WO2002017450A1 - Procede de fabrication de dispositif laser a semiconducteur - Google Patents

Procede de fabrication de dispositif laser a semiconducteur Download PDF

Info

Publication number
WO2002017450A1
WO2002017450A1 PCT/JP2001/007174 JP0107174W WO0217450A1 WO 2002017450 A1 WO2002017450 A1 WO 2002017450A1 JP 0107174 W JP0107174 W JP 0107174W WO 0217450 A1 WO0217450 A1 WO 0217450A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
film
cleavage
layer
semiconductor
Prior art date
Application number
PCT/JP2001/007174
Other languages
English (en)
French (fr)
Inventor
Kimihiko Saitoh
Akira Izumi
Hideki Matsumura
Original Assignee
Mitsui Chemicals Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc. filed Critical Mitsui Chemicals Inc.
Priority to JP2002522036A priority Critical patent/JP4275405B2/ja
Priority to EP01958389A priority patent/EP1251608B1/en
Priority to DE60123576T priority patent/DE60123576T2/de
Priority to US10/111,280 priority patent/US6703254B2/en
Publication of WO2002017450A1 publication Critical patent/WO2002017450A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments

Definitions

  • the present invention relates to a method for manufacturing a semiconductor laser device having high output and long-term reliability.
  • semiconductor lasers are used in various fields such as information and communication, printing, processing, and medical fields.However, to improve the performance, the output and reliability of the semiconductor laser, which is the light source, are improved. There is a need.
  • a semiconductor laser has a structure in which an active layer is sandwiched between p-type and n-type cladding layers.
  • the semiconductor substrate is cleaved along with the substrate on which it is laminated, and current is injected into the active layer using the cleaved surface as a resonator surface. This generates a laser beam.
  • one of the two cleavage planes serving as the resonator surface becomes the light emitting portion.
  • the two cleavage planes are coated with a dielectric film in order to adjust the reflectivity and suppress deterioration with time due to chemical reactions on the surface.
  • the natural oxide film on the cleavage plane has high-density surface states mainly due to the oxygen-bonding of Ga and As, which become non-radiative recombination centers. Absorbs the emitted light. Due to this light absorption, heat is generated in the vicinity of the cleavage plane, and the light absorption further increases due to a decrease in the forbidden band width of the active region. Finally, the cleavage plane is melted and the laser output is significantly reduced. For this reason, it is necessary to eliminate the formation of a natural oxide film on the cleavage plane, especially for the high output and high reliability of the semiconductor laser.
  • a protective layer is formed before the natural oxide film is formed without exposure to the atmosphere, or cleaved in the air.
  • a natural oxide film formed on the cleavage plane is removed by electron beam heating, laser irradiation, and plasma exposure using an inert gas to form a protective film.
  • heat the halogen gas at 400 ° C or higher.
  • a method has also been practiced in which the oxide layer is removed by a thermochemical reaction by exposing it to heat and a compound semiconductor layer or the like is formed thereon.
  • the natural oxide film and surface contaminants are mainly physically removed. Therefore, there is a concern that not only these are removed but also defects are introduced into the surface layer.
  • oxygen bonds of G a and As can be removed, but the defects introduced then work as recombination centers, and the improvement of these methods requires strict control of processing conditions and other factors. I needed to do it.
  • thermochemical reaction with a halogen gas requires heating to a temperature of 400 ° C or higher, electrodes cannot be formed before cleaving, and the protective film on the cleaved resonator surface cannot be formed. There is a problem that the process is complicated and complicated because the electrodes are formed after the formation.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to remove a natural oxide film formed on a cleavage plane and to form a protective film using a catalytic CVD apparatus.
  • a semiconductor thin film including a well layer is stacked on a semiconductor substrate, the semiconductor substrate is cleaved together with the semiconductor thin film, and the cleavage surfaces of the semiconductor substrate and the semiconductor thin film obtained by the cleavage are heated.
  • the gas containing N By exposing the gas containing N to the decomposed atmosphere in the presence of the catalyzed substance, the surface layer on the cleavage plane is removed and a nitride layer is formed on the surface, and then a dielectric film is formed on the cleavage plane
  • the semiconductor laser is thereafter formed of a natural oxide film formed on the cleavage surface in a vacuum device.
  • a gas containing radicalized N atoms in a catalytic CVD apparatus, it is possible to etch away the semiconductor thin film at a very low level at a low substrate temperature, and it is extremely chemically stable.
  • a nitride layer can be formed.
  • the gas containing N atoms include ammonia (NH 3 ) and hydrazine (NH 2 NH 2 ).
  • the nitride layer is a very desirable material from the viewpoint of semiconductor / dielectric film bonding because it has a wide band gap and terminates and reduces defects.
  • GaAs is generally used in III-V semiconductor lasers.
  • a GaN layer is formed.
  • a dielectric film is formed on the cleavage plane by forming a dielectric film on the cleavage plane, so that the temperature rise due to light absorption when laser light is emitted is reduced when the laser light is emitted. Melting of the open surface can be prevented.
  • the nitride layer formed on the cleavage plane from which the natural oxide film has been removed is chemically extremely stable, and does not re-oxidize even when exposed to the atmosphere. It is possible to go through the air from the step of exposing to the gas decomposition atmosphere containing, to the step of forming the dielectric film.
  • a plasma process such as sputtering is required for forming the dielectric film. This is preferable because plasma damage due to ion bombardment on the cleaved surface and the like is eliminated as compared with the case of using.
  • This silicon nitride film is formed by exposing a gas containing N and Si, or a gas containing N and a gas containing Si, to a decomposed atmosphere in the presence of a heated catalyst substance.
  • the well layer of the semiconductor laser manufactured by such a process is preferably made of a compound composed of a combination of any of In, Al, Ga, P and As. This is because these elements form a chemically stable nitride film.
  • FIG. 1 is a diagram illustrating a relationship between a holder and a cleavage plane according to an embodiment.
  • FIG. 2 is a schematic diagram of a catalytic CVD apparatus used in the example and its periphery.
  • FIG. 3 is a schematic diagram showing a semiconductor laser chip obtained according to the example.
  • FIG. 4 is an output characteristic diagram of the semiconductor laser obtained by the example.
  • FIG. 5 is an output characteristic diagram of the semiconductor laser obtained in the comparative example.
  • FIG. 6 is an XPS characteristic diagram of As3d and Ga3d of the samples obtained in the examples and the comparative examples.
  • FIG. 7 is an XPS characteristic diagram of N ls of the sample obtained in the example.
  • FIG. 8 is an XPS characteristic diagram of A12p of the samples obtained in the example and the comparative example. .
  • a semiconductor substrate, an active region formed on the semiconductor substrate, at least a pair of cladding layers sandwiching the active region, and a wafer on which semiconductor lasers including p-side and n-side electrodes are formed on upper and lower surfaces are formed by a desired method.
  • the semiconductor laser bar is cleaved in the form of a bar in the atmosphere or in nitrogen, etc., so as to have a cavity length, and the cleaved surface of the semiconductor laser bar is exposed to an atmosphere in which a gas containing N atoms is decomposed by a catalytic CVD device. It is installed in a vacuum device using a holder as shown in FIG.
  • a catalytic CVD device heats a filament such as tungsten, which is a catalytic substance, in a vacuum vessel, and sprays the raw material gas onto the filament to generate radicals of the raw material gas by thermal catalytic cracking utilizing the catalytic action.
  • a filament such as tungsten, which is a catalytic substance
  • the method of forming a film is described in detail in, for example, Hideki Matsumura, Jpn. J. Appl. Phys. 37, 3175 (1998).
  • First semiconductor laser vacuum device chip installed holder of matches and performs hand evacuated to a vacuum pump to form a vacuum atmosphere such that less l X 10_ 4 Pa. Subsequently, NH 3 gas is introduced. Further, these gases may be diluted with H 2 to control the etching rate of the natural oxide film.
  • the gas introduction flow rate and pressure vary depending on the pump performance and conditions of the device. In particular, the amount of decomposition radicals of the gas containing N atoms varies depending on the distance between the filament and the substrate and the pressure, which changes the substrate surface temperature and processing time. For example, when the distance between the filament and the substrate is 60, the pressure is preferably about 0.75 Pa. Subsequently, the filament is heated by a DC power supply or the like.
  • the filament surface temperature must be higher than the temperature at which the gas containing N atoms decomposes.
  • the temperature is 1000 ° C.
  • Decomposed products Radical species and decomposition efficiency change depending on the filament temperature, while heat radiation from the heated filament raises the substrate temperature, and the amount of this temperature rise depends not only on the filament temperature but also on the pressure ⁇ ⁇ the distance between the filament and the substrate Therefore, it is necessary to optimize the filament temperature taking these factors into account.
  • the etching rate increases, but in the case of NH 3 gas decomposition radicals, the cleavage surface tends to become rough.
  • the filament temperature is set to 1400 from the viewpoint of preventing the substrate temperature from increasing due to heat radiation. ° C or less is desirable, and it is effective to cool the periphery of the substrate with water or the like in order to prevent the substrate temperature from rising.
  • the filament temperature is raised to the temperature at which the gas containing N atoms decomposes, and the cleavage surface is etched by exposing the cleavage surface to the decomposition radicals of the gas containing N atoms. Since this method is based on thermal catalytic decomposition using catalysis rather than decomposition using a high-frequency electric field, damage accompanying the generation of ions and the generation of defects on the cleavage surface due to the accelerated collision of the ions is extremely small. At the same time, nitridation of the surface occurs.
  • GaN in the surface layer not only has the effect of terminating and reducing defects, but also the effect of any combination of elements among In, Al, Ga, P, and As. Since it has a wide band gap with respect to the active region composed of the compound, it is desirable from the viewpoint of semiconductor-dielectric film bonding.
  • GaN is extremely stable chemically, and once formed, does not reoxidize even when exposed to air, making it possible to transport it in the air for subsequent dielectric film formation, etc., making the process simple.
  • the processing time varies depending on the combination of the equipment, but can be optimized by examining the roughness of the cleavage surface by AFM (intermolecular force microscope) and the bonding state of oxygen and nitrogen of the active region constituent elements by XPS. .
  • AFM internal molecular force microscope
  • the method described in A. Izumi et al./Thin Solid Films 343-344 (1999) 528-531 may be applied.
  • portions other than the cleavage plane of the semiconductor laser bar that is, Although the surface is covered with a metal electrode, the etching rate of gold, gold alloy, platinum, etc., which are usually used for semiconductor laser electrodes, is much slower than that of compound semiconductors. Even if it is exposed to the decomposition radicals of the contained gas, the portion other than the cleavage plane is not damaged within about one oxide layer removal time on the cleavage surface. If a semiconductor laser bar is laminated in the holder and the cleaved end face of the semiconductor laser is exposed at the window of the holder, the other than the cleavage surface of the semiconductor laser bar is exposed to the decomposition radicals of the gas containing N atoms. In addition, the film can be prevented from adhering to portions other than the cleavage plane in the subsequent film forming process.
  • the dielectric film is formed.
  • the dielectric film is formed mainly for adjusting the reflectance of the cleavage plane.
  • the dielectric film is preferably an aluminum oxide film, an aluminum nitride film, a silicon film, a silicon oxide film, a silicon nitride film, a titanium oxide film, or the like, or a laminated film of these materials.
  • the non-oxide is more preferable for the protective film in contact with the cleavage plane.
  • a surface layer such as a natural oxide film on the cleavage plane is removed, and a nitride layer is formed on the cleavage surface.
  • An additional passivation film may be formed before the formation of the dielectric film for adjusting the reflectivity to enhance the passivation effect.
  • the silicon nitride film produced using a catalytic CVD apparatus is also preferable in that the film stress is as low as 10 9 dyn / cm 2 , and the film does not easily peel off with time as compared with a film using a normal sputtering process.
  • These silicon nitride films are Catalyst used to generate decomposition radicals of gas containing atoms Gas containing N atoms flows in a CVD system.
  • SiH 4 gas is flowed, and the filament temperature is higher than the temperature at which the filaments do not form silicide and the vapor pressure of the filaments does not matter.
  • Film formation is possible by setting as follows. For example, when the filament is tungsten, the film forming temperature is 1600 ° C or more and 1900 ° C or less.
  • the flow ratio of the gas containing N atoms and the flow rate of the SiH 4 gas may be an optimal value that minimizes the film stress. If thermal damage to the cleaved end face due to a high filament temperature is a problem, shorten the silicon nitride film deposition time to a thickness that functions as a protective layer against plasma damage, for example, 2 to 10 nm. After that, a dielectric film having a desired reflectance may be formed by another process such as sputtering.
  • the semiconductor laser device is not limited to its epitaxial structure and composition, and can be applied to any structure.
  • the clad layer has a structure in which the first clad layer and the second clad layer having a lower refractive index than the first clad layer and a large band gap are provided from the active region side, Completely separated confinement structure that has a carrier block layer, waveguide layer, and cladding layer on both sides of the active region, and has a refractive index that satisfies the relationship carrier block layer ⁇ waveguide layer, cladding layer ⁇ active region (see US (See Patent No. 005764668A).
  • composition of the active region used in the device GaAs, AlGaAs, InGaAs, InGaAsP, etc. can be selected according to the oscillation wavelength.
  • other compositions may be used, and especially the band gap of GaN. Smaller ones are more desirable.
  • FIG. 1 shows the appearance of NH 3 gas using a catalytic CVD device.
  • the two semiconductor laser bars 2a and 2b and the dummy par 3 are alternately stacked on the holder 1, and the cleaved surface of the semiconductor laser bars 2a and 2b and the dummy bar 3
  • the end surfaces of the two are exposed on the same surface to the window provided in the holder 1.
  • the holder 1 was set in a catalytic CVD apparatus.
  • the catalytic CVD equipment used was as shown in Fig. 2.
  • the holder 1 on which the semiconductor laser bars were stacked was placed on a water-cooled table 5.
  • Vacuum apparatus 1 2 After vacuuming until reaching a vacuum degree of 3 X 10_ 5 Pa by a rotary pump 7 and a turbo molecular pump 6, a vacuum by 50sccm introduced further pressure controller port one Rubarubu 1 0 through the flow meter 8 NH 3 gas The pressure inside the apparatus was set to 0.75 Pa.
  • the surface of the tungsten filament 4 monitored by the infrared radiation thermometer 9 was heated by the direct current power supply 1 1 to 1200 ° C, and the shutter 13 was opened to open the semiconductor laser bar exposed in the window of the holder 1. The open surface was exposed to NH 3 gas decomposition radicals for 3 minutes. After 3 minutes process stops filament heating closing the shutter 13, 1 3 increases the flow rate of the gas to 60 sccm,.
  • SeimakumakuAtsu is 4 down the filament heating from the deposition rate of the conditions investigated in advance after c the silicon nitride film casting was about 4 nm, stopping the introduction of the SiH 4 gas and NH 3 gas when Then, after the gas was evacuated again by the vacuum pump, the holder on which the semiconductor laser bar was stacked was taken out of the vacuum vessel, turned over, and the same processing was performed on the opposite cleaved surface. The holder on which the semiconductor reservoirs that have been processed on both cleaved surfaces are stacked is transferred to another vacuum device, and aluminum oxide is sputtered on both cleaved surfaces to a reflectance of 2%. Went AR coating. In addition, an HR coating with a reflectivity of 97% was performed by forming a Si / SiOs multilayer film on only one of the open surfaces by sputtering.
  • the AlGaAs layer surface of a sample in which an AlGaAs layer of 2 ⁇ m was epitaxially grown on a GaAs substrate was subjected to NH 3 decomposition radical treatment as described above, and the surface element bonding state by XPS was determined.
  • the surface element bonding state by XPS was determined.
  • FIG. 6 no bond due to oxide was observed for As3d, and the Nls peak was also observed for this sample as shown in FIG.
  • a high energy shift was observed for A12p, confirming that a reduction in oxygen bonding elements and the formation of a nitride layer mainly composed of AlGaN were also formed on the AlGaAs surface.
  • a semiconductor laser device equivalent to that of the example was cleaved in the form of a bar in the air, stacked on a holder, and placed in a sputtering device, and both cleaved surfaces were reflected by aluminum nitride followed by aluminum oxide.
  • An AR coat with a rate of 2% was formed by sputtering.
  • we HR coat a 97% reflectance by forming a film of Si / Si0 2 multilayer film only to key cleavage plane contrast to the by sputtering.
  • the cavity surface of the semiconductor laser is cleaved in the atmosphere or the like, and then the semiconductor laser is installed in a vacuum apparatus, and the natural oxide film formed on the cleavage surface is removed.
  • Etching is removed by exposing to a gas containing radicalized N atoms in a catalytic CVD device, and at the same time, a nitride layer is formed, and then a dielectric film is formed on the surface by a relatively simple method.
  • a high-output and highly-reliable semiconductor laser device can be realized by the light-emitting end face treatment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

明 細 書
半導体レーザ素子の製造方法
【技術分野】
本発明は高出力および長期信頼性を有する半導体レーザ素子の製造方法に関す るものである。
【背景技術】
現在、 半導体レーザは、 情報通信分野や印刷、 加工、 医療分野など様々な分野 の装置に用いられているが、 その性能の向上には、 光源である半導体レーザの出 力および信頼性を向上する必要がある。
一般に、 半導体レーザは活性層が p型と n型のクラッド層に挟まれた構造を有 し、 これが積層された基板ごと劈開して、 その劈開面を共振器面として活性層に 電流を注入することによりレーザ光線を発生させる。 そして共振器面となる 2つ の劈開面うちの 1つが光出射部となる。 また、 この 2つの劈開面は反射率の調整 や表面での化学反応による経時劣化を抑制するため為に誘電体膜がコーティング される。
通常の大気雰囲気において劈開を行うと、 劈開表面に自然酸化膜が形成する。 劈開面の自然酸化膜には、 G a A s化合物を例にすると主に G aおよび A sの酸 素結合に起因する高密度の表面準位が存在し、 これが非発光再結合中心となって 発光した光を吸収する。 この光吸収により劈開面近傍は発熱し、 活性領域の禁制 帯幅が減少するためにさらに一層光吸収が増加して、 ついには劈開面が融解して レーザ出力が著しく低下する。 このため、 半導体レーザの高出力 ·高信頼化には この劈開面の、 特に自然酸化膜の形成を排除することが必要である。
従来、 この自然酸化膜の形成を阻害するため、 高真空中で劈開を行った後、 大 気に曝すことなく自然酸化膜が形成される前に保護層を形成したり、 または大気 中で劈開した後に劈開面に形成した自然酸化膜を電子線加熱、 レーザ照射ゃ不活 性ガスを用いたプラズマ曝露により除去して保護膜を形成するプロセスが実施さ れている。 また、 劈開面を真空装置に入れた後、 400°C以上の状態でハロゲンガ スに曝して熱化学反応により酸化層を除去し、 化合物半導体層等をその上に形成 する方法も実施されている。
しかしながら、 前述の高真空中での劈開作業はプロセス時間によってはかなり の高真 度が要求され、 これにより.高い装置コストゃ厳しい装置管理が要求され る。
また、 自然酸化膜を電子線加熱、 レーザ照射や不活性ガスを用いたプラズマ曝 露により除去して保護膜を形成する方法においては、 自然酸化膜や表面汚染物を 主には物理的に除去するため、 これらを除去するだけでなく表面層へ欠陥が導入 されるという懸念があった。 これらの方法では特に G aや A sの酸素結合を除去 できる反面、 導入された欠陥が今度は再結合中心となって働き、 これらの方法で の改善には処理条件等の管理をかなり厳密におこなう必要があつた。
さらに、 ハロゲンガスとの熱化学反応を利用する方法では 400°C以上の温度に 加熱することが必要なため為、 劈開作業前に電極形成が行えず、 劈開形成した共 振器面の保護膜形成後に電極を形成することとなってプロセスが煩雑かつ複雑な ものとなる問題を有していた。
【発明の開示】
本発明は上記の問題を解決するためになされたもので、 触媒 C V D装置を用い て劈開面に形成された自然酸化膜を除去するとともに保護膜の形成を行うもので める。
すなわち本発明は、 半導体基板上に井戸層を含む半導体薄膜を積層し、 次に該 半導体薄膜とともに該半導体基板を劈開し、 劈開により得られた半導体基板と半 導体薄膜の劈開面を、 加熱された触媒物質の存在下で Nを含むガスを分解した雰 囲気に曝露することにより、 劈開面の表面層の除去および表面への窒化層の形成 を行ない、 続いて劈開面に誘電体膜を形成する工程を含むことを特徴とする半導 体レーザの製造方法である。
本発明によると、 半導体レーザの共振器面が大気中等で劈開して形成したもの であっても、 その後真空装置内で当該劈開面上に形成された自然酸化膜からなる 表面層を触媒 C V D装置内でラジカル化した N原子を含むガスに曝すことにより 低い基板温度でかつ半導体薄膜の受けるダメージも極めて低いレベルでェッチン グ除去することができ、 かつ化学的に極めて安定な窒化層を形成することができ る。 この N原子を含むガスとしてはアンモニア (NH3) ゃヒ ドラジン (NH2NH2) 等 がある。 窒化層は広いバンドギヤップを有しかつ欠陥を終端し減少させるので半 導体/誘電体膜接合の観点からも極めて望ましい材料である。 III一 V 族半導体 レーザでは G a A sが一般的に用いられるが、 この場合は G a N層が形成される。 続いて劈開面上に誘電体膜の形成を行うことにより自然酸化膜が除去された面 に誘電体膜が形成されるので、 レーザ光を発光させたときに光吸収による温度上 昇とへキ開面の融解を防止できる。 ところで自然酸化膜が除去された劈開面に形 成される窒化層は化学的に極めて安定であるため、 ·大気に曝しても再酸化するこ と無く、 よってこの触媒 CVD装置を用いた N原子を含むガス分解雰囲気に曝すェ 程から誘電体膜形成の工程へは大気中を経ることが可能である。
また触媒 CVD装置により自然酸化膜の除去と窒化膜の形成を行った後に引き続 き同じ触媒 CVD装置を用いて窒化シリコン膜を形成することは、 誘電体膜製膜に スパッタ等のプラズマプロセスを用いる場合に比べ、 へキ開面へのイオン衝撃な どによるプラズマ損傷が無くなるため好ましい。 この窒化シリコン膜は加熱され た触媒物質の存在下で Nおよび S iを含むガス、 または Nを含むガスおょぴ S i を含むガスを分解した雰囲気に曝露することにより形成される。
このような工程により製造される半導体レーザの井戸層は I n, Al , Ga, P, As の中のいずれかの元素の組み合わせからなる化合物で構成されていることが 好ましい。 これらの元素は化学的に安定な窒化膜となるからである。
【図面の簡単な説明】
本発明とこれらの目的とそれ以外の目的と、 特色と利点とは、 下記の詳細な説 明と図面とから一層明確になるであろう。
図 1は、 実施例のホルダーと劈開面の関係を示す図である。
図 2は、 実施例で用いる触媒 CVD装置とその周辺の模式図である。 図 3は、 実施例により得られた半導体レーザチップを示す模式図である。
図 4は、 実施例により得られた半導体レーザの出力特性図である。
図 5は、 比較例により得られた半導体レーザの出力特性図である。
図 6は、 実施例、 比較例により得られたサンプルの As3dおよび Ga3dについて の XPS特性図である。
図 7は、 実施例により得られたサンプルの N ls についての XPS 特性図である。 図 8は、 実施例、 比較例により得られたサンプルの A12p についての XPS特性 図である。 .
【発明を実施するための最良の形態】
本発明を詳細に説明する。 半導体基板と、 該半導体基板上に形成された活性領 域と該活性領域を挟む少なくとも一対のクラッド層と、 上下面に p側と n側電極 からなる半導体レーザが形成されたウェハを、 所望の共振器長になるようにバー 状に大気中または窒素中等にて劈開を行って半導体レーザバーとして、 その共振 器面となる劈開面が触媒 CVD装置により N原子を含むガスを分解した雰囲気に曝 される様にホルダーを用いて真空装置内に設置する。 触媒 CVD装置とは真空容器 内にて触媒物質であるタングステン等のフィラメントを加熱し、 そこに原料ガス を吹き付けることにより触媒作用を利用した熱接触分解により原料ガスのラジカ ルを生成させ表面処理や製膜を行う方法で、 詳しくは例えば Hideki Matsumura, Jpn. J. Appl. Phys. 37, 3175 ( 1998)に記述されている。
まず半導体レーザチップを収めたホルダーを設置した真空装置は真空ポンプに て排気を行い、 l X 10_4Pa 以下となるような真空雰囲気を形成する。 続いて NH3 ガスを導入する。 また、 自然酸化膜のエッチング速度の制御のためこれらのガス を H2で希釈してもよい。 ガスの導入流量や圧力は、 その装置のポンプ性能ゃ条 件により変化する。 特にフィラメントと基板距離と圧力により N原子を含むガス の分解ラジカルの到達量が変化し、 これにより基板表面温度や処理時間も変化す るため、 個々の装置、 場合により最適化が必要であるが、 例えばフィラメントと 基板距離が 60剛の場合、 圧力は約 0. 75P aが望ましい。 続いてフィラメントを直流電源等により加熱するが、 フィラメントにタングス テンを用いた場合、 フイラメント表面温度は N原子を含むガスが分解する温度以 上が必要である。 例えば NH3ガスの場合 1000°Cとなる。 フィラメント温度により 分解生 ラジカル種や分解効率が変化する一方、 加熱フィラメントからの熱輻射 は基板温度を上昇させ、 この温度上昇量はフィラメント温度だけではなく、 圧力 ゃフイラメントと基板との距離などにより依存するため、 フイラメント温度はこ れらを考慮した最適化が必要である。 基板温度が上昇す とエッチング速度が上 がるが、 NH3ガス分解ラジカルの場合劈開表面が粗面化する方向となる、 一般的 には熱輻射による基板温度上昇を防ぐ観点からフィラメント温度として 1400°C 以下が望ましく、 また、 この基板温度の上昇を防ぐために基板周囲を水冷などの 冷却を施すことは有効である。
ガス導入後にフィラメント温度を N原子を含むガスが分解する温度まで昇温し、 劈開面に N原子を含むガスの分解ラジカルを曝すことにより劈開面のエッチング を行う。 この方法では高周波電界を利用した分解ではなく、 触媒作用を利用した 熱接触分解によるため、 イオンの発生やそれの加速衝突による劈開表面への欠陥 生成を伴うダメージは極めて少ない。 また、 同時に表面の窒化が起こり、 特に表 面層での GaN の形成は欠陥を終端し減少させる効果だけでなく、 特に In, Al, Ga, P, As の中のいずれかの元素の組み合わせからなる化合物で構成されている 活性領域に対し広いバンドギャップを有するため半導体ノ誘電体膜接合の観点か ら望ましい。 また、 GaN は化学的に極めて安定であり、 一度形成されると大気に 曝しても再酸化しないため、 その後の誘電体膜形成などに対し大気中での搬送が 可能となって、 工程が簡便となる。 処理時間は、 前述のように装置の取り合いに よって変化するが、 AFM (分子間力顕微鏡) による劈開表面の荒れや XPS による 活性領域構成元素の酸素や窒素の結合状態を調べることにより最適化できる。 例 として A. Izumi et al. /Thin Solid Fi lms 343—344 (1999) 528-531に示される方 法を応用すれば良い。
またエッチングの際に半導体レーザバーの劈開面以外の部分つまりバーの上下 面は金属電極により覆われているが、 通常半導体レーザの電極に用いられる金や 金合金、 白金等のエッチングレートは化合物半導体に比べて非常に遅いことから、 劈開面以外の部分が N原子を含むガスの分解ラジカルに曝されても、 劈開表面の 酸化層 1 去時間程度の範囲では劈開面以外の部分は損傷を受けない。 またホルダ 一内に半導体レーザバーを積層してホルダーの窓部で半導体レーザのへキ開端面 が露出するようにすれば、 半導体レーザバーの劈開面以外は N原子を含むガスの 分解ラジカルに曝されることもなく、 またこの後の製膜工程で劈開面以外に膜が 付着することを防止することができる。
触媒 CVD装置による N原子を含むガスの分解ラジカルによる劈開表面の酸化層 のェツチング除去ならびに窒化層形成後に続いて誘電体膜の形成を行う。 ここで 誘電体膜は主に劈開面の反射率を調整するために形成される。
誘電体膜の形成にはスパッタゃ CVD製膜等を用いことができる。 誘電体膜は酸 化アルミニウム膜、 窒化アルミニウム膜、 シリコン膜、 酸化シリコン膜、 窒化シ リコン膜、 酸化チタン等やこれらの積層膜が望ましいが、 劈開表面の誘電体膜形 成プロセスに起因する再酸化を抑制するためには、 劈開面に接する保護膜は上記 のうち非酸化物がより望ましい。
また劈開面を触媒 CVD装置により生成した N原子を含むガスの分解ラジカルの 雰囲気に曝露することにより劈開面の自然酸化膜などの表面層を除去と同時に劈 開表面に窒化層を形成した後に、 パッシベーシヨン効果を強化するために反射率 を調整する誘電体膜の成膜の前に追加のパッシベーション膜を形成してもよい。 これらのことを鑑みた場合、 前記 N原子を含むガスの分解ラジカルの雰囲気に 曝露する処理を行った後に引き続き同一触媒 CVD装置を用いて窒化シリコン膜を 形成することは、 スパッタ等のプラズマプロセスを用いた誘電体膜形成の場合に 比べ、 誘電体膜形成時のへキ開面へのイオン衝撃等によるプラズマ損傷を防ぐこ とができ望ましい。 また触媒 CVD装置を用いて作製した窒化シリコン膜は膜応力 が 109dyn/cm2台と低く、 通常のスパッタプロセスを用いたものに比べ経時的な 膜はがれが起こりにくい点においても好ましい。 これら窒化シリコン膜は前記 N 原子を含むガスの分解ラジカル生成に用いた触媒 CVD装置において N原子を含む ガスおょぴ SiH4ガスを流し、 ブイラメント温度をフィラメントがシリサイドを 形成しない温度以上かつフィラメントの蒸気圧が問題にならない温度以下にする ことに り製膜が可能である。 例えば、 フィラメントがタングステンの場合、 こ の製膜可能温度は 1600°C以上 1900°C以下となる。 N原子を含むガスおょぴ SiH4 ガスの流量比は膜応力の最低になる最適値を用いればよい。 また、 フィラメント 温度の高温化によるへキ開端面への熱ダメージが問題の場合は、 この窒化シリコ ン膜製膜時間を短く し、 プラズマ損傷からの保護層として機能する膜厚、 例えば 2〜10nm程度製膜し、 引き続き他のスパッタ等のプロセスにて所望の反射率と なる誘電体膜を形成してもよい。
本発明における半導体レーザ素子は、 そのェピタキシャル構造や組成に限定さ れずどのような構造でも広く適用できる。 高出力化を図るためには、 クラッド層 に活性領域側から第一のクラッド層と第一のクラッド層より屈折率が低く、 バン ドギヤップの大きい第二のクラッド層を有する構造であるものや、 活性領域の両 側にキャリアブロック層、 導波層、 クラッド層を有し、 屈折率がキャリアブロッ ク層 <導波層、 クラッド層 <活性領域の関係を満たす完全分離閉じ込め構造 (詳 しくは米国特許番号 005764668A を参照) であってもよい。 また、 素子に用いら れる活性領域の組成としては発振波長により、 GaAsや AlGaAs、 InGaAs、 InGaAsP 等が選択できるが、 他の組成であってもよいことはいうまでもなく、 特に GaNの バンドギヤップょり小さい物がより望ましい。
【実施例】
活性領域と導波層の間にキヤリアブ口ック層を備えた完全分離閉じ込め構造を 有し、 ストライプ幅が 8 ju mでクラッド層が AlGa As、 導波層が AlGaAs、 活性領 域が AlGaAs/GaAsヘテロ接合により構成される 860nm波長域でシングルモード 発振するように設計された半導体レーザが形成されたウェハを共振器長が 1. 4mm となるようバー状に大気中にて劈開し、 劈開により得られた半導体レーザバーの いくつかをホルダーに収めた。 図 1はその様子を触媒 CVD装置による NH3ガスの 分解ラジカルに曝される面を示したもので、 ホルダー 1に 2つの半導体レーザバ 一 2 a、 2 bとダミーパー 3を交互に積んで、 半導体レーザバー 2 a、 2 bのへ キ開面およびダミーバー 3の端面が同一面でホルダー 1に設けられた窓に露出す るようにした。 そしてこのホルダー 1を触媒 CVD装置内に設置した。 触媒 CVD装 置は図 2に示すような構成のものを用いた。 該半導体レーザバーがスタックされ ているホルダー 1は水冷された台 5上に設置した。
該真空装置 1 2をロータリーポンプ 7およびターボ分子ポンプ 6にて到達真空 度 3 X 10_5Paまで真空引き後、 NH3ガスを流量計 8を通して 50sccm導入しさらに 圧力コント口一ルバルブ 1 0により真空装置内圧力を 0. 75Pa にした。 そして直 流電源 1 1により赤外放射温度計 9でモニターしたタングステンフイラメント 4 の表面温度が 1200°Cとなるように加熱し、 シャッター 13 を開けホルダー 1の窓 に露出している半導体レーザバーのへキ開面を 3分間 NH3ガス分解ラジカルに曝 した。 3 分間の処理後にシャッター 13 を閉じフィラメント加熱を停止し、 13ガ スの流量を 60sccmに上げ、. 続いて流量計 1 4を通して S iH4ガスを l sccm流して 再度フィラメント温度を 1800°Cになるまで加熱した。 この状態でシャッター 13 を開け、 ホルダー 1の窓に露出している半導体レーザパーのへキ開面を 2 分間 NH3ガスおよび SiH4ガスの分解ラジカルに曝して窒化シリコン膜の製膜を行った この時の製膜膜厚は事前に調査した当該条件の製膜速度から 4 nm程度であった c 該窒化シリコン膜製膜後にフィラメント加熱を停 4し、 SiH4ガスおよび NH3ガス の導入を停止して、 再び真空ポンプにてガス排気を行った後、 真空容器から該半 導体レーザバーをスタックしたホルダーを取り出して裏返し、 反対側のへキ開面 に対しても同様の処理を行った。 両へキ開面に対して処理を終えた当該半導体レ 一ザバーをスタックしたホルダーを別の真空装置に移し、 両へキ開面に対して酸 化アルミニウムをスパッタ製膜により反射率 2 %となる AR コートを行った。 さ らに、 一方のへキ開面に対してのみ Si/SiOs多層膜をスパッタにて製膜するこ とにより反射率 97%となる HRコートを行った。
これらの半導体レーザバーをさらに切断しチップ化して図 3のような半導体レ 一ザチップを得た。 レーザ光を出射する出射端面には窒化シリ コン膜 21 と Al20322からなる積層膜 24が、 反対側の端面ではさらに Si/Si02多層膜 23 を備 えた第 2積層膜 25 が形成されている。 この半導体レーザチップをマウント上に 実装後、 .光出射端面部の強度を調べる為に、 25°Cにて C W電流印加による最大光 出力を調べたところ図 4に示すように端面光学破壊レベル (COD) が 1. 4Wと高 い値を示した。
また、 GaAs 基板上に AlGaAs 層 2 μ mをェピタキシャル成長させた試料の AlGaAs層表面を前述の手順にて NH3分解ラジカル処理までを行い、 その表面につ いて XPS による表面元素の結合状態を調べたところ、 図 6に示すように As3dに ついて酸化物に起因する結合が観測されず、 また図 7に示すようにこの試料では Nls ピークについても観測された。 また図 8に示すように A12p について高エネ ルギーシフトが観測され、 これらのことから AlGaAs 表面においても酸素結合元 素の低減ならびに AlGaNを主とする窒化層が形成されていることが確認された。
【比較例 1 ]
実施例と同等の半導体レーザ素子を大気中にてバー状にへキ開してホルダーに スタックし、 スパッタ装置内に設置して両へキ開面に対して窒化アルミニウムに 続いて酸化アルミニウムによる反射率 2 %となる AR コートをスパッタ製膜した。 さらに、 一方のへキ開面に対してのみ Si/Si02多層膜をスパッタにて製膜する ことにより反射率 97%となる HR コートを行った。 これらの半導体レーザパーを 切断しチップ化してマウント上に実装後、 実施例と同様に最大光出力を調べたと ころ図 5に示すように端面光学破壤レベル (COD) が 1 . 2 W程度であった。
また、 実施例と同様、 GaAs 基板上に AlGaAs 層 2 μ mを成長させた試料の AlGaAs 層表面について XPS による表面元素の結合状態を調べたところ、 図 6, 図 8に示される様に Al, Gaおよび Asとも酸化物に起因する結合のみが観測され た。
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形で実施することができる。 したがって、 前述の実施形態は、 あらゆる点で単な る例示に過ぎず、 本発明の範囲は、 請求の範囲に示すものであって、 明細書本文 には何ら拘束されない。
さらに、 請求の範囲の均等範囲に属する変形や変更は、 すべて本発明の範囲内 のもの ある。
【発明の効果】
以上詳説したように本発明によれば、 半導体レーザの共振器面を大気中等でへキ 開して作製した後真空装置内に設置し、 当該へキ開面上に形成された自然酸化膜 を触媒 CVD装置にてラジカル化した N原子を含むガスに曝すことによりエツチン グ除去すると同時に窒化層を形成し、 続いて当該面上に誘電体膜の形成を行うこ とによる比較的簡便な方法による光出射端面処理により高出力で高信頼性のある 半導体レーザ素子が実現できる。

Claims

請 求 の 範 囲
1、 半導体基板上に活性層を含む半導体薄膜を積層し、 次に該半導体薄膜とと もに該半導体基板を劈開し、 劈開により得られた半導体基板と半導体薄膜の劈開 面を、 力熱された触媒物質の存在下で Nを含むガスを分解した雰囲気に曝露する ことにより、 劈開面の表面層の除去および表面への窒化層の形成を行なう工程と、 続いて劈開面に誘電体膜を形成する工程を含むことを特徴とする半導体レーザの 製造方法。
2、 前記誘電体膜が、 前記劈開面を加熱された触媒物質の存在下で Nおよび S iを含むガス、 または Nを含むガスおよび S iを含むガスを分解した雰囲気に曝 露することにより形成されたことを特徴とする請求の範囲第 1項に記載の半導体 レーザの製造方法。 .
3、 前記活性層が I n, Al, Ga, P, As の中のいずれかの元素の組み合わせから なる化合物で構成されていることを特徴とする請求の範囲第 1項または第 2項に 記載の半導体レーザの製造方法。
PCT/JP2001/007174 2000-08-22 2001-08-22 Procede de fabrication de dispositif laser a semiconducteur WO2002017450A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002522036A JP4275405B2 (ja) 2000-08-22 2001-08-22 半導体レーザ素子の製造方法
EP01958389A EP1251608B1 (en) 2000-08-22 2001-08-22 Method for manufacturing semiconductor laser device
DE60123576T DE60123576T2 (de) 2000-08-22 2001-08-22 Halbleiterlaserherstellungsverfahren
US10/111,280 US6703254B2 (en) 2000-08-22 2001-08-22 Method for manufacturing semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-251684 2000-08-22
JP2000251684 2000-08-22

Publications (1)

Publication Number Publication Date
WO2002017450A1 true WO2002017450A1 (fr) 2002-02-28

Family

ID=18741050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007174 WO2002017450A1 (fr) 2000-08-22 2001-08-22 Procede de fabrication de dispositif laser a semiconducteur

Country Status (6)

Country Link
US (1) US6703254B2 (ja)
EP (1) EP1251608B1 (ja)
JP (1) JP4275405B2 (ja)
CN (1) CN1206782C (ja)
DE (1) DE60123576T2 (ja)
WO (1) WO2002017450A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093274A1 (ja) * 2003-04-18 2004-10-28 The Furukawa Electric Co., Ltd. 半導体素子の製造方法
WO2022201865A1 (ja) * 2021-03-26 2022-09-29 古河電気工業株式会社 半導体レーザ素子および半導体レーザ素子の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061265A1 (de) * 2000-12-06 2002-06-27 Jenoptik Jena Gmbh Diodenlaseranordnung
JP4178022B2 (ja) * 2002-12-10 2008-11-12 シャープ株式会社 半導体レーザ素子およびその製造方法、並びに、その製造方法に用いる治具
US20090135873A1 (en) * 2005-03-31 2009-05-28 Sanyo Electric Co., Ltd. Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
DE102005045954A1 (de) * 2005-09-26 2007-04-19 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren und Vorrichtung zum Herstellen einer Schweißverbindung zwischen den Oberflächen zweier flächiger Werkstücke
JP2007287738A (ja) * 2006-04-12 2007-11-01 Sharp Corp 半導体レーザ装置およびその製造方法、ならびに該半導体レーザ装置を用いた光伝送モジュールおよび光ディスク装置
US8277877B1 (en) * 2006-05-15 2012-10-02 Finisar Corporation Method for applying protective laser facet coatings
JP5463017B2 (ja) * 2007-09-21 2014-04-09 株式会社半導体エネルギー研究所 基板の作製方法
JP2009164499A (ja) * 2008-01-10 2009-07-23 Mitsubishi Electric Corp 端面処理用治具およびそれを用いる半導体レーザ装置の製造方法
SG160302A1 (en) * 2008-09-29 2010-04-29 Semiconductor Energy Lab Method for manufacturing semiconductor substrate
DE102009023467B4 (de) * 2009-06-02 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsanlage und -verfahren
JP6010279B2 (ja) * 2011-04-08 2016-10-19 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法
CN106505408B (zh) * 2016-11-01 2019-02-15 北京科技大学 脊条形半导体激光器有源区腔体侧壁钝化的优化方法
CN112687594B (zh) * 2021-03-11 2021-06-18 度亘激光技术(苏州)有限公司 半导体器件解理装置及解理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931270A (ja) * 1972-07-20 1974-03-20
JPS56162841A (en) * 1980-05-20 1981-12-15 Nippon Telegr & Teleph Corp <Ntt> Forming method for insulating film of compound semiconductor
JPS58125832A (ja) * 1982-01-22 1983-07-27 Hitachi Ltd 3−5族化合物半導体のパツシベ−シヨン法
JPH0389585A (ja) * 1989-08-31 1991-04-15 Nec Corp 半導体レーザおよびその製造方法
JPH0964453A (ja) * 1995-08-22 1997-03-07 Matsushita Electric Ind Co Ltd 半導体レーザの製造方法
JPH10209562A (ja) * 1997-01-24 1998-08-07 Nec Corp 半導体レーザ素子の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331737A (en) * 1978-04-01 1982-05-25 Zaidan Hojin Handotai Kenkyu Shinkokai Oxynitride film and its manufacturing method
US5144634A (en) * 1989-09-07 1992-09-01 International Business Machines Corporation Method for mirror passivation of semiconductor laser diodes
CA2138912C (en) 1993-12-24 1999-05-04 Shoji Ishizaka Semiconductor laser device
FR2742926B1 (fr) * 1995-12-22 1998-02-06 Alsthom Cge Alcatel Procede et dispositif de preparation de faces de laser
US5834379A (en) * 1996-07-16 1998-11-10 Cornell Research Foundation, Inc. Process for synthesis of cubic GaN on GaAs using NH3 in an RF plasma process
US5668049A (en) * 1996-07-31 1997-09-16 Lucent Technologies Inc. Method of making a GaAs-based laser comprising a facet coating with gas phase sulphur
US5851849A (en) * 1997-05-22 1998-12-22 Lucent Technologies Inc. Process for passivating semiconductor laser structures with severe steps in surface topography
US6734111B2 (en) * 2001-08-09 2004-05-11 Comlase Ab Method to GaAs based lasers and a GaAs based laser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931270A (ja) * 1972-07-20 1974-03-20
JPS56162841A (en) * 1980-05-20 1981-12-15 Nippon Telegr & Teleph Corp <Ntt> Forming method for insulating film of compound semiconductor
JPS58125832A (ja) * 1982-01-22 1983-07-27 Hitachi Ltd 3−5族化合物半導体のパツシベ−シヨン法
JPH0389585A (ja) * 1989-08-31 1991-04-15 Nec Corp 半導体レーザおよびその製造方法
JPH0964453A (ja) * 1995-08-22 1997-03-07 Matsushita Electric Ind Co Ltd 半導体レーザの製造方法
JPH10209562A (ja) * 1997-01-24 1998-08-07 Nec Corp 半導体レーザ素子の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1251608A4 *
TERUYOSHI KUDO ET AL.: "Cat-CVD SiNx-maku no mennai kinitsu-sei koujou ni kansuru kentou", DENSHI JOHO TSUUSHIN GAKKAI GIJUTSU KENKYUU HOUKOKU, vol. 99, no. 3, April 1999 (1999-04-01), pages 59 - 66, XP001055083 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093274A1 (ja) * 2003-04-18 2004-10-28 The Furukawa Electric Co., Ltd. 半導体素子の製造方法
CN100407524C (zh) * 2003-04-18 2008-07-30 古河电气工业株式会社 半导体元件的制造方法
WO2022201865A1 (ja) * 2021-03-26 2022-09-29 古河電気工業株式会社 半導体レーザ素子および半導体レーザ素子の製造方法

Also Published As

Publication number Publication date
DE60123576T2 (de) 2007-05-31
US6703254B2 (en) 2004-03-09
EP1251608A1 (en) 2002-10-23
JP4275405B2 (ja) 2009-06-10
CN1206782C (zh) 2005-06-15
EP1251608B1 (en) 2006-10-04
EP1251608A4 (en) 2005-07-27
CN1394371A (zh) 2003-01-29
US20020155631A1 (en) 2002-10-24
DE60123576D1 (de) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4977931B2 (ja) GaN系半導体レーザの製造方法
US6812152B2 (en) Method to obtain contamination free laser mirrors and passivation of these
US7687291B2 (en) Laser facet passivation
JP4275405B2 (ja) 半導体レーザ素子の製造方法
JP2005079406A (ja) 半導体レーザの製造方法
WO2001084680A1 (en) Passivation of semiconductor laser facets
EP0822628A1 (en) Method of making a GaAs-based laser comprising a facet coating
US9450375B2 (en) High-power diode laser and method for producing a high-power diode laser
Horie et al. Reliability improvement of 980-nm laser diodes with a new facet passivation process
JP5193718B2 (ja) 窒化物半導体レーザ装置
EP0684671A1 (en) Method for the preparation and passivation of the end mirrors of a high emissive power semiconductor laser and related laser device
JP2003243764A (ja) 半導体レーザおよびその製造方法
JPH0964453A (ja) 半導体レーザの製造方法
JP2010135516A (ja) 窒化物半導体発光装置
WO2006102686A2 (en) High power diode lasers
JP2001068780A (ja) 半導体レーザ素子およびその製造方法
JP4128898B2 (ja) 半導体素子の製造方法
JP4033626B2 (ja) 半導体レーザ装置の製造方法
JP2003332674A (ja) 半導体レーザ素子
JP5169310B2 (ja) 半導体レーザ
JP2009231696A (ja) 窒化物半導体レーザ素子および窒化物半導体レーザ素子の製造方法
JP2008166852A (ja) 半導体レーザの製造方法
JP2001223427A (ja) 半導体レーザ素子の製造方法
AU2002321975A1 (en) A method to obtain contamination free laser mirrors and passivation of these

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 522036

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10111280

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001958389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 01803280X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001958389

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001958389

Country of ref document: EP