WO2002002618A1 - Nouveau polypeptide, sous-unite 10 de nadh deshydrogenase, et polynucleotide codant ce polypeptide - Google Patents

Nouveau polypeptide, sous-unite 10 de nadh deshydrogenase, et polynucleotide codant ce polypeptide Download PDF

Info

Publication number
WO2002002618A1
WO2002002618A1 PCT/CN2001/000991 CN0100991W WO0202618A1 WO 2002002618 A1 WO2002002618 A1 WO 2002002618A1 CN 0100991 W CN0100991 W CN 0100991W WO 0202618 A1 WO0202618 A1 WO 0202618A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
subunit
nadh dehydrogenase
sequence
Prior art date
Application number
PCT/CN2001/000991
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Biowindow Gene Development Inc. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biowindow Gene Development Inc. Shanghai filed Critical Biowindow Gene Development Inc. Shanghai
Priority to AU93626/01A priority Critical patent/AU9362601A/en
Publication of WO2002002618A1 publication Critical patent/WO2002002618A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a new polypeptide, a NADH dehydrogenase 51Kd subunit 10, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and polypeptide. Background technique
  • Respiratory chain NADH dehydrogenase ubiquinone oxidoreductase, also known as respiratory complex I, is the most complex enzyme system in the respiratory chain. Its role is to catalyze the transfer of 2 electrons of MDH to ubiquinone.
  • Complex I spans the mitochondrial inner membrane to shift protons from the side of the matrix (M) to the side of the cytoplasm (C), so it is also a proton translocation body.
  • This complex can be decomposed into water-soluble flavin protein, water-soluble iron-sulfur protein and insoluble water (including Phospholipids, iron, and sulfur that is unstable to acids).
  • Fungal NADH dehydrogenase is composed of at least 30 different subunits, and mammals are composed of at least 41 subunits. No matter whether it is a fungus or mammal, its NADH dehydrogenase contains 7 most hydrophobic subunits, namely ND1 to ND6 and ND4L. These 7 subunits are encoded by mitochondrial genes and synthesized in mitochondria. Electron microscopy showed that N. Cras sad's MDH dehydrogenase exhibited an unusual L-shaped structure, and its exterior projected into the mitochondrial matrix and became a fixed component of the membrane.
  • NADH dehydrogenase is an oligomycin enzyme complex located on the inner membrane of the mitochondria (and possibly in chloroplasts in cyanobacteria).
  • a 51kd subunit is the second largest subunit of all subunits, and is one of the constituents of iron sulfur protein. This subunit may bind NAD, FMN and a 2Fe-2S protein cluster.
  • the 51kd subunit of NADH dehydrogenase and the bacterial dehydrogenase alpha subunit contain three similar regions. One is most likely to correspond to the NAD binding site, the second to the FMN-binding site, and the third to 3 cysteine, corresponding to the iron-sulfur binding site.
  • the sequence of characteristic patterns corresponding to the FMN binding site and the 2Fe-2S binding site is as follows: [1]
  • NADH dehydrogenase 51Kd subunit 10 protein plays an important role in important functions in the body, Moreover, it is believed that a large number of proteins are involved in these regulatory processes, so there is a need in the art to identify more NADH dehydrogenase 51Kd subunit 10 proteins involved in these processes, especially the amino acid sequence of this protein. Isolation of the new NADH dehydrogenase 51Kd subunit 10 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its code for DM. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a 51DH subunit 10 of NADH dehydrogenase.
  • Another object of the present invention is to provide a method for producing the 51DH subunit 10 of NADH dehydrogenase.
  • Another object of the present invention is to provide an antibody against the polypeptide of the present invention-NADH dehydrogenase 51M subunit 10.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide of the present invention-NADH dehydrogenase 51Kd subunit 10.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities in the 51Kd subunit 10 of NADH dehydrogenase.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 335-604 in SEQ ID NO: 1; and (b) a sequence having 1-2081 in SEQ ID NO: 1 Sequence of bits.
  • the invention further relates to a vector, in particular an expression vector, containing a polynucleotide of the invention.
  • the vector genetically engineered host cell includes a transformed, transduced or transfected host cell; a method for preparing a polypeptide of the present invention comprising culturing the host cell and recovering an expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit NADH dehydrogenase 51Kd subunit 10 protein activity, which comprises using the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the invention also relates to a method for detecting a disease or susceptibility to disease associated with abnormal expression of MDH dehydrogenase 51Kd subunit 10 protein in vitro, which comprises detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, Alternatively, the amount or biological activity of a polypeptide of the invention in a biological sample is detected.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of NADH dehydrogenase 51Kd subunit 10.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as the replacement of isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
  • Replacement refers to a different amino acid Or nucleotides replace one or more amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
  • An "agonist” refers to a molecule that, when combined with NADH dehydrogenase 51Kd subunit 10, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind to the NADH dehydrogenase 51Kd subunit 10.
  • Antagonist refers to a molecule that, when combined with NADH dehydrogenase 51Kd subunit 10, can block or regulate the biological or immunological activity of NADH dehydrogenase 51Kd subunit 10.
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates or any other molecule that can bind to the 51DH subunit 10 of the NADH dehydrogenase.
  • Regular refers to a change in the function of NADH dehydrogenase 51Kd subunit 10, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological properties, functions, or immunity of MDH dehydrogenase 51Kd subunit 10. Change of nature.
  • Substantially pure 1 'means substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated.
  • Those skilled in the art can purify the NADH dehydrogenase 51Kd subunit 10 using standard protein purification techniques.
  • the substantially pure NADH dehydrogenase 51Kd subunit 10 can generate a single main band on a non-reducing polyacrylamide gel.
  • the purity of the NADH dehydrogenase 51Kd subunit 10 polypeptide can be analyzed by amino acid sequence.
  • “Complementary” or “complementary” refers to the natural binding of a nucleotide by base-pairing under conditions of acceptable salt concentration and temperature.
  • the sequence "C-T-G-A” can be combined with the complementary sequence A-C-T ".
  • the complementarity between two single-stranded molecules can be partial or complete.
  • the degree of complementarity between nucleic acid strands is The efficiency and strength of hybridization between nucleic acid strands has a significant effect.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern blotting or Nor thern blotting, etc.) under conditions of reduced stringency.
  • Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other specifically or selectively.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.).
  • the MEGALIGN program can be Methods such as the Cluster method compare two or more sequences (Higg ins, DG and PM Sharp (1988) Gene 73: 237-244).
  • the Clus ter method arranges groups of sequences into clusters by checking the distance between all pairs. The clusters are then assigned in pairs or groups.
  • the percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 100 The number of residues in sequence A-the number of spacer residues in sequence A The number of spacer residues in a sequence B can also be determined by the Clus ter method or by a method known in the art such as Jotun He in. The percent identity between nucleic acid sequences (He in J., (1990) Methods in emzumology 183: 625 -645) 0
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. Such a chemical modification may be the replacement of a hydrogen atom with an alkyl group, an acyl group or an amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological characteristics of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and?, Which specifically bind to the epitope of NADH dehydrogenase 51Kd subunit 10.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a vector, or such a polynucleotide or polypeptide may be part of a composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if natural Matter, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated NADH dehydrogenase 51Kd subunit 10 means that NADH dehydrogenase 51Kd subunit 10 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated.
  • Those skilled in the art can purify the NADH dehydrogenase 51Kd subunit 10 using standard protein purification techniques. Substantially pure peptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of NADH dehydrogenase 51Kd subunit 10 peptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, a NADH dehydrogenase 51Kd subunit 10, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the invention can be naturally purified products, or chemically synthesized products, or produced using recombinant techniques from prokaryotic or eukaryotic hosts (e.g., bacteria, yeast, higher plants, insects, and mammalian cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives, and analogs of the 51DH subunit 10 of NADH dehydrogenase.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the NADH dehydrogenase 51Kd subunit 10 of the present invention.
  • a fragment, derivative, or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably 'conservative amino acid residues), and Substituted amino acids may or may not be encoded by the genetic code; or ( ⁇ ) a type in which a group on one or more amino acid residues is replaced by another group to include a substituent; or (III) Such a polypeptide sequence in which the mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or (IV) a polypeptide sequence in which an additional amino acid sequence is fused into the mature polypeptide (Such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protease sequence) As set forth herein, such fragments, derivatives, and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence with a total length of 2081 bases, and its open reading frame (335-604) encodes 87 amino acids.
  • This polypeptide has the characteristic sequence of the 51DH subunit of NADH dehydrogenase. It can be deduced that the MDH dehydrogenase 51 lKd subunit 10 has the structure and function represented by the NADH dehydrogenase 51Kd subunit.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDM, genes Group DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding the mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • "strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1 ° /.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 1 Q nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, most preferably at least 100 nucleotides. Nucleotides or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding the NADH dehydrogenase 51Kd subunit 10.
  • the polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the NADH dehydrogenase 51Kd subunit 10 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) the double-stranded DNA sequence separated from the group DNA; 2) the chemically synthesized DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • the DM of the separation group is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate the mRNA from the donor cells that are highly expressive and perform reverse transcription to form a plasmid or phage cDNA library. There are many mature techniques for mRNA extraction, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • the plugs of the invention can be screened from these CDM libraries using conventional methods:. These methods include (but are not limited to): (l) DNA-DNA or DM-RNA hybridization; (2) the appearance or loss of marker function; (3) determination of the level of the NADH dehydrogenase 51Kd sub-10 transcript; ( 4) Detection by immunological techniques or determination of biological activity: expressed protein products. The above methods can be used alone or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probes used herein are generally DNA sequences that are chemically synthesized on the basis of the present invention: sequence information. The invention itself or a fragment thereof can of course be used as a probe.
  • DM probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • the expressed protein products can be used immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • a method using DNA technology to amplify DNA / RNA is preferably used to obtain the base of the present invention:. It is particularly difficult.
  • the RACE method RACE-Rapid Amplification of cDNA Ends
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified MA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones to splice into a full-length cDNA. sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using the MDH dehydrogenase 51Kd subunit 10 coding sequence, and the recombinant technology to produce the Polypeptide method.
  • the polynucleotide sequence encoding the NADH dehydrogenase 51Kd subunit 10 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding the MDH dehydrogenase 51Kd subunit 10 and appropriate transcription / translation regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site for translation initiation and a transcription terminator. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding a NADH dehydrogenase 51Kd subunit 10 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to form a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing MA can be harvested after the exponential growth phase and treated with CaCl ' ⁇ .
  • the steps used are well known in the art.
  • the alternative is to use MgCl 2 blanket
  • transformation can also be performed by electroporation.
  • the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as Microinjection, electroporation, liposome packaging, etc.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant NADH dehydrogenase 51Kd subunit 10 (Scence, 1984; 224: 1431). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be isolated and purified by various separation methods using their physical, chemical, and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromat
  • FIG. 1 is a comparison diagram of amino acid sequence homology of a total of 46 amino acids between 5 and 50 of the MDH dehydrogenase 51Kd subunit 10 of the present invention and the characteristic domain of the 51Kd subunit of NADH dehydrogenase.
  • the upper sequence is the MDK dehydrogenase 51Kd subunit 10
  • the lower sequence is the characteristic domain of the NADH dehydrogenase 51Kd subunit.
  • Identical amino acids are represented by single-character amino acids between the two sequences, and similar amino acids are represented by "+".
  • FIG. 2 is a polyacrylamide gel electrophoresis diagram (SDS-PAGE) of the isolated NADH dehydrogenase 51Kd subunit 10.
  • 0 lOkDa is the molecular weight of the protein.
  • the arrow indicates the isolated protein band. Best way to implement the invention '
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • the Smart 00 cDNA cloning kit purchased from Clontech was used to insert the 00 fragment into the multiple cloning site of pBSK (+) vector (Clontech) to transform DH5a. The bacteria formed a cDNA library.
  • the Dye terminate cycle reaction sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public DNA sequence database (Genebank), and it was found that the cDNA sequence of one clone 1906f09 was new DNA.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • the 1906f09 clone contained a full-length cDNA of 2081bp (as shown in Seq IDN0: 1), and a 264bp open reading frame (0RF) from 335bp to 604bp, encoding a new protein (such as Seq ID NO: 2).
  • a new protein such as Seq ID NO: 2.
  • Example 2 Domain analysis of cDNA clones
  • the sequence of the NADH dehydrogenase 51Kd subunit 10 of the present invention and the protein sequence encoded by the same were subjected to a profile scan program (Basiclocal Alignment search tool) in GCG [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10], performing domain analysis in databases such as prosite.
  • the NADH dehydrogenase 51Kd subunit 10 of the present invention is homologous with the domain NADH dehydrogenase 51Kd subunit from 5 to 50, and the homology result is shown in FIG. 1.
  • the homology rate is 0.28, and the score is 12.80; the threshold value is 12.56 .
  • Example 3 Cloning of a gene encoding NADH dehydrogenase 51I (d subunit 10 by RT-PCR method
  • CDNA was synthesized using fetal brain cell total MA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primerl 5'- CATCCTGAGAACTGAAATTGATCGC- 3 '(SEQ ID NO: 3)
  • Primer2 5 -AT AAAATTTTTGAATTTATGTTCAA- 3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence located at the 5th end of SEQ ID NO: 1, starting at lbp;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification reaction conditions 50 ⁇ l reaction volume containing 50 mraol / L KC1, 10 crypto ol / L Tris-Cl, (pH 8.5), 1.5 ramol / L MgCl 2 , 200 ⁇ mol / L dNTP, lOpmol primer , 1U of Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 ° C 30sec; 55 ° C 30sec; 72. C 2min.
  • ⁇ -actin was set as a positive control and template blank was set as a negative control.
  • the amplified product was purified using a QIAGEN kit and ligated to a PCR vector (Invitrogen product) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DM sequence of the PCR product was exactly the same as the 1-2081bp shown in SEQ ID NO: 1.
  • Example 4 Northern blot analysis of the expression of NADH dehydrogenase 51Kd subunit 10 gene:
  • Total RM was extracted in one step [Anal. Biochem 1987, 162, 156-159].
  • This method involves acid guanidinium thiocyanate-chloroform extraction. That is, the tissue is homogenized with 4M guanidinium isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ) And centrifuge after mixing. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • a 32P-labeled probe (approximately 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 (pH7.4) -5 x SSC- 5 x Denhardt's solution and 200 yg / ml salmon DM. After hybridization, place the filter at 1 x SSC-0.1 ° /. Wash at 5 5 ° C in 30min SDS. Then, Phosphor Imager was used for analysis and quantification.
  • Example 5 In vitro expression, isolation and purification of recombinant NADH dehydrogenase 51Kd subunit 10
  • Primer 3 5, — CCCCATATGATGCTCTGTCACCTTCAAAGGATGG- 3 '(Seq ID No: 5)
  • Primer 4 5' — CCCAAGCTTCTTCAACATGCCGCTTCTGTTCTTC- 3 '(Seq ID No: 6)
  • the two ends of these two primers contain Ndel and BamHI digestion sites, respectively , followeded by the coding sequences of the 5 'and 3' ends of the gene of interest, respectively, and the Ndel and BamHI restriction sites correspond to the selective endonucleases on the expression vector plasmid pET28b (+) (Novagen, Cat. No. 69865.3). Enzyme site.
  • PCR was performed using the pBS-1906f09 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 pg of pBS_1906f 09 plasmid, Primer-3 and Primer- 4 points, and 1 J was lOpmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1.
  • Cycle parameters 94. C 20s, 60 ° C 30s, 68. C 2 min, a total of 25 cycles.
  • Ndel and BamHI were used to double-digest the amplified product and plasmid P ET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligated product was transformed into E. coli DH5cc using the calcium chloride method. After being cultured overnight in LB plates containing kanamycin (final concentration 3 () ⁇ ⁇ ⁇ ), positive clones were selected by colony PCR method and sequenced. A positive clone (pET-1906f09) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method. In containing kanamycin (final concentration of 30 ⁇ g / ml) of LB liquid medium, host strain BL21 (P ET-1906f09) at 37. C.
  • the following peptides specific to NADH dehydrogenase 51Kd subunit 10 were synthesized using a peptide synthesizer (product of PE): NH2-Met-Leu-Cys-His-Leu-Gln-Arg-Met-Val-Ser-Glu-Gln -Cys-His-Leu- C00H (SEQ ID NO: 7).
  • the peptide was coupled to hemocyanin and bovine serum albumin to form a complex.
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method Acid sequence or a homologous polynucleotide sequence thereof.
  • Filter hybridization methods include dot blotting, Southern imprinting, Northern blotting, and copying methods. They all use the same steps to immobilize the polynucleotide sample to be tested on the filter.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature), so that the hybridization background is reduced and only strong specific signals are retained.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 which belongs to the second type of probe, is equivalent to the replacement mutation sequence of the gene fragment or its complementary fragment (41Nt) of SEQ ID NO: 1
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • Probes 1 3 ⁇ l Probe (0.10D / 10 ⁇ 1), add 2 ⁇ IKinase buffer, 8-10 uCi y- 32 P-dATP + 2U Kinase, to make up to a final volume of 20 ⁇ 1.
  • probe 1 can be used for qualitative and quantitative analysis.
  • the presence and differential expression of the polynucleotide of the present invention in different tissues are analyzed.
  • polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
  • NADH dehydrogenase also known as respiratory complex I, is the most complex enzyme system in the respiratory chain. Its role is to catalyze the transfer of two electrons of NADH to ubiquinone. Flavin mononucleotide (FMN) and an unknown specific number of iron-sulfur protein clusters as the prosthetic group of the electron transfer pathway exist as dimers in the inner membrane of the mitochondria.
  • the mammalian NADH dehydrogenase consists of at least 41 subunits, of which a 51kd subunit is the second largest subunit of all subunits and is one of the constituents of iron sulfur protein.
  • This subunit may bind NAD, FMN and an iron-sulfur protein cluster.
  • the characteristic pattern sequence of the NADH dehydrogenase 51Kd subunit corresponding to the binding site of FMN and iron-sulfur protein clusters is as follows: [1] G- [AM] -G- [AR] -Y- [LIVM] -CG- [ DE] (2)-[STA] (2)-[LIM] (2)-[EN] -S
  • the new polypeptide of the present invention has a high degree of homology and similarity in structure and function with the human respiratory chain NADH dehydrogenase, and its amino acid sequence contains the above-mentioned conservative characteristic sequence template, which determines the normal of the respiratory chain in vivo get on.
  • the abnormal expression of the above-mentioned specific conserved sequence will cause the dysfunction of the polypeptide containing the profi le of the present invention, thereby leading to the dysfunction of the NADH dehydrogenase of the respiratory chain, affecting the progress of the respiratory chain, and causing the body to various Impairment of energy supply in the process of substance metabolism (sugar, lipid, protein), leading to the occurrence of related diseases, including but not limited to:
  • Hypoglycemia / hypoglycemia can cause hyper / hypoinsulinemia.
  • Hyperinsulinemia can promote lipid synthesis and stimulate arterial intimal smooth muscle cell proliferation (causing vascular lumen narrowing); hypoinsulinemia can reduce lipid clearance and vascular lysosomal lipase activity and accelerate arteries Occurrence and development of atherosclerosis.
  • tissue hypoxia can be aggravated, so glucose metabolism disorders can lead to atherosclerosis of large and medium blood vessels and microvessels in the whole system.
  • Hyperglycemia can cause changes in aqueous osmotic pressure and promote eyeballs.
  • Cardio-cerebral vessels angina pectoris, myocardial infarction, arrhythmia, coronary heart disease, metabolic cardiomyopathy, heart failure, cardiogenic shock (aorta, coronary arteries, cardiac microvessels), transient ischemic attack, cerebral infarction, Lacunar infarction, cerebral hemorrhage (intracerebral artery), etc .;
  • Renal blood vessels renal artery stenosis, renal artery embolism and thrombosis, arteriolar renal sclerosis (benign, malignant), acute / chronic renal failure, etc .;
  • Peripheral blood vessels of the limb occlusive arteriosclerosis (lower limb arteries), malnutrition skin ulcers (cutaneous arterioles), etc .;
  • Ophthalmic diseases Metabolic cataract, refractive error, iridocyclitis, ocular motor paralysis, retinopathy (simple, proliferative), iris redness, neovascular glaucoma, etc. 3.
  • Nervous system diseases Peripheral neuropathy (symmetrical distal polyneuropathy, majority mononeuropathy, autonomic neuropathy), myelopathy, hypertonic coma, hypoglycemic encephalopathy, dementia, paralysis, etc. 4.
  • Protein peptide hormone dysfunction can cause the following diseases:
  • Insulin and glucagon diabetes, hypoglycemia, etc .;
  • Hypothalamus and pituitary hormones giant disease, dwarfism, acromegaly, cortisol syndrome (Cushing's syndrome), primary aldosteronism, secondary chronic adrenal insufficiency, hyperthyroidism Hypothyroidism (stingle disease, juvenile hypothyroidism, adult hypothyroidism male / female infertility, menstrual disorders (functional uterine bleeding, amenorrhea, polycystic ovary syndrome, premenstrual tension syndrome, menopausal syndrome) Disease), sexual development disorder, diabetes insipidus, inappropriate antidiuretic hormone secretion syndrome, abnormal lactation, etc .;
  • parathyroid hormone hyperparathyroidism, hypoparathyroidism, etc .
  • Gastrointestinal hormones peptic ulcer, chronic indigestion, chronic gastritis, etc .; 2.
  • Disorders of amine metabolism can cause the following diseases:
  • disorders of lipid metabolism can cause disorders in physiological functions of lipids, which in turn can lead to the occurrence of related conditions, including but not limited to:
  • Phospholipids and cholesterol are important components of cell membrane, nuclear membrane, nerve myelin membrane, etc.
  • Demyelinating peripheral neuropathy limb paralysis, limb dysfunction, respiratory palsy (intercostal, diaphragmatic paralysis), facial paralysis, medulla paralysis (hoarseness, cough), autonomic symptoms (increased sweating, skin flushing) , Tachycardia, orthostatic hypotension, urine retention), ataxia, mental disorders, etc .;
  • Leukodystrophy (demyelinating) disease:, metachromatic leukodystrophy, Pei-Mei
  • Phospholipid and cholesterol molecules contain hydrophilic and hydrophobic groups, so they have the effect of emulsifying triglycerides and fat-soluble vitamins, and promote their absorption and transport.
  • Vi tA night blindness, dry eye, bone retardation
  • Vi tE infertility, abortion, anemia, muscle wasting, neurodegeneration
  • Vi tK coagulation factor II, ⁇ , IX, X Lack
  • Vi tD3 child rickets, adult osteomalacia, kidney stones), etc .
  • fatty deposition diseases fatty liver, fatty deposition cardiomyopathy, fatty deposition nephropathy
  • related tumors lipoma, lipoblastoma, liposarcoma
  • Phospholipid molecules contain many unsaturated fatty acids. Among them, linoleic acid, linolenic acid, and arachidonic acid are essential fatty acids in the human body and are indispensable for maintaining normal life activities. For example, arachidonic acid is the raw material for prostaglandin synthesis.
  • Bile acid metabolism disorders steatosis (fat malabsorption can cause fat-soluble vitamin deficiency), gallbladder gallstones, biliary cirrhosis, etc .;
  • Glucocorticoid cortisol: high / low blood sugar, muscle wasting, osteoporosis, delayed wound healing, infection, concentric obesity, water poisoning (headache, convulsions, coma), mental disorders, etc .;
  • Mineralocorticoids aldosterone: Edema, hypertension, high / low blood sodium (headache, convulsions, coma), high / low blood potassium (muscle paralysis, arrhythmia, renal failure, paralytic intestinal obstruction, drowsiness, Coma) etc.
  • c sex hormones testosterone, progesterone: abnormal sexual development, abortion, etc .;
  • the three major metabolic disorders of sugar, lipid, and protein are causal and affect each other, and their specific clinical manifestations need to be considered in conjunction with the patient's original physical condition.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) the NADH dehydrogenase 51Kd subunit 10.
  • Agonists increase biological functions such as NADH dehydrogenase 51Kd subunit 10 to stimulate cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing NAM dehydrogenase 5 d subunit 10 and labeled NADH dehydrogenase 51Kd subunit 10 can be cultured in the presence of drugs. The ability of the drug to increase or block this interaction is then determined.
  • NADH dehydrogenase 51Kd subunit 10 antagonists include antibodies, compounds, receptor deletions, and the like that have been screened.
  • the antagonist of NADH dehydrogenase 51I (d subunit 10 can bind to NADH dehydrogenase 51Kd subunit 10 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide to make the Peptides cannot perform biological functions.
  • NADH dehydrogenase 51Kd subunit 10 When screening compounds as antagonists, NADH dehydrogenase 51Kd subunit 10 can be added to the bioanalytical assay, and the compound can be identified by measuring the effect of the compound on the interaction between NADH dehydrogenase 51Kd subunit 10 and its receptor. Whether it is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds. Polypeptide molecules capable of binding to MDH dehydrogenase 51Kd subunit 10 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, 10 molecules of NADH dehydrogenase 51Kd subunit should generally be labeled.
  • the present invention provides a method for producing an antibody using a polypeptide, a fragment, a derivative, an analog thereof, or a cell thereof as an antigen.
  • These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against the MDK dehydrogenase 51Kd subunit 10 epitope. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting NAM dehydrogenase 51Kd subunit 10 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • adjuvants can be used to enhance the immune response, including but not limited to Freund's Adjuvant, etc.
  • Techniques for preparing monoclonal antibodies to MDH dehydrogenase 51Kd subunit 10 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta cells Hybridoma technology, EBV-hybridoma technology, etc.
  • Antibodies against NADH dehydrogenase 51Kd subunit 10 can be used in immunohistochemical techniques to detect NADH dehydrogenase 51I (d subunit 10 in biopsy specimens).
  • Monoclonal antibodies that bind to NADH dehydrogenase 51Kd subunit 10 can also be labeled with radioisotopes and injected into the body to track their location and distribution.
  • This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • NADH dehydrogenase 51Kd subunit 10 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP, and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill the MDH dehydrogenase 51Kd subunit 1 0 Positive cells.
  • the antibodies of the present invention can be used to treat or prevent diseases related to the MDH dehydrogenase 51Kd subunit 10.
  • Administration of an appropriate dose of antibody can stimulate or block the production or activity of NADH dehydrogenase 5 lKd subunit 10.
  • the invention also relates to diagnostic test methods for the quantitative and localized detection of NADH dehydrogenase 51I (d subunit 10 levels. These tests are well known in the art and include FISH assays and radioimmunoassays.
  • the level of catalase 51Kd subunit 10 can be used to explain the importance of NADH dehydrogenase 51Kd subunit 10 in various diseases and to diagnose diseases in which MDH dehydrogenase 51Kd subunit 10 functions.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis. Analysis.
  • the polynucleotide encoding the NADH dehydrogenase 51Kd subunit 10 can also be used for a variety of therapeutic purposes.
  • Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of NADH dehydrogenase 51Kd subunit 10.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express the mutated NADH dehydrogenase 51Kd subunit 10 to inhibit endogenous MDH dehydrogenase 51Kd subunit 10 activity.
  • a variant of the MDH dehydrogenase 51I (cl subunit 1 0 may be a shortened NADH dehydrogenase 51Kd subunit 10 that lacks a signaling domain, although it can bind to downstream substrates, but lacks Signal transduction activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by NADH dehydrogenase 51Kd subunit 10 expression or abnormal activity.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, Herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding NADH dehydrogenase 51Kd subunit 10 into cells.
  • a recombinant viral vector carrying a polynucleotide encoding NADH dehydrogenase 51Kd subunit 10 The method can be found in the existing literature (Sarabrook, eta l.).
  • the recombinant polynucleotide encoding the NADH dehydrogenase 51Kd subunit 10 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit the 51DH subunit 10 mRNA of NADH dehydrogenase are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that can specifically decompose a specific RM. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphoramidite chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DM sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding NADH dehydrogenase 51Kd subunit 10 can be used for the diagnosis of diseases related to MDH dehydrogenase 51Kd subunit 10.
  • the polynucleotide encoding the NADH dehydrogenase 51 Kd subunit 10 can be used to detect the expression of NADH dehydrogenase 51Kd subunit 10 or the abnormal expression of NADH dehydrogenase 51Kd subunit 10 in disease states.
  • the DNA sequence encoding the NADH dehydrogenase 51Kd subunit 10 can be used to hybridize biopsy specimens to determine the expression status of the NADH dehydrogenase 51Kd subunit 10.
  • Hybridization techniques include Sout hern blotting, Nor thern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and related kits are commercially available. Part or all of the polynucleotides of the invention can be used as probes It is fixed on a micro array (Mi croarray) or DM chip (also known as a "gene chip"), and is used to analyze differential expression analysis and gene diagnosis of genes in tissues.
  • Mi croarray Micro array
  • DM chip also known as a "gene chip”
  • NADH dehydrogenase 51Kd subunit 10 specific primers for RNA-polymerase chain reaction (RT-PCR) in vitro amplification can also detect the NADH dehydrogenase 51Kd subunit 10 transcription products.
  • NADH dehydrogenase 51Kd subunit 10 Detection of mutations in the NADH dehydrogenase 51Kd subunit 10 gene can also be used to diagnose NADH dehydrogenase 51Kd subunit 10-related diseases.
  • the NADH dehydrogenase 51Kd subunit 10 mutant forms include point mutations, translocations, deletions, weights, groups, and any other abnormalities compared to the normal wild-type NADH dehydrogenase 51Kd subunit 10 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression. Therefore, the Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • the sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
  • specific sites for each gene on the chromosome need to be identified.
  • only a few chromosome markers based on actual sequence data are available for marking chromosome positions.
  • an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared from the cDNA, and the sequences can be located on the chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DM to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct chromosome-specific cDM libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendelian Inheritance in Man (available online with Johns Hopkins University Wetch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If at A mutation is observed in some or all of the affected individuals, and the mutation is not observed in any normal individuals, then the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable using cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the disease-related chromosomal region can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping) Resolving power and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • NADH dehydrogenase 51 Kd subunit 10 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of NADH dehydrogenase 51Kd subunit 10 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

一种新的多肽一一 NADH脱氢酶 51Kd亚基 10和编码这种多肽的多核苷酸 技术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽一一 NADH脱 氢酶 51Kd亚基 1 0 , 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸和 多肽的制备方法和应用。 背景技术
呼吸链 NADH脱氢酶:泛醌氧化还原酶, 又称呼吸复合体 I, 是呼吸链中最复杂 的酶系。 其作用是催化 MDH的 2个电子转移至泛醌。 复合体 I横跨线粒体内膜能 使质子移位从基质 (M )侧面至细胞质 (C )侧面, 因此它也是质子移位体。 黄素 单核甘酸 (FMN ) 和一个尚未知具体数目的铁硫蛋白簇作为电子传递途径的辅基, 在 线 粒体 内 膜 以 二 聚体形 式存在 [Uwe We idner, Stephan Ge ier, Arne Ptock, Thors ten Fr iedr i ch et a l. , 1993. J. Mo l . Bi ol. 233: 109-122] 0 此复合 物可被分解为水溶性黄素蛋白、 水溶性铁硫蛋白和不溶性水的部分(含磷脂、 铁 及对酸不稳定的硫)。
真菌 NADH脱氢酶至少由 30个不同的亚基组成, 哺乳动物则至少由 41个亚基组 成。 不管是真菌还是哺乳动物, 其 NADH脱氢酶都含有 7个疏水性最强的亚基, 即 ND1 到 ND6 和 ND4L, 这 7个亚基都是由线粒体基因编码并在线粒体中合成的。 电 镜显示 N. Cras sad 的 MDH脱氢酶呈现一个不同寻常的 L型结构, 并且其外部突 进线粒体基质并成为膜的固定组成
[Hofhaus , G. , We i s s , H. &Leonard, K. 1991. J. Mo l. Bio l. 221, 1027-1043]。 NADH 脱 氢酶是一个寡霉素酶复合体, 位于线粒体内膜(在藻青菌中亦可能位于叶绿体中)。 MDH脱氢酶的组成亚基中, 有一个 51kd的亚基是所有亚基中第二大的亚基, 并且 是铁硫蛋白的组成成分之一。 该亚基可能结合 NAD, FMN和一个 2Fe-2S蛋白簇。
NADH脱氢酶的 51kd亚基和细菌脱氢酶 α亚基包含 3个相似的区域。 ½一个最可 能对应于 NAD结合位点, 第二个对应于 FMN-结合位点, 第三个包含 3个半胱氨酸, 对应于铁硫结合位点。 其中对应于 FMN结合位点和 2Fe- 2S结合位点的特征模式序 列如下: [1]
G- [AM] -G- [AR] -Y- [LIVM] -C-G- [DE] (2)― [STA] (2) - [LIM] (2)一 [EN] - S
[2] E-S-C-G-x-C-x-P-C-R-x-G, 其中 3个 C是可能的 2Fe- 2S的配基。
由于如上所述 NADH脱氢酶 51Kd亚基 10蛋白在机体内重要功能中起重要作用, 而且相信这些调节过程中涉及大量的蛋白, 因而本领域中一直需要鉴定更多参与 这些过程的 NADH脱氢酶 51Kd亚基 10蛋白, 特别是鉴定这种蛋白的氨基酸序列。 新 NADH脱氢酶 51Kd亚基 10蛋白编码基因的分离也为研究确定该蛋白在健康和疾 病状态下的作用提供了基础。 这种蛋白可能抅成开发疾病诊断和 /或治疗药的基 础, 因此分离其编码 DM是非常重要的。 发明的公开
本发明的一个目的是提供分离的新的多肽一一 NADH脱氢酶 51M亚基 10 以及 其片段、 类似物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。
本发明的另一个目的是提供含有编码 NADH脱氢酶 51Kd亚基 10的多核苷酸的 重组载体。
本发明的另一个目的是提供含有编码 NADH脱氢酶 51Kd亚基 10的多核苷酸的 基因工程化宿主细胞。
本发明的另一个目的是提供生产 NADH脱氢酶 51Kd亚基 10的方法。
本发明的另一个目的是提供针对本发明的多肽一一 NADH脱氢酶 51M 亚基 10 的抗体。
本发明的另一个目的是提供了针对本发明多肽一一 NADH脱氢酶 51Kd 亚基 10 的模拟化合物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与 NADH脱氢酶 51Kd亚基 10异常相关的 疾病的方法。
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ ID No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该多肽 是具有 SEQ ID NO: 2氨基酸序列的多肽。
本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列或其 变体:
(a)编码具有 SEQ ID No. 2氨基酸序列的多肽的多核苷酸;
(b)与多核苷酸(a)互补的多核苷酸;
(c)与(a)或(b)的多核苷酸序列具有至少 70¾相同性的多核苷酸。
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1 中 335- 604位的序列; 和(b)具有 SEQ ID NO: 1中 1-2081位的序列。
本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一种用 该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一种包括培 养所述宿主细胞和回收表达产物的制备本发明多肽的方法。
本发明还涉及一种能与本发明多肽特异性结合的抗体。
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制 NADH脱氢酶 51Kd亚基 1 0蛋 白活性的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法获得 的化合物。
本发明还涉及一种体外检测与 MDH脱氢酶 51Kd亚基 1 0蛋白异常表达相关 的疾病或疾病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸序 列中的突变, 或者检测生物样品中本发明多肽的量或生物活性。
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活剂、 拮 抗剂或抑制剂以及药学上可接受的载体。
本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗癌症、 发育性疾病 或免疫性疾病或其它由于 NADH脱氢酶 51Kd亚基 1 0表达异常所引起疾病的药物的 用途。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。
本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可以指基 因组或合成的 DNA或 RNA , 它们可以是单链或双链的, 代表有义链或反义链。 类似 地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部分。 当 本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分子的氨基酸序列时, 这 种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制为与所述蛋白质分子相关的 完整的天然氨基酸。
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变的 氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷酸序列 中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改变, 其中替换 的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨酸替换异亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸的缺 失。
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天然存 在的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换" 是指由不同的氨基酸 或核苷酸替换一个或多个氨基酸或核苷酸。
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白质。 类似 地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片段在合适的动 物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。
"激动剂" 是指当与 NADH脱氢酶 51Kd亚基 10结合时, 一种可引起该蛋白质 改变从而调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合物 或任何其它可结合 NADH脱氢酶 51Kd亚基 10的分子。
"拮抗剂" 或 "抑制物" 是指当与 NADH脱氢酶 51Kd亚基 10结合时, 一种可封闭 或调节 NADH脱氢酶 51Kd亚基 10的生物学活性或免疫学活性的分子。 拮抗剂和抑制 物可以包括蛋白质、 核酸、 碳水化合物或任何其它可结合 NADH脱氢酶 51Kd亚基 10 的分子。
"调节" 是指 NADH脱氢酶 51Kd亚基 10的功能发生改变, 包括蛋白质活性的升高 或降低、 结合特性的改变及 MDH脱氢酶 51Kd亚基 10的任何其它生物学性质、 功能 或免疫性质的改变。
"基本上纯1'是指基本上不含天然与其相关的其它蛋白、脂类、糖类或其它物质。 本领域的技术人员能用标准的蛋白质纯化技术纯化 NADH脱氢酶 51Kd亚基 10。 基 本上纯的 NADH脱氢酶 51Kd亚基 10在非还原性聚丙烯酰胺凝胶上能产生单一的主 带。 NADH脱氢酶 51Kd亚基 10多肽的纯度可用氨基酸序列分析。
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对的多核 苷酸天然结合。 例如, 序列 "C- T- G- A" 可与互补的序列 A- C- T" 结合。 两个 单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补程度对于核酸链 之间杂交的效率及强度有明显影响。
"同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同源" 是指 一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸的杂交。 这种 杂交的抑制可通过在严格性程度降低的条件下进行杂交 (Southern印迹或 Nor thern 印迹等) 来检测。 基本上同源的序列或杂交探针可竟争和抑制完全同源的序列与 靶序列在的严格性程度降低的条件下的结合。 这并不意味严格性程度降低的条件 允许非特异性结合, 因为严格性程度降低的条件要求两条序列相互的结合为特异 性或选择性相互作用。
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同或相似 的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 ( Lasergene sof tware package, DNASTAR, Inc. , Madi son Wi s. )。 MEGALIGN程序可根据不同的 方法如 C lus ter法比较两种或多种序列(Higg ins, D. G. 和 P. M. Sharp (1988) Gene 73: 237-244)。 Clus ter法通过检査所有配对之间的距离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两个氨基酸序列如序列 A和序列 B之间的相同性百 分率通过下式计算: 序列 A与序列 B之间匹配的残基个数 X 100 序列 A的残基数一序列 A中间隔残基数一序列 B中间隔残基数 也可以通过 Clus ter法或用本领域周知的方法如 J otun He in 测定核酸序列之 间的相同性百分率(He in J. , (1990) Methods in emzumology 183: 625-645) 0
"相似性 " 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同或保 守性取代的程度。 用于保守性取代的氨基酸例如, 带负电荷的氨基酸可包括天冬 氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不带电荷的头部 基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨酸; 甘氨酸和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和酪氨酸。
"反义" 是指与特定的 DNA或 RNA序列互补的核苷酸序列。 "反义链" 是指与 "有 义链" 互补的核酸链。
"衍生物" 是指 HFP或编码其的核酸的化学修饰物。 这种化学修饰物可以是用 烷基、 酰基或氨基替换氢原子。 核酸衍生物可编码保留天然分子的主要生物学特 性的多肽。
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?(^') 2及? , 其能特异性结 合 NADH脱氢酶 51Kd亚基 10的抗原决定簇。
"人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更为相 似, 但仍保留原始结合活性的抗体。
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指其天然 环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于活动物中就是 没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在自然系统中与之共存 的物质分开就是分离的。 这样的多核苷酸可能是某一载体的一部分, 也可能这样 的多核苷酸或多肽是某一组合物的一部分。 既然载体或组合物不是它天然环境的 成分, 它们仍然是分离的。
如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天然的 物质, 原始环境即是天然环境)。 如活体细胞内的天然状态下的多聚核苷酸和多肽 是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存在的其他物 质中分开, 则为分离纯化的。
如本文所用, "分离的 NADH脱氢酶 51Kd亚基 10" 是指 NADH脱氢酶 51Kd 亚基 1 0基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域 的技术人员能用标准的蛋白质纯化技术纯化 NADH脱氢酶 51Kd亚基 1 0。 基本上 纯的多肽在非还原聚丙烯酰胺凝胶上能产生单一的主带。 NADH 脱氢酶 51Kd 亚 基 10多肽的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽一一 NADH脱氢酶 51Kd亚基 10 ,其基本上是由 SEQ ID NO: 2所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成 多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产 物, 或使用重组技术从原核或真核宿主 (例如, 细菌、 酵母、 高等植物、 昆虫和哺 乳动物细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化 的, 或可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。
本发明还包括 NADH脱氢酶 51Kd亚基 10的片段、 衍生物和类似物。 如本发明 所用, 术语 "片段"、 "衍生物" 和 "类似物" 是指基本上保持本发明的 NADH 脱氢 酶 51Kd 亚基 10 相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生物或 类似物可以是: ( I )这样一种, 其中一个或多个氨基酸残基被保守或非保守氨基 酸残基 (优选 '的是保守氨基酸残基) 取代, 并且取代的氨基酸可以是也可以不是 由遗传密码子编码的; 或者 (Π ) 这样一种, 其中一个或多个氨基酸残基上的某 个基团被其它基团取代包含取代基; 或者 (I I I )这样一种, 其中成熟多肽与另一 种化合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇) 融合; 或者 (IV ) 这 样一种, 其中附加的氨基酸序列融合进成熟多肽而形成的多肽序列 (如前导序列 或分泌序列或用来纯化此多肽的序列或蛋白原序列) 通过本文的阐述, 这样的片 段、 衍生物和类似物被认为在本领域技术人员的知识范围之内。
本发明提供了分离的核酸(多核苷酸), 基本由编码具有 SEQ ID NO: 2 氨基酸 序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID NO: 1 的核苷酸 序列。 本发明的多核苷酸是从人胎脑组织的 cDNA 文库中发现的。 它包含的多核苷 酸序列全长为 2081个碱基, 其开放读框 ( 335-604 )编码了 87个氨基酸。 此多肽 具有 NADH脱氢酶 51Kd亚基的特征序列, 可推断出该 MDH脱氢酶 5lKd亚基 10具 有 NADH脱氢酶 51Kd亚基所代表的结构和功能。
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDM、 基因 组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 DNA可以是编码链或非 编码链。 编码成熟多肽的编码区序列可以与 SEQ ID N0: 1 所示的编码区序列相同 或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中是指编码具有 SEQ ID NO: 2的蛋白质或多肽, 但与 SEQ ID NO: 1所示的编码区序列有差别的核酸 序列。
编码 SEQ ID NO: 2 的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附加 编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加编 码和 /或非编码序列的多核苷酸。
本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基酸 序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天然发 生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异体、 缺 失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸的替换形 式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质上改变其编 码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至少 50%, 优选具有 70%的相同性)。 本发明特别涉及在严格条件下与本发明所述多核苷 酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低离子强度和较 高温度下的杂交和洗脱, 如 0. 2xSSC, 0. 1°/。SDS, 60°C ;或(2)杂交时加用变性剂, 如 50% (v/v)甲酰胺, 0. 1%小牛血清 / 0. l%Fi co l l , 42 °C等; 或(3)仅在两条序列之间 的相同性至少在 95%以上,更好是 97%以上时才发生杂交。 并且, 可杂交的多核苷 酸编码的多肽与 SEQ ID NO: 2所示的成熟多肽有相同的生物学功能和活性。
本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核酸片 段"的长度至少含 1 Q个核苷酸, 较好是至少 20- 30个核苷酸, 更好是至少 50- 60个 核苷酸,最好是至少 100个核苷酸以上。核酸片段也可用于核酸的扩增技术(如 PCR) 以确定和 /或分离编码 NADH脱氢酶 51Kd亚基 10的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码 NADH脱氢酶 51Kd亚基 10的特异的多核苷酸序列能用多种方 法获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局 限于: 1)用探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2) 表达文库的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。 本发明的 DNA片段序列也能用下列方法获得: 1)^、 组 DNA分离双链 DNA 序列; 2)化学合成 DNA序列以获得所述多肽的双链 DNA。
上述提到的方法中, 分离 组 DM 最不常用。 DNA 序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDNA序列的分离。 分离感兴趣的 cDNA 的标准方法是 .μ、高表达该 的供体细胞分离 mRNA并进行逆转录, 形成质粒或 噬菌体 cDNA 文库。 提取 mRNA 的方法已有多种成熟的技术, 试剂盒也可^商业 途径获得(Qiagene)。 而构建 cDNA 文库也是通常的方法(Sambrook, et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。还可得到商业供应的 cDNA文库,如 Clontech公司的不同 cDNA 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。
可用常规方法 ^这些 cDM 文库中筛选本发明的塞: 。 这些方法包括(但不 限于): (l)DNA-DNA 或 DM- RNA 杂交; (2)标志基 功能的出现或丧失; (3)测 定 NADH脱氢酶 51Kd亚 10 的转录本的水平; (4)通过免疫学技术或测定生物 学活性, 来检测基: 表达的蛋白产物。 上述方法可单用, 也可多种方法联合应 用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分同 源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核苷 酸, 最好是至少 100个核苷酸。 此外, 探针的长度通常在 2000个核苷酸之内, 较佳的为 1000个核苷酸之内。 此处所用的探针通常是在本发明的基: 序列信息 的 础上化学合成的 DNA序列。 本发明的^ 本身或者片段当然可以用作探针。 DM探针的标记可用放射性同位素, 荧光素或酶(如碱性磷酸酶)等。
在第(4)种方法中, 检测 NADH脱氢酶 51Kd亚墓: 10 表达的蛋白产物可 用免疫学技术如 Western印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA)等。
应 用 PCR 技术 扩 增 DNA/RNA 的 方 法 (Saiki, et al. Science 1985; 230: 1350-1354)被优选用于获得本发明的基: 。 特别是很难. 文库中得到 全长的 cDNA 时, 可优选使用 RACE法(RACE - cDNA末端快速扩增法), 用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 MA/RNA片段。
如上所述得到的本发明的^ , 或者各种 DNA 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463- 5467)测定。 这类多核苷酸序列测定也可用商业测序试剂盒等。为了获得全长的 cDNA序列, 测 序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全长的 cDNA 序列。
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用 MDH脱氢酶 51Kd亚基 10编码序列经基因工程产生的宿主细胞, 以及经重组 技术产生本发明所述多肽的方法。
本发明中,编码 NADH脱氢酶 51Kd亚基 10的多核苷酸序列可插入到载体中, 以构成含有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细 菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆 转录病毒或其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的 基于 T7启动子的表达载体(Rosenberg, et al. Gene, 1987, 56: 125); 在哺乳 动物细胞中表达的 pMSXND 表达载体(Lee and Nathans, J Bio Chem. 263: 3521, 1988)和在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能 在宿主体内复制和稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达 载体的一个重要特征是通常含有复制起始点、 启动子、 标记基因和翻译调控元 件。
本领域的技术人员熟知的方法能用于构建含编码 MDH脱氢酶 51Kd亚基 10 的 DNA序列和合适的转录 /翻译调控元件的表达载体。这些方法包括体外重组 DNA 技术、 DNA合成技术、 体内重组技术等(Sambroook, et al. Molecular Cloning, a Laboratory Manual, cold Spring Harbor Laboratory. New York, 1989)。 所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 lac或 trp启动子; λ噬菌体的 PL启 动子; 真核启动子包括 CMV 立即早期启动子、 HSV 胸苷激酶启动子、 早期和晚 期 SV40启动子、 反转录病毒的 LTRs 和其它一些已知的可控制基因在原核细胞 或真核细胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体结 合位点和转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞中 的转录得到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 300个 碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚期 一侧的 100到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强 子以及腺病毒增强子等。
此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP) , 或用于大肠杆菌的四环素或氨苄青霉素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。
本发明中, 编码 NADH脱氢酶 51Kd亚基 10的多核苷酸或含有该多核苷酸的 重组载体可转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因 工程化宿主细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核 细胞, 如酵母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大 肠杆菌, 链霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细胞如果蝇 S2或 Sf 9 ; 动物细胞如 CH0、 COS或 Bowes黑素瘤细胞等。
用本发明所述的 DNA序列或含有所述 DNA序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 MA 的感受态细胞可在指数生长期后收获, 用 CaCl'^ 处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgCl2„ 如果需要, 转化也可用电穿孔的方 法进行。 当宿主是真核生物, 可选用如下的 DNA 转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。
通过常规的重组 DNA 技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的 NADH脱氢酶 51Kd亚基 10 (Sc i ence, 1984 ; 224: 1431)。 一般来说有以 下步骤:
(1) .用本发明的编码人 NADH脱氢酶 51Kd亚基 10的多核苷酸(或变异体), 或用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2) .在合适的培养基中培养宿主细胞;
(3) .从培养基或细胞中分离、 纯化蛋白质。
在步骤 (2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。
在步骤 (3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌到 细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法分 离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括但 并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。 附图的简要说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由杈利要求书所 界定的本发明范围。
图 1是本发明 MDH脱氢酶 51Kd亚基 10在 5- 50共 46个氨基酸和 NADH脱氢酶 51Kd亚基特征结构域的氨基酸序列同源性比较图。 上方序列是 MDH脱氢酶 51Kd 亚基 10, 下方序列是 NADH脱氢酶 51Kd亚基特征结构域。 相同氨基酸在两个序列 间用单字符氨基酸表示, 相似氨基酸用 "+" 表示。
图 2 为分离的 NADH 脱氢酶 51Kd 亚基 10 的聚丙烯酰胺凝胶电泳图 ( SDS- PAGE )0 lOkDa为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 实现本发明的最佳方式 '
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件如 Sambrook 等人, 分子克隆: 实验室手册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议 的条件。 实施例 1: NADH脱氢酶 51Kd亚基 10的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 RNA。 用 Quik mRNA Isolation Kit (Qiegene 公司产品) 从总 RNA中分离 poly (A) mRNA。 2ug poly (A) mRNA经逆转录 形成 cDNA。用 Smart cDNA克隆试剂盒(购自 Clontech )将00 片段定向插入到 pBSK (+) 载体 (Clontech公司产品)的多克隆位点上, 转化 DH5a, 细菌形成 cDNA文库。 用 Dye terminate cycle reaction sequencing kit (Perkin-Elmer公司产品) 和 ABI 377 自动测序仪(Perkin- Elmer公司)测定所有克隆的 5'和 3 末端的序列。 将测定的 cDNA 序列与已有的公共 DNA序列数据库 (Genebank) 进行比较, 结果发现其中一个克隆 1906f09的 cDNA序列为新的 DNA。 通过合成一系列引物对该克隆所含的插入 cDNA片 段进行双向测定。 结果表明, 1906f09克隆所含的全长 cDNA为 2081bp (如 Seq IDN0: 1 所示) , 从第 335bp至 604bp有一个 264bp的开放阅读框架 ( 0RF ) , 编码一个新的 蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS-1906f 09 , 编码的蛋白 质命名为 MDH脱氢酶 51Kd亚基 10。 实施例 2: cDNA 克隆的结构域分析 将本发明的 NADH脱氢酶 51Kd亚基 10的序列及其编码的蛋白序列, 用 GCG中的 profile scan程序 (Bas iclocal Alignment search tool) [Altschul, SF et al. J. Mol. Biol. 1990; 215:403-10], 在 prosite等数据库进行结构域分析。 本发明的 NADH脱氢酶 51Kd亚基 10在 5- 50与结构域 NADH脱氢酶 51Kd亚基有同源, 同源结果示 于图 1, 同源率为 0.28, 得分为 12.80; 阈值为 12.56。 实施例 3: 用 RT- PCR方法克隆编码 NADH脱氢酶 51I(d亚基 10的基因
用胎脑细胞总 MA为模板,以 oligo- dT为引物进行逆转录反应合成 cDNA,用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增:
Primerl: 5'- CATCCTGAGAACTGAAATTGATCGC- 3' (SEQ ID NO: 3)
Primer2: 5 -AT AAAATTTTTGAATTTATGTTCAA- 3 ' (SEQ ID NO: 4)
Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Primer2为 SEQ ID NO: 1的中的 3'端反向序列。
扩增反应的条件: 在 50μ 1的反应体积中含有 50mraol/L KC1, 10隱 ol/L Tris- Cl, (pH8.5), 1.5ramol/L MgCl2, 200 μ mol/L dNTP, lOpmol引物, 1U的 Taq DNA聚合 酶(Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin- Elmer公司)上按下列条 件反应 25个周期: 94°C 30sec; 55°C 30sec; 72。C 2min。 在 RT-PCR时同时设 β - actin 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA 克隆试剂盒连接到 PCR载体上 (Invitrogen公司产品) 。 DNA序列分析结果表明 PCR 产物的 DM序列与 SEQ ID NO: 1所示的 1- 2081bp完全相同。 实施例 4: Northern 印迹法分析 NADH脱氢酶 51Kd亚基 10基因的表达:
用一步法提取总 RM[Anal. Biochem 1987, 162, 156-159] . 该法包括酸性硫 氰酸胍苯酚-氯仿抽提。 即用 4M异硫氰酸胍- 25mM柠檬酸钠, 0.2M乙酸钠 ( pH4.0 ) 对组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合 后离心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物离心得到 RNA沉淀。 将 得到的 RNA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 20μ§ RNA, 在含 20mM 3- (N- 吗啉代) 丙磺酸 (pH7.0) - 5mM乙酸钠 - ImM EDTA- 2.2M甲醛的 1.2%琼脂糖凝胶上进 行电泳。 然后转移至硝酸纤维素膜上。 用 a-32P dATP通过随机引物法制备 标记 的 DNA探针。 所用的 DNA探针为图 1所示的 PCR扩增的 NADH脱氢酶 51Kd亚基 10编码区 序列(335bp至 604bp)。 将 32P-标记的探针 (约 2 x 106cpm/ml ) 与转移了 RNA的硝酸 纤维素膜在一溶液中于 42°C杂交过夜, 该溶液包含 50%甲酰胺 -25mM KH2P04 ( pH7.4 ) - 5 x SSC- 5 x Denhardt's溶液和 200 yg/ml鲑精 DM。 杂交之后, 将滤膜在 1 x SSC- 0.1°/。SDS中于 55°C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 5: 重组 NADH脱氢酶 51Kd亚基 10的体外表达、 分离和纯化
根据 SEQ ID NO: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下:
Primer 3: 5,— CCCCATATGATGCTCTGTCACCTTCAAAGGATGG- 3' ( Seq ID No: 5 ) Primer4: 5'— CCCAAGCTTCTTCAACATGCCGCTTCTGTTCTTC- 3' (Seq ID No: 6 ) 此两段引物的 5,端分别含有 Ndel和 BamHI酶切位点, 其后分别为目的基因 5'端 和 3'端的编码序列, Ndel和 BamHI酶切位点相应于表达载体质粒 pET28b(+) (Novagen 公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长目的基因的 pBS - 1906f09质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50 μ 1中含 pBS_1906f 09 质粒 10pg、 引物 Primer- 3禾口 Primer- 4分另1 J为 lOpmol、 Advantage polymerase Mix (Clontech公司产品) 1 μ 1。 循环参数: 94。C 20s, 60°C 30s, 68。C 2 min,共 25个 循环。 用 Ndel和 BamHI分别对扩增产物和质粒 PET- 28 (+)进行双酶切,分别回收大片 段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5cc,在含卡那霉素 (终浓度 3()μ§ΑηΙ ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性克隆, 并进行 测序。 挑选序列正确的阳性克隆(pET-1906f09) 用氯化钙法将重组质粒转化大肠 杆菌 BL21(DE3)plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 30 μ g/ml ) 的 LB 液体培养基中, 宿主菌 BL21 (PET-1906f09) 在 37。C培养至对数生长期, 加入 IPTG 至终浓度 1謹 ol/L, 继续培养 5小时。 离心收集菌体, 经超声波破菌,离心收集上清, 用能与 6个组氨酸 ( 6His-Tag ) 结合的亲和层析柱 His. Bind Quick Cartridge (Novagen公司产品) 进行层析, 得到了纯化的目的蛋白 NADH脱氢酶 51Kd亚基 10。 经 SDS-PAGE电泳, 在 10kDa处得到一单一的条带 (图 2 ) 。 将该条带转移至 PVDF膜 上用 Edams水解法进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2 所示的 N-端 15个氨基酸残基完全相同。 实施例 6 抗 NADH脱氢酶 51Kd亚基 10抗体的产生
用多肽合成仪(PE公司产品)合成下述 NADH脱氢酶 51Kd亚基 10特异性的多肽: NH2-Met-Leu-Cys-His-Leu-Gln-Arg-Met-Val-Ser-Glu-Gln-Cys-His-Leu- C00H (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合, 方法参见: Avrameas, et al. Immunochemistry, 1969; 6: 430 用 4mg上述血蓝蛋白 多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加不完 全弗氏佐剂加强免疫一次。 釆用经 15 g/ral牛血清白蛋白多肽复合物包被的滴定 板做 ELISA测定兔血清中抗体的滴度。 用蛋白 A-Sepharose从抗体阳性的家兔血清 中分离总 IgG。将多肽结合于溴化氰活化的 Sepha r0S e4B柱上,用亲和层析法从总 IgG 中分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与 MDH脱氢酶 51Kd亚 基 10结合。 实施例 7: 本发明的多核苷酸片段用作杂交探针的应用
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方面的 用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA文库杂交 以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核苷酸序列,进一步还可 用该探针检测本发明的多核苷酸序列或其同源的多核苷酸序列在正常组织或病理 组织细胞中的表达是否异常。
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的寡核苷 酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本发明的多核 苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹法、 Southern 印 迹法、 Northern 印迹法和复印方法等, 它们都是将待测的多核苷酸样品固定在滤 膜上后使用基本相同的步骤杂交。 这些相同的步骤是: 固定了样品的滤膜首先用 不含探针的杂交缓冲液进行预杂交, 以使滤膜上样品的非特异性的结合部位被载 体和合成的多聚物所饱和。 然后预杂交液被含有标记探针的杂交缓冲液替换, 并 保温使探针与靶核酸杂交。 杂交步骤之后, 未杂交上的探针被一系列洗膜步骤除 掉。 本实施例利用较高强度的洗膜条件(如较低盐浓度和较高的温度), 以使杂交 背景降低且只保留特异性强的信号。 本实施例选用的探针包括两类: 第一类探针 是完全与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段; 第二类探 针是部分与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段。 本实施 例选用斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探 针与样品的杂交特异性最强而得以保留。
一、 探针的选用
从本发明的多核苷酸 SEQ ID NO: 1中选择寡核苷酸片段用作杂交探针, 应遵 循以下原则和需要考虑的几个方面:
1 , 探针大小优选范围为 18- 50个核苷酸;
2 , GC含量为 30%- 70%, 超过则非特异性杂交增加; 3, 探针内部应无互补区域;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包括将该 初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它已知的基因组序 列及其互补区进行同源性比较, 若与非靶分子区域的同源性大于 85%或者有超 过 15个连续碱基完全相同, 则该初选探针一般就不应该使用;
5, 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确定。
完成以上各方面的分析后挑选并合成以下二个探针:
探针 1 (probel ), 属于第一类探针, 与 SEQ ID NO: 1 的基因片段完全同源 或互补 (41Nt) :
5-TGTTTCCCATATACATGATTTTTTTTGTTGTTGTTATTGTT-3' ( SEQ ID NO: 8 ) 探针 2 (probe2), 属于第二类探针, 相当于 SEQ ID NO: 1 的基因片段或其 互补片段的替换突变序列 (41Nt):
5'-TGTTTCCCATATACATGATTCTTTTTGTTGTTGTTATTGTT-3' ( SEQ ID NO: 9 ) 与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考文 献: DNA PROBES G. H. Kel ler; Μ· M. Manak; Stockton Press, 1989 (USA)以及更常 用的分子克隆实验手册书籍如 《分子克隆实验指南》 U998 年第二版) [美]萨姆 布鲁克等著, 科学出版社。
样品制备:
1, 从新鲜或冰冻组织中提取 DNA
步骤: 1 ) 将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐缓冲液
(PBS) 的平皿中。 用剪刀或手术刀将组织切成小块。 操作中应保持组织湿润。 2) 以 lOOOg离心切碎组织 10分钟。 3)用冷匀浆缓冲液 (0.25mol/L蔗糖; 25醒 ol/L
Tris-HCl, pH7.5; 25瞧 ol/LnaCl; 25隱 ol/L MgCl2 ) 悬浮沉淀 (大约 10ml/g )。 4) 在 4°C用电动匀浆器以全速匀浆组织悬液, 直至组织被完全破碎。 5) lOOOg 离心 10分钟。 6)用重悬细胞沉淀(每 0. lg最初组织样品 ίΐ ΐ- 5ml ), 再以 lOOOg离心
10分钟。 7)用裂解缓冲液重悬沉淀 (每 0. lg最初组织样品加 lral ), 然后接以下 的苯酚抽提法。
2, DNA的苯酚抽提法
步骤: 1)用 1- 10ml冷 PBS洗细胞, lOOOg离心 10分钟。 2)用冷细胞裂解 液重悬浮沉淀的细胞 (l x'108细胞 /ml)最少应用 lOOul 裂解缓冲液。 3)加 SDS 至终浓度为 1%, 如果在重悬细胞之前将 SDS直接加入到细胞沉淀中, 细胞可能会 形成大的团块而难以破碎, 并降低的总产率。 这一点在抽提 >107细胞时特别严重。 4)加蛋白酶 K至终浓度 200ug/ml。 5) 50°C保温反应 1小时或在 37°C轻轻振摇 过夜。 6) 用等体积苯酚: 氯仿: 异戊醇 ( 25: 24: 1) 抽提, 在小离心机管中离 心 10分钟。 两相应清楚分离, 否则重新进行离心。 7) 将水相转移至新管。 8)用 等体积氯仿: 异戊醇 (24: 1)抽提, 离心 10分钟。 9) 将含 DNA的水相转移至新 管。 然后进行 DNA的纯化和乙醇沉淀。
3, DNA的纯化和乙醇沉淀
步骤: 1 )将 1/10体积 2mol/L醋酸钠和 2倍体积冷 100%乙醇加到 DNA溶液 中, 混匀。 在- 20°C放置 1小时或至过夜。 2) 离心 10分钟。 3)小心吸出或倒出 乙醇。 4)用 70%冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5)小心吸出或倒出乙醇。 用 500ul冷乙醇洗涤沉淀, 离心 5分钟。 6)小心吸出或倒出乙醇, 然后在吸水纸 上倒置使残余乙醇流尽。 空气干燥 10-15 分钟, 以使表面乙醇挥发。 注意不要使 沉淀完全干燥, 否则较难重新溶解。 7) 以小体积 TE或水重悬 DM沉淀。 低速涡 旋振荡或用滴管吹吸, 同时逐渐增加 TE, 混合至 DM充分溶解, 每 1- 5χ 10δ细胞 所提取的大约加 lul。
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。
8 ) 将 RNA酶 A加到 DNA溶液中, 终浓度为 100ug/ml, 37°C保温 30分钟。 9 )加 入 SDS和蛋白酶 K, 终浓度分别为 0.5%和 100ug/ml。 37°C保温 30分钟。 10)用 等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提反应液, 离心 10 分钟。 11)小 心移出水相, 用等体积的氯仿: 异戊醇 (24: 1) 重新抽提, 离心 10 分钟。 12) 小心移出水相, 加 1/10体积 2iiiol/L 醋酸钠和 2.5体积冷乙醇, 混匀置 -20。C 1 小时。 13)用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3- 6步骤。 14)测定 A26。和 A2S。以检测 DM的纯度及产率。 15)分装后存放于 - 20°C。 样膜的制备: _
1 )取 4 x2 张适当大小的硝酸纤维素膜 (NC膜), 用铅笔在其上轻轻标出点样 位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别用高强度条件 和强度条件洗膜 。
2)吸取及对照各 15微升, 点于样膜上, 在室温中晾干。
3 )置于浸润有 0. Imol/LNaOH, 1.5mol/LNaCl的滤纸上 5分钟 (两次 ), 晾干置 于浸润有 0.5mol/L Tris-HCl ( pH7.0 ), 3mol/LNaCl的滤纸上 5分钟 (两次), 晾 干。
4)夹于干净滤纸中, 以铝箔 ^好, 60- 80°C真空干燥 2小时。
探针的标记 1 ) 3μ lProbe ( 0.10D/10 μ 1 ),加入 2 μ IKinase缓冲液, 8-10 uCi y-32P-dATP+2U Kinase, 以补加至终体积 20 μ 1。
2) 37'C 保温 1小时。
3)加 1/5体积的溴酚蓝指示剂 (BPB)。
4 )过 Sephadex G-50柱。
5) 至有 32P- Probe洗出前开始收集第一峰(可用 Monitor监测)。
6) 5滴 /管, 收集 10- 15管。
7)用液体闪烁仪监测同位素量
8 ) 合并第一峰的收集液后即为所需制备的 32P- Probe (第二峰为游离 γ- 32P - dATP )0
预杂交
将样膜置于塑料袋中,加入 3- lOmg预杂交液(10xDenhardt's;6xSSC, 0. lmg/ral CT DM (小牛胸腺 DNA)。), 封好袋口后, 68°C水洛摇 2小时。
杂交
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42°C水洛摇过夜。 洗膜:
高强度洗膜:
1)取出已杂交好的样膜。
2 ) 2xSSC, 0.1%SDS中, 40°C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0.1%SDS中, 40。C洗 15分钟 ( 2次)。
4 ) 0. lxSSC, 0.1%SDS中, 55。C洗 30分钟 ( 2次), 室温晾干。
低强度洗膜:
1)取出已杂交好的样膜。
2 ) 2xSSC, 0.1%SDS中, 37°C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0.1%SDS中, 37。C洗 15分钟 ( 2次)。
4) 0. lxSSC, 0.1°/。SDS中, 40。C洗 15分钟 ( 2次), 室温晾干。
X -光自显影:
- 70°C, X-光自显影 (压片时间根据杂交斑放射性强弱而定)。
实验结果:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强弱没 有明显区别; 而釆用高强度洗膜条件所进行的杂交实验, 探针 1 的杂交斑放射性 强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1 定性和定量地分 析本发明的多核苷酸在不同组织中的存在和差异表达。 工业实用性
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 HIV感染和免疫性疾 病等。
呼吸链 NADH脱氢酶:泛醌氧化还原酶, 又称呼吸复合体 I, 是呼吸链中最复杂的 酶系。 其作用是催化 NADH 的 2 个电子转移至泛醌。 黄素单核甘酸(FMN ) 和一个 尚未知具体数目的铁硫蛋白簇作为电子传递途径的辅基, 在线粒体内膜以二聚体 形式存在。 哺乳动物的 NADH脱氢酶至少由 41个亚基组成, 其中一个 51kd的亚基 是所有亚基中的第二大亚基, 并且是铁硫蛋白的组成成分之一。 该亚基可能结合 NAD, FMN和一个铁硫蛋白簇。 NADH脱氢酶 51Kd亚基的对应于 FMN和铁硫蛋白簇 的结合位点的特征模式序列如下: [1] G- [AM] -G- [AR] -Y- [LIVM] -C-G- [DE] (2) - [STA] (2) - [LIM] (2) - [EN] -S
[2] E-S-C-G-x-C-x-P-C-R-x-G, 该特异的保守序列是形成其活性 prof i le所必 需。 该特征序列的表达异常将导致呼吸链 NADH 脱氢酶的功能障碍, 影响呼吸链的 功能, 进而引发相关疾病的发生.
本发明新的多肽在结构与功能上与人呼吸链 NADH 脱氢酶有高度的同源性及相 似性, 并且其氨基酸序列中含有上述保守的特征序列模板, 其在体内决定着呼吸 链的正常进行。上述特异性的保守序列的表达异常,将导致本发明的含有此 prof i le 的多肽的功能异常, 从而导致其呼吸链 NADH 脱氢酶的功能障碍, 影响呼吸链的进 行, 引起机体对各种物质代谢过程 (糖、 脂、 蛋白质) 的供能障碍, 导致相关疾 病的发生, 这些疾病包括但不限于:
糖代谢紊乱可导致如下后果: 1. 血糖过低 /高可引起高 /低胰岛素血症。 高胰 岛素血症可促进脂质合成及刺激动脉内膜平滑肌细胞增殖 (致血管管腔腔变窄); 低胰岛素血症可减低脂质清除及降低血管溶酶体脂肪酶系的活性而加速动脉粥样 硬化的发生发展。 再加上糖基血红蛋白的含量增加可加重组织缺氧, 故糖代谢紊 乱可导致全身多系统大中血管、 微血管的粥样硬化; 2. 高血糖可引起房水渗透压 改变, 并可促进眼球晶体内的葡萄糖转化为山梨醇, 导致山梨醇在晶体内的堆积 等; 3. 糖代谢紊乱及其引起的微血管病变可导致神经变性, 主要是周围神经轴突 变性和脱髓鞘, 无髓纤维减少; 4. 糖代谢紊乱导致全身营养状况差, 免疫力低下, 易发生各种感染; 综合上诉, 糖代谢紊乱可导致全身多系统的病变, 进而引发相关疾病的发生: 一. 全身多系统血管硬化
1. 心脑血管: 心绞痛, 心肌梗塞, 心律失常, 冠心病, 代谢性心肌病, 心力衰竭, 心源性休克(主动脉、 冠状动脉、 心脏微血管), 短暂性脑缺血发作, 脑梗塞, 腔隙性梗塞, 脑出血 (脑内动脉) 等;
2. 肾脏血管: 肾动脉狭窄, 肾动脉栓塞及血栓, 小动脉性肾硬化 (良性、 恶性), 急 /慢性肾功能衰竭等;
3. 肢体外周血管: 闭塞性动脉硬化 (下肢动脉), 营养不良性皮肤溃疡 (皮肤小 动脉) 等;
二. 眼科疾病: 代谢性白内障, 屈光不正, 虹膜睫状体炎, 眼球运动神经麻痹, 视网膜病变 (单纯性、 增殖性), 虹膜红变, 新生血管性青光眼等; 三. 神经系统疾病: 周围神经病 (对称性远端性多发性神经病、 多数性单神经 病、 自主神经病), 脊髓病, 高渗性昏迷, 低血糖性脑病, 痴呆, 瘫痪等; 四. 各种感染: 皮肤感染(疖、 痈、 足 、 体 、 败血症), 生殖系统感染 (真 菌性阴道炎、 巴氏腺炎), 泌尿系统感染(肾盂肾炎、 膀胱炎) 等; 蛋白质代谢紊乱可影响蛋白质下列主要生理功能, 进而导致相关疾病的发生: 一. 提供机体能量, 维持组织生长、'更新和修补:
肌肉萎缩, 四肢软弱, 身体消瘦, 严重者可呈 "恶液质" 表现;
二. 产生一些生理活性物质, 如激素、 抗体、 胺类等:
1. 蛋白质肽类激素功能紊乱可导致如下疾病发生:
1 )胰岛素和胰高血糖素: 糖尿病, 低血糖症等;
2 ) 下丘脑和垂体激素: 巨人症, 侏儒症, 肢端肥大症, 皮质醇增多症 (柯兴 综合症), 原发性性醛固酮增多症, 继发慢性肾上腺皮质功能减退, 甲状腺机能亢 进症, 甲状腺机能减退症 (呆小病, 幼年型甲减, 成年型甲减 男 /女不育症, 月经失调 (功能性子宫出血、 闭经、 多囊卵巢综合症、 经前期紧张综合症、 更年 期综合症), 性发育障碍, 尿崩症、 抗利尿激素分泌不当综合症, 泌乳异常等;
3 ) 甲状旁腺素: 甲状旁腺机能亢进症, 甲状旁腺机能减退症等;
4 ) 胃肠道激素: 消化性溃疡, 慢性消化不良, 慢性胃炎等; 2. 胺类物质代谢紊乱可导致如下疾病发生:
精神错乱, 癫痫, 舞蹈病, 肝性脑病 ( Y -氨基丁酸、 5-羟色胺、 谷氨酰胺), 暈动病, I -型变态反应性疾病 (荨麻疹、 枯草热、 过敏性鼻炎、 皮肤过敏), 消化性溃疡 (组胺), 高胆固醇血症 (牛磺酸), 肿瘤 (多胺) 等;
3. 抗体缺陷易发生各种感染:
败血症, 化脓性脑膜炎, 肺炎, 气管炎, 中耳炎, 脓皮病等;
三. 某些蛋白质的特殊生理作用:各种血红蛋白病 (贫血、 黄疸、 组织缺氧致有 机酸血症), 各种凝血因子缺乏症 (出血), 肌痉挛, 肌强制、 肌麻痹 (肌动蛋 白) 等;
脂类代谢紊乱可引起脂类生理功能的障碍, 进而导致相关病症的发生, 这些 病症包括但不限于:
一. 供能贮能: 消瘦症, 肥胖症等;
二. 构成生物膜: 磷脂和胆固醇是细胞膜、 核膜、 神经髓鞘膜等的重要成分。
1. 脱髓鞘性周围神经病: 肢体瘫痪, 肢体感觉障碍, 呼吸麻痹 (肋间肌、 隔肌 瘫痪), 面瘫, 延髓麻痹 (声嘶、 呛咳), 植物神经症状 (出汗增多、 皮肤潮 红、 心动过速、 直立性低血压、 尿储留), 共济失调, 精神异常等;
2. 脑白质营养不良 (脱髓鞘) 性疾病: ,异染性脑白质营养不良, 佩 -梅
( Pel izaeus-Merzbach )病,亚历山大 ( Alexander )病, 柯克内斯( Cockaynes )
'综合征等;
三. 磷脂和胆固醇分子中含亲水和疏水基团, 故有乳化甘油三酯和脂溶性维生 素的作用, 促进它们的吸收和转运。
1. 脂溶性维生素缺乏症: Vi tA (夜盲症、 干眼病、 骨骼生长迟缓), Vi tE (不 育、 流产、 贫血、 肌肉萎缩、 神经退化), Vi tK (凝血因子 II、 ΥΠ、 IX、 X缺 乏), Vi tD3 (儿童佝偻病、 成人骨软化病、 肾结石)等;
2. 高甘油三酯血症, 脂肪沉积性疾病 (脂肪肝、 脂肪沉积性心肌病、 脂肪沉积 性肾病)及相关肿瘤 (脂肪瘤、 脂肪母细胞瘤、 脂肪肉瘤) 等;
四. 磷脂分子中含有许多不饱和脂肪酸。 其中亚油酸、 亚麻酸和花生四烯酸属 于人体必需脂肪酸, 是维持正常生命活动不可缺少的。 如花生四烯酸是合成前 列腺素的原料。
前列腺素及相关产物功能紊乱性疾病: 出血 /凝血性疾病 (血栓烷 A2 ), 支气管 哮喘 (PGE2/PGF2 ), 消化性溃疡 (PGE2 ), 子宫收缩不良性流产等;
五. 胆固醇代谢紊乱性疾病: . 1. 高胆固醇血症及高脂蛋白血症 (高脂蛋白血症 II、 III、 IV、 V型等)
2. 全身多系统动脉粥样硬化 (主要累及心脑血管、 肾脏血管及肢体外周血管, 详见 【糖代谢紊乱】部分)
3. 脂溶性维生素缺乏症 (详见前述)
4. 胆固醇相关产物代谢紊乱性疾病:
1) 胆汁酸代谢紊乱: 脂肪泻 (脂肪吸收不良可致脂溶性维生素缺乏), 胆囊胆固 醇结石, 胆汁性肝硬化等;
2) 甾类激素代谢紊乱:
a. 糖皮质激素(皮质醇): 高 /低血糖, 肌肉消瘦, 骨质疏松, 伤口愈合延缓, 感 染, 向心性肥胖, 水中毒(头痛、 抽搐、 昏迷), 精神失常等;
b. 盐皮质激素(醛固酮): 水肿, 高血压, 高 /低血钠(头痛、 抽搐、 昏迷), 高 /低 血钾 (肌肉瘫痪、 心律失常、 肾功能衰竭、 麻痹性肠梗阻、 嗜睡、 昏迷) 等; c 性激素(睾酮、 孕酮): 性发育异常, 流产等;
糖、 脂、 蛋白质三大代谢紊乱互为因果且互相影响, 其具体临床表现还需结合 患者原有体质情况加以综合考虑。 本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂) NADH 脱氢 酶 51Kd亚基 10的药剂的方法。 激动剂提高 NADH脱氢酶 51Kd亚基 10刺激细胞 增殖等生物功能, 而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例如, 能在药物的存在下, 将哺乳动物细胞或表达 NAM脱氢酶 5 d亚基 10的 膜制剂与标记的 NADH脱氢酶 51Kd亚基 10—起培养。 然后测定药物提高或阻遏 此相互作用的能力。
NADH脱氢酶 51Kd亚基 10的拮抗剂包括筛选出的抗体、 化合物、 受体缺失 物和类似物等。 NADH脱氢酶 51I(d亚基 10的拮抗剂可以与 NADH脱氢酶 51Kd亚 基 1 0结合并消除其功能, 或是抑制该多肽的产生, 或是与该多肽的活性位点结 合使该多肽不能发挥生物学功能。
在筛选作为拮抗剂的化合物时, 可以将 NADH脱氢酶 51Kd亚基 10加入生物 分析测定中, 通过测定化合物对 NADH脱氢酶 51Kd亚基 10和其受体之间相互作 用的影响来确定化合物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛 选出起拮抗剂作用的受体缺失物和类似物。 能与 MDH脱氢酶 51Kd亚基 1 0结合 的多肽分子可通过筛选由各种可能组合的氨基酸结合于固相物组成的随机多肽 库而获得。 筛选时, 一般应对 NADH脱氢酶 51Kd亚基 10分子进行标记。 本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对 MDH脱氢酶 51Kd亚基 10抗原决定簇的抗体。这些抗体包括(但不限于): 多克隆抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab 片段和 Fab 表达文库产 生的片段。
多克隆抗体的生产可用 NAM脱氢酶 51Kd亚基 10直接注射免疫动物 (如家 兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限 于弗氏佐剂等。 制备 MDH脱氢酶 51Kd亚基 10的单克隆抗体的技术包括但不限 于杂交瘤技术(Kohl er and Mi l s te in. Nature, 1975 , 256: 495-497) , 三瘤技术, 人 Β-细胞杂交瘤技术, EBV-杂交瘤技术等。 将人恒定区和非人源的可变区结合 的嵌合抗体可用已有的技术生产(Morr i son et a l , PNAS, 1985, 81 : 6851) 0 而巳 有的生产单链抗体的技术(U. S. Pa t No. 4946778)也可用于生产抗 NADH 脱氢酶 51Kd亚基 10的单链抗体。
抗 NADH脱氢酶 51Kd亚基 10的抗体可用于免疫组织化学技术中, 检测活检 标本中的 NADH脱氢酶 51I(d亚基 10。
与 NADH脱氢酶 51Kd亚基 1 0结合的单克隆抗体也可用放射性同位素标记, 注入体内可跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊 断方法用于肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如 NADH脱氢酶 51Kd 亚基 1 0 高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等)共价结合。 一种通常的方法是用巯基交联剂如 SPDP , 攻击抗体的氨 基, 通过二硫键的交换, 将毒素结合于抗体上, 这种杂交抗体可用于杀灭 MDH 脱氢酶 51Kd亚基 1 0阳性的细胞。
本发明中的抗体可用于治疗或预防与 MDH脱氢酶 51Kd 亚基 1 0相关的疾 病。 给予适当剂量的抗体可以刺激或阻断 NADH脱氢酶 5 lKd亚基 10的产生或活 性。
本发明还涉及定量和定位检测 NADH脱氢酶 51I(d亚基 1 0水平的诊断试验方 法。 这些试验是本领域所熟知的, 且包括 FISH测定和放射免疫测定。 试验中所 检测的 NADH脱氢酶 51Kd亚基 10水平, 可以用作解释 NADH脱氢酶 51Kd亚基 1 0 在各种疾病中的重要性和用于诊断 MDH脱氢酶 51Kd亚基 10起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分 析。
编码 NADH脱氢酶 51Kd亚基 1 0的多核苷酸也可用于多种治疗目的。 基因治 疗技术可用于治疗由于 NADH脱氢酶 51Kd亚基 1 0 的无表达或异常 /无活性表达 所致的细胞增殖、 发育或代谢异常。 重组的基因治疗载体(如病毒载体)可设计 用于表达变异的 NADH脱氢酶 51Kd亚基 1 0 , 以抑制内源性的 MDH脱氢酶 51Kd 亚基 1 0活性。 例如, 一种变异的 MDH脱氢酶 51I(cl亚基 1 0可以是缩短的、 缺 失了信号传导功能域的 NADH脱氢酶 51Kd亚基 1 0 , 虽可与下游的底物结合, 但 缺乏信号传导活性。 因此重组的基因治疗载体可用于治疗 NADH脱氢酶 51Kd 亚 基 1 0表达或活性异常所致的疾病。 来源于病毒的表达载体如逆转录病毒、 腺病 毒、腺病毒相关病毒、单纯疱疹病毒、细小病毒等可用于将编码 NADH脱氢酶 51Kd 亚基 1 0的多核苷酸转移至细胞内。 构建携带编码 NADH脫氢酶 51Kd亚基 1 0的 多核苷酸的重组病毒载体的方法可见于已有文献(Sarabrook,e t a l. )。 另外重组 编码 NADH脱氢酶 51Kd亚基 1 0的多核苷酸可包装到脂质体中转移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。
抑制 NADH脱氢酶 51Kd亚基 1 0 mRNA的寡核苷酸(包括反义 RNA和 DNA)以 及核酶也在本发明的范围之内。 核酶是一种能特异性分解特定 RM 的酶样 RNA 分子, 其作用机制是核酶分子与互补的靶 RNA特异性杂交后进行核酸内切作用。 反义的 RNA和 DNA及核酶可用已有的任何 RNA或 DNA合成技术获得, 如固相磷 酸酰胺化学合成法合成寡核苷酸的技术已广泛应用。 反义 RNA 分子可通过编码 该 RNA 的 DNA序列在体外或体内转录获得。 这种 DM序列已整合到载体的 RNA 聚合酶启动子的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修 饰, 如增加两侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非 磷酸二酯键。
编码 NADH脱氢酶 51Kd亚基 1 0的多核苷酸可用于与 MDH脱氢酶 51Kd亚基 10的相关疾病的诊断。编码 NADH脱氢酶 51 Kd亚基 1 0的多核苷酸可用于检测 NADH 脱氢酶 51Kd亚基 1 0的表达与否或在疾病状态下 NADH脱氢酶 51Kd亚基 1 0的异 常表达。 如编码 NADH脱氢酶 51Kd亚基 1 0的 DNA序列可用于对活检标本进行杂 交以判断 NADH脱氢酶 51Kd亚基 1 0的表达状况。 杂交技术包括 Sou t hern 印迹 法, Nor thern 印迹法、 原位杂交等。 这些技术方法都是公开的成熟技术, 相关 的试剂盒都可从商业途径得到。 本发明的多核苷酸的一部分或全部可作为探针 固定在微阵列(Mi croarray)或 DM 芯片(又称为 "基因芯片" )上, 用于分析组 织中基因的差异表达分析和基因诊断。 用 NADH脱氢酶 51Kd亚基 10特异的引物 进行 RNA-聚合酶链反应(RT- PCR)体外扩增也可检测 NADH 脱氢酶 51Kd 亚基 10 的转录产物。
检测 NADH脱氢酶 51Kd亚基 10基因的突变也可用于诊断 NADH脱氢酶 51Kd 亚基 10相关的疾病。 NADH脱氢酶 51Kd亚基 10突变的形式包括与正常野生型 NADH 脱氢酶 51Kd亚基 10 DNA序列相比的点突变、 易位、 缺失、 重,组和其它任何异 常等。 可用已有的技术如 Southern 印迹法、 DNA序列分析、 PCR和原位杂交检 测突变。 另外, 突变有可能影响蛋白的表达, 因此用 Nor thern印迹法、 Wes tern 印迹法可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条人 染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基因的具体 位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可用 于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其 重要的第一步就是将这些 DNA序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15-35bp), 可以将序列定位于染色 体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只 有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DM定位到具体染色体的快捷方法。 使 用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片段 或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原位 杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异的 cDM库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤中精 确地进行染色体定位。 此技术的综述, 参见 Verma等, Human Chromosomes: a Manua l of Bas ic Techniques, Pergamon Pres s , New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就可 以与基因图数据相关联。 这些数据可见于例如, V. Mckus ick, Mendel ian Inher i tance in Man (可通过与 Johns Hopkins Univers i ty Welch Medica l Library联机获得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域 上的疾病之间的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在一 些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找染色 体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测的缺 失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与 疾病有关的染色体区域的 cDNA , 可以是 50至 5 00个潜在致病基因间之一种(假定 1兆碱基作图分辨能力和每 20kb对应于一个基因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 NADH脱氢酶 51 Kd 亚基 1 0 以有效地治疗和 /或 预防具体的适应症的量来给药。 施用于患者的 NADH脱氢酶 51Kd亚基 1 0的量和 剂量范围将取决于许多因素, 如给药方式、 待治疗者的健康条件和诊断医生的 判断。

Claims

权 利 要 求 书
1、 一种分离的多肽- NADH脱氢酶 51Kd亚基 1 0 , 其特征在于它包含有: SEQ ID N0: 2 所示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如权利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨基酸序 列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如权利要求 2所述的多肽, 其特征在于它包含具有 SEQ ID NO: 2所示的氨基酸 序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种:
(a) 编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽或其片段、 类似物、 衍生物 的多核苷酸;
(b) 与多核苷酸 ) 互补的多核苷酸; 或
(c) 与 )或 (b )有至少 70%相同性的多核苷酸。
5、 如权利要求 4所述的多核苷酸,其特征在于所述多核苷酸包含编码具有 SEQ ID NO: 2所示氨基酸序列的多核苷酸。
6、 如权利要求 4所述的多核苷酸, 其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1中 335-604位的序列或 SEQ ID NO: 1中 1-2081位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由杈利要求 4-6 中的任一 权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重组载体。
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于下列一 种宿主细胞:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用权利要求 4- 6中的任一权利要求所述多核苷酸转化或转导的宿主细胞。
9、 一种具有 NADH脱氢酶 51Kd亚基 1 0 活性的多肽的制备方法, 其特征在于所述 方法包括: ,
(a) 在表达 NADH脱氢酶 51Kd亚基 1 0条件下, 培养权利要求 8所述的工程化宿 主细胞;
(b) 从培养物中分离出具有 NADH脱氢酶 51Kd亚基 10活性的多肽。
10、 一种能与多肽结合的抗体,其特征在于所述抗体是能与 NADH脱氢酶 51Kd亚基 10特异性结合的抗体。
11、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促进、 拮抗或抑制 NADH脱氢酶 51Kd亚基 1 0的活性的化合物。
12、 如权利要求 11所述的化合物, 其特征在于它是 SEQ ID NO: 1所示的多核苷酸 序列或其片段的反义序列。
13、 一种权利要求 11 所述化合物的应用, 其特征在于所述化合物用于调节 NADH 脱氢酶 51Kd亚基 10在体内、 体外活性的方法。
14、 一种检测与权利要求 1 - 3 中的任一杈利要求所述多肽相关的疾病或疾病易感 性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多肽的活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
15、 如权利要求 1-3 中的任一权利要求所述多肽的应用, 其特征在于它应用于筛 选 NADH脱氢酶 51Kd亚基 10的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽指 紋图谱鉴定。
16、 如权利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在于它作 为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造基因芯片 或微阵列。
17、 如权利要求 1-6及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物的应 用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂或抑制剂以 安全有效剂量与药学上可接受的载体组成作为诊断或治疗与 NADH 脱氢酶 51Kd 亚 基 10异常相关的疾病的药物组合物。
18、 杈利要求 1-6及 11中的任一权利要求所述的多肽、 多核苷酸或化合物的应用, 其特征在于用所述多肽、多核苷酸或化合物制备用于治疗如恶性胂瘤, 血液病, HIV 感染和免疫性疾病和各类炎症的药物。
PCT/CN2001/000991 2000-06-19 2001-06-18 Nouveau polypeptide, sous-unite 10 de nadh deshydrogenase, et polynucleotide codant ce polypeptide WO2002002618A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU93626/01A AU9362601A (en) 2000-06-19 2001-06-18 A novel polypeptide - nadh dehydrogenase 51 kd subunit 10 and a polynucleotide encoding the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 00116593 CN1330145A (zh) 2000-06-19 2000-06-19 一种新的多肽——NADH脱氢酶51Kd亚基10和编码这种多肽的多核苷酸
CN00116593.3 2000-06-19

Publications (1)

Publication Number Publication Date
WO2002002618A1 true WO2002002618A1 (fr) 2002-01-10

Family

ID=4585997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000991 WO2002002618A1 (fr) 2000-06-19 2001-06-18 Nouveau polypeptide, sous-unite 10 de nadh deshydrogenase, et polynucleotide codant ce polypeptide

Country Status (3)

Country Link
CN (1) CN1330145A (zh)
AU (1) AU9362601A (zh)
WO (1) WO2002002618A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919686A (en) * 1997-08-08 1999-07-06 Incyte Pharmaceuticals, Inc. NADH dehydrogenase subunits
US5925543A (en) * 1997-09-12 1999-07-20 Incyte Pharmaceuticals, Inc. Isolated polynucleotide sequence encoding NADH dehydrogenase B17 subunit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919686A (en) * 1997-08-08 1999-07-06 Incyte Pharmaceuticals, Inc. NADH dehydrogenase subunits
US5925543A (en) * 1997-09-12 1999-07-20 Incyte Pharmaceuticals, Inc. Isolated polynucleotide sequence encoding NADH dehydrogenase B17 subunit

Also Published As

Publication number Publication date
CN1330145A (zh) 2002-01-09
AU9362601A (en) 2002-01-14

Similar Documents

Publication Publication Date Title
WO2002002618A1 (fr) Nouveau polypeptide, sous-unite 10 de nadh deshydrogenase, et polynucleotide codant ce polypeptide
WO2002026798A1 (fr) Nouveau polypeptide, acide phosphatidique phosphatase 29.81, et polynucleotide codant ce polypeptide
WO2001038387A1 (fr) Nouveau polypeptide, proteine de 37 kda, parent de l'oxydase cytochrome humaine, et polynucleotide codant pour ledit polypeptide
WO2002006489A1 (fr) Nouveau polypeptide, sous-unite humaine de cytochrome c oxydase 8.91, et polynucleotide codant ce polypeptide
WO2001066707A1 (fr) Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide
WO2001048168A1 (fr) Nouveau polypeptide, gamma1-pyroline-5-hydroxy reductase 14, et polynucleotide codant pour ce polypeptide
WO2001055404A1 (fr) Nouveau polypeptide, alcool deshydrogenase humaine 39, et polynucleotide codant pour ce polypeptide
WO2001040283A1 (fr) NOUVEAU POLYPEPTIDE, ACYL-CoA DESHYDROGENASE HUMAINE 11 CONTENANT UN DOMAINE DE LIAISON ATP/GTP, ET POLYNUCLEOTIDE CODANT POUR CE POLYPEPTIDE
WO2001046234A1 (fr) Nouveau polypeptide, proteine 9 de la famille des deshydrogenases d'acide 2-hydroxy nad-dependante, et polynucleotide codant pour ce polypeptide
WO2001040483A1 (en) Novel polypeptide---human lipoprotein 105 containing cytochrome c structural domain and polynucleotide encoding it
WO2001072790A1 (fr) Nouveau polypeptide, proteine humaine p40 12 de facteur l1, et polynucleotide codant pour ce polypeptide
WO2001048167A1 (fr) Nouveau polypeptide, lipoxygenase 10, et polynucleotide codant pour ce polypeptide
WO2001047986A1 (fr) Nouveau polypeptide, thiolase proteine 11, et polynucleotide codant pour ce polypeptide
WO2001073045A1 (fr) Nouveau polypeptide, quinine reductase humaine 10, et polynucleotide codant pour ce polypeptide
WO2001088153A1 (fr) Nouveau polypeptide, nadh-ubiquinone oxydoreductase humaine 14, et polynucleotide codant ce polypeptide
WO2001047972A1 (fr) Nouveau polypeptide, proteine 9 polyisoprene synthetase, et polynucleotide codant pour ce polypeptide
WO2001046424A1 (fr) Nouveau polypeptide, deshydrogenase nadh 12, et polynucleotide codant pour ce polypeptide
WO2001066579A1 (fr) Nouveau polypeptide, proteine humaine 14 de constitution de cytochromes, et polynucleotide codant pour ce polypeptide
WO2001074889A1 (fr) Nouveau polypeptide, proteine humaine 9 de chromatocyte, et polynucleotide codant pour ce polypeptide
WO2001055424A1 (fr) Nouveau polypeptide, proteine d'oxydoreduction 4fe-4s 9, et polynucleotide codant pour ce polypeptide
WO2002020578A1 (fr) Nouveau polypeptide, aspartate transferase mitochondriale humaine 37.29, et polynucleotide codant ce polypeptide
WO2001073046A1 (fr) Nouveau polypeptide, quinine reductase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001079435A2 (en) A new polypeptide- human flavoprotein subunit 14 and the polynucleotide encoding it
WO2001048217A1 (fr) Nouveau polypeptide, carboxylesterase 9, et polynucleotide codant pour ce polypeptide
WO2001081534A2 (fr) Nouveau polypeptide, oxydoreductase 2fe-2s humaine 12, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP