WO2001094529A2 - Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001094529A2
WO2001094529A2 PCT/CN2001/000658 CN0100658W WO0194529A2 WO 2001094529 A2 WO2001094529 A2 WO 2001094529A2 CN 0100658 W CN0100658 W CN 0100658W WO 0194529 A2 WO0194529 A2 WO 0194529A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
human atp
dependent serine
sequence
Prior art date
Application number
PCT/CN2001/000658
Other languages
English (en)
Chinese (zh)
Other versions
WO2001094529A3 (fr
Inventor
Yumin Mao
Yi Xie
Original Assignee
Shanghai Biowindow Gene Development Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biowindow Gene Development Inc. filed Critical Shanghai Biowindow Gene Development Inc.
Priority to AU85648/01A priority Critical patent/AU8564801A/en
Publication of WO2001094529A2 publication Critical patent/WO2001094529A2/fr
Publication of WO2001094529A3 publication Critical patent/WO2001094529A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a new polypeptide ⁇ ⁇
  • the invention also relates to a preparation method and application of the polynucleotide and polypeptide.
  • L0N1 protein In 1998, Barakat S. et al. Cloned the L0N1 protein from maize, which is a new member of the Lon-type proteolytic enzyme family.
  • the L0N1 protein has high similarity in protein sequence with known bacterial and human Lon proteolytic enzymes, and both have a conserved substrate-binding domain and an ATP-binding domain; and the protein and the Lon protein family
  • the other members have similar biological functions and are closely related to the biological respiration process in the living body, which can maintain the integrity of mitochondrial DM, but is not a component of the cytochrome complex [Barakat S., Pearce DA.
  • the N-terminus of the members of the enzyme family contains a conserved ATP-binding domain, which is responsible for binding to ATP in the organism to hydrolyze ATP and provide the energy required for the enzyme to function; in addition, the enzyme family The members also contain the following conservative consensus sequence fragments:
  • DG- [PD] -SA- [GS]-[LIVMCA]-[TA]-[LIVM] (where S is the active serine site);
  • S is the active serine site;
  • the sequence fragment is the catalytic active center of the enzyme, and it plays a normal physiological function in the process of the enzyme Plays an important role. Mutations in this sequence will affect the catalytic activity of the enzyme in the organism.
  • the human ATP-dependent serine protease 21 protein plays an important role in regulating important functions of the body such as cell division and embryo development, and it is believed that a large number of proteins are involved in these regulatory processes, so more needs to be identified in the art
  • the human ATP-dependent serine protease 21 protein involved in these processes identifies the amino acid sequence of this protein. Isolation of the newcomer's ATP-dependent serine protease 21 protein-coding gene also provides the basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for the disease, so it is important to isolate its coding DNA.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a human ATP-dependent serine proteolytic enzyme 21.
  • Another object of the present invention is to provide a method for producing human ATP-dependent serine proteolytic enzyme 21.
  • Another object of the present invention is to provide an antibody against the human ATP-dependent serine proteolytic enzyme 21 of the polypeptide of the present invention.
  • Another object of the present invention is to provide mimetic compounds, antagonists, agonists, and inhibitors against the human ATP-dependent serine proteolytic enzyme 21 of the polypeptide of the present invention.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities in human ATP-dependent serine proteolytic enzymes 21. Summary of invention
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the present invention also relates to an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: Its variant:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 247-816 in SEQ ID NO: 1; and (b) a sequence having 1-2036 in SEQ ID NO: 1 Sequence of bits.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit human ATP-dependent serine proteolytic enzyme 21 protein activity, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the present invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of human ATP-dependent serine protease 21 protein in vitro, comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, Alternatively, the amount or biological activity of a polypeptide of the invention in a biological sample is detected.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human ATP-dependent serine proteolytic enzyme 21.
  • FIG. 1 is a comparison diagram of gene chip expression profiles of human ATP-dependent serine proteolytic enzyme 21 and human ATP-dependent serine proteolytic enzyme 48 of the present invention.
  • the upper graph is a graph of the expression profile of human ATP-dependent serine protease 21, and the lower graph is the graph of the expression profile of human ATP-dependent serine protease 48.
  • 1 indicates fetal kidney
  • 2 indicates fetal large intestine
  • 3 indicates fetal small intestine
  • 4 indicates fetal muscle
  • 5 indicates fetal brain
  • 6 indicates fetal bladder
  • 7 indicates non-starved L02
  • 8 indicates L02 +, lhr, As 3+
  • 9 indicates ECV304 PMA-
  • 10 means ECV304 PMA +
  • 11 means fetal liver
  • 12 means normal liver
  • 13 means thyroid
  • 14 means skin
  • 15 means fetal lung
  • 16 means lung
  • 17 means lung cancer
  • 18 means fetal spleen
  • 19 means spleen
  • 20 Forefront Gland 21 is the fetal heart
  • 22 is the heart
  • 23 is the muscle
  • 24 is the testis
  • 25 is the fetal thymus
  • 26 is the thymus.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of isolated human ATP-dependent serine proteolytic enzyme 21.
  • 21 kDa is the molecular weight of the protein.
  • the arrow indicates the isolated protein band.
  • Nucleic acid sequence refers to oligonucleotides, nucleotides or polynucleotides and fragments or parts thereof, and may also refer to the genome or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, i type “polypeptide” or “protein” does not mean to limit the amino acid sequence to the complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
  • Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with human ATP-dependent serine proteolytic enzyme 21, can cause the protein to change and thereby regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind human ATP-dependent serine protease 21.
  • Antagonist refers to a molecule that blocks or regulates the biological or immunological activity of human ATP-dependent serine protease 21 when combined with human ATP-dependent serine protease 21 .
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates or any other molecule that can bind human ATP-dependent serine protease 21.
  • Regular refers to a change in the function of human ATP-dependent serine protease 21, including egg Increased or decreased white matter activity, changes in binding characteristics, and any other biological, functional, or immune properties of human ATP-dependent serine protease 21.
  • Substantially pure means substantially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated.
  • Those skilled in the art can purify human ATP-dependent serine protease 21 using standard protein purification techniques.
  • Substantially pure human ATP-dependent serine protease 21 produces a single main band on a non-reducing polyacrylamide gel.
  • the purity of the human ATP-dependent serine protease 21 peptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to target sequences under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods, such as the Clus ter method (Higgins, DG and PM Sharp (1988) Gene 73: 237-244). 0 The Clus ter method groups each group by checking the distance between all pairs. The sequences are arranged in clusters. The clusters are then assigned in pairs or groups. The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula:
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitution for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to the "sense strand”.
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding the same. This chemical modification can be: replacing a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and? ⁇ It can specifically bind to human ATP-dependent serine protease 21 epitopes.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated human ATP-dependent serine proteolytic enzyme 21 means that human ATP-dependent serine proteolytic enzyme 21 is substantially free of other proteins, lipids, carbohydrates, or other substances with which it is naturally associated. Those skilled in the art can purify human ATP-dependent serine protease 21 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of the human ATP-dependent serine protease 21 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide ⁇ ⁇ ATP-dependent serine protease 21, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human ATP-dependent serine protease 21.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human ATP-dependent serine protease 21 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: U) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substituted
  • the amino acid may or may not be encoded by the genetic code; or (II) such a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or (III) such a Species, wherein the mature polypeptide is fused with another compound (such as a compound that extends the half-life of the polypeptide, such as polyethylene glycol); or (IV) a polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide (such as Leader sequence or secretory sequence or the sequence or protease sequence used to purify this polypeptide).
  • such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 2036 bases in length and its open reading frames 247-816 encode 189 amino acids.
  • this polypeptide has a similar expression profile to human ATP-dependent serine protein hydrolase 48, and it can be inferred that the human ATP-dependent serine protein hydrolase 21 has human ATP-dependent serine protein hydrolase 48 Similar functionality.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DM can be coded or non-coded.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • "degenerate variant" in the present invention refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the present invention also relates to a polynucleotide that hybridizes to a sequence described above 50% less, preferably 70% identity).
  • the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
  • "strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) Add a denaturant during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0. Ficol l, 42 ° C, etc .; or (3) only the identity between the two sequences Crosses occur at least 95% and more preferably 97%.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding human ATP-dependent serine proteolytic enzymes 21.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the human ATP-dependent serine protease 21 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or CDM libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DM fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the separation of cDM sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • mR extraction There are many mature techniques for mR extraction, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manua, Cold Spruing Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be screened from these cDM libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DM-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of human ATP-dependent serine protease 21 transcripts (4) Detecting protein products expressed by genes through immunological techniques or measuring biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is any part of the polynucleotide of the present invention Homologous, at least 10 nucleotides in length, preferably at least 30 nucleotides, more preferably at least 50 nucleotides, most preferably at least 100 nucleotides.
  • the length of the probe is usually within 200 G nucleotides, preferably within 1000 nucleotides.
  • the probe used here is generally a DM sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, fluorescein, or enzymes (such as alkaline phosphatase).
  • the protein product of human ATP-dependent serine protease 21 gene expression can be detected by immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • a method (Sa iki, et al. Sc; 1985; 230: 1350-1354) using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-Rapid Amplification of cDNA Ends
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell that is genetically engineered using the vector of the present invention or directly using a human ATP-dependent serine proteolytic enzyme 21 coding sequence, and the recombinant technology to produce the described Polypeptide method.
  • a polynucleotide sequence encoding human ATP-dependent serine proteolytic enzyme 21 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct recombinant expression vectors.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing the D sequence encoding human ATP-dependent serine protease 21 and appropriate transcription / translation regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manua, Cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRM synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding a human ATP-dependent serine protease 21 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to form a genetically engineered host containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf9
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence according to the present invention or a recombinant vector containing the D sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DM may be in exponential growth phase were harvested after the treatment with (Method 12, using the procedure well known in the art. Alternatively, it is a MgCl 2. If If necessary, transformation can also be performed by electroporation.
  • the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging Wait.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human ATP-dependent serine protease 21 (Science, 1984; 224: 1431). Generally speaking, there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
  • polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
  • Lon-type proteolytic enzyme family catalyze the ATP-dependent degradation of mitochondrial matrix proteins.
  • the Lon protein family is closely related to the respiration process of living organisms. It can maintain the integrity of mitochondrial DM, but it is not a component of the cytochrome complex. Abnormal expression can cause mitochondrial DM structural abnormalities, and affect the respiratory chain function, resulting in abnormal material and energy metabolism.
  • the abnormal expression of the human ATP-dependent serine proteolytic enzyme of the present invention will produce various diseases, especially mitochondrial diseases, metabolic disorders related to energy and material metabolism, and disorders of growth and development. These diseases include, but are not Limited to:
  • Organic acidemia isovaleric acidemia, propionic acidemia, methylmalonic aciduria, combined carboxylase deficiency, glutaric acid type I, etc.
  • Amino acid metabolism defects phenylketonuria, tyrosine metabolism defects such as albinism, sulfur amino acid metabolism defects, tryptophan metabolism defects such as tryptophanemia, branch amino acid metabolism defects, glycine metabolism defects such as Glycineemia, hypersarcosineemia, proline and hydroxyproline metabolism defects, glutamate metabolism defects, urea cycle metabolism defects, histidine metabolism defects, lysine metabolism defects , And other amino acid metabolism defects.
  • Mucopolysaccharidosis and other marginal diseases Mucopolysaccharidosis ⁇ ⁇ ⁇ type, mucopolysaccharidosis marginal diseases such as rheumatoid mucopolysaccharidosis and mucolipid storage disease.
  • Purine and Pyrimidine Metabolism Defects Abnormal purine metabolism, such as Ray-niney syndrome, xanthineuria, abnormal pyrimidine metabolism, such as orotic aciduria, and adenosine deaminase deficiency.
  • Abnormal lipid metabolism hyperlipoproteinemia, familial hyperalpha-lipoproteinemia, familial P-lipid-free Proteinemia, familial hypobeta-lipoproteinemia, familial lecithin-cholesterol acetyltransferase deficiency.
  • Glucose metabolism defects Congenital sugar digestion and absorption defects such as congenital lactose intolerance, hereditary fructose intolerance, monosaccharide metabolism defects such as galactosemia, fructose metabolism defects, glycogen metabolism diseases such as glycogen storage Backlog.
  • Growth and development disorders mental retardation, cerebral palsy, brain development disorders, familial cerebral nucleus dysplasia syndrome, skin, fat and muscular dysplasias such as congenital skin relaxation, premature aging, congenital horn Malformation, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation, etc.
  • Congenital malformations spina bifida, craniocerebral fissure, anencephaly deformity, cerebral bulge, foramen malforma, Down syndrome, congenital hydrocephalus, aqueduct malformation, dwarfism of cartilage hypoplasia, spinal epiphyseal dysplasia, Pseudochondral dysplasia, Langer-Giedion syndrome, funnel chest, gonad hypoplasia, congenital adrenal hyperplasia, upper urethra, cryptorchidism, short stature syndrome such as Conradi syndrome and Danbol t-Closs syndrome , Congenital glaucoma or cataract, congenital lens abnormality, congenital blepharoplasia, retinal dysplasia, congenital optic nerve atrophy, congenital sensorineural hearing loss, cracked hands and feet, teratosis, Wi ll iams syndrome , Alag il le syndrome, Bayer syndrome, etc.
  • Abnormal expression of the human ATP-dependent serine proteolytic enzyme of the present invention will also generate certain tumors, certain hereditary, hematological diseases, and immune system diseases.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat various diseases, especially mitochondrial disease, metabolic disorders related to energy and material metabolism, and growth and development disorders. Diseases, congenital malformations, certain tumors, certain hereditary, hematological and immune system diseases, etc.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human ATP-dependent serine proteolytic enzymes 21.
  • Agonists increase human ATP-dependent serine proteolytic enzymes 21 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • a mammalian cell or a membrane preparation expressing human ATP-dependent serine protease 21 can be cultured with a labeled human ATP-dependent serine protein hydrolase 21 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human ATP-dependent serine protease 21 include screened antibodies, compounds, receptor deletions, and the like. Antagonists of human ATP-dependent serine protease 21 can bind to human ATP-dependent serine protease 21 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide to make the polypeptide Cannot perform biological functions.
  • human ATP-dependent serine protease 21 can be added to the bioanalytical assay, and by measuring the compound's human ATP-dependent serine protease 21 And its receptor to determine if a compound is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to human ATP-dependent serine protease 21 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. In screening, human ATP-dependent serine protease 21 molecules should generally be labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against human ATP-dependent serine protease 21 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human ATP-dependent serine protease 21 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to 'S adjuvant and so on.
  • Techniques for preparing monoclonal antibodies to human ATP-dependent serine protease 21 include, but are not limited to, hybridoma technology (Kohl er and Mistein. Nature, 1975, 256: 495-497), triple tumor technology, human B- Cell hybridoma technology, EBV-hybridoma technology, etc.
  • Chimeric antibodies that bind human constant regions to non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single-chain antibodies (U.S. Pat No. 4946778) can also be used to produce single-chain antibodies against human ATP-dependent serine protease 21.
  • Antibodies against human ATP-dependent serine protease 21 can be used in immunohistochemistry to detect human ATP-dependent serine protease 21 in biopsy specimens.
  • Monoclonal antibodies that bind to human ATP-dependent serine protease 21 can also be labeled with radioisotopes and injected into the body to track their location and distribution.
  • This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human ATP-dependent serine proteolytic enzymes 21 High-affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human ATP-dependent serine protease 21 Positive cells.
  • the antibodies of the present invention can be used to treat or prevent diseases related to human ATP-dependent serine protease 21.
  • Administration of an appropriate dose of antibody can stimulate or block the production or activity of human ATP-dependent serine protein hydrolase 21.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human ATP-dependent serine protease 21 levels.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • Human ATP-dependent serine protease 21 levels tested in the test can be used as an explanation The importance of human ATP-dependent serine protease 21 in various diseases and for the diagnosis of diseases in which human ATP-dependent serine protease 21 functions.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human ATP-dependent serine protease 21 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of human ATP-dependent serine protease 21.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutant human ATP-dependent serine protease 21 to inhibit endogenous human ATP-dependent serine protease 21 activity.
  • a variant human ATP-dependent serine protease 21 may be a shortened human ATP-dependent serine protease 21 that lacks a signaling domain, although it can bind to downstream substrates, but lacks signal transduction.
  • recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of human ATP-dependent serine protease 21.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, and the like can be used to transfer a polynucleotide encoding human ATP-dependent serine proteolytic enzyme 21 into a cell.
  • Methods for constructing recombinant viral vectors carrying a polynucleotide encoding human ATP-dependent serine proteolytic enzyme 21 can be found in existing literature (Sambrook, et al.).
  • recombinant polynucleotides encoding human ATP-dependent serine protease 21 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RM and DM
  • ribozymes that inhibit human ATP-dependent serine protease 21 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that can specifically decompose specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RM to perform endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained by any existing RNA or DNA synthesis technology, such as the technology for the synthesis of oligonucleotides by solid-phase phosphate amide chemical synthesis, which is widely used.
  • Antisense R molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This D sequence has been integrated downstream of the vector's RNA polymerase promoter. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the phosphorothioate or peptide bond instead of the phosphodiester bond is used for the ribonucleoside linkage.
  • the polynucleotide encoding human ATP-dependent serine protease 21 can be used for the diagnosis of diseases related to human ATP-dependent serine protease 21.
  • a polynucleotide encoding human ATP-dependent serine protease 21 can be used to detect the expression of human ATP-dependent serine protease 21 Or the abnormal expression of human ATP-dependent serine protease 21 in a disease state.
  • a DNA sequence encoding human ATP-dependent serine protease 21 can be used to hybridize biopsy specimens to determine the expression of human ATP-dependent serine protease 21.
  • Hybridization techniques include Southern blotting, Nor thern blotting, and in situ hybridization.
  • polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissue.
  • Human ATP-dependent serine protease 21 specific primers can also be used to detect the transcription products of human ATP-dependent serine protease 21 by performing R-polymerase chain reaction (RT-PCR) in vitro amplification.
  • RT-PCR R-polymerase chain reaction
  • Human ATP-dependent serine protease 21 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to normal wild-type human ATP-dependent serine protease 21 DNA sequences. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DM sequences on a chromosome.
  • a PCR primer (preferably 15-35bp) is prepared from the cDNA, and the sequence can be located on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human ATP-dependent serine protease 21 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of human ATP-dependent serine protease 21 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolat ion Kit (product of Qiegene). 2ug poly (A) raRNA forms cDNA by reverse transcription. Directional insertion of cDNA fragments into pBSK using the Smart cDNA Cloning Kit (purchased from Clontech) (+) At the multiple cloning site of the vector (Clontech), DH5a was transformed, and the bacteria formed a cDNA library.
  • Dye terminate cycle react ion sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public DM sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0206c03 was new DNA.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • Example 2 Cloning of a gene encoding human ATP-dependent serine proteolytic enzyme 21 by RT-PCR
  • the total RNA of fetal brain cells was used as a template, and oligo-dT was used as a primer to perform a reverse transcription reaction to synthesize cDNA, and the reagents of Q agene were used. After the cassette was purified, PCR was performed using the following primers:
  • Primerl 5
  • Primer2 5'- ATTCAAAATATTCAGTTTTATTTT-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer 2 is the 3 'terminal reverse sequence of SEQ ID NO: 1.
  • Conditions for the amplification reaction 50 mmol / L KCl, 10 mmol / L Tri s-HCl pH 8.5, 1.5 mmol / L MgCl 2 , 200 ⁇ 1 / ⁇ dNTP, 1 Opmol primer, 1U Taq DNA in a reaction volume of 50 ⁇ 1 Polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) under the following conditions for 25 cycles: 94 ° C 30sec; 55. C 30sec; 72. C 2min.
  • ⁇ -act in was set as a positive control and template blank was set as a negative control.
  • the amplified product was purified using a QIAGEN kit and ligated to a pCR vector (Invitrogen) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as 1-2036bp shown in SEQ ID NO: 1.
  • Example 3 Northern blot analysis of human ATP-dependent serine protease 21 gene expression Total RNA extraction in one step [Anal.
  • Biochera 1987, 162, 156-159] makes This method involves acid guanidine thiocyanate-chloroform extraction
  • the tissue was homogenized with 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol ( 49: 1), mixed and centrifuged.
  • Aspirate the aqueous layer add isopropanol (0.8 vol) and centrifuge the mixture to obtain RM precipitate. Wash the obtained RNA precipitate with 70% ethanol, dry and dissolve in water.
  • RNA electrophoresed on a 1.2% agarose gel containing 20mM 3- (N-morpholino) propanesulfonic acid (H7. 0) -5mM sodium acetate-lraM EDTA-2. 2M formaldehyde. Then Transfer to a nitrocellulose membrane.
  • a 32 P dATP was used to prepare a 32 P-labeled DNA probe by a random primer method.
  • the DNA probe used was the PCR-amplified human ATP-dependent serine proteolysis shown in Figure 1 Enzyme 21 coding region sequence (247bp to 816bp).
  • a 32P-labeled probe (about 2 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 ( pH 7.4)-5 x SSC-5 x Denhardt, s solution and 20 ( ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed at 1 x SSC-0. 1 ° /. SDS at 55 ° C. 30min. Then, Phosphor Imager was used for analysis and quantification.
  • Example 4 In vitro expression, isolation and purification of recombinant human ATP-dependent serine protease 21
  • sequence is as follows:
  • Pr iraer3 5 '-CATGCTAGCATGTGCCAGCTCCTGGAGTCCACA- 3' (Seq ID No: 5)
  • Pr imer4 5'-CATGGATCCCTATAATATCAACTCTGTCTCAAG-3 '(Seq ID No: 6)
  • the 5' ends of these two primers contain Nhel and BamHI digestion sites, respectively, followed by the coding sequences of the 5 'and 3' ends of the target gene, respectively.
  • the Nhel and BamHI restriction sites correspond to the selective endonuclease sites on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865. 3).
  • the PCR reaction was performed using the pBS-0206c03 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions were as follows: 10 pg of pBS-0206c03 plasmid in a total volume of 50 ⁇ 1, Primer-3 and Primer-4 primers were 1 Opmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1, respectively. Cycle parameters: 94. C 20s, 60. C 30s, 68 ° C 2 min, a total of 25 cycles. Nhel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase. The ligated product was transformed into E. coli DH5 CC using the calcium chloride method.
  • a titer plate coated with a 15 g / ml bovine serum albumin peptide complex was used as an ELISA to determine antibody titers in rabbit serum.
  • Total IgG was isolated from antibody-positive rabbit serum using protein A-Sepharose.
  • the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
  • the immunoprecipitation method demonstrated that the purified antibody could specifically bind to human ATP-dependent serine protease 21.
  • Example 6 Application of the polynucleotide fragment of the present invention as a hybridization probe
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by using a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern imprinting, Northern blotting, and copying methods. They all use the same steps to immobilize the polynucleotide sample to be tested on the filter.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature), so that the hybridization background is reduced and only strong specific signals are retained.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • the GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41Nt):
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • Two NC membranes are required for each probe, so that they can be used in the following experimental steps.
  • the film was washed with high-strength conditions and strength conditions, respectively.
  • the sample membrane was placed in a plastic bag, and 3-1 Omg pre-hybridization solution (1 OxDenhardfs; 6xSSC, 0.1 mg / ml CT DM (calf thymus MA)) was added. After sealing the mouth of the bag, shake at 68 ° C for 2 hours.
  • 3-1 Omg pre-hybridization solution (1 OxDenhardfs; 6xSSC, 0.1 mg / ml CT DM (calf thymus MA)
  • Gene microarrays or DNA microarrays are currently used in many national laboratories and pharmaceutical companies.
  • the companies are starting to develop and develop a new technology. It refers to arranging a large number of target gene fragments in an orderly and high density on a carrier such as glass and silicon, and then using fluorescence detection and computer software to compare and analyze the data.
  • a carrier such as glass and silicon
  • fluorescence detection and computer software to compare and analyze the data.
  • the polynucleotide of the present invention can be used as a target DM for gene chip technology for high-throughput research of new gene functions; searching for and screening new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific method steps have been reported in the literature.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the concentration of the amplified product was adjusted to about 500 ng / ul, and spotted on a glass medium with a Cartesian 7500 spotter (purchased from the United States of America). The distance between the points is 280 ⁇ . The spotted slides were hydrated and dried, cross-linked in a UV cross-linker, and dried after elution to fix the DNA on the glass slides to prepare chips. The specific method steps have been reported in the literature. The sample post-processing steps in this embodiment are:
  • Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) in one step, and mRM was purified with Ol igotex mRNA Midi Kit (purchased from QiaGen), and another 1 J was separated by reverse transcription.
  • Cy3dUTP (5-Amino-propargyl-2--deoxyuridine 5'-triphate coupled to Cy3 f luorescent dye, purchased from Amershara Pharaacia Biotech), a fluorescent reagent, was used to label the mRNA of human mixed tissue, and Cy5dUTP (5-Amino-propargyl) was used as a fluorescent reagent.
  • the probes from the above two tissues and the chip were respectively hybridized in UniHyb TM Hybridizat ion Solut ion (purchased from TeleChem) hybridization solution for 16 hours, and washed with a washing solution (1 x SSC, 0.2% SDS) at room temperature. Scanning was then performed with a ScanArray 3000 scanner (purchased from General Scanning, USA). The scanned images were analyzed and processed with Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
  • the above specific tissues are thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, L02 cell line stimulated by arsenic for 1 hour, L02 cell line stimulated by arsenic for 6 hours prostate, heart, lung cancer, fetal bladder, fetal small intestine, fetal large intestine, fetal thymus, fetal muscle, fetal liver, fetal kidney, fetal spleen, fetal brain, Fetal lung and fetal heart.
  • Draw a graph based on these 26 Cy3 / Cy5 ratios ( Figure 1). The figure shows that the expression profiles of human ATP-dependent serine protease 21 and human ATP-dependent serine protease 48 according to the present invention are very similar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une sérine hydrolase humaine ATP-dépendante 21, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, de l'hémopathie, de l'infection par VIH, de maladies immunitaires et de diverses inflammations. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la sérine hydrolase humaine ATP-dépendante 21.
PCT/CN2001/000658 2000-04-29 2001-04-28 Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide WO2001094529A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU85648/01A AU8564801A (en) 2000-04-29 2001-04-28 A novel polypeptide, a human atp dependant serine proteinase 21 and the polynucleotide encoding the polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00115512A CN1321768A (zh) 2000-04-29 2000-04-29 一种新的多肽——人atp依赖的丝氨酸蛋白水解酶21和编码这种多肽的多核苷酸

Publications (2)

Publication Number Publication Date
WO2001094529A2 true WO2001094529A2 (fr) 2001-12-13
WO2001094529A3 WO2001094529A3 (fr) 2002-05-02

Family

ID=4584958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000658 WO2001094529A2 (fr) 2000-04-29 2001-04-28 Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1321768A (fr)
AU (1) AU8564801A (fr)
WO (1) WO2001094529A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345785B2 (en) 2003-02-20 2016-05-24 Seattle Genetics, Inc. Treatment of renal cell carcinoma with anti-CD70 antibody-drug conjugates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103563B1 (en) 2000-03-21 2006-09-05 America Online, Inc. System and method for advertising with an internet voice portal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063073A1 (fr) * 1998-05-21 1999-12-09 The Trustees Of Columbia University In The City Of New York Pak4 un nouveau gene codant pour une serine/threonine kinase
US6013464A (en) * 1995-01-06 2000-01-11 Onyx Pharmaceuticals, Inc. Human PAK65

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013464A (en) * 1995-01-06 2000-01-11 Onyx Pharmaceuticals, Inc. Human PAK65
WO1999063073A1 (fr) * 1998-05-21 1999-12-09 The Trustees Of Columbia University In The City Of New York Pak4 un nouveau gene codant pour une serine/threonine kinase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MORI, E. ET AL.: 'Cloning, nucleotide sequencing and expression of the azospirillum brasilense ion gene: involvement in iron uptake' J. BACTERIOL. vol. 178, no. 12, 1996, pages 3440 - 3446 *
STEPHENS, R.S. ET AL.: 'Genome sequence of an obligate intracellular pathogen of humans: chlamydia trachomatis' SCIENCE vol. 282, no. 5389, 1998, pages 754 - 759 *
SULSTON, J.E. AND WATERSTON, R.: 'Toward a complete human genome sequence' GENOME RES. vol. 8, no. 11, 1998, pages 1097 - 1108 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345785B2 (en) 2003-02-20 2016-05-24 Seattle Genetics, Inc. Treatment of renal cell carcinoma with anti-CD70 antibody-drug conjugates

Also Published As

Publication number Publication date
AU8564801A (en) 2001-12-17
WO2001094529A3 (fr) 2002-05-02
CN1321768A (zh) 2001-11-14

Similar Documents

Publication Publication Date Title
WO2001074879A1 (fr) Nouveau polypeptide, proteine ribosomale humaine s3-12, et polynucleotide codant pour ce polypeptide
WO2001094529A2 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 21, et polynucleotide codant pour ce polypeptide
WO2001090378A1 (fr) Nouveau polypeptide, proteine humaine hexokinase 11, et polynucleotide codant ce polypeptide
WO2001087943A1 (fr) Protease a serine 13 atp-dependante, polypeptide humain, et polynucleotide le codant
WO2001088084A2 (fr) Nouveau polypeptide, superoxyde dismutase 11, et polynucleotide codant pour ce polypeptide
WO2001066707A1 (fr) Nouveau polypeptide, serine protease humaine atp-dependante 11, et polynucleotide codant pour ce polypeptide
WO2001085923A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 9.2, et polynucleotide codant pour ce polypeptide
WO2001072986A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 10, et polynucleotide codant pour ce polypeptide
WO2001072987A1 (fr) Nouveau polypeptide, serine hydrolase atp-dependante humaine 52, et polynucleotide codant pour ce polypeptide
WO2001075125A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 31, et polynucleotide codant pour ce polypeptide
WO2001070785A1 (fr) Nouveau polypeptide, serine proteinase humaine atp-dependante 13, et polynucleotide codant pour ce polypeptide
WO2001075085A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 11.3, et polynucleotide codant pour ce polypeptide
WO2001085958A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 18, et polynucleotide codant pour ce polypeptide
WO2001083777A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 9.1, et polynucleotide codant pour ce polypeptide
WO2001094371A1 (fr) Nouveau polypeptide, proteine ribosomale humaine s4-10, et polynucleotide codant ce polypeptide
WO2001096576A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 10, et polynucleotide codant ce polypeptide
WO2001072793A1 (fr) Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide
WO2001079508A1 (fr) Nouveau polypeptide, proteine porteuse mitochondriale humaine 18, et polynucleotide codant pour ce polypeptide
WO2001048004A1 (fr) Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide
WO2001075038A2 (fr) Nouveau polypeptide, serine hydrolase humaine 9 atp-dependante, et polynucleotide codant pour ce polypeptide
WO2001094594A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 12.2, et polynucleotide codant ce polypeptide
WO2001075042A2 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 9, et polynucleotide codant pour ce polypeptide
WO2001072988A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 11.4, et polynucleotide codant pour ce polypeptide
WO2001073066A1 (fr) Nouveau polypeptide, serine hydrolase atp-dependante humaine 10.1, et polynucleotide codant pour ce polypeptide
WO2001087963A1 (fr) Proteine s18-12 ribosomale, polypeptide humain, et polynucleotide la codant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP