡単であり、コンパクトな構造でありながら大流量の蒸気を処理できる。このように、ピストンおよびシリンダを持つ第1エネルギー変換手段とベーンを持つ第2エネルギー変換手段とを組み合わせたことにより、両者の特長を兼ね備えた高性能な回転式流体機械を得ることができる。
【0103】
更に、ロータチャンバの内部で回転するロータに対して放射方向に移動するベーンおよびピストンに連動するローラを、ロータチャンバを区画するケーシングに形成した非円形の環状溝に係合させたので、ローラおよび環状溝よりなる簡単な構造で、ピストンの往復運動をロータの回転運動に変換することができ、しかもローラの移動軌跡を環状溝で案内することにより、ベーンの外周面とロータチャンバの内周面との間隙を規制して異常摩耗の発生やリークの発生を防止することができる。
【0104】
また請求項に記載された発明によれば、ロータを回転自在に収納するロータチャンバの中心側および外周側にそれぞれ高温高圧蒸気および降温降圧蒸気を配置したので、ロータチャンバの中心側からリークした高温高圧蒸気をロータチャンバの外周側の降温降圧蒸気で捕捉回収し、リークした前記高温高圧蒸気を無駄なく利用して回転式流体機械全体の効率を高めることができる。しかもロータチャンバの外周側に降温降圧蒸気を配置したので、ロータチャンバから外部への蒸気のリークを防止するためのシールが容易になると共に、ロータチャンバから外部への熱のリークを防止するための断熱が容易になる。
【図面の簡単な説明】
【図1】内燃機関の廃熱回収装置の概略図
【図2】図5の2−2線断面図に相当する膨脹器の縦断面図
【図3】図2の回転軸線周りの拡大断面図
【図4】図2の4−4線断面図
【図5】要部を拡大した図2の5−5線断面図
【図6】ロータチャンバおよびロータの断面形状を示す説明図
【図7】ベーン本体の正面図
【図8】ベーン本体の側面図
【図9】図7の9−9線断面図
【図10】シール部材の正面図
【図11】図4の回転軸線周りの拡大図
【符号の説明】
1 内燃機関(原動機)
4 膨脹器
7 ケーシング
14 ロータチャンバ
31 ロータ
39 シリンダ部材(シリンダ)
41 ピストン
42 ベーン
59 ローラ
60 環状溝

Claims (2)

  1. 原動機(1)の廃熱で水を加熱して発生した高温高圧蒸気の圧力エネルギーを機械エネルギーに変換し、その結果発生した降温降圧蒸気を復水して再度前記廃熱で加熱するランキンサイクル装置に設けられ、圧力エネルギーを機械エネルギーに変換する容積型の膨張器(4)よりなる回転式流体機械において、
    前記膨張器(4)は少なくとも第1エネルギー変換手段および第2エネルギー変換手段を備え、圧力エネルギーを第1、第2エネルギー変換手段に入力して機械エネルギーに変換することにより、第1、第2エネルギー変換手段がそれぞれ発生した機械エネルギーを統合して出力するものであり、
    前記第1エネルギー変換手段は、ロータチャンバ(14)の内部に回転自在に収容されたロータ(31)に放射状に形成されたシリンダ(39)と、このシリンダ(39)内を摺動するピストン(41)とから構成され、前記第2エネルギー変換手段は、ロータ(31)から放射方向に出没し、外周面がロータチャンバ(14)の内周面にシール部材(44)を介して摺接するベーン(42)から構成され、これらベーン(42)およびピストン(41)に連動するローラ(59)が、ロータチャンバ(14)を区画するケーシング(7)に形成した非円形の環状溝(60)に係合されていて、その係合により、ピストン(41)の往復運動とロータ(31)の回転運動とが相互に変換されると共に、ベーン(42)の外周面とロータチャンバ(14)の内周面との間隙が規制されることを特徴とする回転式流体機械。
  2. 前記第1、第2エネルギー変換手段を備えたロータ(31)を回転自在に収納するロータチャンバ(14)の中心側に高温高圧蒸気を配置し、前記ロータチャンバ(14)の外周側に降温降圧蒸気を配置したことを特徴とする、請求項1に記載の回転式流体機械。
JP2000072441A 2000-03-10 2000-03-10 回転式流体機械 Expired - Fee Related JP4344453B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072441A JP4344453B2 (ja) 2000-03-10 2000-03-10 回転式流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072441A JP4344453B2 (ja) 2000-03-10 2000-03-10 回転式流体機械

Publications (2)

Publication Number Publication Date
JP2001254664A JP2001254664A (ja) 2001-09-21
JP4344453B2 true JP4344453B2 (ja) 2009-10-14

Family

ID=18590853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072441A Expired - Fee Related JP4344453B2 (ja) 2000-03-10 2000-03-10 回転式流体機械

Country Status (1)

Country Link
JP (1) JP4344453B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540508B2 (ja) * 2005-03-09 2010-09-08 サンデン株式会社 流体機械
DE102006028868B4 (de) * 2006-06-23 2017-07-13 Man Truck & Bus Ag Aufgeladene Brennkraftmaschine mit einer Expandereinheit in einem Wärmerückgewinnungskreislauf

Also Published As

Publication number Publication date
JP2001254664A (ja) 2001-09-21

Similar Documents

Publication Publication Date Title
KR100417677B1 (ko) 회전식 유체기계, 베인식 유체기계, 및 내연기관의 폐열회수장치
Lemort et al. Positive displacement expanders for Organic Rankine Cycle systems
US6725662B2 (en) Drive device
JP2001271609A (ja) 内燃機関の廃熱回収装置
US7040872B2 (en) Rotary fluid machinery
US6846163B2 (en) Rotary fluid machine having rotor segments on the outer periphery of a rotor core
JP4344453B2 (ja) 回転式流体機械
JP4344451B2 (ja) 回転式流体機械
JP2000320453A (ja) 膨脹機能および圧縮機能を持つ回転式流体機械およびベーン式流体機械
JP4344452B2 (ja) 回転式流体機械
JP4767455B2 (ja) ランキンサイクル装置
US6862974B2 (en) Rotary fluid machinery
JP3159132U (ja) マルチベーン方式膨張機
JP2001254602A (ja) 回転式流体機械
JP2002147201A (ja) 回転流体機械
AU2003200138B2 (en) Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine
JP2000320301A (ja) 内燃機関の廃熱回収装置
CA2475114A1 (en) Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees