WO2001066707A1 - Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001066707A1
WO2001066707A1 PCT/CN2001/000291 CN0100291W WO0166707A1 WO 2001066707 A1 WO2001066707 A1 WO 2001066707A1 CN 0100291 W CN0100291 W CN 0100291W WO 0166707 A1 WO0166707 A1 WO 0166707A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
dependent serine
human atp
proteolytic enzyme
Prior art date
Application number
PCT/CN2001/000291
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Biowindow Gene Development Inc. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biowindow Gene Development Inc. Shanghai filed Critical Biowindow Gene Development Inc. Shanghai
Priority to AU46327/01A priority Critical patent/AU4632701A/en
Publication of WO2001066707A1 publication Critical patent/WO2001066707A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, human ATP-dependent serine protease 11, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a method and application for preparing such polynucleotides and polypeptides. Background technique
  • L0N1 protein In 1998, Barakat S. and others cloned the L0N1 protein from maize, which is a new member of the Lon-type proteolytic enzyme family.
  • the L0N1 protein is highly similar to known bacterial and human Lon proteolytic enzymes in protein sequence, and both have a conserved substrate binding domain and an ATP binding domain; and the protein is related to the Lon protein family.
  • the other members have similar biological functions and are closely related to the respiration process of the organism in vivo, which can maintain the integrity of mitochondrial DNA, but is not a component of the cytochrome complex [Barakat S., Pearce DA. Et al, 1998, Plant Mol Biol, 37:.
  • Lon protease family members in vivo has a broad biological functions, abnormal expression of which will result in abnormalities induced mitochondrial DNA structure and Affects the function of the respiratory chain, leading to abnormal metabolism of matter and energy.
  • the N-terminus of the members of the enzyme family contains a conserved ATP-binding domain, which is responsible for binding to ATP in the body to hydrolyze ATP and provide the energy required for the enzyme to function; in addition, the enzyme family
  • the members also contain the following conserved consensus sequence fragments: DG- [PD] -SA- [GS]-[LI VMCA]-[TA]-[LIVM] (where S is the active serine site);
  • This sequence fragment is the catalytic active center of the enzyme, and plays an important role in the normal physiological function of the enzyme. Mutations in this sequence will affect the catalytic activity of the enzyme in the organism.
  • the expression profile of the polypeptide of the present invention is very similar to the expression profile of human ATP-dependent serine protease 48, so their functions may also be similar.
  • the invention is named human ATP-dependent serine proteolytic enzyme 11.
  • the human ATP-dependent serine proteolytic enzyme 1 1 protein plays an important role in regulating important functions of the organism, such as growth and development of the organism, and it is believed that a large number of proteins are involved in these regulatory processes, so more needs to be identified in the art
  • the human ATP-dependent serine protease 1 1 protein involved in these processes, especially the amino acid sequence of this protein is identified.
  • the newcomer's ATP-dependent serine protease 1 1 protein isolation gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a human ATP-dependent serine proteolytic enzyme 1 1.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors against the polypeptide of the present invention, human ATP-dependent serine proteolytic enzyme 11.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities in human ATP-dependent serine protease 1 1.
  • the present invention relates to an isolated polypeptide, which is of human origin, and includes: a polypeptide having the amino acid sequence of SEQ ID No. 2 or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence of positions 32 to 6 in SEQ ID NO: 1; and (b) a sequence of positions 1 to 3 in SEQ ID NO: 1; 2789-bit sequence.
  • the invention further relates to a vector, in particular an expression vector, containing the polynucleotide of the invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; and a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • a vector in particular an expression vector, containing the polynucleotide of the invention
  • a host cell genetically engineered with the vector including a transformed, transduced or transfected host cell
  • a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit human ATP-dependent serine protein hydrolase 11 protein activity, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the invention also relates to a method for in vitro detection of a disease or susceptibility to a disease associated with abnormal expression of a human ATP-dependent serine proteolytic enzyme 1 1 protein, comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample Or detecting the amount or biological activity of a polypeptide of the invention in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the preparation of polypeptides and / or polynucleotides of the present invention for the treatment of mitochondrial disease, metabolic disorders related to energy and substance metabolism, growth disorders, or other human ATP-dependent serine proteolytic enzymes1 1 Use of a medicament for a disease caused by abnormal expression.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes, or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes in which the substituted ammonia The base acid has similar structural or chemical properties as the original amino acid, such as replacing isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
  • An "agonist” refers to a molecule that, when combined with a human ATP-dependent serine proteolytic enzyme 1 1, can cause the protein to change, thereby regulating the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind to a human ATP-dependent serine proteolytic enzyme 1 1.
  • Antagonist refers to a biological or immunological activity that can block or regulate human ATP-dependent serine proteolytic enzyme 11 when combined with human ATP-dependent serine proteolytic enzyme 1 1 Molecule.
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates, or any other molecule that can bind human ATP-dependent serine proteolytic enzyme 11.
  • Regular refers to a change in the function of human ATP-dependent serine protease 11, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological properties of human ATP-dependent serine protease 11, Changes in functional or immune properties.
  • substantially pure ' means essentially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated.
  • Those skilled in the art can use standard protein purification techniques to purify human ATP-dependent serine proteolytic enzymes11
  • the substantially pure human ATP-dependent serine proteolytic enzyme 1 1 can generate a single main band on a non-reducing polyacrylamide gel.
  • the purity of human ATP-dependent serine proteolytic enzyme 1 1 can be analyzed by amino acid sequence.
  • “Complementary” or “complementary” refers to the natural binding of a nucleotide by base-pairing under conditions of acceptable salt concentration and temperature.
  • the sequence "C_T-G-A” can be combined with the complementary sequence "G_A-C-T”.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be achieved by hybridization under conditions of reduced stringency (Sou t hern blot or Nor t hern Blot, etc.) to detect.
  • Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are the same or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Cluster method (Higgins, D. G. and P.M. Sharp (1988) Gene 73: 237-244). The Cluster method arranges groups of sequences into clusters by checking the distance between all pairs. The clusters are then assigned in pairs or groups.
  • sequence A and sequence B The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 100 The number of residues in sequence A-the number of spacer residues in sequence A Number of interval residues in a sequence B
  • the percent identity between nucleic acid sequences can also be determined by the Cluster method or by methods known in the art such as Jotun Hein (Hein L, (1990) Methods in erazumology 183: 625-645). 0
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. Such a chemical modification may be the replacement of a hydrogen atom with an alkyl group, an acyl group or an amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological characteristics of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and? ⁇ It can specifically bind to human ATP-dependent serine protease 11 epitopes.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally). Environment).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not a component of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated human ATP-dependent serine proteolytic enzyme 11 means that human ATP-dependent serine proteolytic enzyme 11 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated.
  • Those skilled in the art can purify human ATP-dependent serine proteolytic enzymes 1 1 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. Human ATP-dependent serine protein water interpretation 1 1 The purity of the peptide can be analyzed by amino acid sequence.
  • the present invention provides a novel polypeptide, human ATP-dependent serine proteolytic enzyme 11, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. According to the host used in the recombinant production scheme, the polypeptide of the present invention may be glycosylated or may be non-glycosylated.
  • the polypeptide of the present invention may further include or exclude the initial methionine residue.
  • the invention also includes fragments, derivatives and analogs of human ATP-dependent serine protease 11.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human ATP-dependent serine protease 11 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) such that one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution
  • the amino acid may or may not be encoded by a genetic codon; or ( ⁇ ) such a type in which a group on one or more amino acid residues is replaced by another group to include a substituent; or (III) such One, in which the mature polypeptide is fused to another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or (IV) such a polypeptide sequence in which an additional amino acid sequence is fused to the mature polypeptide ( Such as the leader or secretion sequence or the sequence or protease sequence used to purify this sequence.
  • Such fragments, 00 derivatives, and the like are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1 ⁇
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 2789 bases in length and its open reading frame 327-632 encodes 101 amino acids.
  • this peptide has a similar expression profile to human ATP-dependent serine protease 48, and it can be deduced that the human ATP-dependent serine protease 1 1 has human ATP-dependent serine protease 48 Similar functionality.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or it may be a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (with at least two sequences between
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • "strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as Q. 2xSSC, 0.1% SDS, 60 ° C; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum Z O. 1% F i co ll, 42 ° C, etc .; or (3) only between the two sequences Crosses occur at least 95% or more, and more preferably 97% or more.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid tablets A contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nucleotides.
  • the nucleic acid fragment is also Nucleic acid amplification techniques (such as PCR) can be used to identify and / or isolate polynucleotides encoding human ATP-dependent serine protease 11.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the human ATP-dependent serine proteolytic enzyme 11 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of human ATP-dependent serine protease 11 transcripts (4) Detecting protein products expressed by genes through immunological techniques or measuring biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect protein products expressed by the human ATP-dependent serine proteolytic enzyme 11 gene.
  • a method for amplifying DNA / RNA by PCR (Saiki, et al. Science 1985; 230: 1350-1354) is preferably used to obtain the gene of the present invention.
  • the RACE method RACE_cDNA terminal rapid amplification method
  • the primers for PCR may be appropriately based on the polynucleotide sequence information of the present invention disclosed herein.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, the sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell that is genetically engineered using the vector of the present invention or directly using a human ATP-dependent serine proteolytic enzyme 11 coding sequence, and the recombinant technology to produce the Polypeptide method.
  • a polynucleotide sequence encoding human ATP-dependent serine proteolytic enzyme 11 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human ATP-dependent serine proteolytic enzyme 11 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • Expression vector also includes a nucleus for translation initiation Glycosome binding sites and transcription terminators. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Examples include 100 to 270 base pair SV40 enhancers on the late side of the origin of replication, polyoma enhancers and adenovirus enhancers on the late side of the origin of replication.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding a human ATP-dependent serine proteolytic enzyme 1 1 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetic engineering containing the polynucleotide or the recombinant vector.
  • Host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells insect cells
  • fly S2 or Sf 9 animal cells
  • animal cells such as CH0, COS or Bowes s melanoma cells, etc. .
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase and treated with CaCl.
  • the steps used are well known in the art.
  • the alternative is to use MgC l 2 .
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human ATP-dependent serine protease 1 1 (Sc ience, 1 984; 224: 1431). Generally speaking, there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. When host cells grow to proper After inducing the cell density, the appropriate promoter (such as temperature conversion or chemical induction) is used to induce the selected promoter, and the cells are cultured for a period of time.
  • the appropriate promoter such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography
  • Fig. 1 is a comparison diagram of gene chip expression profiles of the present inventors' ATP-dependent serine proteolytic enzyme 11 and human ATP-dependent serine proteolytic enzyme 48.
  • the upper figure is a graph of the expression profile of human ATP-dependent serine protease 11 and the lower sequence is the graph of the expression profile of human ATP-dependent serine protease 48.
  • Figure 1 is a polyacrylamide gel electrophoresis chart (SDS-PAGE) of an isolated human ATP-dependent serine proteolytic enzyme 11 (llkDa) is the molecular weight of the protein.
  • the arrow indicates the isolated protein band. Best way
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • a Smart cDNA cloning kit (purchased from Clontech) was used to orient the 00 ⁇ fragment into the multiple cloning site of the pBSK (+) vector (Clontech) to transform DH5 ⁇ , and the bacteria formed a cDNA library.
  • Dye terminate cycle reaction ion sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the 0150E08 cDNA sequence is new DNA.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • the 0150E08 clone contains a full-length cDNA of 2789bp (as shown in Seq ID NO: 1), and has a 306bp open reading frame (0RF) from 327bp to 632bp, encoding a new protein (such as Seq ID NO : Shown in 2).
  • This clone pBS-0150E08 and named the encoded protein as human ATP-dependent serine protease 11.
  • Example 2 Cloning of a gene encoding human ATP-dependent serine protease 11 by RT-PCR
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification:
  • Primer2 5,-CTGGCCAAATGCTCATCCGGGGCC-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp at the 5 ′ end of SEQ ID NO: 1;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 ⁇ l / L KC1, 10 mmol / L Tris-CI, (pH8.5), 1.5 mmol / L MgCl 2 , 200 ⁇ mol / L dNTP, lOpmol in a 50 ⁇ 1 reaction volume Primer, 1U of Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) under the following conditions for 25 cycles: 94 ° C 30sec; 55 ° C 30sec; 72 ° C 2min 0 ⁇ -act in was set as positive at the time of RT-PCR Controls and template blanks are negative controls.
  • the amplified product was purified using a QIAGEN kit, and ligated to a pCR vector (Invitrogen product) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as 1-2789bp shown in SEQ ID NO: 1.
  • Example 3 Northern blot analysis of human ATP-dependent serine protease 11 gene expression: Total RNA extraction in one step [Anal. Biochem 1987, 162, 156-159] 0 This method includes acid guanidine thiocyanate- Chloroform extraction.
  • the tissue is homogenized with 4M guanidinium isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • a 32P-labeled probe (approximately 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 (pH7.4)-5 x SSC-5 x Denhardt's solution and 200 ⁇ g / ml salmon sperm DNA. After hybridization, the filters were placed in 1 X SSC-0.1% SDS at 55. C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
  • Example 4 In vitro expression, isolation and purification of recombinant human ATP-dependent serine proteolytic enzyme 11
  • Primer3 5'- CCCCATATGATGGCTCACTGCAGCCTCAACCTC- 3 '(Seq ID No: 5)
  • Primer4 5 -CATGGATCCTCAACAACTTTCCGTTTCAATTGG-3' (Seq ID No: 6)
  • the 5 'ends of these two primers contain Ndel and BamHI restriction sites, respectively.
  • the coding sequences of the 5 'and 3' ends of the gene of interest are respectively followed by Ndel and BaraHI restriction sites corresponding to the selective endonucleases on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Enzyme site.
  • PCR was performed using the pBS-0150E08 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions are as follows: a total volume of 50 ⁇ l contains 10 pg of pBS_0150E08 plasmid, Primer_3 and Primer-4 points, and 1 j is lpmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Ndel and BamHI were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligation product was transformed into E. coli DH5a by the calcium chloride method. After being cultured overnight on an LB plate containing kanamycin (final concentration 30 g / ml), positive clones were selected by colony PCR and sequenced. A positive clone (pET-0150E08) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • the host strain BL21 (pET-0150E08) was cultured at 37 ° C to the logarithmic growth phase, and IPTG was added to a final concentration of 1 mmol / L, and continued Incubate for 5 hours.
  • the bacteria were collected by centrifugation, and the supernatant was collected by centrifugation. The supernatant was collected by centrifugation.
  • a purified human ATP-dependent serine protease 11 of interest was purified.
  • NH2-Met-Ala-His-Cys-Ser-Leu-Asn-Leu-Leu-Gly-Pro-Gly-Asp-Ser-Pro-0H (SEQ ID NO: 7).
  • the peptide was coupled to hemocyanin and bovine serum albumin to form a complex, respectively. See: Avramea s, etal. Immunochemistry, 1969; 6:43. Rabbits were immunized with 4 mg of the hemocyanin polypeptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin polypeptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Sou thern imprinting, Nor thern blotting, and copying methods. They are all used to fix the polynucleotide sample to be tested on the filter and then hybridize using basically the same steps.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides; 2, GC content is 30% -70%, non-specific hybridization increases when it exceeds;
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence (41Nt) of the gene fragment of SEQ ID NO: 1 or its complementary fragment:
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • the sample membrane was placed in a plastic bag, and 3-10 mg of prehybridization solution (10xDenhardt's; 6xSSC, 0.1 mg / ml CT DNA (calf thymus DNA).) was added. After the bag was sealed, it was shaken in a 68 "C water bath for 2 hours.
  • prehybridization solution 10xDenhardt's; 6xSSC, 0.1 mg / ml CT DNA (calf thymus DNA).
  • probe 1 can be used to qualitatively and quantitatively analyze the presence and differential expression of the polynucleotide of the present invention in different tissues.
  • Gene microarrays or DNA microarrays are new technologies currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high-density arrangement of large numbers of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific method steps have been reported in the literature. For example, see DeRisi, JL, Lyer, V. & Brown, P.0. (1997) Science 278, 680-686. And Helle, RA, Schema, M. , Chai, A., Shalom, D., (1997) PNAS 94: 2150-2155.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the amplified product was adjusted to a concentration of about 500 ng / ul, and spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian, USA). The distance is 280 ⁇ !. The spotted slides were hydrated, dried, and cross-linked in a purple diplomatic instrument. After elution, the DM was fixed on the glass slide to prepare chips.
  • the specific method steps have been reported in the literature in various ways. The post-spot processing steps of this embodiment are:
  • the above specific tissues are thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, Arsenic stimulated the L02 cell line and prostate tissue for 1 hour.
  • polypeptides of the present invention can be directly used in the treatment of diseases, for example, they can treat mitochondrial diseases, metabolic disorders related to energy and substance metabolism, and disorders of growth and development.
  • Lon-type proteolytic enzyme family catalyze the ATP-dependent degradation of mitochondrial matrix proteins.
  • the Lon protein family is closely related to the respiration process of living organisms. It can maintain the integrity of mitochondrial DNA, but it is not a component of the cytochrome complex. Its abnormal expression can cause abnormal mitochondrial DNA structure and affect the function of the respiratory chain, leading to abnormal metabolism of matter and energy.
  • the abnormal expression of the human ATP-dependent serine proteolytic enzyme of the present invention will produce various Diseases, especially mitochondrial diseases, metabolic disorders related to energy and material metabolism, and disorders of growth and development. These diseases include, but are not limited to:
  • Organic acidemia isovalerate, propionate, methylmalonic aciduria, combined carboxylase deficiency, glutarate type I, etc.
  • Amino acid metabolism defects phenylketonuria, tyrosine metabolism defects such as albinism, sulfur amino acid metabolism defects, tryptophan metabolism defects such as tryptophanemia, branch amino acid metabolism defects, glycine metabolism defects such as Glycineemia, Hypersarcosineemia, Proline and Hydroxyproline Metabolism Defects, Glutamate Metabolism Defects, Urea Cycle Metabolism Defects, Histidine Metabolism Defects, Lysine Metabolism Defects , And other amino acid metabolism defects.
  • Mucopolysaccharidosis and other marginal diseases Mucopolysaccharidosis I to MI type. Mucopolysaccharidosis marginal diseases such as rheumatoid mucopolysaccharidosis and mucolipid storage disease.
  • Purine and Pyrimidine Metabolism Defects Abnormal purine metabolism such as Ray-niney syndrome, xanthineuria, abnormal pyrimidine metabolism such as orotic aciduria, and adenosine deaminase deficiency.
  • Abnormal lipid metabolism hyperlipoproteinemia, familial hyperx-lipoproteinemia, familial non-beta-lipoproteinemia, familial hypo-beta-lipoproteinemia, familial lecithin-cholesterol acetyltransferase Deficiency.
  • Glucose metabolism defects Congenital sugar digestion and absorption defects such as congenital lactose intolerance, hereditary fructose intolerance, monosaccharide metabolism defects such as galactosemia, fructose metabolism defects, glycogen metabolism diseases such as glycogen storage Backlog.
  • Growth and development disorders mental retardation, cerebral palsy, brain development disorders, familial cerebral nucleus dysplasia syndrome, skin, fat and muscular dysplasias such as congenital skin relaxation, premature aging, congenital horn Malformation, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation, etc.
  • Congenital malformations spina bifida, craniocerebral fissure, anencephaly deformity, cerebral bulge, foramen malforma, Down syndrome, congenital hydrocephalus, aqueduct malformation, dwarfism of cartilage hypoplasia, spinal epiphyseal dysplasia, Pseudochondral dysplasia, Langer-Gied ion syndrome, funnel chest, gonad hypoplasia, congenital adrenal hyperplasia, urethral fissure, cryptic, with short stature malformations such as Conradi syndrome and Danbo l t-Clos s Syndrome, congenital glaucoma or cataract, congenital lens position abnormality, congenital blepharoplasia, retinal dysplasia, congenital optic nerve atrophy, congenital sensorineural hearing loss, cracked hands and feet, teratosis, Wi ll iams Syndrome, Alagille Syndrome, Bewe's Syndrome,
  • Abnormal expression of the human ATP-dependent serine proteolytic enzyme of the present invention will also generate certain tumors, certain hereditary, hematological diseases, and immune system diseases.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human ATP-dependent serine protease 1 1.
  • Agonist enhances human ATP-dependent serine protein Hydrolase 11 stimulates biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or a membrane preparation expressing human ATP-dependent serine protease 11 can be cultured with labeled human ATP-dependent serine protease 11 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human ATP-dependent serine protease 11 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human ATP-dependent serine protease 11 can bind to human ATP-dependent serine protease 11 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide to make the polypeptide Cannot perform biological functions.
  • human ATP-dependent serine proteolytic enzyme 11 can be added to a bioanalytical assay by measuring the effect of the compound on the interaction between human ATP-dependent serine proteolytic enzyme 11 and its receptor. Determine if the compound is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to human ATP-dependent serine proteolytic enzyme 11 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. In screening, human ATP-dependent serine proteolytic enzyme 11 molecules should generally be labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against human ATP-dependent serine protease 11 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments generated from Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human ATP-dependent serine protease 11 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to 'S adjuvant and so on.
  • Techniques for preparing monoclonal antibodies to human ATP-dependent serine proteolytic enzyme 11 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology , EBV-hybridoma technology, etc.
  • Chimeric antibodies that bind human constant regions to non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single-chain antibodies U.S. Pat No. 4946778, can also be used to produce single-chain antibodies against human ATP-dependent serine protease 11.
  • Antibodies against human ATP-dependent serine protease 11 can be used in immunohistochemical techniques to detect human ATP-dependent serine protease 11 in biopsy specimens.
  • Monoclonal antibodies that bind to human ATP-dependent serine protease 11 can also be labeled with radioisotopes and injected into the body to track their location and distribution.
  • This radiolabeled antibody can be used as a non- Traumatic diagnostic methods are used to locate tumor cells and determine if there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human ATP-dependent serine proteolytic enzymes 11 High-affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human ATP-dependent serine protease 11 Positive cells.
  • the antibodies of the present invention can be used to treat or prevent diseases related to human ATP-dependent serine protease 11.
  • Administration of an appropriate dose of antibody can stimulate or block the production or activity of human ATP-dependent serine proteolytic enzyme 11.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human ATP-dependent serine proteolytic enzyme 11 levels.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • the level of human ATP-dependent serine protease 11 detected in the test can be used to explain the importance of human ATP-dependent serine protease 11 in various diseases and to diagnose human ATP-dependent serine protease 11 A working disease.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human ATP-dependent serine protease 11 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of human ATP-dependent serine protease 11.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human ATP-dependent serine protease 11 to inhibit endogenous human ATP-dependent serine protease 11 activity.
  • a variant human ATP-dependent serine proteolytic enzyme 11 may be a shortened human ATP-dependent serine proteolytic enzyme 11 lacking a signaling domain, although it can bind to downstream substrates, but lacks signal transduction. active.
  • the recombinant gene therapy vector can be used for treating diseases caused by abnormal expression or activity of human ATP-dependent serine proteolytic enzyme 11.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding human ATP-dependent serine proteolytic enzyme 11 into a cell.
  • Methods for constructing recombinant viral vectors carrying a polynucleotide encoding human ATP-dependent serine proteolytic enzyme 11 can be found in the existing literature (Sambrook, et al.).
  • a recombinant polynucleotide encoding human ATP-dependent serine protease 11 can be packaged into liposomes and transferred into cells.
  • Methods for introducing polynucleotides into tissues or cells include: Injecting polynucleotides directly into tissues in vivo Or in vitro through a vector (such as a virus, phage, or plasmid) to introduce the polynucleotide into the cell, and then transplant the cell into the body.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit human ATP-dependent serine protease 11 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphate amide chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DNA sequence has been integrated downstream of the vector's RNA polymerase promoter. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the phosphorothioate or peptide bond instead of the phosphodiester bond is used for the ribonucleoside linkage.
  • the polynucleotide encoding human ATP-dependent serine protease 11 can be used for the diagnosis of diseases related to human ATP-dependent serine protease 11.
  • Polynucleotides encoding human ATP-dependent serine protease 11 can be used to detect the expression of human ATP-dependent serine protease 11 or the abnormal expression of human ATP-dependent serine protease 11 in disease states.
  • a DNA sequence encoding human ATP-dependent serine protease 11 can be used to hybridize biopsy specimens to determine the expression of human ATP-dependent serine protease 11.
  • Hybridization techniques include Southern blotting, Northern blotting, in situ hybridization, and so on.
  • a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DNA chip (also called a "gene chip") for analyzing differential expression analysis of genes and genetic diagnosis in tissues.
  • Human ATP-dependent serine protease 11 specific primers for RNA-polymerase chain reaction (RT-PCR) in vitro amplification can also detect human ATP-dependent serine protease 11 transcripts.
  • Human ATP-dependent serine protease 11 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to normal wild-type human ATP-dependent serine protease 11 DNA sequences. Mutations can be detected using existing techniques such as Southern imprinting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect the expression of proteins, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
  • specific sites for each gene on the chromosome need to be identified.
  • Only few chromosome markers based on actual sequence data (repeat polymorphisms) are available For marking chromosome positions.
  • an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared according to cDM, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendel ian Inheritance in Man (available online with Johns Hopkins University Welch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the present invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the present invention.
  • containers containing one or more ingredients of the pharmaceutical composition of the present invention.
  • instructional instructions given by government regulatory agencies that manufacture, use, or sell pharmaceuticals or biological products, which instructions reflect production, use Or a government agency that sells it allows it to be administered to humans.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human ATP-dependent serine protease 11 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and dose range of human ATP-dependent serine protease 1 1 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une sérine protéase humaine ATP-dépendante 11, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des maladies mitochondriales, des troubles du métabolisme de l'énergie et des substances et des troubles du développement et de la croissance. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la sérine protéase humaine ATP-dépendante 11.
PCT/CN2001/000291 2000-03-07 2001-02-26 Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide WO2001066707A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU46327/01A AU4632701A (en) 2000-03-07 2001-02-26 A novel peptide-human atp-dependent serine proteolytic enzyme 11 and the polynucleotide coding this novel peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 00111917 CN1312370A (zh) 2000-03-07 2000-03-07 一种新的多肽——人atp依赖的丝氨酸蛋白水解酶11和编码这种多肽的多核苷酸
CN00111917.6 2000-03-07

Publications (1)

Publication Number Publication Date
WO2001066707A1 true WO2001066707A1 (fr) 2001-09-13

Family

ID=4581813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000291 WO2001066707A1 (fr) 2000-03-07 2001-02-26 Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1312370A (fr)
AU (1) AU4632701A (fr)
WO (1) WO2001066707A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952737B1 (en) 2000-03-03 2005-10-04 Intel Corporation Method and apparatus for accessing remote storage in a distributed storage cluster architecture
US7266555B1 (en) 2000-03-03 2007-09-04 Intel Corporation Methods and apparatus for accessing remote storage through use of a local device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88101681A (zh) * 1987-02-27 1988-11-09 吉斯特-布罗卡迪斯公司 编码蛋白水解酶之基因的分子克隆及表达

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88101681A (zh) * 1987-02-27 1988-11-09 吉斯特-布罗卡迪斯公司 编码蛋白水解酶之基因的分子克隆及表达

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 12 December 1999 (1999-12-12), PHILLIMORE B. ET AL., accession no. NCBI Database accession no. (AL049759) *
DATABASE PROTEIN [online] 22 February 2000 (2000-02-22), WATANABE K. ET AL., accession no. NCBI Database accession no. (BAA91205.1) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952737B1 (en) 2000-03-03 2005-10-04 Intel Corporation Method and apparatus for accessing remote storage in a distributed storage cluster architecture
US7266555B1 (en) 2000-03-03 2007-09-04 Intel Corporation Methods and apparatus for accessing remote storage through use of a local device

Also Published As

Publication number Publication date
AU4632701A (en) 2001-09-17
CN1312370A (zh) 2001-09-12

Similar Documents

Publication Publication Date Title
WO2001090169A1 (fr) Nouveau polypeptide, antigene nucleaire de proliferation cellulaire (pcna) 13, et polynucleotide codant ce polypeptide
WO2001066707A1 (fr) Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide
WO2001055404A1 (fr) Nouveau polypeptide, alcool deshydrogenase humaine 39, et polynucleotide codant pour ce polypeptide
WO2001094529A2 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide
WO2001075085A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 11.3, et polynucleotide codant pour ce polypeptide
WO2001075103A1 (fr) Nouveau polypeptide, proteine humaine 9 de toxine de scorpion a chaine courte, et polynucleotide codant pour ce polypeptide
WO2001072986A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 10, et polynucleotide codant pour ce polypeptide
WO2001075125A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 31, et polynucleotide codant pour ce polypeptide
WO2001087943A1 (fr) Protease a serine 13 atp-dependante, polypeptide humain, et polynucleotide le codant
WO2001070785A1 (fr) Nouveau polypeptide, serine proteinase humaine atp-dependante 13, et polynucleotide codant pour ce polypeptide
WO2001085923A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 9.2, et polynucleotide codant pour ce polypeptide
WO2001053492A1 (fr) Nouveau polypeptide, s-adenosylmethionine synthetase 31, et polynucleotide codant pour ce polypeptide
WO2001072992A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 16, et polynucleotide codant pour ce polypeptide
WO2001073066A1 (fr) Nouveau polypeptide, serine hydrolase atp-dependante humaine 10.1, et polynucleotide codant pour ce polypeptide
WO2001072991A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 9.8, et polynucleotide codant pour ce polypeptide
WO2001074876A1 (fr) Nouveau polypeptide, phosphatidylinositol-3 kinase humaine 14, et polynucleotide codant pour ce polypeptide
WO2001079434A2 (fr) Nouveau polypeptide, signal peptidase humaine 10, et polynucleotide codant pour ce polypeptide
WO2001083675A2 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 10.2, et polynucleotide codant pour ce polypeptide
WO2001046431A1 (fr) Nouveau polypeptide, catalase 10, et polynucleotide codant pour ce polypeptide
WO2001072987A1 (fr) Nouveau polypeptide, serine hydrolase atp-dependante humaine 52, et polynucleotide codant pour ce polypeptide
WO2001072983A1 (fr) Nouveau polypeptide, peroxydase humaine 11, et polynucleotide codant pour ce polypeptide
WO2001072990A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 12, et polynucleotide codant pour ce polypeptide
WO2001072989A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide
WO2001047982A1 (fr) Nouveau polypeptide, support mitochondrial 30, et polynucleotide codant pour ce polypeptide
WO2001075024A2 (fr) Nouveau polypeptide, facteur humain 13 associe a nf-e2, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP