WO2002020495A2 - Inhibiteurs de glycogene-synthase kinase 3 - Google Patents

Inhibiteurs de glycogene-synthase kinase 3 Download PDF

Info

Publication number
WO2002020495A2
WO2002020495A2 PCT/US2001/042081 US0142081W WO0220495A2 WO 2002020495 A2 WO2002020495 A2 WO 2002020495A2 US 0142081 W US0142081 W US 0142081W WO 0220495 A2 WO0220495 A2 WO 0220495A2
Authority
WO
WIPO (PCT)
Prior art keywords
amino
compound
ethyl
group
pyridyl
Prior art date
Application number
PCT/US2001/042081
Other languages
English (en)
Other versions
WO2002020495A3 (fr
Inventor
John M. Nuss
Stephen D. Harrison
David B. Ring
Rustum S. Boyce
Kirk Johnson
Keith B. Pfister
Savithri Ramurthy
Lynn Seely
Allan S. Wagman
Manoj Desai
Barry H. Levine
Original Assignee
Chiron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiron Corporation filed Critical Chiron Corporation
Priority to KR1020037003327A priority Critical patent/KR100816769B1/ko
Priority to AU2001295026A priority patent/AU2001295026B2/en
Priority to AU9502601A priority patent/AU9502601A/xx
Priority to EP01975734A priority patent/EP1317433A2/fr
Priority to JP2002525117A priority patent/JP2004514656A/ja
Publication of WO2002020495A2 publication Critical patent/WO2002020495A2/fr
Publication of WO2002020495A3 publication Critical patent/WO2002020495A3/fr
Priority to HK05104683.9A priority patent/HK1072936A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • This invention relates to new pyrimidine and pyridine derivatives that inhibit the activity of glycogen synthase kinase 3 (GSK3) and to pharmaceutical compositions containing the compounds and to the use of the compounds and compositions, alone or in combination with other pharmaceutically active agents.
  • GSK3 glycogen synthase kinase 3
  • the compounds and compositions provided by the present invention have utility in the treatment of disorders mediated by GSK3 activity, such as diabetes, Alzheimer's disease and ..other neurodegenerative disorders, obesity, atherosclerotic cardiovascular disease, essential hypertension, polycystic ovary syndrome, syndrome X, ischemia, especially cerebral ischemia, traumatic brain injury, bipolar disorder, immunodeficiency and cancer.
  • Glycogen synthase kinase 3 is a serine/threonine kinase for which two isoforms, ⁇ and ⁇ , have been identified. Woodgett, Trends Biochem. Sci., 16:177-81 (1991). Both GSK3 isoforms are constitutively active in resting cells. GSK3 was originally identified as a kinase that inhibits glycogen synthase by direct phosphorylation. Upon insulin activation, GSK3 is inactivated, thereby allowing the activation of glycogen synthase and possibly other insulin-dependent events, such glucose transport.
  • GSK3 activity is also inactivated by other growth factors that, like insulin, signal through receptor tyrosine kinases (RTKs).
  • RTKs receptor tyrosine kinases
  • IGF-1 and EGF IGF-1 and EGF.
  • GSK3 inhibition are useful in the treatment of disorders that are mediated by GSK3 activity.
  • inhibition of GSK3 mimics the activation of growth factor signaling pathways and consequently GSK3 inhibitors are useful in the treatment of diseases in which such pathways are insufficiently active. Examples of diseases that can be treated with GSK3 inhibitors are described below.
  • Diabetes mellitus is a serious metabolic disease that is defined by the presence of chronically elevated levels of blood glucose (hyperglycemia). This state of hyperglycemia is the result of a relative or absolute lack of activity of the peptide hormone, insulin. Insulin is produced and secreted by the ⁇ cells of the pancreas. Insulin is reported to promote glucose utilization, protein synthesis, and the formation and storage of carbohydrate energy as glycogen. Glucose is stored in the body as glycogen, a form of polymerized glucose, which may be converted back into glucose to meet metabolism requirements. Under normal conditions, insulin is secreted at both a basal rate and at enhanced rates following glucose stimulation, all to maintain metabolic homeostasis by the conversion of glucose into glycogen.
  • diabetes mellitus encompasses several different hyperglycemic states. These states include Type 1 (insulin-dependent diabetes mellitus or IDDM) and Type 2 (non-insulin dependent diabetes mellitus or NIDDM) diabetes.
  • IDDM insulin-dependent diabetes mellitus
  • NIDDM non-insulin dependent diabetes mellitus
  • the hyperglycemia present in individuals with Type 1 diabetes is associated with deficient, reduced, or nonexistent levels of insulin that are insufficient to maintain blood glucose levels within the physiological range.
  • Type 1 diabetes is treated by administration of replacement doses of insulin, generally by a parental route. Since GSK3 inhibition stimulates insulin-dependent processes, it is consequently useful in the treatment of type 1 diabetes.
  • Type 2 diabetes is an increasingly prevalent disease of aging. It is initially characterized by decreased sensitivity to insulin and a compensatory elevation in circulating insulin concentrations, the latter of which is required to maintain normal blood glucose levels. Increased insulin levels are caused by increased secretion from the pancreatic beta cells, and the resulting hyperinsulinemia is associated with cardiovascular complications of diabetes. As insulin resistance worsens, the demand on the pancreatic beta cells steadily increases until the pancreas can no longer provide adequate levels of insulin, resulting in elevated levels of glucose in the blood. Ultimately, overt hyperglycemia and hyperlipidemia occur, leading to the devastating long-term complications associated with diabetes, including cardiovascular disease, renal failure and blindness.
  • sulfonylureas examples include metformin for suppression of hepatic glucose production, and troglitazone, an insulin-sensitizing medication. Despite the utility of these agents, 30-40% of diabetics are not adequately controlled using these medications and require subcutaneous insulin injections.
  • each of these therapies has associated side effects.
  • sulfonylureas can cause hypoglycemia and troglitazone can cause severe hepatoxicity.
  • troglitazone can cause severe hepatoxicity.
  • the purine analog 5- iodotubercidin also a GSK3 inhibitor, likewise stimulates glycogen synthesis and antagonizes inactivation of glycogen synthase by glucagon and vasopressin in rat liver cells.
  • Fluckiger-Isler et al. Biochem J 292:85-91 (1993); and Massillon et al., Biochem J 299:123-8 (1994).
  • this compound has also been shown to inhibit other serine/threonine and tyrosine kinases. Massillon et al., Biochem J 299: 123-8 (1994).
  • PPHG postprandial hyperglycemia
  • drugs with differing pharmacodynamic profiles have been developed which target PPHG. These include insulin lispro, amylin analogues, alpha-glucosidase inhibitors and meglitinide analogues. Insulin lispro has a more rapid onset of action and shorter duration of efficacy compared with regular human insulin.
  • Repaglinide a meglitinide analogue
  • Repaglinide is a short-acting insulinotropic agent which, when given before meals, stimulates endogenous insulin secretions and lowers postprandial hyperglycaemic excursions.
  • Both insulin lispro and repaglinide are associated with postprandial hyperinsulinaemia.
  • amylin analogues reduce PPHG by slowing gastric emptying and delivery of nutrients to the absorbing surface of the gut.
  • Alpha- glucosidase inhibitors such as acarbose, miglitol and voglibose also reduce PPHG primarily by interfering with the carbohydrate-digesting enzymes and delaying glucose absorption. Yamasaki et al., Tohoku J Exp Med 1997 Nov;183(3):173-83.
  • the GSK inhibitors of the present invention are also useful, alone or in combination with the agents set forth above, in the treatment of postprandial hyperglycemia as well as in the treatment of fasting hyperglycemia.
  • GSK3 is also involved in biological pathways relating to Alzheimer's disease (AD).
  • AD Alzheimer's disease
  • the characteristic pathological features of AD are extracellular plaques of an abnormally processed form of the amyloid precursor protein (APP), so called ⁇ -amyloid peptide ( ⁇ - AP) and the development of intracellular neurofibrillary tangles containing paired helical filaments (PHF) that consist largely of hyperphosphorylated tau protein.
  • APP amyloid precursor protein
  • ⁇ - AP ⁇ -amyloid peptide
  • PHF paired helical filaments
  • GSK3 is one of a number of kinases that have been found to phosphorylate tau protein in vitro on the abnormal sites characteristic of PHF tau, and is the only kinase also demonstrated to do this in living cells and in animals.
  • Glutamate-induced neuronal excitotoxicity is also believed to be a major cause of neurodegeneration associated with acute damage, such as in cerebral ischemia, traumatic brain injury and bacterial infection. Furthermore it is believed that excessive glutamate signaling is a factor in the chronic neuronal damage seen in diseases such as Alzheimer's, Huntingdon's, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis (MS). Thomas, /. Am. Geriatr. Soc. 43: 1279-89 (1995). Consequently GSK3 inhibitors are believed to be a useful treatment in these and other neurodegenerative disorders.
  • GSK3 phosphorylates transcription factor NF-AT and promotes its export from the nucleus, in opposition to the effect of calcineurin. Beals et al., Science 275:1930-33 (1997). Thus, GSK3 blocks early immune response gene activation via NF-AT, and GSK3 inhibitors may tend to permit or prolong activation of immune responses. Thus GSK3 inhibitors are believed to prolong and potentiate the immunostimulatory effects of certain cytokines, and such an effect may enhance the potential of those cytokines for tumor immunotherapy or indeed for immunotherapy in general. Other disorders
  • Lithium also has other biological effects. It is a potent stimulator of hematopoiesis, both in vitro and in vivo. Hammond et al., Blood 55: 26-28 (1980). In dogs, lithium carbonate eliminated recurrent neutropenia and normalized other blood cell counts. Doukas et al. Exp Hematol 14: 215-221 (1986). If these effects of lithium are mediated through the inhibition of GSK3, GSK3 inhibitors may have even broader applications.
  • the present invention provides new compounds, compositions and methods of inhibiting the activity of GSK3 in vitro and of treatment of GSK3 mediated disorders in vivo.
  • the present invention provides new compounds having GSK3 inhibition activity ofthe following formula (I):
  • W is optionally substituted carbon or nitrogen
  • X and Y are independently selected from the group consisting of nitrogen, oxygen, and optionally substituted carbon;
  • A is optionally substituted aryl or heteroaryl
  • R 6 is selected from the group consisting of hydrogen, hydroxy, halo, carboxyl, nitro, amino, amido, amidino, imido, cyano, and substituted or unsubstituted loweralkyl, loweralkoxy, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl, heteroaralkylcarbonyl,alkylcarbonyloxy, arylcarbonyloxy, aralkylcarbonyloxy, heteroarylcarbonyloxy, heteroaralkylcarbonyloxy, alkylaminocarbonyloxy, arylamino- carbonyloxy, formyl, loweralkylcarbonyl, loweralkoxycarbonyl, aminocarbonyl, aminoaryl, alkylsulfonyl, sulfonamido, aminoalkoxy, alkylamino, heteroarylamino, alkylcarbonylamino, alkylaminocarbonylamino, -
  • R ⁇ -R 6 , and R 8 -R ⁇ 4 have the meanings described above, and R ⁇ 5 is selected from the group consisting of hydrogen, nitro, cyano, amino, alkyl, halo, haloloweralkyl, alkyloxycarbonyl, aminocarbonyl, alkylsulfonyl and arylsulfonyl, and the pharmaceutically acceptable salts thereof.
  • the methods, compounds and compositions of the invention may be employed alone, or in combination with other pharmacologically active agents in the treatment of disorders mediated by GSK3 activity, such as in the treatment of diabetes, Alzheimer's disease and other neurodegenerative disorders, obesity, atherosclerotic cardiovascular disease, essential hypertension, polycystic ovary syndrome, syndrome X, ischemia, especially cerebral ischemia, traumatic brain injury, bipolar disorder, immunodeficiency or cancer.
  • GSK3 activity such as in the treatment of diabetes, Alzheimer's disease and other neurodegenerative disorders, obesity, atherosclerotic cardiovascular disease, essential hypertension, polycystic ovary syndrome, syndrome X, ischemia, especially cerebral ischemia, traumatic brain injury, bipolar disorder, immunodeficiency or cancer.
  • GSK3 inhibition activity of the following formula (I):
  • W is optionally substituted carbon or nitrogen
  • X and Y are independently selected from the group consisting of nitrogen, oxygen, and optionally substituted carbon;
  • A is optionally substituted aryl or heteroaryl
  • R 6 is selected from the group consisting of hydrogen, hydroxy, halo, carboxyl, nitro, amino, amido, amidino, imido, cyano, and substituted or unsubstituted loweralkyl, loweralkoxy, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl, heteraralkylcarbonyl, alkylcarbonyloxy, arylcarbonyloxy, aralkylcarbonyloxy, alkylamino- carbonyloxy, arylaminocarbonyloxy, formyl, loweralkylcarbonyl, loweralkoxycarbonyl, aminocarbonyl, aminoaryl, alkylsulfonyl, sulfonamido, aminoalkoxy, alkylamino, heteroaryla
  • At least one of X and Y is nitrogen.
  • Representative compounds of this group include those compounds in which one of X and Y is nitrogen and the other of X and Y is oxygen or optionally substituted carbon.
  • both X and Y are nitrogen.
  • the constituent A can be an aromatic ring having from 3 to 10 carbon ring atoms and optionally 1 or more ring heteroatoms.
  • A can be optionally substituted carbocyclic aryl.
  • A is optionally substituted heteroaryl, such as, for example, substituted or unsubstituted pyridyl, pyrimidinyl, thiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thiophenyl, furanyl, quinolinyl, purinyl, naphthyl, benzothiazolyl, benzopyridyl, and benzimidazolyl, which may substituted with at least one and not more than 3 substitution groups.
  • substitution groups can be independently selected from the group consisting of, for example, nitro, amino, cyano, halo, thioamido, amidino, oxamidino, alkoxyamidino, imidino, guanidino, sulfonamido, carboxyl, formyl, loweralkyl, haloloweralkyl, loweralkoxy, haloloweralkoxy, loweralkoxyalkyl, loweralkylaminoloweralkoxy, loweralkylcarbonyl, loweraralkylcarbonyl, lowerheteroaralkylcarbonyl, alkylthio, aminoalkyl and cyanoalkyl.
  • A has the formula:
  • R 8 and R 9 are independently selected from the group consisting of hydrogen, hydroxy, nitro, amino, cyano, halo, thioamido, amidino, oxamidino, alkoxyamidino, imidino, guanidinyl, sulfonamido, carboxyl, formyl, loweralkyl, aminoloweralkyl, loweralkylaminoloweralkyl, haloloweralkyl, loweralkoxy, haloloweralkoxy, loweralkoxyalkyl, loweralkylaminoloweralkoxy, loweralkylcarbonyl, loweraralkyl- carbonyl, lowerheteroaralkylcarbonyl, alkylthio, aryl and, aralkyl.
  • A is selected from the group consisting of aminopyridyl, nitropyridyl, aminonitropyridyl, cyanopyridyl, cyanothiazolyl, aminocyanopyridyl, trifluoromethylpyridyl, methoxypyridyl, methoxynitropyridyl, methoxycyanopyridyl and nitrothiazolyl.
  • At least one of Ri, R' ⁇ , R 2 , R' 2 , R 3 , R 3 ', R 4 , and R' may be hydrogen, or unsubstituted or substituted loweralkyl selected from the group consisting of haloloweralkyl, heterocycloaminoalkyl, and loweralkylamino- loweralkyl; or loweralkylaminoloweralkyl.
  • Presently preferred embodiments of the invention include compounds wherein Ri, R' ⁇ , R 2 , R' 2 , R 3 , R 3 'and J are hydrogen and R' is selected from the group consisting of hydrogen, methyl, ethyl, aminoethyl, dimethylaminoethyl, pyridylethyl, piperidinyl, pyrrolidinylethyl, piperazinylethyl and morpholinylethyl.
  • R 5 and R are selected from the group consisting of substituted and unsubstituted aryl, heteroaryl and biaryl.
  • at least one of R 5 and R is a substituted or unsubstituted moiety of the formula:
  • Rio, Rn, R ⁇ 2 , R ⁇ 3 , and R 14 are independently selected from the group consisting of hydrogen, nitro, amino, cyano, halo, thioamido, carboxyl, hydroxy, and optionally substituted loweralkyl, loweralkoxy, loweralkoxyalkyl, haloloweralkyl, haloloweralkoxy, aminoalkyl, alkylamino, aminoalkylalkynyl, alkylaminoalkylalkynyl, alkylthio, alkylcarbonylamino, aralkylcarbonylamino, heteroaralkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino aminocarbonyl, loweralkylaminocarbonyl, aminoaralkyl, , loweralkylaminoalkyl, aryl, heteroaryl, cycloheteroalkyl, aralkyl, alkylcarbonyloxy, aryl
  • Rio, Rn, R ⁇ 3 , and R ⁇ 4 are hydrogen and R ⁇ 2 is selected from the group consisting of halo, loweralkyl, hydroxy, loweralkoxy, haloloweralkyl, aminocarbonyl, alkylaminocarbonyl and cyano; Rn, R ⁇ 3 , and R ⁇ 4 are hydrogen and Rio and R ⁇ 2 are independently selected from the group consisting of halo, loweralkyl, hydroxy, loweralkoxy, haloloweralkyl and cyano; R 10 , Rn, R 13 , and R 14 are hydrogen and R 12 is heteroaryl; Rio, Rn.
  • R13, and R 1 are hydrogen and R 12 is a heterocycloalkyl; and wherein at least one of Rio, Rn, R12, R13, and R ⁇ 4 are halo and the remainder of Rio, Rn, R ⁇ 2 , R ⁇ 3 , and R ⁇ 4 are hydrogen.
  • at least one of R 5 and R is selected from the group consisting of dichlorophenyl, difluorophenyl, trifluoromethylphenyl, chlorofluorophenyl, bromochlorophenyl, ethylphenyl, methylchlorophenyl, imidazolylphenyl, cyanophenyl, morphlinophenyl and cyanochlorophenyl.
  • R 6 may be substituted alkyl, such as, for example, aralkyl, hydroxyalkyl, aminoalkyl, aminoaralkyl, carbonylaminoalkyl, alkylcarbonylaminoalkyl, arylcarbonylaminoalkyl, aralkylcarbonylaminoalkyl, aminoalkoxyalkyl and arylaminoalkyl; substituted amino such as alkylamino, alkylcarbonylamino, alkoxycarbonylamino, arylalkylamino, arylcarbonylamino, alkylthiocarbonylamino, arylsulfonylamino, heteroarylamino alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, aralkylcarbonylamino, and heteroaralkylcarbonylamino; or substituted carbonyl such as unsubstituted or substituted aminocarbon
  • R 6 may be selected from the group consisting of amidino, guanidino, cycloimido, heterocycloimido, cycloamido, heterocycloamido, cyclothioamido and heterocycloloweralkyl.
  • R 6 may be aryl or heteroaryl, such as, for example, substituted or unsubstituted pyridyl, pyrimidinyl, piperazinyl, tbiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thienyl, furanyl, quinolinyl, pyrrolyopyridyl, benzothiazolyl, benzopyridyl, benzotriazolyl, and benzimidazolyl.
  • R 6 may be a monoketopiperazinyl group having the structure:
  • R ⁇ 5 and R ⁇ 6 are independently selected from the group consisting of hydrogen, loweralkyl, loweralkynyl, aryl, heteroaryl, arylloweralkyl, loweralkylarylloweralkyl, haloloweralkyl, haloarylloweralkyl carbocyclic and heterocyclic; or Rg can be taken with another R ⁇ g or with R ⁇ to form a carbocyclic, heterocyclic or aryl ring; and o is an integer between 1 and 6.
  • R ⁇ 5 is loweralkyl, such as methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, iso-butyl or t-butyl, or R 15 is taken with R j g to form a group having the structure:
  • representative compounds of this group include, for example, l-[2- ⁇ [2-( ⁇ 6-a--mno-5-[hydroxy(oxido)- ⁇ mno]-2-pyrid dichlorophenyl)-5 -pyrimidinyl] -2-piperazinone, l-[2- ⁇ [2-( ⁇ 6-amino-5-[hydroxy(oxido)- amino]-2-pyridinyl ⁇ ammo)ethyl]--mmo ⁇ -4-(2,4-dicMorophenyl)-5-pyrimidinyl]-4-ethyl-3- methyl-2-piperazinone, l-[6- ⁇ [2-( ⁇ 6-- ⁇ mmo-5-[hydroxy(oxido)amino]-2-pyridinyl ⁇ amino)- ethyl]amino ⁇ -2-(2,4-dichlorophenyl)-3-pyridinyl]-4-methyl-2-piperazinone, l-[2- ⁇ [2-( ⁇ 6-
  • heterocyclo groups include, for example, those shown below (where the point of attachment of the substituent group, and the other substituent groups shown below, is through the upper left-hand bond). These heterocyclo groups can be further substituted and may be attached at various positions as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • Repre ⁇ senYtative heteroa .ryl ⁇ groups include, for example, those> shown heteroaryl groups can be further substituted and may be attached at various positions as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • cycloimido and heterocycloimido groups include, for example, those shown below. These cycloimido and heterocycloimido can be further substituted and may be attached at various positions as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • amidino and heterocycloamidino groups include, for example, those shown below. These amidino and heterocycloamidino groups can be further substituted as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • substituted alkylcarbonylamino, alkyloxycarbonylamino, aminoalkyloxycarbonylamino, and arylcarbonylamino groups include, for example, those shown below. These groups can be further substituted as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • substituted aminocarbonyl groups include, for example, those shown below. These can heterocyclo groups be further substituted as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • alkoxycarbonyl groups can be further substituted as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • Presently particularly preferred compounds of the invention include compounds having the structure:
  • X, R ⁇ -R 6 , and R 8 -R 14 have the meanings described above, and the pharmaceutically acceptable salts thereof.
  • representative compounds of this group include, for example, [4-(4-imidazolylphenyl)pyrimidin-2-yl] ⁇ 2-[(5-nitro(2- pyridyl))amino] ethyl ⁇ amine, 4-[5-imidazolyl-2-( ⁇ 2-[(5-nitro(2-pyridyl))amino]ethyl ⁇ - amino)pyrimidin-4-yl]benzenecarbonitrile, 4-[2-( ⁇ 2-[(6-amino-5-nitro(2-pyridyl))amino]- ethyl ⁇ amino)-5-imidazolylpyrimidin-4-yl]benzenecarbonitrile, [4-(2,4-dichlorophenyl)-5- imidazolylpyrimidin-2-yl] ⁇ 2- [
  • R ⁇ -R 6 , and R 8 -R ⁇ 4 have the meanings described above, and R ⁇ 5 is selected from the group consisting of hydrogen, nitro, cyano, amino, alkyl, halo, haloloweralkyl, alkyloxycarbonyl, aminocarbonyl, alkylsulfonyl and arylsulfonyl, and the pharmaceutically acceptable salts thereof.
  • representative compounds of this group include, for example, [6-(2,4-dichlorophenyl)-5-imidazolyl(2-pyridyl)] ⁇ 2-[(5-nitro(2- pyridyl))amino]ethyl ⁇ amine, ⁇ 2-[(6-amino-5-nitro(2-pyridyl))amino]ethyl ⁇ [6-(2,4- dichlorophenyl)-5-imidazolyl(2-pyridyl)]amme, .
  • the invention provides compositions comprising an amount of a compound of formula (I) effective to modulate GSK3 activity in a human or animal subject when administered thereto, together with a pharmaceutically acceptable carrier.
  • the invention provides methods of inhibiting GSK3 activity in a human or animal subject, comprising administering to the human or animal subject a GSK3 inhibitory amount of a compound of structure (I).
  • the present invention further provides methods of treating human or animal subjects suffering from GSK3-mediated disorder in a human or animal subject, comprising administering to the human or animal subject a therapeutically effective amount of a compound of formula (I) above, either alone or in combination with other therapeutically active agents.
  • the present invention provides compounds of formulas I, IN and N, as described above, for use as a pharmaceutical, as well as methods of use of those compounds in the manufacture of a medicament for the treatment of diabetes, Alzheimer's disease and other neurodegenerative disorders, obesity, atherosclerotic cardiovascular disease, essential hypertension, polycystic ovary syndrome, syndrome X, ischemia, especially cerebral ischemia, traumatic brain injury, bipolar disorder, immunodeficiency or cancer.
  • Glycogen synthase kinase 3 and "GSK3" are used interchangeably herein to refer to any protein having more than 60% sequence homology to the ammo acids between positions 56 and 340 of the human GSK3 beta amino acid sequence (Genbank Accession No. L33801).
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide or nucleic acid for optimal alignment with the other polypeptide or nucleic acid).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • amino acid or nucleic acid "homology” is equivalent to amino acid or nucleic acid "identity”).
  • GSK3 was originally identified by its phosphorylation of glycogen synthase as described in Woodgett et al., Trends Biochem. Sci., 16:177-81 (1991), incorporated herein by reference.
  • GSK3 kinase activity By inhibiting GSK3 kinase activity, activities downstream of GSK3 activity may be inhibited, or, alternatively, stimulated. For example, when GSK3 activity is inhibited, glycogen synthase may be activated, resulting in increased glycogen production.
  • GSK3 is also known to act as a kinase in a variety of other contexts, including, for example, phosphorylation of c-jun, ⁇ - catenin, and tau protein. It is understood that inhibition of GSK3 kinase activity can lead to a variety of effects in a variety of biological contexts. The invention, however, is not limited by any theories of mechanism as to how the invention works.
  • GSK3 inhibitor is used herein to refer to a compound that exhibits an IC 50 with respect to GSK3 of no more than about 100 ⁇ M and more typically not more than about 50 ⁇ M, as measured in the cell-free assay for GSK3 inhibitory activity described generally hereinbelow.
  • IC 50 is that concentration of inhibitor which reduces the activity of an enzyme (e.g., GSK3) to half-maximal level. Representative compounds of the present invention have been discovered to exhibit inhibitory activity against GSK3.
  • Compounds of the present invention preferably exhibit an IC 50 with respect to GSK3 of no more than about 10 ⁇ M, more preferably, no more than about 5 ⁇ M, even more preferably not more than about 1 ⁇ M, and most preferably, not more than about 200 nM, as measured in the cell-free GSK3 kinase assay.
  • IC 50 with respect to GSK3 of no more than about 10 ⁇ M, more preferably, no more than about 5 ⁇ M, even more preferably not more than about 1 ⁇ M, and most preferably, not more than about 200 nM, as measured in the cell-free GSK3 kinase assay.
  • Optionally substituted refers to the replacement of hydrogen with a monovalent or divalent radical.
  • Suitable substitution groups include, for example, hydroxyl, nitro, amino, imino, cyano, halo, thio, thioamido, amidino, imidino, oxo, oxamidino, methoxamidino, imidino, guanidino, sulfonamido, carboxyl, formyl, loweralkyl, haloloweralkyl, loweralkoxy, haloloweralkoxy, loweralkoxyalkyl,alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl, heteroaralkylcarbonyl, alkylthio, aminoalkyl, cyanoalkyl, and the, like.
  • substitution group can itself be substituted.
  • the group substituted onto the substitution group can be carboxyl, halo; nitro, amino, cyano, hydroxyl, loweralkyl, loweralkoxy, aminocarbonyl, -SR, thioamido, -SO 3 H, -SO 2 R or cycloalkyl, where R is typically hydrogen, hydroxyl or loweralkyl.
  • substituted substituent when the substituted substituent includes a straight chain group, the substitution can occur either within the chain (e.g., 2-hydroxypropyl, 2-aminobutyl, and the like) or at the chain terminus (e.g., 2-hydroxyethyl, 3-cyanopropyl, and the like).
  • Substituted substitutents can be straight chain, branched or cyclic arrangements of covalently bonded carbon or heteroatoms.
  • “Loweralkyl” as used herein refers to branched or straight chain alkyl groups comprising one to ten carbon atoms that are unsubstituted or substituted, e.g., with one or more halogen, hydroxyl or other groups, including, e.g., methyl, ethyl, propyl, isopropyl, /.-butyl, t-butyl, neopentyl, trifluoromethyl, pentafluoroethyl and the like.
  • Alkylenyl refers to a divalent straight chain or branched chain saturated aliphatic radical having from 1 to 20 carbon atoms. Typical alkylenyl groups employed in compounds ofthe present invention are loweralkylenyl groups that have from 1 to about 6 carbon atoms in their backbone.
  • Alkenyl refers herein to straight chain, branched, or cyclic radicals having one or more double bonds and from 2 to 20 carbon atoms.
  • Alkynyl refers herein to straight chain, branched, or cyclic radicals having one or more triple bonds and from 2 to 20 carbon atoms.
  • Loweralkoxy refers to RO- wherein R is loweralkyl.
  • Representative examples of loweralkoxy groups include methoxy, ethoxy, t-butoxy, trifluoromethoxy and the like.
  • Cycloalkyl refers to a mono- or polycyclic, heterocyclic or carbocyclic alkyl substituent. Typical cycloalkyl substituents have from 3 to 8 backbone (i.e., ring) atoms in which each backbone atom is either carbon or a heteroatom.
  • the term "heterocycloalkyl” refers herein to cycloalkyl substituents that have from 1 to 5, and more typically from 1 to 4 heteroatoms in the ring structure. Suitable heteroatoms employed in compounds of the present invention are nitrogen, oxygen, and sulfur. Representative heterocycloalkyl moieties include, for example, morpholino, piperazinyl, piperadinyl and the like.
  • Carbocycloalkyl groups are cycloalkyl groups in which all ring atoms are carbon.
  • polycyclic refers herein to fused and non-fused alkyl cyclic structures.
  • Halo refers herein to a halogen radical, such as fluorine, chlorine, bromine or iodine.
  • Haloalkyl refers to an alkyl radical substituted with one or more halogen atoms.
  • haloloweralkyl refers to a loweralkyl radical substituted with one or more halogen atoms.
  • haloalkoxy refers to an alkoxy radical substituted with one or more halogen atoms.
  • haloloweralkoxy refers to a loweralkoxy radical substituted with one or more halogen atoms.
  • Aryl refers to monocyclic and polycyclic aromatic groups having from 3 to 14 backbone carbon or hetero atoms, and includes both carbocyclic aryl groups and heterocyclic aryl groups.
  • Carbocyclic aryl groups are aryl groups in which all ring atoms in the aromatic ring are carbon.
  • heteroaryl refers herein to aryl groups having from 1 to 4 heteroatoms as ring atoms in an aromatic ring with the remainder of the ring atoms being carbon atoms.
  • polycyclic refers herein to fused and non-fused cyclic structures in which at least one cyclic structure is aromatic, such as, for example, benzodioxozolo (which has a
  • heterocyclic structure fused to a phenyl group i.e. o' ⁇ 5 naphthyl, and the like.
  • Exemplary aryl moieties employed as substituents in compounds of the present invention include phenyl, pyridyl, pyrimidinyl, thiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thiophenyl, furanyl, quinolinyl, purinyl, naphthyl, benzothiazolyl, benzopyridyl, and benzimidazolyl, and the like.
  • aralkyl refers to an alkyl group substituted with an aryl group. Typically, aralkyl groups employed in compounds of the present invention have from 1 to 6 carbon atoms incorporated within the alkyl portion of the aralkyl group. Suitable aralkyl groups employed in compounds ofthe present invention include, for example, benzyl, picolyl, and the like.
  • Amino refers herein to the group -NH 2 .
  • alkylamino refers herein to the group -NRR' where R and R' are each independently selected from hydrogen or a lower alkyl.
  • arylamino refers herein to the group -NRR' where R is aryl and R' is hydrogen, a lower alkyl, or an aryl.
  • aralkylamino refers herein to the group -
  • R is a lower aralkyl and R' is hydrogen, a loweralkyl, an aryl, or a loweraralkyl.
  • arylcycloalkylamino refers herein to the group, aryl-cycloalkyl-NH-, where cycloalkyl is a divalent cycloalkyl group. Typically, cycloalkyl has from 3 to 6 backbone atoms, of which, optionally 1 to about 4 are heteroatoms.
  • aminoalkyl refers to an alkyl group that is terminally substituted with an amino group.
  • alkoxyalkyl refers to the group -alk ⁇ -O-alk 2 where alki is alkylenyl or alkenyl, and alk 2 is alkyl or alkenyl.
  • loweralkoxyalkyl refers to an alkoxyalkyl where alk
  • aryloxyalkyl refers to the group -alkylenyl-O-aryl.
  • aralkoxyalkyl refers to the group -alkylenyl-O-aralkyl, where aralkyl is a loweraralkyl.
  • alkoxy alkylamino refers herein to the group -NR-(alkoxylalkyl), where R is typically hydrogen, loweraralkyl, or loweralkyl.
  • aminoloweralkoxyalkyl refers herein to an aminoalkoxyalkyl in which the alkoxyalkyl is a loweralkoxyalkyl.
  • aminocarbonyl refers herein to the group -C(O)-NH 2 .
  • Substituted aminocarbonyl refers herein to the group -C(O)-NRR' where R is loweralkyl and R' is hydrogen or a loweralkyl.
  • arylaminocarbonyl refers herein to the group -C(O)- NRR' where R is an aryl and R' is hydrogen, loweralkyl or aryl.
  • aralkylaminocarbonyl refers herein to the group -C(O)-NRR' where R is loweraralkyl and R' is hydrogen, loweralkyl, aryl, or loweraralkyl.
  • Aminosulfonyl refers herein to the group -S(O) 2 -NH 2 .
  • Substituted amin ⁇ sulfonyl refers herein to the group -S(O) 2 -NRR' where R is loweralkyl and R' is hydrogen or a loweralkyl.
  • aralkylaminosulfonlyaryl refers herein to the group -aryl-S(O) 2 -NH-aralkyl, where the aralkyl is loweraralkyl.
  • Carbonyl refers to the divalent group -C(O)-.
  • Carbonyloxy refers generally to the group -C(O)-O-,. Such groups include esters,
  • -C(O)-O-R where R is loweralkyl, cycloalkyl, aryl, or loweraralkyl.
  • carbonyloxycycloalkyl refers generally herein to both an “carbonyloxycarbocycloalkyl” and an “carbonyloxyheterocycloalkyl", i.e., where R is a carbocycloalkyl or heterocycloalkyl, respectively.
  • arylcarbonyloxy refers herein to the group - C(O)-O-aryl, where aryl is a mono- or polycyclic, carbocycloaryl or heterocycloaryl.
  • aralkylcarbonyloxy refers herein to the group -C(O)-O-aralkyl, where the aralkyl is loweraralkyl.
  • alkylsulfonyl refers herein to the group -SO 2 -.
  • Alkylsulfonyl refers to a substituted sulfonyl of the structure -SO 2 R - in which R is alkyl.
  • Alkylsulfonyl groups employed in compounds of the present invention are typically loweralkylsulfonyl groups having from 1 to 6 carbon atoms in its backbone structure.
  • alkylsulfonyl groups employed in compounds of the present invention include, for example, methylsulfonyl (i.e., where R is methyl), ethylsulfonyl (i.e., where R is ethyl), propylsulfonyl (i.e., where R is propyl), and the like.
  • arylsulfonyl refers herein to the group -SO 2 -aryl.
  • aralkylsulfonyl refers herein to the group -SO 2 -aralkyl, in which the aralkyl is loweraralkyl.
  • sulfonamido refers herein to -SO 2 NH 2 .
  • carbonylamino refers to the divalent group -NH-C(O)- in which the hydrogen atom of the amide mtrogen of the carbonylamino group can be replaced a loweralkyl, aryl, or loweraralkyl group.
  • groups include moieties such as carbamate esters (-NH-C(O)-O-R) and amides -NH-C(O)-O-R, where R is a straight or branched chain loweralkyl, cycloalkyl, or aryl or loweraralkyl.
  • loweralkylcarbonylamino refers to alkylcarbonylamino where R is a loweralkyl having from 1 to about 6 carbon atoms in its backbone structure.
  • arylcarbonylamino refers to group -NH-C(O)-R where R is an aryl.
  • aralkylcarbonylamino refers to carbonylamino where R is a lower aralkyl.
  • the hydrogen atoms at any of the nitrogens can be replaced with a suitable substituent, such as loweralkyl, aryl, or loweraralkyl.
  • a suitable substituent such as loweralkyl, aryl, or loweraralkyl.
  • Pyrimidine based compounds ofthe present invention can be readily synthesized in solution by reaction of a carbonyl-containing derivative with N,N-dimethylformamide dimethyl acetal (DMFDMA).
  • DMFDMA N,N-dimethylformamide dimethyl acetal
  • the intermediate enaminoketone that results is then reacted with a guanidine in the presence of an organic solvent and a suitable base such as sodium ethoxide, sodium methoxide, sodium hydroxide or cesium carbonate at various temperatures to give a pyrimidine.
  • a suitable base such as sodium ethoxide, sodium methoxide, sodium hydroxide or cesium carbonate
  • Carbonyl-containing starting reagents that are suitable for use in this reaction scheme include, for example, ⁇ -keto esters, alkyl aryl ketones, ⁇ -keto sulfones, ⁇ -nitro ketones, ⁇ -keto nitriles, desoxybenzoins, aryl heteroarylmethyl ketones, and the like.
  • the carbonyl-containing starting reagents can either be purchased or synthesized using known methods.
  • ⁇ -keto esters can be readily synthesized by reaction of an acid chloride or other activated carboxylic acid with potassium ethyl malonate in the presence of triethylamine in accordance with the method described in RJ.
  • the desired ⁇ - keto ester can be synthesized by deprotonating an appropriate methyl ketone with a suitable base such as sodium hydride, followed by condensation with diethylcarbonate in accordance with the method described in Sircar et al., J. Med. Chem., 28:1405 (1985), which is incorporated herein by reference.
  • ⁇ -keto sulfones and ⁇ -nitro ketones can be prepared using known methods, such as those described in N.S. Simpkins, "Sulphones in Organic Synthesis,” Pergamon (1993) ( ⁇ -keto sulfones) and M. Jung et. al, J. Org. Chem., 52:4570 (1987) ( ⁇ - nitro ketones), both of which are incorporated herein by reference, ⁇ -keto nitriles can be readily prepared by reaction of an ⁇ -halo ketone with sodium or potassium cyanide.
  • the first condensation is typically conducted with a small excess of DMFDMA in a solvent such as THF at 70-80°C for several hours. This method is described in more detail in Example 25 hereinbelow (i.e., "Solution Method A").
  • DMFDMA is often used as the solvent at a higher temperature (90-100°C) for a longer period of time (e.g., overnight).
  • the solvent and excess DMFDMA are removed in vacuo.
  • the resulting solid or oil is dissolved in an appropriate solvent and heated with an equimolar amount of the guanidine and base. This method is described in more detail in Example 60 hereinbelow (i.e., "Solution Method B").
  • Solution Method B the alkaline or acidic hydrolysis of the resulting pyrimidine yields the corresponding carboxylic acid.
  • This acid can then be further coupled to various alcohols or amines to provide a variety of ester or amide derivatives.
  • Guanidines employed in the synthesis of invention compounds can be purchased or, alternatively, synthesized by reacting the corresponding amine with a guanidino transfer reagent, such as, for example, benzotriazole carboxamidinium 4-methylbenzenesulfonate.
  • a guanidino transfer reagent such as, for example, benzotriazole carboxamidinium 4-methylbenzenesulfonate. This guanidino transfer reagent is described in A.R. Katritzky et al., 1995, Synthetic Communications, 25:1173 (1995), which is incorporated herein by reference.
  • benzotriazole carboxamidinium 4-methylbenzenesulfonate can be reacted in equimolar quantity with an amine and one equivalent of diisopropyl ethyl amine (DIEA) in acetonitrile at room temperature overnight to yield guanidinium 4-methylbenzenesulfonate upon addition of diethyl ether.
  • DIEA diisopropyl ethyl amine
  • Amines containing a nitrogen heterocyclic aryl can be prepared by nucleophilic substitution of a halo-substituted nitrogen heterocyclic aryl with an appropriate diamine, such as, for example, ethylenediamine or propylenediamine. These diamines are particularly suitable for use as reaction solvents at reaction temperatures in the range of about 25°C to 125°C. The preparation of specialized amines is noted in the Examples provided herein.
  • 5-aryl 2-aminopyrimidine can be prepared by reacting a guanidine with a vinamidinium salt, in accordance with the method described in R.M. Wagner and C.
  • 4-anilo-2-cMoropyrimidine can be prepared by reacting aniline with 2,4- dichloropyrimidine.
  • an aniline can be treated with a 2,4-dichloropyrimidine to give the 4-anilo-2-chloropyrimidine.
  • Further substitution with a second amine gives 2- amino-4-anilinopyrimidine.
  • solid-support (including resin- based) synthesis methods can also be used to synthesize compounds of the present invention, especially for parallel and combinatorial synthesis methodologies.
  • the synthesis of tetra-substituted pyrimidines may begin with the loading of an aromatic carboxylic acid aldehyde, such as, for example, 4-formyl benzoic acid, to the amino group of a suitable resin, such as, for example, Rink amide resin (Novabiochem, San Diego, California) ("Resin Method A" which is described in more detail in Example 2).
  • Knoevenagel condensation of a ⁇ -keto ester gives an unsaturated intermediate that can be condensed with lH-pyrazole-1-carboxamidine hydrochloride (Aldrich) in the presence of a suitable base (e.g., potassium carbonate).
  • a suitable base e.g., potassium carbonate
  • the intermediate dihydropyrimidine can then be oxidized to the resin bound pyrimidine with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) in benzene.
  • DDQ 2,3-dichloro-5,6-dicyano-l,4-benzoquinone
  • substitution of the pyrazolo moiety by heating with an amine in 1-methylpyrrolidone (NMP) or other suitable solvent is followed by acidolytic cleavage to give the desired pyrimidine.
  • NMP 1-methylpyrrolidone
  • This synthesis method can be used to generate pyrimidines
  • Resin Method B which is described in detail in Example 3, can be used to synthesize pyrimidines in which the 6-position is unsubstituted.
  • a hydroxymethyl-resin such as commercially available Sasrin resin (Bachem Biosciences, King of Prussia, Pennsylvania), is treated with triphenylphosphine dibromide in dichloromethane to convert the hydroxymethyl group on the resin to a bromomethyl group, as generally described in K. Ngu et al., Tetrahedron Letters, 38:973 (1997), which is incorporated herein by reference.
  • the bromine is then displaced by reaction with a primary amine in NMP (at room temperature or 70-80°C).
  • the amine is then coupled with the appropriate aromatic compound containing an acetyl group.
  • the coupling can be carried out with PyBOP ® (Novabiochem, San Diego, California), and 4-methylmorpholine in NMP.
  • Resin Method B can also be used to incorporate an amino acid residue into the resulting pyrimidine.
  • amino resin can be coupled to a 9-fluorenyl- methoxycarbonyl (FMOC)-protected amino acid using standard peptide synthesis conditions and methods.
  • FMOC 9-fluorenyl- methoxycarbonyl
  • Further coupling with 4-acetylbenzoic acid followed by reaction with N,N-dimethylformamide dimethyl acetal and cyclization with a guanidine produces a pyrimidine derivative having an amino acid residue incorporated within it.
  • Pyrimidines having e.g., a carboxamidophenyl group at position 6 and hydrogen at position 5 can be prepared from an amino (i.e., -NH 2 )-containing resin such as Rink amide resin (Novabiochem, San Diego, California). This method is described in more detail in Example 10 hereinbelow ("Resin Method C").
  • Compounds of the present invention can also be prepared according to Resin Method D, to produce 2,4-diaminopyrimidines.
  • Resin-bound amine is reacted with a 2,4- dichloropyrimidine to give a resin-bound 6-amino-2-chloropyrimidine.
  • the resin-bound amine can be derived from any suitable primary amine; however, anilines generally are not suitable.
  • Displacement with a second amine and cleavage of the product from the resin gives a 2,4-diaminopyrimidine.
  • primary or secondary amines that may contain other functional groups, such as unprotected hydroxy groups, are suitable.
  • the resulting dichloropyrimidine may be further substituted, for example, with an ester group at the 5-position.
  • a 2,6-dichloropyridine can be used instead of 2,4- dichloropyrimidine to produce a 2,6-diaminopyridine. This scheme is described in more detail in Examples 17-19 hereinbelow.
  • Resin Method E can be used to produce a 2,6-diaminopyridine.
  • the method is analogous to Resin Method D except that a 2,6-dichloropyridine is used as the electrophile and the final product is a 2,6-diaminopyridine.
  • Resin Method E is described in more detail in Examples 20-21 hereinbelow.
  • Resin Method F can be used to synthesize 5-amino substituted compounds of the present invention.
  • Resin-bound amine is reacted with a halomethyl aryl ketone.
  • the resulting resin- bound aminomethyl ketone is then treated with DMFDMA (neat) followed by cyclization with a guanidine to give the 2,5-diamino-6-arylpyrimidine.
  • Resin Method F is described in more detail in Example 22, hereinbelow.
  • Resin Method G which is described in more detail in Example 23, can be used to synthesize compounds ofthe present invention having a carboxyl group at the 5-position.
  • GSK3 inhibitor compounds of the present invention can be purified using known methods, such as, for example, chromatography, crystallization, and the like.
  • Compounds of the present invention preferably exhibit inhibitory activity that is relatively substantially selective with respect to GSK3, as compared to at least one other type of kinase.
  • the term "selective" refers to a relatively greater potency for inhibition against GSK3, as compared to at least one other type of kinase.
  • GSK3 inhibitors ofthe present invention are selective with respect to GSK3, as compared to at least two other types of kinases.
  • Kinase activity assays for kinases other than GSK3 are generally known.
  • the term "other kinase” refers to a kinase other than GSK3. Such selectivities are generally measured in the cell-free assay described in Example 265.
  • GSK3 inhibitors of the present invention exhibit a selectivity of at least about 2-fold (i.e., IC5 0 (other kinase) ⁇ IC 50 (GSK3) ) for GSK3, as compared to another kinase and more typically they exhibit a selectivity of at least about 5-fold.
  • GSK3 inhibitors of the present invention exhibit a selectivity for GSK3, as compared to at least one other kinase, of at least about 10-fold, desirably at least about 100-fold, and more preferably, at least about 1000-fold.
  • GSK3 inhibitory activity can be readily detected using the assays described herein, as well as assays generally known to those of ordinary skill in the art.
  • Exemplary methods for identifying specific inhibitors of GSK3 include both cell-free and cell-based GSK3 kinase assays.
  • a cell-free GSK3 kinase assay detects inhibitors that act by direct interaction with the polypeptide GSK3, while a cell-based GSK3 kinase assay may identify inhibitors that function by direct interaction with GSK3 itself, or by other mechanisms, including, for example, interference with GSK3 expression or with post-translational processing required to produce mature active GSK3 or alteration of the intracellular localization of GSK3.
  • a cell-free GSK3 kinase assay can be readily carried out by: (1) incubating GSK3 with a peptide substrate, radiolabeled ATP (such as, for example, ⁇ 33 P- or ⁇ 32 P-ATP, both available from Amersham, Arlington Heights, Illinois), magnesium ions, and optionally, one or more candidate inhibitors; (2) incubating the mixture for a period of time to allow incorporation of radiolabeled phosphate into the peptide substrate by GSK3 activity; (3) transferring all or a portion of the enzyme reaction mix to a separate vessel, typically a microtiter well that contains a uniform amount of a capture ligand that is capable of binding to an anchor ligand on the peptide substrate; (4) washing to remove unreacted radiolabeled ATP; then (5) quantifying the amount of 33 P or 32 P remaining in each well.
  • radiolabeled ATP such as, for example, ⁇ 33 P- or ⁇ 32 P-ATP, both available from Amersham, Arlington Heights,
  • Suitable peptide substrates for use in the cell free assay may be any peptide, polypeptide or synthetic peptide derivative that can be phosphorylated by GSK3 in the presence of an appropriate amount of ATP.
  • Suitable peptide substrates may be based on portions of the sequences of various natural protein substrates of GSK3, and may also contain N-terminal or C-terminal modifications or extensions including spacer sequences and anchor ligands. Thus, the peptide substrate may reside within a larger polypeptide, or may be an isolated peptide designed for phosphorylation by GSK3.
  • a peptide substrate can be designed based on a subsequence of the DNA binding protein CREB, such as the SGSG-linked CREB peptide sequence within the CREB DNA binding protein described in Wang et al., Anal Biochem., 220:397-402 (1994), incorporated herein by reference.
  • the C- terminal serine in the SXXXS motif of the CREB peptide is enzymatically prephosphorylated by cAMP -dependent protein kinase (PKA), a step which is required to render the N-terminal serine in the motif phosphorylatable by GSK3.
  • PKA cAMP -dependent protein kinase
  • a modified CREB peptide substrate which has the same SXXXS motif and which also contains an N-terminal anchor ligand, but which is synthesized with its C- terminal serine prephosphorylated (such a substrate is available commercially from Chiron Technologies PTY Ltd., Clayton, Australia).
  • Phosphorylation of the second serine in the SXXXS motif during peptide synthesis eliminates the need to enzymatically phosphorylate that residue with PKA as a separate step, and incorporation of an anchor ligand facilitates capture ofthe peptide substrate after its reaction with GSK3.
  • a peptide substrate used for a kinase activity assay may contain one or more sites that are phosphorylatable by GSIG, and one or more other sites that are phosphorylatable by other kinases, but not by GSK3. Thus, these other sites can be prephosphorylated in order to create a motif that is phosphorylatable by GSK3.
  • prephosphorylated refers herein to the phosphorylation of a substrate peptide with non- radiolabeled phosphate prior to conducting a kinase assay using that substrate peptide. Such prephosphorylation can conveniently be performed during synthesis of the peptide substrate.
  • the SGSG-linked CREB peptide can be linked to an anchor ligand, such as biotin, where the serine near the C terminus between P and Y is prephosphorylated.
  • anchor ligand refers to a ligand that can be attached to a peptide substrate to facilitate capture of the peptide substrate on a capture ligand, and which functions to hold the peptide substrate in place during wash steps, yet allows removal of unreacted radiolabeled ATP.
  • An exemplary anchor ligand is biotin.
  • capture ligand refers herein to a molecule which can bind an anchor ligand with high affinity, and which is attached to a solid structure.
  • bound capture ligands include, for example, avidin- or streptavidin-coated microtiter wells or agarose beads. Beads bearing capture ligands can be further combined with a scintillant to provide a means for detecting captured radiolabeled substrate peptide, or scintillant can be added to the captured peptide in a later step.
  • the captured radiolabeled peptide substrate can be quantitated in a scintillation counter using known methods.
  • the signal detected in the scintillation counter will be proportional to GSK3 activity if the enzyme reaction has been run under conditions where only a limited portion (e.g., less than 20%) ofthe peptide substrate is phosphorylated. If an inhibitor is present during the reaction, GSK3 activity will be reduced, and a smaller quantity of radiolabeled phosphate will thus be incorporated into the peptide substrate. Hence, a lower scintillation signal will be detected. Consequently, GSK3 inhibitory activity will be detected as a reduction in scintillation signal, as compared to that observed in a negative control where no inhibitor is present during the reaction. This assay is described in more detail in Example 265 hereinbelow.
  • a cell-based GSK3 kinase activity assay typically utilizes a cell that can express both GSK3 and a GSK3 substrate, such as, for example, a cell transformed with genes encoding GSK3 and its substrate, including regulatory control sequences for the expression of the genes.
  • the cell capable of expressing the genes is incubated in the presence of a compound ofthe present invention.
  • the cell is lysed, and the proportion ofthe substrate in the phosphorylated form is determined, e.g., by observing its mobility relative to the unphosphorylated form on SDS PAGE or by determining the amount of substrate that is recognized by an antibody specific for the phosphorylated form of the substrate.
  • the amount of phosphorylation of the substrate is an indication of the inhibitory activity of the compound, i.e., inhibition is detected as a decrease in phosphorylation as compared to the assay conducted with no inhibitor present.
  • GSK3 inhibitory activity detected in a cell-based assay may be due, for example, to inhibition of the expression of GSK3 or by inhibition ofthe kinase activity of GSK3.
  • cell-based assays can also be used to specifically assay for activities that are implicated by GSK3 inhibition, such as, for example, inhibition of tau protein phosphorylation, potentiation of insulin signaling, and the like.
  • GSK3 inhibition such as, for example, inhibition of tau protein phosphorylation, potentiation of insulin signaling, and the like.
  • cells may be co-transfected with human GSK3 ⁇ and human tau protein, then incubated with one or more candidate inhibitors.
  • Various mammalian cell lines and expression vectors can be used for this type of assay.
  • COS cells may be transfected with both a human GSK3 ⁇ expression plasmid according to the protocol described in Stambolic et al., 1996, Current Biology 6:1664-68, which is incorporated herein by reference, and an expression plasmid such as pSG5 that contains human tau protein coding sequence under an early SN40 promoter. See also Goedert et al., EMBO J., 8:393-399 (1989), which is incorporated herein by reference. Alzheimer's-like phosphorylation of tau can be readily detected with a specific antibody such as, for example, AT8, which is available from Polymedco Inc. (Cortlandt Manor, New York) after lysing the cells. This assay is described in greater detail in the examples, hereinbelow.
  • glycogen synthase activity assay employs cells that respond to insulin stimulation by increasing glycogen synthase activity, such as the CHO-HIRC cell line, which overexpresses wild-type insulin receptor ( ⁇ 100,000 binding sites/cell).
  • the CHO-HIRC cell line can be generated as described in Moller et al., J. Biol. Chem., 265:14979-14985 (1990) and Moller et al., Mol. Endocrinol, 4:1183-1191 (1990), both of which are incorporated herein by reference.
  • the assay can be carried out by incubating serum- starved CHO-HIRC cells in the presence of various concentrations of compounds of the present invention in the medium, followed by cell lysis at the end ofthe incubation period.
  • Glycogen synthase activity can be detected in the lysate as described in Thomas et al., Anal Biochem., 25:486-499 (1968).
  • Glycogen synthase activity is computed for each sample as a percentage of maximal glycogen synthase activity, as described in Thomas et al., supra, and is plotted as a function of candidate GSK3 inhibitor concentration.
  • the concentration of candidate GSK3 inhibitor that increased glycogen synthase activity to half of its maximal level (i.e., the EC 50 ) can be calculated by fitting a four parameter sigmoidal curve using routine curve fitting methods that are well known to those having ordinary skill in the art. This is described in more detail in Example 266, hereinbelow.
  • GSK3 inhibitors can be readily screened for in vivo activity such as, for example, using methods that are well known to those having ordinary skill in the art.
  • candidate compounds having potential therapeutic activity in the treatment of type 2 diabetes can be readily identified by detecting a capacity to improve glucose tolerance in animal models of type 2 diabetes.
  • the candidate compound can be dosed using any of several routes prior to administration of a glucose bolus in either diabetic mice (e.g. KK, db/db, ob/ob) or diabetic rats (e.g. Zucker Fa/Fa or GK).
  • blood samples are removed at preselected time intervals and evaluated for serum glucose and insulin levels. Improved disposal of glucose in the absence of elevated secretion levels of endogenous insulin can be considered as insulin sensitization and can be indicative of compound efficacy.
  • a detailed description of this assay is provided in the examples, hereinbelow.
  • the compounds of the present invention can be used in the form of salts derived from inorganic or organic acids.
  • These salts include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-napthalenesulfonate, oxalate, pamoate, pectinate, sulfate, 3-
  • the basic nitrogen-containing groups can be quaternized with such agents as loweralkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil- soluble or dispersible products are thereby obtained.
  • loweralkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides
  • acids which may be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, sulphuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid and citric acid.
  • Basic addition salts can be prepared in situ during the final isolation and purification of the compounds of formula (I), or separately by reacting carboxylic acid moieties with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia, or an organic primary, secondary or tertiary amine.
  • Pharmaceutically acceptable salts include, but are not limited to, cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, aluminum salts and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammomum, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like.
  • Other representative organic amines useful for the formation of base addition salts include diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.
  • Compounds of the present invention can be administered in a variety of ways including enteral, parenteral and topical routes of administration.
  • suitable modes of administration include oral, subcutaneous, transdermal, transmucosal, iontophoretic, intravenous, intramuscular, intraperitoneal, intranasal, subdural, rectal, and the like.
  • a composition comprising GSK3 -inhibitor compound of the present invention, together with a pharmaceutically acceptable carrier or excipient.
  • Suitable pharmaceutically acceptable excipients include processing agents and drug delivery modifiers and enhancers, such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl- ⁇ -cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or more thereof.
  • processing agents and drug delivery modifiers and enhancers such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl- ⁇ -cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or
  • compositions containing GSK-3 inhibitor compounds of the present invention may be in any form suitable for the intended method of administration, including, for example, a solution, a suspension, or an emulsion.
  • Liquid carriers are typically used in preparing solutions, suspensions, and emulsions.
  • Liquid carriers contemplated for use in the practice of the present invention include, for example, water, saline, pharmaceutically acceptable organic solvent(s), pharmaceutically acceptable oils or fats, and the like, as well as mixtures of two or more thereof.
  • the liquid carrier may contain other suitable pharmaceutically acceptable additives such as solubilizers, emulsifiers, nutrients, buffers, preservatives, suspending agents, thickening agents, viscosity regulators, stabilizers, and the like.
  • Suitable organic solvents include, for example, monohydric alcohols, such as ethanol, and polyhydric alcohols, such as glycols.
  • Suitable oils include, for example, soybean oil, coconut oil, olive oil, safflower oil, cottonseed oil, and the like.
  • the carrier can also be an oily ester such as ethyl oleate, isopropyl myristate, and the like.
  • Compositions of the present invention may also be in the form of microparticles, microcapsules, liposomal encapsulates, and the like, as well as combinations of any two or more thereof.
  • the compounds of the present invention may be administered orally, parenterally, sublingually, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or ionophoresis devices.
  • parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
  • sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-propanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable nonirritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch.
  • Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, cyclodextrins, and sweetening, flavoring, and perfuming agents.
  • the present invention provides methods for inhibiting GSK3 activity in a human or animal subject, said method comprising administering to a subject an amount of a GSK3 inhibitor compound having the structure (I), (IN) or (N) (or composition comprising such compound) effective to inhibit GSK3 activity in the subject.
  • inventions for treating a cell or a GSK3- mediated disorder in a human or animal subject, comprising administering to the cell or to the human or animal subject an amount of a compound or composition of the invention effective to inhibit GSK3 activity in the cell or subject.
  • the subject will be a human or non-human animal subject.
  • Inhibition of GSK3 activity includes detectable suppression of GSK3 activity either as compared to a control or as compared to expected GSK3 activity.
  • Effective amounts ofthe compounds ofthe invention generally include any amount sufficient to detectably inhibit GSK3 activity by any of the assays described herein, by other GSK3 kinase activity assays known to those having ordinary skill in the art or by detecting an alleviation of symptoms in a subject afflicted with a GSK3 -mediated disorder.
  • GSK3-mediated disorders that may be treated in accordance with the invention include any biological or medical disorder in which GSK3 activity is implicated or in which the inhibition of GSK3 potentiates signaling through a pathway that is characteristically defective in the disease to be treated. The condition or disorder may either be caused or characterized by abnormal GSK3 activity.
  • GSK3- mediated disorders include, for example, type 2 diabetes, Alzheimer's disease and other neurodegenerative disorders, obesity, atherosclerotic cardiovascular disease, essential hypertension, polycystic ovary syndrome, syndrome X, ischemia, especially cerebral ischemia, traumatic brain injury, bipolar disorder, immunodeficiency, cancer and the like.
  • Successful treatment of a subject in accordance with the invention may result in the inducement of a reduction or alleviation of symptoms in a subject afflicted with a medical or biological disorder to, for example, halt the further progression of the disorder, or the prevention of the disorder.
  • treatment of diabetes can result in a reduction in glucose or Hb Ale levels in the patient.
  • treatment of Alzheimer's disease can result in a reduction in rate of disease progression, detected, for example, by measuring a reduction in the rate of increase of dementia.
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity ofthe specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity ofthe particular disease undergoing therapy. The therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment ofthe ordinary clinician.
  • a therapeutically effective dose will generally be from about 0.1 mg/kg/day to about 100 mg/kg/day, preferably from about 1 mg/kg/day to about 20 mg/kg/day, and most preferably from about 2 mg/kg/day to about 10 mg/kg/day of a GSK3 inhibitor compound of the present invention, which may be administered in one or multiple doses.
  • the compounds of the present invention can also be administered in the form of liposomes.
  • liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multilamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used.
  • the present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like.
  • the preferred lipids are the phospholipids and phosphatidyl cholines (lecithins), both natural and synthetic- Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.W., p. 33 etseq (1976).
  • While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other agents used in the treatment of disorders.
  • Representative agents useful in combination with the compounds of the invention for the treatment of type 2 diabetes include, for example, insulin, troglitazone, rosiglitazone, pioglitazone, glipizide, metformin, sulfonylurea, acarbose, and the like.
  • Representative agents useful in combination with the compounds of the invention for the treatment of Alzheimer's disease include, for example, donepezil, tacrine and the like.
  • Representative agents useful in combination with the compounds of the invention for the treatment of bipolar disease include, for example, lithium salts, valproate, carba azepine and the like.
  • a representative agent useful in combination with the compounds of the invention for the treatment of stroke is, for example, tissue plasminogen activator.
  • the additional active agents may generally be employed in therapeutic amounts as indicated in the PHYSICIANS' DESK REFERENCE (PDR) 53 rd Edition (1999), which is incorporated herein by reference, or such therapeutically useful amounts as would be known to one of ordinary skill in the art.
  • the compounds of the invention and the other therapeutically active agents can be administered at the recommended maximum clinical dosage or at lower doses. Dosage levels ofthe active compounds in the compositions of the invention may be varied so as to obtain a desired therapeutic response depending on the route of administration, severity of the disease and the response of the patient.
  • the combination can be administered as separate compositions or as a single dosage form containing both agents.
  • the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.
  • TLC thin layer chromatography
  • Mass spectrometric analysis was performed on a Fisons NG Electrospray Mass Spectrometer. All masses are reported as those ofthe protonated parent ions.
  • NMR Nuclear magnetic resonance
  • Preparative separations were carried out using either a Flash 40 chromatography system and KP-Sil, 60A (Biotage, Charlottesville, Virginia), a Chromatotron radial chromatography device (Harrison Research, Palo Alto, California), or by HPLC using a C- 18 reversed phase column.
  • Typical solvents employed were dichloromethane, methanol, ethyl acetate and triethyl .-mine.
  • Step A Knoevenagel Condensation A suspension of benzaldehyde-bound resin (lg, 0.52 mmol) in 8 ml of 1:1 alcoho dioxane was treated with 2.2 mole ⁇ -ketoester arid 1.3 mmol an amine, e.g., piperidine. The reaction mixture was shaken for 20 hours at room temperature and the resin was then filtered and washed with 4 x 10 ml dichloromethane (DCM).
  • DCM dichloromethane
  • Step B Cyclization and Oxidation to the Pyrimidine Nucleus
  • the product froni Step A (100 mg, 0.052 mmol) was combined with 0.26 mmol of the pyrazole carboxamidine hydrochloride and 0.13 mmol NaHCO 3 in 1 ml N- methylpyrrolidinone.
  • the reaction mixture was shaken at 70°C for 24 hours. Following cooling, the reaction was washed successively with water, methanol, DMF, methylene chloride and ether, then dried. Cleavage of a small amount of resin indicated that the desired dihydropyrimidine was present in high yield.
  • the dried resin was then taken up in THF and 1.1 eq. of dicyanodichloroquinone (DDQ) was added. The resulting slurry was stirred for 0.5 hours at which time the resin was washed with DMF, 10% Na 2 HCO 3 , H 2 O, dimethylformamide (DMF), methanol (MeOH), methylene chloride and ether, then dried. Cleavage of a small amount of this resin with trifluoroacetic acid/methylene chloride indicated the presence of a pyrimidine in high yield.
  • DDQ dicyanodichloroquinone
  • Step C Amine Displacement and Release from the Solid Support
  • Example 3 Solid Phase Synthesis of Pyrimidine Compounds: (Resin Method B) Step 1: Sasrin resin (Bachem Biosciences, 5.0 g, nominal substitution 1.02 mmol/g) was shaken with triphenylphosphine dibromide (2.3 g) in dry dichloromethane (60-70 ml) for 4 hours at room temperature. All solvents and glassware used to carry out this reaction were dry. The resin was washed well with dichloromethane.
  • Step 2 The resin from Step 1 was then reacted with a primary amine (0.5-1 M) in 1-methylpyrrolidone (NMP) at 70-80°C for 3-5 hours to produce an aminomethyl resin, which was used immediately after preparation.
  • NMP 1-methylpyrrolidone
  • the resin was then thoroughly washed with dimethylsulfoxide (DMSO) (or DMF) and dichloromethane, then dried in vacuo at room temperature.
  • DMSO dimethylsulfoxide
  • Step 3 After drying, the resin was coupled overnight with 4-acetylbenzoic acid using benzotriazole- 1-yl-oxy-tris-pyrollidino-phosphonium hexafluorophosphate (PyBop ® , which is available from Novabiochem, San Diego, California), 4-methylmorpholine and NMP in accordance with the method described in Example 10 (i.e., "Resin Method C") (except that cleavage of the product from the resin was carried out under more strongly acidic conditions, i.e., typically 20-100% trifluoroacetic acid (TFA) in DCM (e.g., 60% TFA in DCM)).
  • TFA trifluoroacetic acid
  • resin having a pendant CH 2 OH group can also be used in carrying out this method such as, for example, Wang resin (Novabiochem, San Diego, California). It is also possible to load the primary amine onto a solid support by other methods such as, for example, reductive amination of a solid support containing an aldehyde. Examples 4-9 describe the synthesis of compounds of the present invention pursuant to Resin Method B.
  • Step 2 Sasrin resin (10 g) was shaken with triphenylphosphine dibromide (4.5 g) in dry dichloromethane (ca. 80 ml) at room temperature for 4 hours. The resin was washed well with dichloromethane and air-dried briefly. The air-dried resin was divided into 6 equal portions. One portion was heated at 70°C for 4 hours with a solution of 3- bromobenzylamine (8 mmol) in NMP (12 ml). The resin was washed well with DMF and dichloromethane and dried overnight in vacuo at room temperature.
  • the dried resin was then shaken with a solution of PyBop ® (3.12 g, 6 mmol), 4-acetylbenzoic acid (1.0 g, 6 mmol), and 4-methylmorpholine (12 mmol) in NMP (12 ml) at room temperature overnight.
  • the resin was washed with DMF, DMSO and dichloromethane and briefly air- dried.
  • the resin was then heated with N,N-dimethylformamide dimethylacetal (10 ml) at 95°C for 9 hours. After cooling, the resin was washed with dichloromethane and dried in vacuo at room temperature.
  • Step 2 The guanidine from Step 1 (120 mg) was reacted with the resin prepared as in Example 4, Step 2 (80 mg) in the presence of cesium carbonate (160 mg) in NMP (2 ml) at 90°C overnight. Treatment ofthe resin with 60% TFA in dichloromethane gave the title compound. HPLC: 23.70 min (98% purity)
  • Step 2 The Sasrin resin was prepared as described in Step 2 of Example 3.
  • the resin 500 mg was heated with a solution of 3-methoxybenzylamine (600 ⁇ l) in NMP (6 ml) at 70°C for 4 hours.
  • the resin was then washed with DMF and dichloromethane and then shaken with a solution of PyBop ® (1.04 g, 2 mmol), 4-acetylbenzoic acid (0.33 g, 2 mmol), 4-methylmorpholine (4 mmol) in NMP (6 ml) at room temperature overnight.
  • Step 1 4-Nitroimidazole (5.0 g, 44 mol) in DMF:THF (1:1 (v/v), 40 ml) was treated at room temperature with 60% NaH (2.2 g). When hydrogen evolution had ceased, 3-bromopro ⁇ ylphthalimide (11.79 g, 44 mmol) was added, followed by heating at 70°C overnight. The mixture was cooled, diluted with dichloromethane and carefully quenched with water. At this point the solid product precipitated out to give 2-[3-(4- nitroimidazolyl)propyl]isoindoline-l,3-dione as a white solid, 8.85 g.
  • Step 2 The Sasrin resin (prepared according to Example 3, Step 2) (2.5 g) was heated at 80°C with 4-hydroxyacetophehone (700 mg) and cesium carbonate (600 mg) in NMP (10 ml) for 24 hours. The resin was then washed with DMF, water, DMF and dichloromethane and dried in vacuo. The dried resin was then heated overnight with DMFDMA (10 ml) at 105°C. The resin was cooled, filtered and washed well with dichloromethane and dried in vacuo. The dried resin (100 mg) was then treated with 100 mg of the guanidine prepared in Step 1, 200 mg of cesium carbonate and.3 ml of NMP at 105°C for 66 h.
  • Bromomethyl sasrin resin (prepared according to Example 3, Step 2), 0.9 g, was heated with benzyl 4-hydroxyphenyl ketone (1.06 g, 5 mmol) and cesium carbonate (1.6 g) in NMP (8 ml) at 80°C overnight. The resin was washed serially with DMF, water, DMF and dichloromethane and dried in vacuo. The dried resin was heated with DMFDMA (8 ml) at 100°C overnight. After cooling the resin was filtered and washed well with dichloromethane, then dried in vacuo.
  • Example 9 Synthesis of r(3-Bromophenyl)methyll( ⁇ 4-[2-( ⁇ 2-[(5-nitro(2- pyridyl))amino1ethyl ⁇ amino)pyrimidine-4-yl]phenyl ⁇ sulfonyl)amine
  • Step 1 Sasrin resin (500 mg) substituted with m-bromobenzylamine (according to Step 1 of Example 3) was treated with 4-acetylbenzenesulfonyl chloride (1.1 g, 5 mmol) and DIEA (1.22 ml, 7 mmol) in dichloromethane (10 ml) with shaking at room temperature for 0.5 hours.
  • Step 2 The resin prepared in Step 1 (70 mg) was treated with amino[2-[(5-nitro(2- pyridyl)amino]ethyl ⁇ carboxamidir-ium 4-methylbenzenesulfonate (100 mg) and cesium carbonate (160 mg) in NMP 2 ml) at 95°C overnight.
  • the resin was serially washed with DMSO, acetic acid, water, DMSO, dichloromethane and then treated with 60% TFA in dichloromethane at room temperature for 0.5 hours.
  • the resin was filtered off and the filtrate was concentrated in vacuo and lyophilized to give the title compound.
  • HPLC 26.62 min (100% purity)
  • Rink amide resin (Novabiochem, San Diego, CA, nominally 0.46 mmol/g substitution) was deprotected with 20% v/v piperidine in DMF (ca. 60 ml, 0.5 hours, room temperature). The resin was washed thoroughly with DMF and dichloromethane, then treated with 4-acetylbenzoic acid (8 mmol), PyBOP ® (8 mmol, Novabiochem), 4- methylmorpholine (12 mmol) and NMP (50 ml) for 8.5hours at room temperature on a wrist shaker. The resin was washed with DMF and dichloromethane, air dried, and then divided into 3 portions.
  • pyrimidines typically 100 mg of the above dried resin was mixed with 200-300 mg of anhydrous cesium carbonate, 80-200 mg (most usually 100 mg) of the appropriate guanidine as its tosylate salt and 2-3 ml of NMP. This mixture was heated at 90- 105°C for at least 12 hours. In many cases the reactions were allowed to proceed for about 65 hours at this temperature.
  • the resin was cooled, filtered and washed with DMSO, glacial acetic acid, water, DMSO and finally dichloromethane. The product was removed by treatment ofthe resin with 95:5 v/v dichloromethane/TFA for 0.5-1 hours at room temperature.
  • the resin was then filtered, washed with dichloromethane and the filtrates were concentrated on a rotary evaporator. An aliquot was withdrawn for HPLC analysis and the rest of the sample was lyophilized twice from a 1:1 acetonitrile:water solvent mixture, which usually gave the pyrimidine as a fluffy solid.
  • Examples 11-16 describe the synthesis of compounds of the present invention pursuant to Resin Method C.
  • 2-(2-Aminoethylamino)pyridine prepared from 2-chloropyridine and ethylenediamine in accordance with the method described in T. Mega et al., 1988, Bull. Chem. Soc. Japan 61:4315, which is incorporated herein by reference
  • 6 mmol was treated with benzotriazole carboxamidinium 4-methylbenzenesulfonatesulfonate (2.0 g, 6 mmol) and DIEA (1.05 ml, 6 mmol) in anhydrous acetonitrile (10 ml) for 65 hours.
  • Ether ca. 10 ml
  • 2-Chloro-6-methoxypyridine (5.0 g). was heated with ethylenediamine (30 ml) at 120°C overnight. The excess ethylenediamine was removed by rotary evaporation. The residue was dissolved in a small volume of 2.5 M aqueous sodium hydroxide and extracted thoroughly with dichloromethane. The combined organic layers were washed with saturated aqueous sodium chloride, dried over sodium sulfate and concentrated in vacuo to give (2-aminoethyl)(6-methoxy(2-pyridyl)amine as an orange syrup.
  • Step 2 The resin prepared in Step 1 (150 mg) was treated with amino(2-(2- pyridyl)ethyl)carboxamidinium 4-methylbenzenesulfonate (200 mg) and cesium carbonate
  • Second amine displacement was typically conducted at a higher temperature in NMP, for example for 48 hours at 120- 130°C.
  • the resin was again washed and treated with 100% TFA for 0.5-1 hours to obtain the 2,4-diaminopyrimidine, which was frequently obtained as a solid after lyophilization from a mixture of acetonitrile and water.
  • Examples 18-19 describe the synthesis of compounds of the present invention pursuant to Resin Method D.
  • Example 18 Synthesis of (3-chlorophenyl)methyl [2-( ⁇ 2-r(5-nitro(2-pyridyl))amino]- ethyl) amino)pyrimidin-4-yl1 amine
  • Bromomethyl Sasrin resin (prepared as in Step 1 of Example 3, 0.9 g) was heated with 3-chlorobenzylamine (1 ml) in NMP (8 ml) at 80°C for 1.5 hours, then overnight at room temperature. The resin was washed with DMF and dichloromethane and dried in vacuo.
  • Example 19 Synthesis of Ethyl-4- ⁇ [(3 -cyanophenyl)methyl] amino ⁇ - 2-( ⁇ 2-r(5-nitro(2-pyridyl)aminole-hyl ⁇ amino)pyrimidine-5-carboxylate
  • Bromomethyl Sasrin resin prepared as in Step 1 of Example 3, 1.0 g was reacted with 4-cyanobenzylamine (1.5 ml) in NMP (8 ml) at 80°C for 4 hours. The resin was washed with DMF and dichloromethane and dried in vacuo at room temperature.
  • Step 1 2-Amino-6-chloro-3-nitropyridine (obtained from 2,6-dichloro-3-nitro- pyridine by the method of V.W. von Bebenberg, Chemiker-Zeitung, 103:387 (1979), which is incorporated herein by reference) (2.65 g) was treated at room temperature with ethylenediamine (5 ml). The temperature was gradually raised to 100°C. After 4 h the excess ethylenediamine was removed by rotary evaporation. The residue was partitioned between dichloromethane and 2.5 M aqueous sodium hydroxide.
  • Step 2 Bromomethyl Sasrin resin, prepared according to Step 1 of Example 3, was heated with benzylamine (2 ml) in NMP (6 ml) at 70°C for 4 hours. The resin was washed with DMF and dichloromethane and dried in vacuo. The dried resin (100 mg) was heated with 2,6-dichloro-3-nitropyridine (190 mg, 1 mmol) and cesium carbonate (100 mg) in
  • This resin was treated with 0.1 M DDQ in THF (1.1 ml, 0.11 mmol) for 3 hours at room temperature.
  • the resin was filtered and washed with DMF, saturated NaHCO 3 (aq), water, methanol, DMF, DCM, then dried.
  • the resin was treated with 95% TF A/water for 1 hour at room temperature, then filtered and washed with DCM. The filtrate and washings were combined and evaporated. The residue was dissolved in acetonitrile/water (1:1) then lyophilized.
  • Example 25 Solution Phase Synthesis (Solution Method A) A carbonyl-containing compound (e.g., ⁇ -keto esters, ⁇ -keto sulfones, ⁇ -keto nitriles, ⁇ -nitro ketones, and the like) was dissolved in a suitable organic solvent (usually THF) and treated with a slight excess (1.2-2 equivalents) of DMFDMA. The mixture was heated at 60-80°C for 3-15 hours, most typically 3-5 hours. The reaction mixture was then cooled.
  • a suitable organic solvent usually THF
  • chromatographic purification was performed, either by semi-preparative HPLC or by radial chromatography using silica gel plates on a Chromatotron (Harrison Research, Palo Alto, CA) eluting with mixtures of dichloromethane and methanol. Larger scale reactions were performed in round bottom flasks using typical organic chemistry apparatus. Examples 31, 35-45, and 50-59 describe the synthesis of compounds ofthe present invention pursuant to Solution Method A.
  • Step 2 The acid described in Step 1 was converted to the ⁇ -keto ester as follows.
  • the acid (5.6 g., 27 mmol) in dry THF (100 ml) was treated at room temperature with oxalyl chloride (40 mmol) followed by several drops of DMF. The mixture was then refluxed for 2 hours. The solvent was removed in vacuo to give a yellow solid acid chloride.
  • Potassium ethyl malonate (Aidrich Chemical Co., 9.2 g, 54 mmol) and anhydrous magnesium chloride (6.48 g) were mixed in dry acetonitrile (100 ml). Then triethylamine (6 ml) was added and the mixture stirred at room temperature for 4 hours.
  • Step 3 The ⁇ -keto ester from Step 2 (83 mg, 0.3 mmol) was heated with
  • Step 2 The acid from Step. 1 was converted to the acid chloride by refluxing in a mixture of oxalyl chloride (1.3 ml), THF (20 ml) and several drops of DMF. Small portions of oxalyl chloride were added until the reaction was homogeneous. Reflux continued for 0.5 hours, then the solvent was removed in vacuo to give the crude acid chloride. Meanwhile, potassium ethyl malonate (2.7 g) was reacted with anhydrous magnesium chloride (1.9 g) and triethylamine (2.21 ml) in dry acetonitrile (50 ml) at room temperature for 3 hours.
  • Triethylamine (1 ml) was added, followed by addition of a solution of the acid chloride in acetonitrile. The mixture was then stirred overnight at room temperature, then concentrated to dryness. The residue was partitioned between toluene and 10% aqueous HCI. The organic layer was washed with 10% HCI and water, dried and was then concentrated to give crude ethyl 3-(4-(2-fixryl)phenyl)-3-oxopropanoate as a solid.
  • Step 3 The ⁇ -keto ester prepared in Step 2 (76 mg, 0.3 mmol) was dissolved in dry THF (2 ml) and heated with DMFDMA (60 ⁇ l) at 70°C for 4 hours. This solution was then added to a mixture of amino[2-[(5-nitro(2-pyridyl)amino]ethyl ⁇ carboxamidinium 4- methylbenzenesulfonate (120 mg, 0.3 mmol) and cesium carbonate (160 mg) and then heated at 80°C overnight to give ethyl 4-(4-(2-fi ⁇ ryl)phenyl)-2-( ⁇ 2-[(5-nitro(2- pyridyl))amino]ethyl ⁇ amino)pyrimidine-5-carboxylate.
  • HPLC 32.05 min (80% purity)
  • Step 2 The amine from Step 1 (1.2 g, 6 mmol) was shaken with benzotriazole carboxamidinium 4-methylbenzenesulfonate (2.0 g, 6 mmol) and DIEA (1.05 ml, 6 mmol) in dry acetonitrile (10 ml) at room temperature overnight. Addition of ether resulted in the precipitation of amino ⁇ 2-[(4-methyl-5-nitro(2-pyridyl))amino]ethyl ⁇ carboxamidinium 4- methylbenzenesulfonate as a yellow solid .
  • Step 3 Ethyl 3-(4-cyanopheny ⁇ )-3-oxopropanoate (64 mg, 0.3 mmol) in THF (1 ml) and DMFDMA (0.3 mmol) was heated at 70°C for 3 hours. The solution was added to a mixture of the guanidine from Step 2 ( 123 mg, 0.3 mmol), 1.0 M sodium ethoxide in ethanol (0.35 ml) and ethanol (1 ml). The mixture was then heated overnight at 80°C, cooled, diluted with dichloromethane, then washed with saturated sodium bicarbonate solution. The organic layer was concentrated in vacuo, redissolved in acetonitrile and the product precipitated with water. HPLC: 27.63 min (85% pure)
  • Step 1 2-Chloro-5-(trifluoromethyl)pyridine (5.0 g) was heated with ethylenediamine (20 ml) at 120°C overnight. The excess ethylenediamine was removed by rotary evaporation and the residue was partitioned between dichloromethane and 2.5 M aqueous sodium hydroxide. The aqueous layer was extracted 5 times further with dichloromethane. The combined organic layers were washed with a saturated aqueous sodium chloride solution, dried, then concentrated in vacuo to give (2-aminoethyl)[5-
  • Step 2 The amine from Step 1 (1.1 g, 5.36 mmol) was treated with benzotriazole carboxamidinium 4-methylbenzenesulfonate (1.78 g, 5.36 mmol) and DIEA (0.93 ml, 5.36 mmol) in acetonitrile (6 ml) with shaking at room temperature overnight. Addition of ether gave amino(2- ⁇ [5-(trifluoromethyl)(2-pyridyl)]amino ⁇ ethyl)carboxamidinium 4- methylbenzenesulfonate as a white solid.
  • Step 3 Ethyl 3-(4-cyanophenyl)-3-oxopropanoate (64 mg, 0.3 mmol) was heated in THF (1 ml) with DMFDMA (50 ⁇ l) at 70°C for 4 hours. This solution was added to a mixture ofthe guanidine from Step 2 (123 mg, 0.3 mmol), 1.0 M sodium ethoxide in ethanol (0.35 ml) and dry ethanol (1 ml). This mixture was heated at 80°C overnight, then concentrated in vacuo. The residue was taken up in dichloromethane and washed with a saturated aqueous sodium bicarbonate solution. The organic layer was concentrated in vacuo. The residue was taken up in acetonitrile. Addition of water gave a precipitate that was filtered off and dried to give the title compound.
  • Step 1 2,4-Dichlorophenacyl chloride (1.42 g, 6.4 mmol) and imidazole (1.18 g, 16 mmol) were heated in toluene (40 ml) at 75°C for 2.25 hours. The mixture was concentrated to dryness in vacuo. The residue was dissolved in dichloromethane and washed with 5% aqueous potassium carbonate solution and water, dried and concentrated in vacuo. The crude product was purified by passage over a pad of silica gel, eluting with 5% methanol in dichloromethane to give l-(2,4-dichlorophenyl)-2-imidazolylethan-l-one as an orange oil.
  • Step 2 The product of Step 1 (95 mg) was heated with DMFDMA (2 ml) at 105°C for 9 hours. The solvent was removed in vacuo and the residue was dissolved in dry THF (2 ml) and added to a mixture of amino[2-[(5-mtro(2-pyridyl)amino]ethyl ⁇ - carboxamidinium 4-methylbenzenesulfonate (100 mg, 0.3 mmol) and cesium carbonate (200 mg). The mixture was heated overnight at 80°C, then concentrated in vacuo. The residue was taken up in dichloromethane and washed with saturated aqueous sodium bicarbonate. The organic layer was concentrated in vacuo.
  • Step 1 4-Cyanophenacyl bromide (0.72 g, 3.2 mmol) and imidazole (0.55 g, 8 mmol) were heated at 75°C in toluene (20 ml) for 2.5 hours. The mixture was concentrated to dryness in vacuo. The residue was dissolved in dichloromethane and washed with a 5% aqueous potassium carbonate solution and water, dried and concentrated in vacuo to give a pink solid (0.35 g). This method is a variation of the one described in
  • Step 2 l-(4-Cyanophenyl)-2-imidazolylethan-l-one (from Step 1, 63 mg, 0.3 mmol) was heated with DMFDMA (2 ml) at 105°C for 9 hours. The solvent was removed in vacuo and the residue was dissolved in dry THF (2 ml) and added to a mixture of amino[2-[(6-amino-5-nitro(2-pyridyl))amino]ethyl ⁇ carboxamidi ⁇ ium 4-methylbenzene- sulfonate (105 mg, 0.3 mmol) and cesium carbonate (200 mg). The mixture was heated overnight at 80°C, then concentrated in vacuo.
  • DMFDMA (10 ml/mmol of ketone) was stirred at reflux for 12 hours. After concentration of this solution, the resulting solid was redissolved in DMF (10 ml/mmol). Cs 2 CO 3 (3 mmol) and (2-(6-amino-5-nitro(2-pyridyl)amino)ethyl)carboxamidinium 4- methylbenzenesulfonate (1.5 mmol) were added, and the mixture stirred for 8 hours at
  • chromatographic purification was performed, either by semi- preparative HPLC or by radial chromatography using silica gel plates on a Chromatotron (Harrison Research, Palo Alto, CA) eluting with mixtures of dichloromethane and methanol. Larger scale reactions were performed in round bottom flasks using typical organic chemistry apparatus. Examples 61-66 describe the synthesis of compounds prepared pursuant to Solution Method B.
  • Example 62 Synthesis of (5-Ethyl-4-phenylpyrimid-2-yl)[2-(2-pyridylamino)ethyl]amine Butyrophenone (0.5 mmol) was heated with DMFDMA (300 ⁇ l) at 90°C for 8.5 hours. The solvent was removed by rotary evaporation. The residue was dissolved in isopropanol (2 ml) and added to 170 mg (0.5 mmol) of amino[2-(2- pyridylamino)ethyl]carboxamidinium 4-methylbenzenesulfonate and powdered sodium hydroxide (70 mg). The mixture was heated at 90°C overnight, then concentrated in vacuo.
  • Step 2 3-Acetylpyridine (37 mg, 0.3 mmol) was heated at 100°C in DMFDMA (1 ml) for 8 hours. The solvent was removed by rotary evaporation and the residue was dissolved in dry THF (2 ml) and added to a mixture of cesium carbonate (160 mg) and 120 mg (0.3 mmol) of the guanidine prepared in Step 1. The mixture was then heated at 80°C overnight, then concentrated in vacuo.
  • Step 1 A mixture of 2,4-dichlorobenzoyl chloride (4.5 g) and copper (I) iodide
  • Step 2 The ketone from Step 1 (108 mg, 0.5 mmol) was heated at 95°C overnight with DMFDMA (1.5 ml). The solvent was removed in vacuo and the residue was dissolved in dry ethanol (2 ml) and added to a mixture of amino[2-[(5-nitro(2- pyridyl)amino]ethyl ⁇ carboxamidinium 4-methylbenzenesulfonate (200 mg), 1.0 M sodium ethoxide (0.6 ml) and dry ethanol (2 ml). This mixture was heated at 85°C overnight, then concentrated in vacuo, redissolved in dichloromethane and washed with saturated sodium bicarbonate solution. The organic layer was concentrated in vacuo.
  • Step 1 Dry DMF (22 ml) was cooled to 0°C under argon. Phosphorous oxychloride (9.2 g) was added dropwise to the cooled DMF. The mixture was removed from the cooling bath and stirring continued for 1 hour. Then, 4-fluorophenylacetic acid
  • Step 2 The vinylogous amidinium salt obtained in Step 1 (100 mg, 0.3 mmol) was treated with dry ethanol (2 ml) and amino ⁇ 2-[(5-ni-ro(2-pyridyl)amino]ethyl ⁇ carboxamidir ⁇ ium 4- methylbenzenesulfonate (180 mg, 0.45 mmol). Then, 0.45 ml of a 1.0 M solution of sodium ethoxide in ethanol was added and the mixture was shaken 0.5 hours at room temperature. Another 0.3 ml of sodium ethoxide solution was added, followed by heating at 70°C for 2 hours. The solvent was removed in vacuo. The residue was partitioned between dichloromethane and water.
  • Step 1 Ethyl 2,4-dichloropyrimidine-5-carboxylate (0.49 g, 2 mmol) and 2,4- dichloroaniline (0.33 g, 2 mmol) and DIEA (0.35 ml, 2 mmol) in acetonitrile (6 ml) were heated at 80°C for 36 hours. The mixture was cooled and the crystalline product, ethyl 4- [(2,4-dichlorophenyl)amino]-2-chloropyrimidine-5-carboxylate, 0.54 g was filtered off.
  • Step 2 The pyrimidine from Step 1 (69 mg, 0.2 mmol) was heated with DIEA (100 ⁇ L), and (2-aminoethyl)(5-mtro(2-pyridyl))amine (36 mg, 0.2 mmol) in NMP (3 ml) at 105°C for 14 hours. The reaction was cooled, poured into water and extracted with ethyl acetate.
  • tert-butyl 6-chloropyridine-3-carboxylate was heated with ethylenediamine (20 ml) at 80°C overnight. The solvent was removed in vacuo. The residue was partitioned between dichloromethane and 2.5 M aqueous sodium hydroxide solution. The aqueous layer was extracted a further three times with dichloromethane. The combined organic layers were washed with water, dried and concentrated in vacuo to give tert-butyl 6-[(2- aminoethyl)amino]pyridine-3-carboxylate.
  • Step 2 t-Butyl 6-[(2-- ⁇ minoe1hyl)amino]pyridine-3-carboxylate (1.42 g, 6 mmol), benzotriazole carboxamidinium 4-methylbenzenesulfonate (2.0 g, 6 mmol) and DIEA (1.05 ml, 6 mmol) were shaken in a mixture of dry acetonitrile (10 ml) and DMF (2 ml) overnight.
  • Example 70 Synthesis of 6-[(2- ⁇ [4-(4-cyanophenyl)-5-ethoxycarbonyl)pyrimidin-2- yl] amino ⁇ ethyl)amino]pyridine-3 -carboxylic Acid tert-Butyl 6-[(2 ⁇ [4-(4-cyanophenyl)-5-ethoxycarbonyl)pyrimidin-2- yl]amino ⁇ ethyl)amino]pyridine-3-carboxylate (prepared in Example 62, 220 mg) was shaken with 100% TFA for 1 hour at room temperature. The TFA was removed in vacuo. The residue was dissolved in acetonitrile and water was added. No precipitate formed.
  • Step 2 The acid chloride solution prepared in Step 1 (1.0 ml) was treated with dry methanol (1 ml). After standing approximately 1 hour at room temperature, the solvent was removed in vacuo to give the title compound.
  • Step 2 The amine from Step 1 (1.31 g) was treated with benzotriazole carboxamidinium 4-methylbenzenesulfonate (1.52 g) and DIEA (800 ⁇ l) in acetonitrile (15 ml) at room temperature overnight.
  • Step 3 Ethyl 3-(4-cyanophenyl)-3-oxopropanoate (65 mg, 0.3 mmol) was heated with DMFDMA (60 ⁇ L) in THF (1 ml) at 70°C for 3 h. This solution was then added to a mixture of the guanidine prepared in Step 2 (150 mg, 0.3 mmol), dry ethanol (1 ml) and 1.0 M sodium ethoxide in ethanol (0.35 ml) and heated at 80°C overnight. The solvents were removed in vacuo. The residue was partitioned between dichloromethane and saturated aqueous sodium bicarbonate solution. The organic layer was concentrated in vacuo. The residue was dissolved in acetonitrile. Addition of water gave the title compound as a yellow solid.
  • Aidrich or made by reacting ethylene diamine with 2-chloro-5-nitropyridine as per the procedure in example ⁇ 2-[(6-amino-5-nitro(2-pyridyl))amino]ethyl ⁇ [4-(2,4-dichloro- phenyl)-5-imidazol-2-ylpyrimidin-2-yl]amine or example 6-[(2- ⁇ [4-(2,4-dichlorophenyl)- 5-(4-memylimid- ⁇ zol-2-yl)pyrimidin-2-yl]ammo ⁇ emyl)a-nmo]pyridine-3-carbonitrile) and lH-pyrazole-1-carboxamidine hydrochloride (0.47 M) in acetonitrile (500 ml) were stirred overnight (ca.
  • 2-ylpyrimidin-2-yl]amine was prepared using the general method for [4-(2,4- dichlorophenyl)-5-imidazol-2-ylpyrimidin-2-yl] ⁇ 2-[(5-nitro(2-pyridyl))amino]ethyl ⁇ amine (see Example 74) with the exceptions noted below.
  • the aqueous solution was saturated with sodium chloride and extracted with a solution of 95 % ethyl acetate and 5% methanol (3 x 150 ml) and with a solution of 95% acetonitrile and 5% methanol (3 xl50 ml).
  • the organic extracts were combined and extracted with a saturated sodium chloride solution (2 x 75 ml).
  • the organic layer was dried with sodium sulfate, filtered, and concentrated under reduced pressure.
  • the crude yellow solid was triturated with ether (2 x 25 ml) and dried overnight in vacuo resulting in 2-(2-aminoethyl)amino-6-amino-5-nitropyridine in 99% yield.
  • Example 79 Preparation of 4- ⁇ 5 rimidazolyl-2-[(2- ⁇ [(4-nitrophenyl)sulfonyl] amino ⁇ ethyl)aminolpyrimidin-4-yl ⁇ benzenecarbonitrile
  • a mixture of 4- ⁇ 2-[(2-aminoethyl)amino]-5-imidazolylpyrimidin-4-yl ⁇ benzene- carbonitrile (30 mg, 0.098 mmol), chloro(4-nitrophenyl)sulfone (22 mg, 0.1 mmol), and H ⁇ nig's base (70 uL, 0.4 mmol) in DMA (500 uL) were heated to 80° C.
  • Example 80 Preparation of N-(2- ⁇ [4-(4-cyanophenyl)-5-imidazolylpyrimidin-2-yl1amino ⁇ ethyl)(3- nitrophenyl)carboxamide
  • EDC l-(3- dimethylaminopropyl
  • reaction mixture was concenfrated in vacuo and diluted with water and ethyl acetate.
  • the solution was extracted three times with ethyl acetate and dried over sodium sulfate to obtain 2- ⁇ N-[2-( ⁇ 2-[(6-amino-5-mtro(2- pyridyl))- ⁇ mino]ethyl ⁇ --mmo)-4-(2,4-dicMorophenyl)pyrimidin-5-yl]carbamoyl ⁇ benzoic acid.
  • l-(2,4-dichlorophenyl)-2-(4-pyridyl)ethan-l-one was synthesized as in Suzuki et al., "Facile dibenzoylation of picoline," J. Heterocycl. Chem. 22(6):1487-9 (1985). 1 mmol of l-(2,4-dichlorophenyl)-2-(4-pyridyl)ethan-l-one was heated to 80°C in neat DMF-DMA for six hours.
  • reaction mixture was concentrated in vacuo and the residue was purified by trituration with diethyl ether, using amino ⁇ 2-[(6-amino-5-nitro(2- pyridyl))amino]ethyl ⁇ carboxamidine hydrochloride (160mg, 0.58mmol, leq) and the enaminone (2E)- 1 -(2,4-dichlorophenyl)-3 -(dimethylamino)-2-(4-pyridyl)prop-2-en- 1 -one (202mg, 0.58mmol) and Cs 2 CO 3 (246mg, 1.3eq) in 5ml DMF at 95°C for 6h.
  • Trifluoromethyl tetrazole was made according to the procedure published in
  • Trifluromethyl tetrazole (lmmol), Cs 2 CO 3 (1.3 mmol) and l-(2,4-dichlorophenyl)-2-chloroethan-l-one (lmmol) were refluxed in DMF(2ml) overnight.
  • the reaction mixture was cooled and concentrated in vacuo, and then extracted into ethyl acetate and dried over sodium sulfate.
  • the extract was further purified by column chromatography on silica gel to yield l-(2,4-dichlorophenyl)-2- [5-(trifluoromethyl)(l,2,3,4-tetraazolyl)]ethan-l-one.
  • the reaction mixture was cooled and concenfrated in vacuo and the residue containing the enaminone was purified by column chromatography.
  • 1 mmol of the enaminone obtained above, lmmol of amino ⁇ 2- [(6- - ⁇ mmo-5-m ⁇ o(2-pyridyl))amino]ethyl ⁇ carboxamidine hydrochloride and 3 mmol of Cs 2 CO 3 was suspended in DMF and heated to 90°C for fourteen hours.
  • the reaction was cooled and concentrated in vacuo.
  • the residue was partitioned between water and ethyl acetate and the layers separated.
  • reaction mixture was concentrated in vacuo and diluted with water and ethyl acetate.
  • the solution was extracted three times with ethyl acetate and dried over sodium sulfate to obtain 2- ⁇ N-[2-( ⁇ 2-[(6-amino-5-nifro(2-pyridyl))amino]ethyl ⁇ amino)-4- (2,4-dichlorophenyl)pyrimidin-5-yl]carbamoyl ⁇ benzoic acid.
  • the crude material was purified by a silica gel column.
  • the product was eluted with ethyl acetate and a slowly increasing gradient of methanol reaching a final concentration of 8%.
  • the proper fractions were concenfrated under reduced pressure and dried in vacuo.
  • the solid was further purified by trituration with a small volume of 1 : 1 methanol and ethyl acetate.
  • the off-white solid was dried in vacuo to give 6-(2,4-dichlorophenyl)-5- imidazolylhydropyridin-2-one in 68% yield. 5.
  • the aqueous layer was transferred to a large beaker (2 L) and diluted with isopropyl ether (50 ml). The stirred mixture was basified (pH 7-8) by careful addition of sodium bicarbonate which leads to the formation of a sticky white solid. Dichloromethane (200 ml) was added and stirring continued for 10 min. The organic layer was separated and the aqueous layer was again extracted with dichloromethane (100 ml). The organic layers were combined and washed with sat. aq.
  • the residual solution was basified with IM sodium hydroxide solution ( ⁇ 100 ml).
  • the aqueous solution was saturated with sodium chloride and exfracted with a solution of 95 % ethyl acetate and 5% methanol (3 x 150 ml) and with a solution of 95% acetonitrile and 5% methanol (3 xl50 ml).
  • the organic extracts were combined and extracted with a saturated sodium chloride solution (2 x 70 ml).
  • the organic layer was dried with sodium sulfate, filtered, and concentrated under reduced pressure.
  • the crude white to tan solid was triturated with ether (2 x 50 ml) and dried overnight in vacuo resulting in 78% yield of 6- [(2-- ⁇ minoethyl)an ⁇ ino]pyridine-3-carbonitrile.
  • [4-(2,4-dicMorophenyl)-5-imidazolylpyrimidin-2-yl] ⁇ 2-[(6-methoxy-5-nitro(2- pyridyl))amino] ethyl ⁇ amine was prepared from [4-(2,4-dichlorophenyl)-5-imidazol-l- ylpyrimidin-2-ylethylamine in accordance to the procedure described above for the preparation of [4-(2,4-dicMorophenyl)-5-i-nidazol-2-ylpyrimidin-2-yl] ⁇ 2-[(6-methoxy-5- nifro(2-pyridyl))amino]ethyl ⁇ amine.
  • 6-[(2- ⁇ [4-(2,4-dichlorophenyl)-5-imidazolylpyrimidin-2-yl]amino ⁇ ethyl)amino]-3- nitropyridin-2-ol was prepared from [4-(2,4-dichlorophenyl)-5-imidazol-l-ylpyrimidin-2- yl] ⁇ 2-[(6-methoxy-5-nitro(2-pyridyl)amino]ethyl ⁇ amine (7mg, 0.01 mmol) by following the same procedure as described for the preparation of 6-[(2- ⁇ [4-(2,4-dichlorophenyl)-5- imidazol-2-ylpyrimidin-2-yl]amino ⁇ ethyl)amino]-3-nitropyridin-2-ol.
  • HPLC 2.46min (100% pure)
  • 3 -mtro(2-pyridyl) ⁇ dimethylamine was prepared from [4-(2,4-dichlorophenyl)-5-imidazol- l-ylpyrimidin-2-ylethylamine and 6-chloro-2-dimethylamino-3-nitro pyridine in accordance with the procedure described above for the preparation of [4-(2,4- dichlorophenyl)-5-imidazol-2-ylpyrimidin-2-yl] ⁇ 2-[(6-me ⁇ xy-5-mtro(2-pyridyl))amino]- ethyl ⁇ amine.
  • 6-chloro-2-methylamino-3-nitro-pyridine was prepared in accordance to the procedure described above for the preparation of 6-cUoro-2-dimethylamino-3 -nitro pyridine by using solution of methyl amine.
  • the crude product was purified by flash chromatography, eluting with 90% hexane: 10% ethyl acetate to 16 (300mg). HPLC: 12.06 min (85% pure)

Abstract

L'invention concerne de nouveaux composés à base de pyrimidine ou de pyridine, des compositions les renfermant, ainsi que des méthodes d'inhibition de l'activité de glycogène-synthase kinase (GSK3) in vitro et de traitement de maladies occasionnées par GSK3. Les méthodes, composés et compositions selon l'invention peuvent être employés seuls ou en combinaison avec d'autres agents pharmacologiquement actifs dans le traitement de maladies occasionnées par l'activité GSK3, telles que diabète, maladie d'Alzheimer et autres maladies neuro-dégénératives, obésité, maladies cardiovasculaires athéroscléreuses, hypertension artérielle essentielle, syndrome des ovaires polykystiques, syndrome X, ischémie, lésions cérébrales traumatiques, affections bipolaires, immunodéficience ou cancer.
PCT/US2001/042081 2000-09-06 2001-09-06 Inhibiteurs de glycogene-synthase kinase 3 WO2002020495A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020037003327A KR100816769B1 (ko) 2000-09-06 2001-09-06 글리코겐 합성효소 키나아제 3의 억제제
AU2001295026A AU2001295026B2 (en) 2000-09-06 2001-09-06 Inhibitors of glycogen synthase kinase 3
AU9502601A AU9502601A (en) 2000-09-06 2001-09-06 Inhibitors of glycogen synthase kinase 3
EP01975734A EP1317433A2 (fr) 2000-09-06 2001-09-06 Inhibiteurs de glycogene-synthase kinase 3
JP2002525117A JP2004514656A (ja) 2000-09-06 2001-09-06 グリコゲンシンターゼキナーゼ3のインヒビター
HK05104683.9A HK1072936A1 (en) 2000-09-06 2005-06-03 Inhibitors of glycogen synthase kinase 3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23048000P 2000-09-06 2000-09-06
US60/230,480 2000-09-06

Publications (2)

Publication Number Publication Date
WO2002020495A2 true WO2002020495A2 (fr) 2002-03-14
WO2002020495A3 WO2002020495A3 (fr) 2002-06-20

Family

ID=22865391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/042081 WO2002020495A2 (fr) 2000-09-06 2001-09-06 Inhibiteurs de glycogene-synthase kinase 3

Country Status (7)

Country Link
EP (1) EP1317433A2 (fr)
JP (1) JP2004514656A (fr)
KR (2) KR100860827B1 (fr)
CN (1) CN100506801C (fr)
AU (2) AU9502601A (fr)
HK (1) HK1072936A1 (fr)
WO (1) WO2002020495A2 (fr)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066480A2 (fr) * 2001-02-20 2002-08-29 Astrazeneca Ab 2-arylamino-pyrimidines pour le traitement de troubles associes a gsk3
WO2002079197A1 (fr) * 2001-03-29 2002-10-10 Vertex Pharmaceuticals Incorporated Inhibiteurs de kinases n-terminales c-jun (jnk) et autres proteineskinases
WO2003035639A1 (fr) * 2001-10-22 2003-05-01 Eisai Co., Ltd. Compose de pyrimidine et composition medicinale contenant ledit compose
WO2004037791A1 (fr) 2002-10-21 2004-05-06 Chiron Corporation Inhibiteurs de glycogene synthase kinase 3
WO2004054617A1 (fr) * 2002-12-13 2004-07-01 Kyowa Hakko Kogyo Co., Ltd. Agents prophylactiques et/ou agents therapeutiques pour maladies du systeme nerveux central
WO2004098607A1 (fr) * 2003-05-08 2004-11-18 Applied Research Systems Ars Holding N. V. Acétonitriles de pyridinyle
WO2005026155A1 (fr) * 2003-09-12 2005-03-24 Applied Research Systems Ars Holding N.V. Benzoxazole acétonitriles
WO2005026159A1 (fr) * 2003-09-12 2005-03-24 Applied Research Systems Ars Holding N.V. Benzoxazole acetonitriles
WO2005040135A1 (fr) * 2003-10-24 2005-05-06 Ono Pharmaceutical Co., Ltd. Medicament antistress et usage medical correspondant
WO2005075458A1 (fr) * 2004-02-10 2005-08-18 Sanofi-Aventis Derives de pyrimidine utilises en tant qu'antagonistes de recepteurs d'orexine
JP2006514006A (ja) * 2002-11-04 2006-04-27 バーテックス ファーマシューティカルズ インコーポレイテッド Jakインヒビターとしてのヘテロアリール−ピリミジン誘導体
JP2006514118A (ja) * 2002-11-21 2006-04-27 カイロン コーポレイション ホスホチジルイノシトール(pi)3−キナーゼインヒビターとしての2,4,6−三置換ピリミジン、および癌の処置におけるその使用
EP1674454A1 (fr) * 2003-10-17 2006-06-28 Nippon Kayaku Kabushiki Kaisha Derive 2-amino- 1,2,4|triazolo 1,5-a|pyrimidine substitue et utilisation de ce derive
JP2007513093A (ja) * 2003-12-03 2007-05-24 サイトピア・リサーチ・ピーティーワイ・リミテッド チューブリン阻害剤
US7304071B2 (en) * 2002-08-14 2007-12-04 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
US7312227B2 (en) * 2002-11-01 2007-12-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
US7348335B2 (en) * 2002-11-05 2008-03-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
WO2008111441A1 (fr) 2007-03-05 2008-09-18 Kyowa Hakko Kirin Co., Ltd. Composition pharmaceutique
US7465736B2 (en) 2002-06-14 2008-12-16 Laboratoires Serono S.A. Azole methylidene cyanide derivatives and their use as protein kinase modulators
US7507737B2 (en) 2006-03-31 2009-03-24 Janssen Pharmaceutica, N.V. Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4receptor
US7521446B2 (en) 2005-01-13 2009-04-21 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US7589087B2 (en) 2006-03-31 2009-09-15 Janssen Pharmaceutica, N.V. Benzoimidazol-2-yl pyridines as modulators of the histamine H4receptor
US7598244B2 (en) * 2003-06-03 2009-10-06 Nippon Kayaku Kabushiki Kaisha [1,2,4]triazolo[1,5,a]pyrimidin-2-ylurea derivative and use thereof
DE102008035552A1 (de) 2008-07-30 2010-02-04 Bayer Schering Pharma Aktiengesellschaft Substituierte Pyridine und ihre Verwendung
US7723340B2 (en) 2005-01-13 2010-05-25 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US7759342B2 (en) 2005-01-13 2010-07-20 Signal Pharmaceuticals, Llc Methods of treatment and prevention using haloaryl substituted aminopurines
US7786132B2 (en) 2004-12-17 2010-08-31 Amgen Inc. Aminopyrimidine compounds and methods of use
WO2010099217A1 (fr) 2009-02-25 2010-09-02 Braincells, Inc. Modulation de neurogenèse à l'aide de combinaisons de d-cyclosérine
US7790728B2 (en) 2005-07-29 2010-09-07 Laboratorios Almirall, S.A. Pyrazine derivatives useful as adenosine receptor antagonists
EP2258359A2 (fr) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenèse par modulation des récepteurs muscariniques avec sabcomeline
US7855202B2 (en) 2005-10-06 2010-12-21 Laboratorios Almirall, S.A. Imidazopyridine derivatives as A2B adenosine receptor antagonists
EP2275096A2 (fr) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenese par modulation des recepteurs muscariniques
EP2314289A1 (fr) 2005-10-31 2011-04-27 Braincells, Inc. Modulation de la neurogenese dont la médiation est assurée par récepteur gaba
WO2011063115A1 (fr) 2009-11-19 2011-05-26 Braincells Inc. Combinaison d'un agent nootropique avec un ou plusieurs agents neurogènes ou à effet neurogène par synergie pour stimuler ou intensifier la neurogenèse
EP2377530A2 (fr) 2005-10-21 2011-10-19 Braincells, Inc. Modulation de neurogénèse par inhibition PDE
EP2377531A2 (fr) 2006-05-09 2011-10-19 Braincells, Inc. Neurogénèse par modulation de l'angiotensine
US8084466B2 (en) 2007-12-18 2011-12-27 Janssen Pharmaceutica Nv Bicyclic heteroaryl-substituted imidazoles as modulators of the histamine H4 receptor
US8173808B2 (en) 2009-12-30 2012-05-08 Arqule, Inc. Substituted naphthalenyl-pyrimidine compounds
WO2012175711A1 (fr) 2011-06-24 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé pour prédire la réponse à une chimiothérapie d'un patient atteint d'un ostéosarcome
EP2554662A1 (fr) 2011-08-05 2013-02-06 M Maria Pia Cosma Procédés pour le traitement de maladies rétiniennes dégénératives
US8372042B2 (en) 2009-02-26 2013-02-12 Shl Group Ab Dose setting mechanism
US8563549B2 (en) 2006-01-20 2013-10-22 Novartis Ag Pyrimidine derivatives used as PI-3 kinase inhibitors
US8859575B2 (en) 2013-03-06 2014-10-14 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine modulators of the histamine h4 receptor
US8865894B2 (en) 2012-02-24 2014-10-21 Novartis Ag Oxazolidin-2-one compounds and uses thereof
US8957068B2 (en) 2011-09-27 2015-02-17 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
WO2015155738A2 (fr) 2014-04-09 2015-10-15 Christopher Rudd Utilisation d'inhibiteurs ou d'activateurs de gsk -3 qui modulent l'expression de pd -1 ou de t-bet pour moduler l'immunité due aux lymphocytes t
US9296733B2 (en) 2012-11-12 2016-03-29 Novartis Ag Oxazolidin-2-one-pyrimidine derivative and use thereof for the treatment of conditions, diseases and disorders dependent upon PI3 kinases
US9371311B2 (en) 2008-06-30 2016-06-21 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine derivatives
US9434719B2 (en) 2013-03-14 2016-09-06 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
WO2016210292A1 (fr) 2015-06-25 2016-12-29 Children's Medical Center Corporation Procédés et compositions se rapportant à l'expansion, l'enrichissement et la conservation de cellules souches hématopoïétiques
US9669168B2 (en) 2005-02-28 2017-06-06 Novo Nordisk A/S Dose setting mechanism for an injection device and having a preset feature
WO2017161001A1 (fr) 2016-03-15 2017-09-21 Children's Medical Center Corporation Procédés et compositions concernant l'expansion de cellules souches hématopoïétiques
EP3231434A1 (fr) 2016-04-14 2017-10-18 Fundacio Centre de Regulacio Genomica Procédé de traitement de la maladie de parkinson
WO2020163812A1 (fr) 2019-02-08 2020-08-13 Frequency Therapeutics, Inc. Composés d'acide valproïque et agonistes wnt pour le traitement de troubles de l'oreille
CN113293046A (zh) * 2021-05-26 2021-08-24 安徽博洋润滑科技有限公司 一种低发尘润滑脂及其制备方法
US11331313B2 (en) 2017-05-22 2022-05-17 Whitehead Institute For Biomedical Research KCC2 expression enhancing compounds and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0324551D0 (en) * 2003-10-21 2003-11-26 Karobio Ab Novel compounds
CN1980681A (zh) * 2004-07-09 2007-06-13 新加坡科技研究局 GSK-3β的调节及治疗增殖性病变的方法
JP6457942B2 (ja) * 2012-10-05 2019-01-23 ライジェル ファーマシューティカルズ, インコーポレイテッド Gdf−8阻害剤
GB201312800D0 (en) 2013-07-17 2013-08-28 Heptares Therapeutics Ltd mGlu5 modulators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710659A1 (fr) * 1994-11-02 1996-05-08 Takeda Chemical Industries, Ltd. Dérivés d'oxazolidinedione, leur fabrication et leur application
US5741796A (en) * 1994-05-27 1998-04-21 Merck & Co., Inc. Pyridyl and naphthyridyl compounds for inhibiting osteoclast-mediated bone resorption
WO1998024782A2 (fr) * 1996-12-05 1998-06-11 Amgen Inc. Composes pyrimidines substitues et leur utilisation
WO1999065897A1 (fr) * 1998-06-19 1999-12-23 Chiron Corporation Inhibiteurs de glycogene synthase kinase 3

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627922A1 (de) * 1986-08-18 1988-03-03 Henkel Kgaa Neue tetraaminopyrimidin-derivate und deren verwendung in haarfaerbemitteln
ZA959204B (en) * 1994-11-02 1997-04-30 Takeda Chemical Industries Ltd Oxazolidinedioe derivatives their production and use
EP0948497A2 (fr) * 1996-12-05 1999-10-13 Amgen inc. Composes pyrimidines substitues et leur utilisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741796A (en) * 1994-05-27 1998-04-21 Merck & Co., Inc. Pyridyl and naphthyridyl compounds for inhibiting osteoclast-mediated bone resorption
EP0710659A1 (fr) * 1994-11-02 1996-05-08 Takeda Chemical Industries, Ltd. Dérivés d'oxazolidinedione, leur fabrication et leur application
WO1998024782A2 (fr) * 1996-12-05 1998-06-11 Amgen Inc. Composes pyrimidines substitues et leur utilisation
WO1999065897A1 (fr) * 1998-06-19 1999-12-23 Chiron Corporation Inhibiteurs de glycogene synthase kinase 3

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.C.CONNOR: "ANTIDIABETIC EFFICACY OF BRL 49653" J. PHARM. PHARMACOL., vol. 49, no. 3, 1 March 1997 (1997-03-01), pages 336-344, XP002080751 ENGL. *

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066480A3 (fr) * 2001-02-20 2004-04-01 Astrazeneca Ab 2-arylamino-pyrimidines pour le traitement de troubles associes a gsk3
WO2002066480A2 (fr) * 2001-02-20 2002-08-29 Astrazeneca Ab 2-arylamino-pyrimidines pour le traitement de troubles associes a gsk3
US7078410B2 (en) 2001-02-20 2006-07-18 Astrazeneca Ab 2-arylamino-pyrimidines for the treatment of GSK3-related disorders
US6949544B2 (en) 2001-03-29 2005-09-27 Vertex Pharmaceuticals Incorporated Inhibitors of c-Jun N-terminal kinases (JNK) and other protein kinases
WO2002079197A1 (fr) * 2001-03-29 2002-10-10 Vertex Pharmaceuticals Incorporated Inhibiteurs de kinases n-terminales c-jun (jnk) et autres proteineskinases
WO2003035639A1 (fr) * 2001-10-22 2003-05-01 Eisai Co., Ltd. Compose de pyrimidine et composition medicinale contenant ledit compose
EP2246344A1 (fr) * 2001-10-22 2010-11-03 Eisai R&D Management Co., Ltd. Compose de pyrimidine et composition medicinale contenant ledit compose
US7396836B2 (en) 2001-10-22 2008-07-08 Eisai R&D Management Co., Ltd. Pyrimidine compound and medicinal composition thereof
US7465736B2 (en) 2002-06-14 2008-12-16 Laboratoires Serono S.A. Azole methylidene cyanide derivatives and their use as protein kinase modulators
AU2003262642B2 (en) * 2002-08-14 2010-06-17 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
US7304071B2 (en) * 2002-08-14 2007-12-04 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
US6989382B2 (en) 2002-10-21 2006-01-24 Chiron Corporation Carbocycle based inhibitors of glycogen synthase kinase 3
WO2004037791A1 (fr) 2002-10-21 2004-05-06 Chiron Corporation Inhibiteurs de glycogene synthase kinase 3
US7312227B2 (en) * 2002-11-01 2007-12-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
JP2011016839A (ja) * 2002-11-04 2011-01-27 Vertex Pharmaceuticals Inc Jakインヒビターとしてのヘテロアリール−ピリミジン誘導体
JP2006514006A (ja) * 2002-11-04 2006-04-27 バーテックス ファーマシューティカルズ インコーポレイテッド Jakインヒビターとしてのヘテロアリール−ピリミジン誘導体
US7348335B2 (en) * 2002-11-05 2008-03-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
JP2006514118A (ja) * 2002-11-21 2006-04-27 カイロン コーポレイション ホスホチジルイノシトール(pi)3−キナーゼインヒビターとしての2,4,6−三置換ピリミジン、および癌の処置におけるその使用
WO2004054617A1 (fr) * 2002-12-13 2004-07-01 Kyowa Hakko Kogyo Co., Ltd. Agents prophylactiques et/ou agents therapeutiques pour maladies du systeme nerveux central
JP4885709B2 (ja) * 2003-05-08 2012-02-29 メルク セローノ ソシエテ アノニム ピリジニルアセトニトリル類
JP2006525281A (ja) * 2003-05-08 2006-11-09 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ ピリジニルアセトニトリル類
WO2004098607A1 (fr) * 2003-05-08 2004-11-18 Applied Research Systems Ars Holding N. V. Acétonitriles de pyridinyle
AU2004237412B2 (en) * 2003-05-08 2010-03-11 Merck Serono Sa Pyridinyl acetonitriles
US7855212B2 (en) 2003-05-08 2010-12-21 Merck Serono Sa Pyridinyl acetonitriles
US7598244B2 (en) * 2003-06-03 2009-10-06 Nippon Kayaku Kabushiki Kaisha [1,2,4]triazolo[1,5,a]pyrimidin-2-ylurea derivative and use thereof
WO2005026159A1 (fr) * 2003-09-12 2005-03-24 Applied Research Systems Ars Holding N.V. Benzoxazole acetonitriles
JP2007505085A (ja) * 2003-09-12 2007-03-08 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ ベンゾイミダゾールアセトニトリル
WO2005026155A1 (fr) * 2003-09-12 2005-03-24 Applied Research Systems Ars Holding N.V. Benzoxazole acétonitriles
EP1674454A1 (fr) * 2003-10-17 2006-06-28 Nippon Kayaku Kabushiki Kaisha Derive 2-amino- 1,2,4|triazolo 1,5-a|pyrimidine substitue et utilisation de ce derive
EP1674454A4 (fr) * 2003-10-17 2006-12-27 Nippon Kayaku Kk Derive 2-amino- 1,2,4|triazolo 1,5-a|pyrimidine substitue et utilisation de ce derive
WO2005040135A1 (fr) * 2003-10-24 2005-05-06 Ono Pharmaceutical Co., Ltd. Medicament antistress et usage medical correspondant
US9732046B2 (en) 2003-12-03 2017-08-15 Ym Biosciences Australia Pty Ltd. Substituted 1,2,4-triazines as tubulin inhibitors
JP2011093930A (ja) * 2003-12-03 2011-05-12 Ym Biosciences Australia Pty Ltd チューブリン阻害剤
US9139560B2 (en) 2003-12-03 2015-09-22 Ym Biosciences Australia Pty Ltd. Substituted pyrazines as tubulin inhibitors
JP4772690B2 (ja) * 2003-12-03 2011-09-14 ワイエム・バイオサイエンシズ・オーストラリア・ピーティーワイ・リミテッド チューブリン阻害剤
JP2007513093A (ja) * 2003-12-03 2007-05-24 サイトピア・リサーチ・ピーティーワイ・リミテッド チューブリン阻害剤
JP2007522197A (ja) * 2004-02-10 2007-08-09 サノフイ−アベンテイス オレキシン受容体アンタゴニストとしてのピリミジン誘導体
WO2005075458A1 (fr) * 2004-02-10 2005-08-18 Sanofi-Aventis Derives de pyrimidine utilises en tant qu'antagonistes de recepteurs d'orexine
US7858785B2 (en) 2004-12-17 2010-12-28 Amgen Inc. Aminopyrimidine compounds and methods of use
US7786132B2 (en) 2004-12-17 2010-08-31 Amgen Inc. Aminopyrimidine compounds and methods of use
US8440661B2 (en) 2005-01-13 2013-05-14 Signal Pharmaceuticals, Llc Methods of modulating inflammatory cell recruitment and gene expression using haloaryl substituted aminopurines
US7759342B2 (en) 2005-01-13 2010-07-20 Signal Pharmaceuticals, Llc Methods of treatment and prevention using haloaryl substituted aminopurines
US8101588B2 (en) 2005-01-13 2012-01-24 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US7723340B2 (en) 2005-01-13 2010-05-25 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US9187479B2 (en) 2005-01-13 2015-11-17 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US7521446B2 (en) 2005-01-13 2009-04-21 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US9725450B2 (en) 2005-01-13 2017-08-08 Signal Pharmaceuticals, Llc Haloaryl substituted aminopurines, compositions thereof, and methods of treatment therewith
US9669168B2 (en) 2005-02-28 2017-06-06 Novo Nordisk A/S Dose setting mechanism for an injection device and having a preset feature
US7790728B2 (en) 2005-07-29 2010-09-07 Laboratorios Almirall, S.A. Pyrazine derivatives useful as adenosine receptor antagonists
EP2275096A2 (fr) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenese par modulation des recepteurs muscariniques
EP2258358A2 (fr) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenèse avec un inhibiteur de l'acetylcholinestérase
EP2258357A2 (fr) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenèse avec inhibiteur de l'acetylcholinestérase
EP2275095A2 (fr) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenese par modulation des recepteurs muscariniques
EP2258359A2 (fr) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenèse par modulation des récepteurs muscariniques avec sabcomeline
US7855202B2 (en) 2005-10-06 2010-12-21 Laboratorios Almirall, S.A. Imidazopyridine derivatives as A2B adenosine receptor antagonists
EP2377530A2 (fr) 2005-10-21 2011-10-19 Braincells, Inc. Modulation de neurogénèse par inhibition PDE
EP2314289A1 (fr) 2005-10-31 2011-04-27 Braincells, Inc. Modulation de la neurogenese dont la médiation est assurée par récepteur gaba
US8563549B2 (en) 2006-01-20 2013-10-22 Novartis Ag Pyrimidine derivatives used as PI-3 kinase inhibitors
US7589087B2 (en) 2006-03-31 2009-09-15 Janssen Pharmaceutica, N.V. Benzoimidazol-2-yl pyridines as modulators of the histamine H4receptor
US7507737B2 (en) 2006-03-31 2009-03-24 Janssen Pharmaceutica, N.V. Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4receptor
US8598189B2 (en) 2006-03-31 2013-12-03 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4 receptor
US8343989B2 (en) 2006-03-31 2013-01-01 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4 receptor
US9365548B2 (en) 2006-03-31 2016-06-14 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4 receptor
US8962644B2 (en) 2006-03-31 2015-02-24 Janssen Pharmaceutica, Nv Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4 receptor
EP2382975A2 (fr) 2006-05-09 2011-11-02 Braincells, Inc. Neurogénèse par modulation d'angiotensine
EP2377531A2 (fr) 2006-05-09 2011-10-19 Braincells, Inc. Neurogénèse par modulation de l'angiotensine
WO2008111441A1 (fr) 2007-03-05 2008-09-18 Kyowa Hakko Kirin Co., Ltd. Composition pharmaceutique
US8084466B2 (en) 2007-12-18 2011-12-27 Janssen Pharmaceutica Nv Bicyclic heteroaryl-substituted imidazoles as modulators of the histamine H4 receptor
US9371311B2 (en) 2008-06-30 2016-06-21 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine derivatives
WO2010012398A1 (fr) * 2008-07-30 2010-02-04 Bayer Schering Pharma Aktiengesellschaft Pyridines substituées et leur utilisation en tant qu'inhibiteurs de la gsk3
DE102008035552A1 (de) 2008-07-30 2010-02-04 Bayer Schering Pharma Aktiengesellschaft Substituierte Pyridine und ihre Verwendung
WO2010099217A1 (fr) 2009-02-25 2010-09-02 Braincells, Inc. Modulation de neurogenèse à l'aide de combinaisons de d-cyclosérine
US8372042B2 (en) 2009-02-26 2013-02-12 Shl Group Ab Dose setting mechanism
WO2011063115A1 (fr) 2009-11-19 2011-05-26 Braincells Inc. Combinaison d'un agent nootropique avec un ou plusieurs agents neurogènes ou à effet neurogène par synergie pour stimuler ou intensifier la neurogenèse
US8173808B2 (en) 2009-12-30 2012-05-08 Arqule, Inc. Substituted naphthalenyl-pyrimidine compounds
WO2012175711A1 (fr) 2011-06-24 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé pour prédire la réponse à une chimiothérapie d'un patient atteint d'un ostéosarcome
WO2013020945A1 (fr) 2011-08-05 2013-02-14 Maria Pia Cosma Méthodes de traitement de maladies de dégénérescence rétinienne
EP2554662A1 (fr) 2011-08-05 2013-02-06 M Maria Pia Cosma Procédés pour le traitement de maladies rétiniennes dégénératives
US8957068B2 (en) 2011-09-27 2015-02-17 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
US9458177B2 (en) 2012-02-24 2016-10-04 Novartis Ag Oxazolidin-2-one compounds and uses thereof
US8865894B2 (en) 2012-02-24 2014-10-21 Novartis Ag Oxazolidin-2-one compounds and uses thereof
US10202371B2 (en) 2012-11-12 2019-02-12 Novartis Ag Oxazolidin-2-one-pyrimidine derivatives and the use thereof as phosphatidylinositol-3-kinase inhibitors
US9296733B2 (en) 2012-11-12 2016-03-29 Novartis Ag Oxazolidin-2-one-pyrimidine derivative and use thereof for the treatment of conditions, diseases and disorders dependent upon PI3 kinases
US9663497B2 (en) 2013-03-06 2017-05-30 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine modulators of the histamine H4 receptor
US8859575B2 (en) 2013-03-06 2014-10-14 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine modulators of the histamine h4 receptor
US9434715B2 (en) 2013-03-06 2016-09-06 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine modulators of the histamine H4 receptor
US9278952B2 (en) 2013-03-06 2016-03-08 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidine modulators of the histamine H4 receptor
US10112931B2 (en) 2013-03-14 2018-10-30 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
US9434719B2 (en) 2013-03-14 2016-09-06 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
US9688672B2 (en) 2013-03-14 2017-06-27 Novartis Ag 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant IDH
WO2015155738A2 (fr) 2014-04-09 2015-10-15 Christopher Rudd Utilisation d'inhibiteurs ou d'activateurs de gsk -3 qui modulent l'expression de pd -1 ou de t-bet pour moduler l'immunité due aux lymphocytes t
WO2016210292A1 (fr) 2015-06-25 2016-12-29 Children's Medical Center Corporation Procédés et compositions se rapportant à l'expansion, l'enrichissement et la conservation de cellules souches hématopoïétiques
WO2017161001A1 (fr) 2016-03-15 2017-09-21 Children's Medical Center Corporation Procédés et compositions concernant l'expansion de cellules souches hématopoïétiques
EP4049665A1 (fr) 2016-03-15 2022-08-31 Children's Medical Center Corporation Procédés et compositions associées à l'expansion de cellules souches hématopoïétiques
EP3231434A1 (fr) 2016-04-14 2017-10-18 Fundacio Centre de Regulacio Genomica Procédé de traitement de la maladie de parkinson
US11331313B2 (en) 2017-05-22 2022-05-17 Whitehead Institute For Biomedical Research KCC2 expression enhancing compounds and uses thereof
WO2020163812A1 (fr) 2019-02-08 2020-08-13 Frequency Therapeutics, Inc. Composés d'acide valproïque et agonistes wnt pour le traitement de troubles de l'oreille
CN113293046A (zh) * 2021-05-26 2021-08-24 安徽博洋润滑科技有限公司 一种低发尘润滑脂及其制备方法
CN113293046B (zh) * 2021-05-26 2021-11-30 安徽博洋润滑科技有限公司 一种低发尘润滑脂及其制备方法

Also Published As

Publication number Publication date
KR100816769B1 (ko) 2008-03-26
CN1592743A (zh) 2005-03-09
EP1317433A2 (fr) 2003-06-11
HK1072936A1 (en) 2005-09-16
KR20040030404A (ko) 2004-04-09
CN100506801C (zh) 2009-07-01
KR20080013026A (ko) 2008-02-12
AU2001295026B2 (en) 2008-04-03
AU9502601A (en) 2002-03-22
WO2002020495A3 (fr) 2002-06-20
KR100860827B1 (ko) 2008-09-30
JP2004514656A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
EP1087963B1 (fr) Inhibiteurs de glycogene synthase kinase 3
US7425557B2 (en) Inhibitors of glycogen synthase kinase 3
KR100860827B1 (ko) 글리코겐 합성효소 키나아제 3의 억제제
AU2001295026A1 (en) Inhibitors of glycogen synthase kinase 3
EP1537099B1 (fr) Inhibiteurs de la glycogene synthase kinase 3 a base de pyrrole
EP1442024B1 (fr) Derives d'aminobenzamide utiles comme inhibiteurs de la glycogene synthase kinase 3$g(b)
CA2462289C (fr) Composes de tetrazole substitues par heteroaryle, modulateurs du recepteur-5 metabotropique du glutamate
JP5627574B2 (ja) 炎症性および線維性疾患を治療するための化合物および方法
AU2002363177A1 (en) Aminobenzamide derivatives as glycogen synthase kinase 3Beta inhibitors
WO2001044206A1 (fr) Inhibiteurs a base de pyrazine de glycogene synthase kinase 3
JP2004520402A (ja) Erk2の複素環式インヒビターおよびその使用
KR20110059778A (ko) H-pgds 억제제로서 다중헤테로아릴 화합물 및 프로스타글란딘 d2 매개된 질병의 치료를 위한 그의 용도
CA2502819A1 (fr) Inhibiteurs de glycogene synthase kinase 3

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002525117

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 277/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020037003327

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001295026

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001975734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018184251

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001975734

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037003327

Country of ref document: KR