WO2002006365A1 - Oligomeres aromatique hydrogenes et leur procede de fabrication - Google Patents

Oligomeres aromatique hydrogenes et leur procede de fabrication Download PDF

Info

Publication number
WO2002006365A1
WO2002006365A1 PCT/JP2001/006017 JP0106017W WO0206365A1 WO 2002006365 A1 WO2002006365 A1 WO 2002006365A1 JP 0106017 W JP0106017 W JP 0106017W WO 0206365 A1 WO0206365 A1 WO 0206365A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
oligomer
hydrogenated
parts
aromatic oligomer
Prior art date
Application number
PCT/JP2001/006017
Other languages
English (en)
French (fr)
Inventor
Toshihide Senzaki
Takahiro Imamura
Takehiro Shimizu
Munehito Nagai
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to EP01949942A priority Critical patent/EP1302490B1/en
Priority to KR1020027018047A priority patent/KR100708326B1/ko
Priority to JP2002512265A priority patent/JP5134752B2/ja
Priority to US10/332,575 priority patent/US6921842B2/en
Publication of WO2002006365A1 publication Critical patent/WO2002006365A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20

Definitions

  • the present invention relates to a hydrogenated aromatic oligomer, a method for producing the same, and a vibration damping agent using the same.
  • the hydrogenated aromatic oligomer of the present invention is useful as a resin modifier for improving tackiness, vibration damping properties, and the like when blended in resins, rubbers, and the like.
  • BACKGROUND ART Resins obtained by reacting phenols and formaldehydes in the presence of an acid catalyst are well known as phenolic resins or novolak resins.
  • a resin obtained by reacting an aromatic hydrocarbon such as xylene or naphthalene with formaldehyde in the presence of an acid catalyst is well known as a hydrocarbon resin.
  • indencoumarone resin and petroleum resin are also known as hydrocarbon resins.
  • formalin is not used because indenekumalon itself has an olefin bond.
  • Japanese Examined Patent Publication No. 53-244973 discloses that an aromatic oil resin obtained by reacting an aromatic oil with formaldehydes in the presence of an acid catalyst is used as a paint compounding material. Is described.
  • the aromatic oils used here are light oil, petroleum carbonate oil, naphthalene oil, etc., and exhibit a pale yellow to brown hue. I have. As a result, their use in applications requiring transparency has been limited.
  • Various methods have been proposed for controlling the vibration damping properties using a hydrocarbon resin.
  • JP-A-63-11980, JP-A-62-141609 The use of commercially available polybutene, terpene resin or modified resin (JP-A-2-49063) has been reported (also, examples of the use of polycyclic aromatic resins include: There is one using an alkylbenzene-methylnaphthalene resin (Japanese Patent Application Laid-Open No. 7-910130).
  • Vibration-damping agents that are added to base materials such as rubber, resin, and bituminous materials to improve vibration-damping properties require that the tan S (loss coefficient) of the vibration-damping material containing the compound be large in the range of use. It is desired that the temperature dependence of ⁇ be small. However, it is known that this property is often contradictory.
  • a method for hydrogenating a hydrocarbon resin such as a petroleum resin is known from Japanese Patent Application Laid-Open No. 2000-110380.
  • DISCLOSURE OF THE INVENTION An object of the present invention is to provide a novel resin which is excellent in transparency and can be used in various fields where an oligomer such as a hydrocarbon resin is used.
  • An object of the present invention is to provide a hydrogenated aromatic resin having excellent vibration damping performance.
  • the present invention provides the following formula (1) (A— F) n— A (1)
  • A is a component mainly composed of a polycyclic aromatic compound or a hydrogenated polycyclic aromatic compound and a compound composed of phenols or hydrogenated phenols, and at least a part thereof is a hydrogenated polycyclic aromatic compound.
  • a ′ is a component mainly composed of a polycyclic aromatic compound and phenols. Further, F is methylene and dimethylene ether, and n is a number from 1 to 100).
  • a hydrogenated aromatic oligomer obtained by hydrogenating an aromatic oligomer.
  • the present invention is selected from naphthalene, methylnaphthalene, acenaphthene or a compound which forms formaldehyde in an aromatic hydrocarbon oil containing at least one of these in a reaction system such as formaldehyde and paraformaldehyde.
  • This is a process for producing a hydrogenated oligomer, comprising reacting formaldehydes and phenols in the presence of an acid catalyst to obtain an aromatic oligomer, and then hydrogenating the aromatic oligomer.
  • the present invention is also a vibration damping agent comprising the hydrogenated aromatic oligomer.
  • Hydrogenated aromatic oligomers are generally used unless pure raw materials are used. May contain a resin that cannot be represented by the formula (1), but the main component, that is, 50% or more, preferably 80% or more, is a resin represented by the formula (1). is there. In this specification, unless otherwise specified,% representing purity or concentration means% by weight.
  • the components in the aromatic oligomer refer to units or groups when monomers such as naphthalene, methylnaphthalene, acenaphthene, and phenols are present in the oligomer, but the explanation is simplified.
  • the units or groups present in the oligomer may sometimes be simply like naphthalene or phenol.
  • the hydrogenated aromatic oligomer represented by the formula (1) can be obtained by hydrogenating the aromatic oligomer represented by the formula (2), but is not limited to this method.
  • the aromatic compound raw materials for obtaining the aromatic oligomer represented by the formula (2) are polycyclic aromatic compounds such as naphthalene, methylnaphthalene, and acenaphthene, and phenols.
  • Such aromatic compound raw materials include those composed of a polycyclic aromatic compound and phenols, and small amounts of 50% or less, and preferably other aromatic compounds of 20% or less.
  • Other aromatic compounds include compounds such as alkylbenzene.
  • An advantageous composition of the aromatic compound raw material for obtaining the oligomer represented by the formula (2) is that the total of polycyclic aromatic compounds is 60 to 80%, and the phenols are 20 to 40%. And more preferably less than 10% of other aromatic compounds.
  • Examples of polycyclic aromatic compounds include naphthalene and methylnaph Thalene and acenaphthene are preferred, and these are desirably 60 to 100% of the polycyclic aromatic compound.
  • the aromatic compound raw material may be a high purity product of 90 to 100%, or may be an aromatic hydrocarbon oil mainly containing these.
  • aromatic hydrocarbon oils there are fractions corresponding to tar oil-based naphthalene oil, methylnaphthalene oil, intermediate oil, etc. There are products and residual oil, but raw materials that do not contain N, S, etc., which are catalyst poisons for the hydrogenation reaction, are desirable.
  • crude naphthalene, 95% grade naphthalene, crude methylnaphthalene, crude acenaphthene and the like are also mentioned as preferred aromatic hydrocarbon raw materials.
  • Aromatic hydrocarbon oils are, of course, mainly composed of polycyclic aromatic compounds, but may contain small amounts of other aromatic compounds and also contain non-reactive aliphatic hydrocarbons. Is also good. Note that phenols may be contained in unrefined aromatic hydrocarbon oil, but this is calculated as phenols. Similarly, phenols that may be used separately from aromatic hydrocarbon oils are not counted as aromatic hydrocarbon oils.
  • the formaldehyde used to obtain the aromatic oligomer represented by the formula (2) is not limited as long as it forms formaldehyde in the reaction system.
  • formaldehyde itself, formaldehyde, paraformaldehyde, and the like can be used. Can be used, but paraformaldehyde is advantageous.
  • Phenoenoles used to obtain the aromatic oligomer represented by the formula (2) include, in addition to phenol, phenolic phenols such as creso-noles, xylen-no-noles, t-butino-phenols, and the like.
  • Polycyclic aromatic compounds such as polyphenols such as resonoresin and pyrogallonole, and naphthol can be used.
  • monovalent phenols such as phenol and lower alkyl phenols having 1 to 6 carbon atoms are preferred from the viewpoints of reactivity and physical properties of oligomers.
  • the catalyst used in the reaction for obtaining the aromatic oligomer is an acid catalyst.
  • the acid catalyst include inorganic acids such as sulfuric acid, phosphoric acid, and hydrochloric acid; organic acids such as oxalic acid and toluenesulfonic acid; Solid acids such as alumina, zeolite, ion exchange resins, and acid clay can be used, but organic acids such as oxalic acid and toluenesulfonic acid are preferred.
  • a thermally decomposable catalyst such as oxalic acid, there is also an effect that the operation of removing the catalyst can be omitted.
  • the proportions of polycyclic aromatic compounds a (excluding phenols), phenols b and formaldehydes c vary slightly depending on the content of other aromatic compounds, but are as follows: .
  • the molar ratio of formaldehyde is calculated in terms of formaldehyde.
  • c / (a + b) (molar ratio) 0.1 to 0.9, preferably 0.2 to 0.6.
  • b / a (weight ratio) 0.05 to 10, preferably 0.1 to 1.0, more preferably 0.2 to 0.5.
  • Formaldehydes are necessary to increase the molecular weight of aromatic oligomers and to increase the reaction rate of aromatic compounds such as naphthalene, but if too much, they will gel or have a large amount of terminal methylol groups. The fear of surviving will increase.
  • Phenols are effective not only for increasing the molecular weight of aromatic oligomers but also for imparting appropriate polarity and improving the adhesive properties to metal materials, etc., but too much hydrocarbons. The properties as a resin are lost.
  • Polycyclic aromatic compounds have the function of improving the damping properties, adjusting the polarity of the aromatic oligomer appropriately, and increasing the compatibility with other resins, rubbers and solvents such as SBR. .
  • the amount of the acid catalyst varies depending on the kind of the acid catalyst, generally a 0.5 to 2 about 0% by weight of the reaction raw material, in the case of oxalic acid, 5-1 0 weight 0/0 is preferably about.
  • reaction conditions vary depending on the starting materials and catalyst used, but the reaction temperature is generally 50 to 180 ° C and the reaction time is about 0.5 to 5 hours.
  • formaldehydes react with polycyclic aromatic hydrocarbons, phenols, and the like, and when there are few phenols, oligomers such as phenol-modified hydrocarbon resins are produced.
  • an oligomer such as a hydrocarbon-modified nopolak resin is formed. Further, a solvent can be used if necessary.
  • the reaction mixture After completion of the reaction, the reaction mixture is subjected to distillation.First, low-boiling substances such as water and formaldehyde are distilled off, then the pressure is reduced and the temperature is raised to about 200 to 250 to 300 ° C. Distill the reaction raw materials and other distillates. The residue is an aromatic oligomer.
  • the catalyst removal treatment may be performed by washing with water or the like.In this case, the progress of the reaction is stopped here. Otherwise, the reaction partially proceeds during the distillation. .
  • the aromatic oligomer obtained in this way contains the aromatic oligomer represented by the above formula (2) as a main component.
  • a ′ is a component mainly composed of (a) a polyaromatic compound and (b) phenols, and F is methylene or methylene and —CH 2 OCH 2 —.
  • the preferred and rather, the weight ratio of 1 0/9 0-3 0 7 0 Deari, F is the properly preferred Ri by 9 0 mol% or more 9 5 mole 0/0 or more (b) / (a) good to be methylene but 2 0-3 0 mole 0/0 power in some applications
  • S - CH 2 OCH 2 - is a also good Rere.
  • n is between 1 and 100, preferably with an average in the range of 2 to 20 (
  • the preferred number average molecular weight is in the range of 3 0 0-1 0 0 0, the weight average molecular weight in the range of 5 0 0 to 2 0 0 0, c also the ratio is in the range of 1.5 to 3
  • the aromatic polyester has a softening point in the range of 50 to 180 ° C, preferably 70 to 160 ° C. If the softening point is too low or too high, the temperature range in which good vibration damping properties are obtained may deviate from the normal use range, or the compatibility may decrease.
  • This aromatic oligomer preferably has an oxygen content derived from an ether bond of 3 wt% or less, preferably 1 wt% or less, including oxygen derived from phenols such as alkylphenols.
  • the total oxygen content is preferably at most 20 wt%, more preferably at most 10 wt%.
  • the hydrogen aromatic oligomer of the present invention can be obtained by hydrogenating the aromatic oligomer.
  • the hydrogenation can be carried out by a known method. For example, in the presence of a hydrogenation catalyst containing a metal or a metal compound such as Eckel, cobalt and molybdenum, or a noble metal-based hydrogenation catalyst such as platinum, palladium and rhodium.
  • the hydrogenation catalyst can be carried out in the presence of hydrogen under heating and pressurizing conditions.
  • the hydrogenation catalyst can also be used on a carrier such as alumina, silica, diatomaceous earth, or carbon.
  • Hydrogenation pressure ranges from 1 to 100 MPa
  • the reaction temperature is preferably in the range of about 150 to 350 ° C.
  • the degree of hydrogenation is such that at least a part of the aromatic ring is hydrogenated.
  • the nuclear hydrogenation rate is 20% or more, more preferably 30% or more, and still more preferably 50%. That is all.
  • A is (a) a polycyclic aromatic compound, (b) a phenol, or (c) a component mainly composed of these hydrides.
  • the hydrogenated aromatic oligomer has a softening point in the range of 50 to 180 ° C, preferably 70 to 160 ° C. If the softening point is too low or too high, the temperature range in which good vibration damping properties are obtained may deviate from the normal use range, or the compatibility may decrease.
  • the hydrogenated aromatic oligomer preferably has an oxygen content derived from an ether bond of 3 wt% or less, preferably 1 wt% or less, including oxygen derived from phenols such as alkyl phenol.
  • the total oxygen content is preferably 15 wt% or less, and more preferably 10 wt% or less.
  • the hydrogen aromatic oligomer of the present invention can be used in fields where conventional hydrocarbon resins, petroleum resins, hydrogenated resins of these, etc. are used, but are also excellent as damping agents.
  • the vibration damping agent of the present invention comprises the hydrogenated aromatic oligomer.
  • the hydrogenated aromatic oligomer may be used as it is, or may be used after purification or molecular weight fractionation.
  • the vibration damping additive of the present invention is used by being blended with a resin, rubber, bitumen material, etc. used as a vibration damping material. At this time, in addition to the damping agent of the present invention, a known damping agent, carbon black, calcium carbonate, titanium oxide, clay, talc, my force, alumina, etc.
  • Various additives such as materials, process oils and antioxidants can be blended.
  • the vibration damping of the present invention is applied to rubber having elasticity such as SBR, butyl rubber, natural rubber, gen-based rubber, chloroprene, hydrogenated modified rubber or EVA (ethylene butyl acetate resin).
  • the content imparting agent is used in an amount of 10 to 70%, preferably 30 to 60%.
  • the hydrogenation rate calculated from the amount of absorbed hydrogen was about 60%, and the addition of hydrogen resulted in a resin with improved hue and white to pale yellowish transparency.
  • the oxygen content of the hydrogenated aromatic oligomer A was 5.2%.
  • This hydrogenated aromatic oligomer A is weighed 1: 1 with SBR (Tufprene A, manufactured by Asahi Kasei Kogyo Co., Ltd.), and a solution is prepared using THF.
  • this solution is impregnated with a small spring (outside diameter 5 mm, length 29 mm), dried at room temperature for 24 hours, and a film in which resin-based material and rubber-based material are mixed in the spring gap was formed to prepare a sample for evaluating a vibration damping characteristic by a DSA (Dynamic Spring Analys is) method.
  • a small spring outside diameter 5 mm, length 29 mm
  • a film in which resin-based material and rubber-based material are mixed in the spring gap was formed to prepare a sample for evaluating a vibration damping characteristic by a DSA (Dynamic Spring Analys is) method.
  • DSA Dynamic Spring Analys is
  • the flask was charged with 135 parts of desulfurized methylnaphthalene oil (methylnaphthalene content 80%, acenaphthene 5%), 68 parts of ⁇ -cousylbutylphenol and 37 parts of 92% paraformaldehyde, and charged to the flask. This was kept at 110 ° C., and 23 parts of oxalic acid was added. Then, as in Example 1, 130 with stirring. Performs 2. 5 hr reaction in C, and to produce a sediment Goma, after completion of the reaction, the low boilers were distilled out, t recycled material fraction of unreacted starting material was distilled out was 6 6 parts.
  • the resin content remaining in the flask was 125 parts of an aromatic oligomer having a softening point of 120 ° C.
  • the hue of this aromatic oligomer is yellow to brown.
  • the oxygen content of the oligo was 6.1%.
  • a hydrogenation reaction was performed on 100 parts of this aromatic oligomer in the same manner as in Example 1 until hydrogen absorption ceased. After the reaction was completed, the catalyst was filtered, and isopropyl alcohol was distilled off to hydrogenate. Oligomer B105 was obtained.
  • the hydrogenation rate calculated from the amount of hydrogen absorbed was about 60%, and the addition of hydrogen resulted in a resin with improved hue and a white to pale yellow transparent resin.
  • the hydrogenated oligomer B had an oxygen content of 4.5%.
  • Example 3 With respect to this oligomer B, the vibration damping characteristics were evaluated in the same manner as in Example 1. The results are shown in FIG. 1 and Table 1. Example 3
  • a flask was charged with 250 parts of desulfurized naphthalene (naphthalene content: 99%), 10 parts of tarezol and 50 parts of 88% paraformaldehyde, and a condenser was attached. This was kept at 100 ° C., 60 parts of 70% sulfuric acid was added dropwise, and a reaction was carried out at 120 ° C. for 3 hours while stirring to produce an oligomer.
  • the hydrogenation rate calculated from the amount of absorbed hydrogen was about 50%, and the addition of hydrogen resulted in a resin with improved hue and white and transparent.
  • the oxygen content of hydrogenated Oligomer C was 5.5%.
  • the flask was charged with 250 parts of desulfurized naphthalene (naphthalene content: 9.9%), 5 parts of phenol and 50 parts of 88% paraformaldehyde, and the flask was fitted with a condenser. This was kept at 100 ° C., 60 parts of 70% sulfuric acid was added dropwise, and a reaction was carried out at 120 ° C. for 3 hours with stirring to produce an oligomer.
  • Example 3 After the completion of the reaction, low-boiling substances were distilled off as in Example 3, and unreacted raw materials were distilled off.
  • the resin remaining in the flask was 21.5 parts of an aromatic oligomer having a pale yellow hue and a softening point of 75 ° C.
  • the oxygen content of this aromatic oligomer was 6.0%.
  • the hydrogenation rate calculated from the amount of hydrogen absorbed was about 60%, and by adding hydrogen, a resin with improved hue and white and transparent was obtained.
  • the oxygen content of this hydrogenated oligomer D was 5.0%.
  • a flask was charged with 250 parts of desulfurized naphthalene (99% naphthalene content) and 50 parts of 88% paraformaldehyde, and a condenser was attached. This was kept at 100 ° C., 60 parts of 70% sulfuric acid was added dropwise, and a reaction was carried out at 120 ° C. for 3 hours with stirring to produce an oligomer.
  • Example 3 After the completion of the reaction, low-boiling substances were distilled off as in Example 3, and unreacted raw materials were distilled off.
  • the resin remaining in the flask was 210 parts of an aromatic oligomer having a pale yellow hue and a softening point of 60 ° C.
  • the oxygen content of this oligomer was 4.0 Q / o.
  • the hydrogenation rate calculated from the amount of hydrogen absorbed was about 60%, and the addition of hydrogen resulted in a white and transparent resin with improved hue.
  • This hydrogenated oligomer E had an oxygen content of 3.0%.
  • Example 3 After the completion of the reaction, low-boiling substances were distilled off as in Example 3, and unreacted raw materials were distilled off.
  • the resin content remaining in the flask was 240 parts of an aromatic oligomer having a pale yellow hue and a softening point of 95 ° C.
  • the oxygen content of this oligomer was 4.5%.
  • the hydrogenation rate calculated from the amount of hydrogen absorbed was about 60%, and the addition of hydrogen resulted in a white and transparent resin with improved hue.
  • the oxygen content ′ of this oligomer F was 3.5%.
  • Example 3 After the completion of the reaction, low-boiling substances were distilled off as in Example 3, and unreacted raw materials were distilled off.
  • the resin remaining in the flask has a pale yellow hue and a softening point of 16 Five.
  • the aromatic oligomer of C was 123 parts.
  • the oxygen content of this aromatic oligomer was 17%.
  • a hydrogenation reaction was performed on 100 parts of this aromatic oligomer in the same manner as in Example 1 until hydrogen absorption ceased.
  • the catalyst was filtered, and isopropyl alcohol was distilled off to hydrogenate. O 104 parts of oligomer G were obtained.
  • the hydrogenation rate calculated from the amount of hydrogen absorbed was about 50%, and the addition of hydrogen resulted in a white and transparent resin with improved hue.
  • the oxygen content of the hydrogenated oligomer G was 13%. With respect to this oligomer G, the vibration damping characteristics were evaluated in the same manner as in Example 1. The results are shown in FIG.
  • a solution was prepared from SBR (Taphprene A, manufactured by Asahi Kasei Kogyo Co., Ltd.) using THF without using an oligomer, and the damping characteristics were evaluated in the same manner as in Example 1. The results are shown in FIGS. 1 to 3 and Table 1.
  • the hydrogenated aromatic oligomer of the present invention does not have an odor, and therefore is useful from the viewpoint of use environment. This aromatic oligomer can be obtained relatively easily.
  • the hydrogenated aromatic oligomer can be used alone or in combination to provide excellent vibration damping properties over a wide temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

明細書 水素化芳香族オリ ゴマー及びその製造方法 技術分野 本発明は、 水素化芳香族オリ ゴマー及びその製造方法並びにこれを使 用する制振性付与剤に関する。 本発明の水素化芳香族オリ ゴマーは、 樹 脂、 ゴム等に配合されて、 粘着性や制振性等の改良のための樹脂改質剤 と して有用である。 背景技術 フエノール類とホルムアルデヒ ド類を酸触媒の存在下で反応させて得 られる樹脂は、 フエノール樹脂あるいはノボラック樹脂と してよく知ら れている。 また、 キシレンやナフタレン等の芳香族炭化水素とホルムァ ルデヒ ド類を酸触媒の存在下で反応させて得られる樹脂は、 炭化水素樹 脂と してよく知られている。 更に、 インデンークマロン樹脂や石油樹脂 も炭化水素樹脂と して知られているが、 この場合はインデンゃクマロ ン 自体がォレイ フィン結合を有するため、 ホルマリン類は使用されない。 特公昭 5 3 — 2 4 9 7 3号公報には、 芳香族油とホルムアルデヒ ド類 との酸触媒の存在下で反応させて得られた芳香族油樹脂を塗料配合材と して使用することが記載されている。 ここで使用する芳香族油は軽油、 石炭酸油、 ナフタレン油等であり、 薄い黄色から茶褐色の色相を呈して いる。 そのため、 透明性を要求される用途への利用が制限されてきた。 炭化水素樹脂を使用し、 制振性をコントロールする方法は各種提案さ れている。 たとえば、 市販の石油樹脂や、 市販のクマロン一インデン樹 脂を使用するもの (特開昭 6 3 — 1 1 9 8 0号公報、 特開昭 6 2 — 1 4 1 0 6 9号公報) や、 市販のポリブテン、 テルペン樹脂若しくは変性口 ジンを使用したもの (特開平 2 — 4 9 0 6 3号公報) が報告されている ( また、 多環芳香族樹脂を使用した例と しては、 アルキルベンゼン一メチ ルナフタレン樹脂を使用したもの (特開平 7 — 9 0 1 3 0号公報) があ る。
ゴム、 樹脂、 瀝青材料等の基材に配合して制振性を向上させる制振性 付与剤は、 これを配合した制振材の tan S (損失係数) が使用領域で大 きいこと、 tan δ の温度依存性が小さいことが望まれる。 しかし、 この 性質は相反することが多いことが知られている。
なお、 石油樹脂等の炭化水素樹脂を水素化する方法は、 特開平 2 0 0 0 - 1 0 3 8 2 0号公報等で知られている。 発明の開示 本発明の目的は、 透明性が優れ、 炭化水素樹脂等のオリ ゴマーが使用 される各種の分野に使用可能な新規な樹脂を提供することを目的とする, また、 本発明は、 制振性付与性能の優れた水素化芳香族樹脂を提供する ことを目的とする。 本発明は、 下記式 ( 1 ) · ( A— F ) n— A ( 1 )
(但し、 Aは多環芳香族化合物又は水素化多環芳香族化合物及びフエノ ール類又は水素化フ ノール類からなる化合物を主とする成分であり、 少なく とも一部は水素化多環芳香族化合物及び/又は水素化フエノール 類である成分である。 また、 Fはメチレン及びジメチレンエーテルであ り、 nは 1〜 1 0 0の数である) で表わされる水素化芳香族オリ ゴマー である。
また、 本発明は、 下記式 ( 2 )
( A ' - F ) n- A ' ( 2 )
(但し、 A ' は多環芳香族化合物及びフエノール類を主とする成分であ る。 また、 Fはメチレン及びジメチレンエーテルであり 、 nは 1〜 1 0 0の数である) で表わされる芳香族オリ ゴマーを、 水素化して得られる 水素化芳香族オリゴマーである。
更に、 本発明は、 ナフタレン、 メチルナフタ レン、 ァセナフテン又は これらの 1種以上を含有する芳香族炭化水素油に、 ホルムアルデヒ ド及 びパラホルムアルデヒ ド等の反応系でホルムアルデヒ ドを生成する化合 物から選ばれるホルムァルデヒ ド類とフエノール類を、 酸触媒の存在下 に反応させて芳香族オリ ゴマーを得て、 次いでこの芳香族オリ ゴマーを 水素化することを特徴とする水素化オリゴマーの製造方法である。
また、 本発明は、 上記水素化芳香族オリ ゴマーからなる制振性付与剤 である。 まず、 本発明の水素化芳香族オリ ゴマーとその製造方法の説明する。 なお、 水素化芳香族オリ ゴマーは、 純粋な原料を使用しない限り、 一般 に混合物であって、 式 ( 1 ) で表わすこ とのできない樹脂を含むことが あるが、 主成分、 すなわち 5 0 %以上、 好ま しく は 8 0 %以上が式 ( 1 ) で表わされる樹脂である。 なお、 本明細書において、 特にことわ らない限り 、 純度又は濃度を表わす%は、 重量%を意味する。 また、 芳 香族オリ ゴマー中の成分とは、 ナフタ レン、 メチルナフタ レン、 ァセナ フテン、 フエノール類等のモノマーがオリ ゴマ一中に存在する ときの単 位又は基のこと をいうが、 説明の簡素化のため、 オリ ゴマ一中に存在す る単位又は基についても、 単にナフタ レン、 フエノール類のよ うにレヽぅ ことがある。
式 ( 1 ) で表わされる水素化芳香族オリ ゴマーは、 式 ( 2 ) で表わさ れる芳香族オリ ゴマーを水素化することによ り得ることができるが、 こ の方法に限らない。
以下、 芳香族オリ ゴマーの説明をして、 次に水素化芳香族オリ ゴマー の説明をする。
式 ( 2 ) で表わされる芳香族オリ ゴマー得るための芳香族化合物原料 は、 ナフタ レン、 メチルナフタ レン、 ァセナフテン等の多環芳香族化合 物とフエノール類である。 かかる芳香族化合物原料と しては、 多環芳香 族化合物と フエノ一ル類からなるもの、 これらと 5 0 %以下の少量、 好 ま しく は 2 0 %以下のその他の芳香族化合物とからなるものなどがある, その他の芳香族化合物と しては、 アルキルベンゼン等の化合物がある。 式 ( 2 ) で表わされるオリ ゴマーを得るための芳香族化合物原料の有 利な組成は、 多環芳香族化合物の合計が 6 0〜 8 0 %、 フ ノール類が 2 0〜 4 0 %からなり、 その他の芳香族化合物が 1 0 %未満であること がよ り好ま しい。 多環芳香族化合物と しては、 ナフタ レン、 メチルナフ タ レン、 ァセナフテンが好ま しく、 これらが多環芳香族化合物の 6 0〜 1 0 0 %であることが望ましい。
前記芳香族化合物原料は、 9 0〜 1 0 0 %の高純度品であつてもよい が、 これらを主と して含む芳香族炭化水素油であってもよい。 芳香族炭 化水素油と しては、 タール油系のナフタ レン油、 メチルナフタレン油、 中間油等に該当する溜分や、 これらの溜分から主たる含有成分を蒸留等 で回収して得られる中間製品や残油があるが、 水素化反応には触媒毒と なる N、 S等を含まない原料が望ましい。 その他、 粗製ナフタ レン、 9 5 %級ナフタレン、 粗製メチルナフタ レン、 粗製ァセナフテン等も好ま しい芳香族炭化水素原料と して挙げられる。
芳香族炭化水素油は多環芳香族化合物が主成分であることはもちろん であるが、 少量の他の芳香族化合物が含まれう る他、 反応性のない脂肪 族炭化水素等が含まれてもよい。 なお、 未精製の芳香族炭化水素油中に はフエノール類が含有されることがあり う るが、 これはフエノール類と して計算する。 同様に、 芳香族炭化水素油とは別途に使用することがあ るフ ノール類は、 芳香族炭化水素油とは計算しない。
式 ( 2 ) で表わされる芳香族オリ ゴマーを得るために使用するホルム アルデヒ ド類は、 反応系でホルムアルデヒ ドを生成するものであればよ く 、 ホルムアルデヒ ド自体、 ホルマリ ン、 パラホルムアルデヒ ド等が使 用できるが、 パラホルムアルデヒ ドが有利である。
式 ( 2 ) で表わされる芳香族オリ ゴマーを得るために使用するフエノ 一/レ類は、 フエノーノレの他、 ク レゾ一ノレ、 キシレノーノレ、 t 一プチノレフ エ ノ ーノレ等のァノレキノレフエノ ーノレ、 レゾノレシン、 ピロガローノレ等の多価 フエノール、 ナフ トール等の多環芳香族ヒ ドロキシ化合物などが使用で き るが、 フヱノ ール、 炭素数 1〜 6 の低級アルキルフエノール等の 1価 のフエノールが反応性、 ォリ ゴマーの物性などの面から望ましい。
芳香族ォリ ゴマーを得るための反応で使用する触媒は酸触媒であり、 酸触媒と しては、 硫酸、 燐酸、 塩酸等の無機酸、 しゅ う酸、 トルエンス ルホン酸等の有機酸、 シリ カ一アルミ ナ、 ゼォライ ト、 イオン交換樹脂、 酸性白土等の固体酸などが使用できるが、 しゅ う酸やトルエンスルホン 酸等の有機酸が好ましい。 なお、 しゅ う酸のような熱分解性の触媒であ れば、 これを除去する操作が省略できるという効果もある。
多環芳香族化合物 a (フエノール類を除く) 、 フ ノール類 b及びホ ルムアルデヒ ド類 cの使用割合は、 これ以外の芳香族化合物の含有量に より多少異なるが、 次のような割合である。 なお、 ホルムアルデヒ ド類 のモル比は、 ホルムアルデヒ ド換算で計寧したものである。 c / ( a + b ) (モル比) = 0 . 1 〜 0 . 9、 好ましく は 0 . 2〜 0 . 6。 b / a (重量比) = 0 . 0 5〜 1 0、 好ましく は 0 . 1〜 1 . 0、 より好まし くは 0 . 2〜 0. 5。
ホルムアルデヒ ド類は、 芳香族オリ ゴマーの分子量を上げるためと.、 ナフタレンを初めとする芳香族化合物の反応率を高めるために必要であ るが、 多すぎるとゲル化したり、 末端メチロール基が多量に残存する恐 れが増大する。 フエノール類は、 芳香族オリ ゴマーの分子量を上げるた めに有効であるばかりでなく、 適度の極性を与え、 金属材料への粘接着 性等を改良する作用を有するが、 多すぎると炭化水素樹脂と しての特性 が失われる。 多環芳香族化合物は、 制振性等を向上させ、 芳香族オリ ゴ マーの極性を適度に調整し、 S B R等の他の樹脂やゴムや溶媒との相溶 性を高めたりする作用を有する。 酸触媒の使用量は、 酸触媒の種類によって異なるが、 一般に反応原料 の 0. 5〜 2 0重量%程度であり、 しゅ う酸の場合は、 5〜 1 0重量0 /0 程度が好ましい。
反応条件は、 使用する原料、 触媒によって異なるが、 反応温度が 5 0 〜 1 8 0 °C、 反応時間が 0. 5〜 5時間程度が一般的である。 この反応 では、 ホルムアルデヒ ド類と、 多環芳香族炭化水素、 フ ノール類等と の反応が生じ、 フエノール類が少ない場合は、 フエノール類変性炭化水 素樹脂のよ うなオリ ゴマーが生成する。 フエノ一ル類を反応系に多量に 存在させる と、 炭化水素変性ノポラック樹脂のよ うなオリ ゴマーが生成 する。 また、 溶媒は必要により使用することができる。
反応終了後、 これを蒸留にかけ、 まず水やホルムアルデヒ ド等の低沸 点物を溜出させ、 次いで減圧にして 2 0 0〜 2 5 0〜 3 0 0 °C程度まで 昇温して、 未反応の原料やその他の溜分を溜出させる。 残留物は芳香族 オリ ゴマーである。 なお、 反応終了後、 必要によ り触媒除去処理を水洗 等によ り行ってもよく、 この場合は反応の進行はここで停止し、 行わな い場合は蒸留中も反応が一部進行する。
このよ う にして得られる芳香族オリ ゴマーは、 上記式 ( 2 ) で表され る芳香族オリ ゴマーを主成分とする。 式 ( 2.) で、 A' は ( a ) 多芳香 族化合物及び ( b ) フエノール類を主とする成分であり 、 Fはメチレン 又はメ チ レンと - C H 2 O C H 2 —である。 好ま し く は、 ( b ) / ( a ) の重量比が 1 0 / 9 0〜 3 0 7 0でぁり、 Fは 9 0モル%以上 よ り好ま しく は 9 5モル0 /0以上がメチレンであることがよいが、 用途に よっては 2 0〜 3 0モル0 /0力 S - C H 2 O C H 2—であってもよレヽ。
nは 1〜 1 0 0であり、 好ま しく はその平均が 2〜2 0の範囲である ( 好ましい数平均分子量は 3 0 0〜 1 0 0 0の範囲であり、 重量平均分子 量は 5 0 0〜 2 0 0 0の範囲であり、 その比は 1 . 5〜 3の範囲である c また、 この芳香族ォリ ゴマ一は、 軟化点が 5 0〜 1 8 0 °C、 好ましくは 7 0〜 1 6 0 °Cの範囲にあることがよい。 軟化点が低すぎたり、 高すぎ たりすると良好な制振性を示す温度範囲が常用使用範囲からづれたり、 相溶性が低下したりする。
また、 この芳香族オリ ゴマーは、 触媒にシユウ酸を使用し、 高温処理 したものは、 ホルムアルデヒ ド類由来の酸素はほぼ完全に系外へ脱離し てしま う ことが判明した。 一方、 硫酸法でマイルドな条件下で反応を行 う と、 ホルムアルデヒ ド類由来の酸素が残ってしまう ことが判明した。 これは、 メチレン結合で芳香環がつながる力 、 一 CH2— 0— CH2 _など のエーテル結合で芳香環がつながるかの差異によるものと考えられる。
この芳香族オリ ゴマーは、 -エーテル結合に由来する酸素含有率が 3 wt%以下、 好ま しく は 1 wt%以下であることが望ましく、 アルキルフエ ノ一ル等のフエノール類に由来する酸素を含めた全酸素含有率が 2 0 wt%以下、 好ましくは 1 O wt%以下であることがよい。 本発明の水素芳香族オリ ゴマ一は、 上記芳香族オリ ゴマーを水素化す ることにより得ることができる。 水素化は公知の方法で行うことができ. 例えば、 エッケル、 コバル ト、 モリブデン等の金属又は金属化合物を含 む水素化触媒の存在下に又は白金、 パラジウム、 ロジウム等の貴金属系 水素化触媒の存在下に、 水素で、 加熱、 加圧条件下に行うことができる, 水素化触媒は、 アルミナ、 シリ カ、 けいそう土、 カーボン等の担体に担 持して使用することもできる。 水素化圧力は 1〜 1 0 0 MPa程度の範囲 が好ましく、 反応温度は 1 5 0〜 3 5 0 °C程度の範囲が好ましい。
水素化の程度は、 芳香族環の少なく とも一部が水素化される程度であ り、 好ましく は核水素化率が 2 0 %以上、 より好ましく は 3 0 %以上、 更に好ましく は 5 0 %以上である。 しかし、 用途によっては芳香族性が 残存していることが望ましい場合もあるので、 着色が殆どなくなる程度、 4 0〜 8 0 %程度が好ましいどきもある。
このよ う にして得られる本発明の水素化芳香族ォリ ゴマーは、 上記式
( 1 ) で表される。 式 ( 1 ) で、 Aは ( a ) 多環芳香族化合物、 ( b ) フエノール類又は ( c ) これらの水素化物を主とする成分であるが、
( c ) 水素化物を必須成分と して含む。 F及び nは式 ( 2 ) で説明した と同様である。
また、 この水素化芳香族オリ ゴマーは、 軟化点が 5 0〜 1 8 0 °C、 好 ましく は 7 0〜 1 6 0 °Cの範囲にあることがよい。 軟化点が低すぎたり . 高すぎたりすると良好な制振性を示す温度範囲が常用使用範囲からづれ たり、 相溶性が低下したりする。
また、 この水素化芳香族オリ ゴマーは、 エーテル結合に由来する酸素 含有率が 3 wt%以下、 好ましくは 1 wt%以下であることが望ましく、 了 ルキルフエノール等のフエノール類に由来する酸素を含めた全酸素含有 率が 1 5 wt%以下、 好ましくは 1 0 wt%以下であることがよい。
本発明の水素芳香族オリ ゴマーは、 従来の炭化水素樹脂、 石油樹脂、 これらの水素化樹脂等が使用される分野に使用することができるが、 制 振性付与剤と しても優れる。 本発明の制振性付与剤は、 前記水素化芳香族オリ ゴマーからなるもの であり、 前記水素化芳香族オリ ゴマーはそのまま使用してもよく、 精製 したり、 分子量分画したり したのち使用してもよい。 本発明の制振性付 与剤は、 制振材と して使用される樹脂、 ゴム、 瀝青物等に配合されて使 用する。 この際、 制振材中に本発明の制振性付与剤の他に、 公知の制振 性付与剤や、 カーボンブラック、 炭酸カルシウム、 酸化チタン、 ク レー, タルク、 マイ力、 アルミナ等の充填材、 プロセスオイル、 酸化防止材等 の各種添加剤を配合することができる。
有利には、 S B R、 ブチルゴム、 天然ゴム、 ジェン系ゴム、 ク ロ ロプ レン、 これらの水添変成ゴム等のゴム又は E V A (エチレン酢酸ビュル 樹脂) 等の弾性を有する樹脂に、 本発明の制振性付与剤を 1 0〜 7 0 % . 好ましく は 3 0〜 6 0 %配合して使用する。 また、 本発明の制振性付与 剤を複数組合せて使用すれば、 より広い温度範囲において良好な制振性 を与えることができる。 また、 同様に他の制振性付与剤と組合せて使用 すれば、 他の制振性付与剤の欠点を改良することができる。 図面の簡単な説明 図 1〜図 3は、 本発明の水素化芳香族オリ ゴマーを制振性付与材と して 使用したときの tan δ と温度の関係を示すグラフである。 発明を実施するための最良の形態 以下、 本発明の実施例を示す。 実施例中、 %は重量%であり、 部は重 量部である。 実施例 1
脱硫したナフタレン (ナフタ レン含有率 9 9 %) を 1 3 5部、 p — ターシヤ リ ブチノレフエノール 6 8部及び 9 2 %パラホノレムアルデヒ ド 3 7部を、 フラス コに仕込み、 これを 1 1 0°Cに保ち、 しゅう酸 2 3部を 添加した。 次いで、 撹袢しつつ 1 3 0 °Cで 2. 5 h r反応を行ない、 ォ リ ゴマーを生成させた。 なお、 生成水等の低沸点分は還流させた。
反応終了後、 フラスコにコ ンデンサーを取付け、 常圧で蒸留を開始し た。 2 0 0 °Cまでに、 水、 ホルムアルデヒ ド等の低沸点物は溜出した。 2 0 0 °Cからは 5 O mmH gの減圧にして蒸留を行ない 2 7 0 °Cまで昇 温し、 未反応原料を溜出させた。 回収原料留分は 6 6部であった。 また- フラス コ中に残る樹脂分は、 軟化点 1 1 0 °Cの芳香族ォリ ゴマー 1 1 0 部であった。 この芳香族オリ ゴマーの色相は、 黄色から褐色を呈してい る。 この芳香族オリ ゴマーを元素分析したと ころ、 含酸素率は 6. 6 % であった。
この芳香族オリ ゴマー 1 0 0部とィ ソプロピルアルコール 5 0 0部を オー トク レープに入れ、 水素化触媒と して安定化ニッケル (曰産ズー ド へミー製 G— 9 6 D) を 5部使用して、 2 3 0 °C、 l O MP aで水素 を流通させ、 1 0 0 0 r p mで撹拌し、 水素吸収が停止するまで反応を 行った。 反応終了後、 触媒をろ過し、 イソプロピルアルコールを留去し て水素化芳香族ォリ ゴマー A 1 0 5部を得た。
水素吸収量から計算される水素化率は、 約 6 0 %であり、 水素添加す ることによ り、 色相が改善され白色から淡黄色で透明性がある樹脂が得 られた。 この水素化芳香族オリ ゴマー Aの含酸素率は、 5. 2 %であつ た。 (制振特性の評価)
この水素化芳香族オリ ゴマー Aを S B R (タ フプレン A、 旭化成工業 株式会社製) と重量比で 1 : 1に秤取り、 T H Fを使用して溶液を調製 する。
次に、 この溶液に小さなスプリ ング (外径 5 m m ,長さ 2 9 m m ) を 含浸後、 室温で 2 4時間乾燥してスプリ ング間隙に樹脂系材料とゴム系 材料が混合さ れた皮膜を形成させて、 D S A ( Dynami c Spri ng Analys i s) 法による制振特性評価用試料を調製した。
この よ う に して調製した試料を測定器 (株式会社オリ エンテ ッ ク : RHE0BIBR0N DDV- Π -EP) でマイナス 1 1 0 °Cから 1 5 0 °Cの範囲の粘弾 性を測定し、 その結果を t an δ —温度と して図 1 に示す。 また最大 tan δ ピーク値とその温度を表 1に示す。 実施例 2
脱硫したメチルナフタレン油 (メチルナフタレン含有率 8 0 %、 ァ セナフテン 5 % ) を 1 3 5部、 ρ —クーシヤ リ ブチルフエノール 6 8部 及び 9 2 %パラホルムアルデヒ ド 3 7部を、 フラスコに仕込み、 これを 1 1 0 °Cに保ち、 しゅ う酸 2 3部を添加した。 次いで、 実施例 1 と同様 にして、 撹袢しつつ 1 3 0。Cで 2 . 5 h r反応を行ない、 オリ ゴマーを 生成させ、 反応終了後、 低沸点物を溜出させ、 未反応原料を溜出させた t 回収原料留分は 6 6部であった。 また、 フラスコ中に残る樹脂分は、 軟 化点 1 2 0 °Cの芳香族ォリ ゴマー 1 2 5部であつた。 この芳香族オリ ゴ マーの色相は、 黄色から褐色を呈している。 このオリ ゴマ^ "の含酸素率 は、 6 . 1 %であった。 この芳香族ォリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して水素化オリ ゴマー B 1 0 5部を得た。
水素吸収量から計算される水素化率は、 約 6 0 %であり、 水素添加す ることにより、 色相が改善され白色から淡黄色で透明性がある樹脂が得 られた。 この水素化オリ ゴマー Bの含酸素率は、 4 . 5 %であった。
このォリ ゴマー Bについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 1及び表 1に示す。 実施例 3
脱硫したナフタレン (ナフタレン含有率 9 9 % ) を 2 5 0部、 タ レ ゾール 1 0部及び 8 8 %パラホルムアルデヒ ド 5 0部を、 フラスコに仕 込みコンデンサーを取り付けた。 これを 1 0 0 °Cに保ち、 7 0 %硫酸を 6 0部を滴下し、 撹袢しつつ 1 2 0 °Cで 3 h r反応を行ない、 オリ ゴマ 一を生成させた。
反応終了後、 分液ロートに移し、 トルエンを 4 0部加え、 8 0 °〇で 1 時間静置する。 分離した下層の水層を分液し、 有機層を中和、 洗浄後、 常圧で蒸留を開始した。 2 0 0 °Cまでに、 水、 ホルムアルデヒ ド等の低 沸点物は溜出した。 2 0 0 °Cからは 5 0 m m H gの減圧にして蒸留を行 ない 2 3 0 °Cまで昇温し、 未反応原料を溜出させた。 フラス コ中に残る 樹脂分は、 色相が淡黄色で軟化点 8 0 °Cの芳香族オリ ゴマー 2 2 0.部で あった。 この芳香族オリ ゴマーの含酸素率は 6 . 7 %であった。
この芳香族オリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して水素化オリ ゴマ一 C 1 0 5部を得た。
水素吸収量から計算される水素化率は、 約 5 0 %であり、 水素添加す ることにより、 色相が改善され白色で透明性がある樹脂が得られた。 水 素化オリ ゴマー Cの含酸素率は、 5 . 5 %であった。
このオリ ゴマー Cについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 2及び表 1に示す。 実施例 4
脱硫したナフタ レン (ナフタ レン含有率 9 9 % ) を 2 5 0部、 フ エ ノール 5部及び 8 8 %パラホルムアルデヒ ド 5 0部を、 フラスコに仕込 みコンデンサーを取り付けた。 これを 1 0 0 °Cに保ち、 7 0 %硫酸を 6 0部を滴下し、 撹袢しつつ 1 2 0 °Cで 3 h r反応を行ない、 オリ ゴマー を生成させた。
反応終了後、 実施例 3 と同様にして低沸点物を溜出させ、 未反応原料 を溜出させた。 フ ラス コ中に残る樹脂分は、 色相が淡黄色で軟化点 7 5 °Cの芳香族オリ ゴマー 2 1 5部であった。 この芳香族オリ ゴマーの含 酸素率は、 6 . 0 %であった。
この芳香族オリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して水素化オリ ゴマー D 1 0 5部を得た。
水素吸収量から計算される水素化率は、 約 6 0 %であり、 水素添加す ることにより、 色相が改善され白色で透明性がある樹脂が得られた。 こ の水素化オリ ゴマー Dの含酸素率は、 5 . 0 %であった。
このオリ ゴマー Dについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 2及び表 1に示す。 実施例 5
脱硫したナフタレン (ナフタ レン含有率 9 9 % ) を 2 5 0部及び 8 8 %パラホルムアルデヒ ド 5 0部を、 フラスコに仕込みコンデンサーを 取り付けた。 これを 1 0 0 °Cに保ち、 7 0 %硫酸を 6 0部を滴下し、 撹 袢しつつ 1 2 0 °Cで 3 h r反応を行ない、 ォリ ゴマーを生成させた。
反応終了後、 実施例 3 と同様にして低沸点物を溜出させ、 未反応原料 を溜出させた。 フ ラス コ中に残る樹脂分は、 色相が淡黄色で軟化点 6 0 °Cの芳香族ォリ ゴマー 2 1 0部であった。 このオリ ゴマーの含酸素率 は 4 . 0 Q/oであった。
この芳香族オリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して軟化点点 6 2。Cの水素化オリ ゴマー E 1 0 5 部を得た。
水素吸収量から計算される水素化率は、 約 6 0 %であり、 水素添加す ることによ り、 色相が改善され白色で透明性がある樹脂が得られた。 こ の水素化オリ ゴマー Eの含酸素率は、 3 . 0 %であった。
このオリ ゴマー Eについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 3及び表 1に示す。 実施例 6
脱硫したメチルナフタレン油 (メチルナフタレン含有率 8 0 %、 ァ セナフテン 5 % ) を 2 5 0部及び 8 8 %パラ.ホルムアルデヒ ド 5 0部を. フラスコに仕込みコンデンサーを取り付けた。 これを 1 o o °cに保ち、 7 0 %硫酸を 6 0部を滴下し、 撹袢しつつ 1 2 0 °Cで 3 h r反応を行な い、 オリ ゴマーを生成させた。
反応終了後、 実施例 3 と同様にして低沸点物を溜出させ、 未反応原料 を溜出させた。 フ ラス コ中に残.る樹脂分は、 色相が淡黄色で軟化点 9 5 °Cの芳香族オリ ゴマー 2 4 0部であった。 このオリ ゴマーの含酸素率 は、 4 . 5 %であった。
この芳香族オリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して水素化ォリ ゴマー F 1 0 4部を得た。
水素吸収量から計算される水素化率は、 約 6 0 %であり、 水素添加す ることによ り、 色相が改善され白色で透明性がある樹脂が得られた。 こ のオリ ゴマー Fの含酸素'率は、 3 . 5 %であった。
このオリ ゴマー Fについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 3及び表 1に示す。 実施例 7
脱硫したメチルナフタレン油 (メチルナフタレン含有率 8 0 %、 ァ セナフテン 5 % ) を 2 5 0部、 : —タ レゾール 1 0 0部及び 8 8 %パラ ホルムアルデヒ ド 5 0部を、 フラスコに仕込みコンデンサーを取り付け た。 これを 1 0 0 °Cに保ち、 7 0 %硫酸を 3 0部を滴下し、 撹袢しつつ 1 2 0 °Cで 3 h r反応を行ない、 オリゴマーを生成させた。
反応終了後、 実施例 3 と同様にして低沸点物を溜出させ、 未反応原料 を溜出させた。 フラス コ中に残る樹脂分は、 色相が淡黄色で軟化点 1 6 5。Cの芳香族オリ ゴマー 1 2 3部であった。 この芳香族オリ ゴマーの含 酸素率は、 1 7 %であった。 この芳香族ォリ ゴマー 1 0 0部を実施例 1 と同様にして、 水素吸収が 停止するまで水素化反応を行い、 反応終了後、 触媒をろ過し、 イソプロ ピルアルコールを留去して水素化オリゴマー G 1 0 4部を得た。 水素吸収量から計算される水素化率は、 約 5 0 %であり、 水素添加す ることによ り、 色相が改善され白色で透明性がある樹脂が得られた。 こ の水素化ォリ ゴマー Gの含酸素率は、 1 3 %であった。 このオリ ゴマー Gについて、 実施例 1 と同様にして制振特性の評価を 行った。 その結果を図 3及び表 1に示す。
比較例 1
オリ ゴマーは使用せずに、 S B R (タフプレン A、 旭化成工業株式会 社製) を T H Fを使用して溶液を調製し、 実施例 1 と同様にして制振特 性の評価を行った。 その結果を図 1〜図 3及び表 1に示す。
最大 tan δ
ピーク値 温度 (°C )
実施例 1 0. 342 10. 6
実施例 2 0. 322 20. 6
実施例 3 0. 525 38. 0
実施例 4 0. 645 23. 0
実施例 5 0. 769 31. 5
実施例 6 0. 646 42. 6
実施例 7 0. 707 46. 6
比較例 1 0. 405 96. 5 図 1'〜図 3に示されるように芳香族水素化オリ ゴマーを添加使用する ことで、 S B R単独では見られない、 0 °Cから 5 0 °C域付近へ tan δ ピ ークを発現させることができ、 制振性を付与する効果が認められる。 産業上の利用可能性 本発明の水素化芳香族オリ ゴマーは、 透明性に優れ、 制振性付与剤と して有用である。 また、 本発明の製造方法によれば、 これを経済的に得 ることができる。
本発明の水素化芳香族オリ ゴマーは、 臭気もしないため、 使用環境の 面からも有用である。 この芳香族オリ ゴマーは、 比較的容易に得ること が可能である。 また、 この水素化芳香族オリ ゴマーは、 単独で又はこれ を組合せて使用すれば、 広い温度範囲で優れた制振性を与えることがで きる。

Claims

請求の範囲
( 1 ) 下記式 ( 1 )
( A— F ) n— A ( 1 )
(但し、 Aは多環芳香族化合物又は水素化多環芳香族化合物及びフ エノ ール類又は水素化フエノ一ル類からなる化合物を主とする成分であり、 少なく とも一部は水素化多環芳香族化合物及び Z又は水素化フ エノール 類からなる成分である。 また、 Fはメチレン又はジメチレンエーテルで あり、 nは 1〜 1 0 0の数である) で表わされる水素化芳香族ォリ ゴマ
( 2 ) 下記式 ( 2 )
( A ' - F ) n- A ' ( 2 )
(但し、 式中 A ' は多環芳香族化合物及びフエノール類を主とする成分 である。 また、 Fはメチレン又はジメチレンエーテルであり、 nは 1〜 1 0 0の数である) で表わされる芳香族オリ ゴマーを、 水素化して得ら れる水素化芳香族オリ ゴマー。
( 3 ) 核水素化率が 3 0モル%以上である請求項 2記載の水素化芳香 族ォリゴマー。
( 4 ) 軟化点が 5 0〜 1 8 0 °Cであり、 含酸素率が 2 0 wt%以下であ る芳香族オリ ゴマーを水素化して得られ、 含酸素率が 1 5 wt%以下であ る請求項 2記載の水素化芳香族オリ ゴマー。
( 5 ) . ナフタ レ ン、 メチノレナフタレン、 ァセナフテン又はこれらの 1 種以上を含有する芳香族炭化水素油に、 ホルムアルデヒ ド又は反応系で ホルムアルデヒ ドを生成するホルムアルデヒ ド類とフヱノール類を、 酸 触媒の存在下に反応させて芳香族オリ ゴマーを得て、 次いでこの芳香族 オリ ゴマーを水素化することを特徴とする水素化芳香族オリ ゴマーの製 造方法。
( 6 ) 請求項 1又は請求項 2の水素化芳香族オリ ゴマーからなる制振 性付与剤。
PCT/JP2001/006017 2000-07-13 2001-07-11 Oligomeres aromatique hydrogenes et leur procede de fabrication WO2002006365A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01949942A EP1302490B1 (en) 2000-07-13 2001-07-11 Hydrogenated aromatic oligomers and process for their production
KR1020027018047A KR100708326B1 (ko) 2000-07-13 2001-07-11 수소화 방향족 올리고머 및 그 제조방법
JP2002512265A JP5134752B2 (ja) 2000-07-13 2001-07-11 水素化芳香族オリゴマー及びその製造方法
US10/332,575 US6921842B2 (en) 2000-07-13 2001-07-11 Hydrogenated aromatic oligomers and process for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-212784 2000-07-13
JP2000212784 2000-07-13

Publications (1)

Publication Number Publication Date
WO2002006365A1 true WO2002006365A1 (fr) 2002-01-24

Family

ID=18708652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006017 WO2002006365A1 (fr) 2000-07-13 2001-07-11 Oligomeres aromatique hydrogenes et leur procede de fabrication

Country Status (6)

Country Link
US (1) US6921842B2 (ja)
EP (1) EP1302490B1 (ja)
JP (1) JP5134752B2 (ja)
KR (1) KR100708326B1 (ja)
CN (1) CN1202151C (ja)
WO (1) WO2002006365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115290A1 (ja) * 2012-01-31 2015-05-11 三菱瓦斯化学株式会社 ナフタレンホルムアルデヒド樹脂、脱アセタール結合ナフタレンホルムアルデヒド樹脂及び変性ナフタレンホルムアルデヒド樹脂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015980B4 (de) * 2006-04-07 2015-11-05 Mitsubishi Gas Chemical Co., Inc. Verfahren zur Herstellung von Phenol-modifizierten aromatischen Kohlenwasserstoff-Formaldehyd-Harzen mit niedriger Viskosität

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4641613B1 (ja) * 1969-06-20 1971-12-08
JPS4914595A (ja) * 1972-05-22 1974-02-08
JPS49107329A (ja) * 1973-02-14 1974-10-11
JPH11100424A (ja) * 1997-07-29 1999-04-13 Arakawa Chem Ind Co Ltd ポリアルコール樹脂の製造方法
WO2001016199A1 (fr) * 1999-08-31 2001-03-08 Nippon Steel Chemical Co., Ltd. Oligomere aromatique et son utilisation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129153A (en) * 1934-11-06 1938-09-06 Schirm Erik Resinlike condensation-products
US2139231A (en) * 1935-02-21 1938-12-06 Henkel & Cie Gmbh Composition for treating leather, lacquered surfaces, and other materials
US2161951A (en) * 1938-01-21 1939-06-13 Neville Co Phenol-modified resins from crude solvent naphtha
US2330827A (en) * 1940-04-27 1943-10-05 Koppers Co Inc Naphthalene-formaldehyde-phenol resin
US2638458A (en) * 1950-05-04 1953-05-12 Gen Mills Inc Hydrogenated phenolic resin esters
JPS5324973A (en) 1976-08-20 1978-03-08 Otsuka Gomu Kagaku Kk Damping device
US4187369A (en) * 1977-07-07 1980-02-05 Farbshtein Jury G Process for producing hydrocarbon-phenol-formaldehyde resin
JPS6036209B2 (ja) * 1982-04-12 1985-08-19 新日鐵化学株式会社 変性フエノ−ル樹脂の製造法
US5128232A (en) * 1989-05-22 1992-07-07 Shiply Company Inc. Photoresist composition with copolymer binder having a major proportion of phenolic units and a minor proportion of non-aromatic cyclic alcoholic units
JPH0496915A (ja) * 1990-08-14 1992-03-30 Nippon Steel Chem Co Ltd 多環芳香族樹脂の製造方法
JPH05311148A (ja) * 1991-04-18 1993-11-22 Nippon Petrochem Co Ltd 軽量制振材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4641613B1 (ja) * 1969-06-20 1971-12-08
JPS4914595A (ja) * 1972-05-22 1974-02-08
JPS49107329A (ja) * 1973-02-14 1974-10-11
JPH11100424A (ja) * 1997-07-29 1999-04-13 Arakawa Chem Ind Co Ltd ポリアルコール樹脂の製造方法
WO2001016199A1 (fr) * 1999-08-31 2001-03-08 Nippon Steel Chemical Co., Ltd. Oligomere aromatique et son utilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1302490A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115290A1 (ja) * 2012-01-31 2015-05-11 三菱瓦斯化学株式会社 ナフタレンホルムアルデヒド樹脂、脱アセタール結合ナフタレンホルムアルデヒド樹脂及び変性ナフタレンホルムアルデヒド樹脂

Also Published As

Publication number Publication date
US20040014930A1 (en) 2004-01-22
KR100708326B1 (ko) 2007-04-17
EP1302490A1 (en) 2003-04-16
EP1302490B1 (en) 2010-03-10
CN1202151C (zh) 2005-05-18
KR20030034116A (ko) 2003-05-01
JP5134752B2 (ja) 2013-01-30
CN1441815A (zh) 2003-09-10
EP1302490A4 (en) 2004-07-14
US6921842B2 (en) 2005-07-26

Similar Documents

Publication Publication Date Title
JP4256756B2 (ja) 官能基を有するかご型シルセスキオキサン樹脂の製造方法
JP4805503B2 (ja) 芳香族オリゴマーを使用した粘着性付与剤及び制振性付与剤
CN101045819A (zh) 一种有机硅树脂组合物
JP6870365B2 (ja) 水添スチレン系共重合樹脂
CN106967204B (zh) 一种长效增粘的酚醛树脂的合成及其应用
EP0013402B1 (de) Siloxanmodifizierte Novolake, deren Herstellung und Verwendung zur Herstellung von Reibbelägen
WO2002006365A1 (fr) Oligomeres aromatique hydrogenes et leur procede de fabrication
JP4574984B2 (ja) 樹脂組成物
EP4025552A1 (en) Aromatic enol ethers
KR100990325B1 (ko) 오가노실록산 수지-폴리엔 물질
JP5239196B2 (ja) 低粘度フェノール類変性芳香族炭化水素ホルムアルデヒド樹脂の製造方法
KR20030033051A (ko) 노볼락 수지, 그의 제조방법 및 그의 용도
JP2676053B2 (ja) 液状石油樹脂およびその製造方法
JP2005194488A (ja) 新規テルペン系樹脂
JP2003193024A (ja) 制振材
TWI542612B (zh) 具有改良阻隔性質之矽氧樹脂
JPH04225012A (ja) 4核体フェノール類ノボラック及びその製造法
CA3057137A1 (en) Recyclable cross-linked diene elastomers comprising furanyl groups and precursors thereof
JP2002179751A (ja) 芳香族炭化水素フェノール樹脂の製造方法
JP4786832B2 (ja) 芳香族オリゴマー及びその製造方法
Li et al. Scalable Synthesis of Thymol-Based Bisphenol E Epoxy Monomer and Related Thermosets with Low Dielectric Constant and Density and Improved Resistance to Hygrothermal Aging
JP2000355556A (ja) 低硫黄芳香族炭化水素の製造方法
JP4959652B2 (ja) 炭化水素系溶剤組成物
JP2021534296A (ja) 架橋性オルガノシロキサン組成物
JPS63286447A (ja) 合成ゴム組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 512265

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027018047

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10332575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018127185

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001949942

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001949942

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027018047

Country of ref document: KR