WO2001048004A1 - Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001048004A1
WO2001048004A1 PCT/CN2000/000704 CN0000704W WO0148004A1 WO 2001048004 A1 WO2001048004 A1 WO 2001048004A1 CN 0000704 W CN0000704 W CN 0000704W WO 0148004 A1 WO0148004 A1 WO 0148004A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
heparin
binding protein
sequence
Prior art date
Application number
PCT/CN2000/000704
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Shanghai Biowindow Gene Development Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biowindow Gene Development Inc. filed Critical Shanghai Biowindow Gene Development Inc.
Priority to AU21459/01A priority Critical patent/AU2145901A/en
Publication of WO2001048004A1 publication Critical patent/WO2001048004A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4723Cationic antimicrobial peptides, e.g. defensins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, heparin binding protein 10, and a polynucleotide sequence encoding the polypeptide. The invention also relates to the preparation method and application of the polynucleotide and polypeptide.
  • Sequence fragment 2 C- [R]-[LIVM] -P-C-N-W-K-K-X-F-G-A- [DE] -C- -Y-X-F- [EQ]-X-W-G-X-C;
  • Both of these sequence fragments contain a large number of cysteine residues and are present in all family members.
  • This sequence fragment may be an important active region where the protein binds to other proteins and exerts its growth regulating function. Mutations of these two fragments will affect the protein's normal physiological function in vivo. Members of this protein family are involved in important regulatory processes of cell differentiation and growth in the body, and abnormal expression of such proteins will cause some of the organism's related metabolic pathways to be abnormal. The abnormal expression of this protein is usually related to the occurrence of various developmental metabolic disorders, some tumors and cancers in the body.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a heparin-binding protein 10.
  • Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding a heparin-binding protein 10.
  • Another object of the present invention is to provide a method for producing heparin-binding protein 10.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases related to abnormalities in heparin binding protein 10.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 343-618 in SEQ ID NO: 1; and (b) a sequence having 1-1865 in SEQ ID NO: 1 Sequence of bits.
  • the invention further relates to a vector, in particular an expression vector, containing a polynucleotide of the invention.
  • the vector genetically engineered host cell includes a transformed, transduced or transfected host cell; a method for preparing a polypeptide of the present invention comprising culturing the host cell and recovering an expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the present invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of heparin-binding protein 100, which comprises utilizing the polypeptide of the present invention.
  • the invention also relates to compounds obtained by this method.
  • the invention also relates to a method for in vitro detection of a disease or susceptibility to disease associated with abnormal expression of a heparin-binding protein 10 protein, comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, or detecting a biological sample.
  • the amount or biological activity of a polypeptide of the invention comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, or detecting a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • Fig. 1 is a comparison diagram of the amino acid sequence homology of a total of 71 amino acids of heparin-binding protein 10 of the present invention and characteristic domains of heparin-binding protein.
  • the upper sequence is heparin-binding protein 10
  • the lower sequence is the characteristic domain of heparin-binding protein.
  • ⁇ "and”: “and”. “Indicate that the probability of the same amino acid decreasing between the two sequences decreases in order.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the isolated heparin-binding protein 10.
  • Kkda is the molecular weight of the protein.
  • the arrow indicates the isolated protein band.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • An "agonist” refers to a molecule that, when bound to a heparin-binding protein 10, causes the protein to change, thereby regulating the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind heparin binding protein 10.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of heparin-binding protein 10 when bound to heparin-binding protein 10.
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecule that can bind heparin-binding protein 10.
  • Regular refers to a change in the function of heparin-binding protein 10, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of heparin-binding protein 10.
  • Substantially pure ' means essentially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify heparin-binding protein 10 using standard protein purification techniques. Basically pure The heparin binding protein 10 can generate a single main band on a non-reducing polyacrylamide gel. The purity of the heparin binding protein 10 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T
  • the complementarity between two single-stranded molecules can be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This Inhibition of hybridization can be detected by performing hybridization (Southern blotting or Nor thern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • the percent identity between nucleic acid sequences can also be determined by the Clus ter method or by methods known in the art such as Jotun Hein (Hein J., (1990) Methods in enzymo logy 183: 625-645).
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • the "antisense strand” refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to HFP or a chemical modification of its nucleic acid. Such a chemical modification may be a substitution of a hydrogen atom with a fluorenyl group, an acyl group or an amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and? It can specifically bind to the epitope of heparin-binding protein 10.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally).
  • a naturally-occurring polynucleotide or polypeptide exists in a living animal. It is not isolated, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not a component of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated heparin binding protein 10 means that heparin binding protein 10 is substantially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated. Those skilled in the art can purify heparin binding protein 10 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of the heparin-binding protein 10 peptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, heparin-binding protein 10, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of heparin-binding protein 10.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the heparin-binding protein 10 of the present invention.
  • the fragment, derivative or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution
  • the amino acid may or may not be encoded by a genetic codon; or (II) a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or ( ⁇ ⁇ )
  • Such a type in which the mature polypeptide is fused with another compound such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol
  • UV a type in which the additional amino acid sequence is fused into the mature polypeptide and formed by the polypeptide sequence ( Such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protein sequence).
  • such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the polynucleotide of the present invention may be in the form of DM or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Fico ll, 42 ° C, etc .; or (3) only between the two sequences Hybridization occurs only when the identity is at least 95%, and more preferably 97%. Furthermore, the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques, such as PCR, to identify and / or isolate polynucleotides encoding heparin-binding protein 10.
  • the polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • polynucleotide sequence encoding the heparin-binding protein 10 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2 ) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DM of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DM sequences is often the method of choice.
  • the more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • Various methods have been used to extract mRNA, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (1) DM-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) measuring the level of transcripts of heparin-binding protein 10; (4) passing Immunological techniques or assays for biological activity to detect gene-expressed protein products. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein product expressed by the heparin-binding protein 10 gene expression.
  • ELISA enzyme-linked immunosorbent assay
  • a method of amplifying DNA / RNA by PCR is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid cDNA end rapid amplification method
  • the primers for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell genetically engineered using the vector of the present invention or directly using a heparin-binding protein 10 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology.
  • a polynucleotide sequence encoding a heparin-binding protein 10 may be inserted into a vector to form a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, bacteriophages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain origins of replication, promoters, marker genes, and translational regulatory elements.
  • DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide the synthesis of raRNA.
  • promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors expressed by DM, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers from 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide for selection
  • selectable marker genes to provide for selection
  • the phenotypic traits of transformed host cells such as dihydrofolate reductase, neomycin resistance and green fluorescent protein (GFP) for eukaryotic cell culture, or tetracycline or ampicillin resistance for E. coli.
  • GFP green fluorescent protein
  • a polynucleotide encoding a heparin-binding protein 10 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS, or Bowes s melanoma cells, etc. .
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 .
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be isolated and purified by various separation methods using their physical, chemical, and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • polypeptide of the present invention and the antagonists, agonists and inhibitors of the peptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases, etc. .
  • PKN / MK heparin-binding proteins are a class of extracellular heparin-binding proteins. These proteins are involved in the regulation of the growth and differentiation of various cells in the body. These proteins constitute a new family of heparin-binding proteins. Some growth regulators [Tsutsui J., et al., 1991]. The PKN / M heparin-binding protein family-specific conserved sequence is required to form its active mot if.
  • abnormal expression of the specific PKN / MK heparin-binding protein mot if will cause abnormal function of the polypeptide containing the mot if of the present invention, resulting in abnormal cell differentiation, proliferation, abnormal growth regulation of the body, and related diseases.
  • diseases such as tumors, embryonic development disorders, growth and development disorders.
  • heparin plays a very important role in the coagulation mechanism, the combination of heparin-binding protein and heparin can cause abnormal coagulation mechanisms and produce related diseases such as coagulopathy.
  • Coagulation disorders clotting factor deficiency, hemophilia A, hemophilia B, hereditary bleeding telangiectasia, allergic purpura, simple purpura, senile purpura, idiopathic thrombocytopenic purpura, regeneration Obstructive anemia, disseminated intravascular coagulation, myocardial infarction, cerebral thrombosis, pulmonary thrombosis
  • Embryonic disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney, double ureter, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, suburethral Fissure, hermaphroditism, atrial septal defect, ventricular septal defect, pulmonary stenosis, arterial duct occlusion, neural tube defect, congenital hydrocephalus, iris defect, congenital cataract, congenital glaucoma or cataract, congenital deafness
  • Tumors of various tissues gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, Colon cancer, melanoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, colon cancer, thymic tumor, nasal cavity and sinus tumor, nose Pharyngeal cancer, Laryngeal cancer, Tracheal tumor, Fibroma, Fibrosarcoma, Lipoma, Liposarcoma, Leiomyoma
  • heparin-binding protein 10 of the present invention will also produce certain hereditary, hematological diseases and Diseases of the immune system, etc.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat various diseases, especially coagulopathy, tumors, embryonic development disorders, growth and development disorders, and some inheritances. Sexual, hematological and immune system diseases.
  • Antagonists of heparin-binding protein 10 include antibodies, compounds, receptor deletions, and analogs that have been screened.
  • An antagonist of heparin-binding protein 10 can bind to and eliminate the function of heparin-binding protein 10, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform a biological function.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against heparin-binding protein 10 epitopes. These antibodies include (but are not limited to): Doklon antibodies, monoclonal antibodies, chimeric antibodies, single-chain antibodies, Fab fragments, and fragments from Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting heparin-binding protein 10 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • Techniques for preparing monoclonal antibodies to heparin-binding protein 10 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV-hybridoma Technology, etc.
  • Chimeric antibodies that bind human constant regions to non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies (US Pat No. 4946778) can also be used to produce single chain antibodies against heparin-binding protein 10.
  • Anti-heparin-binding protein 10 antibodies can be used in immunohistochemical techniques to detect heparin-binding protein 10 in biopsy specimens.
  • Monoclonal antibodies that bind to heparin-binding protein 10 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • a high-affinity monoclonal antibody of heparin-binding protein 10 can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill heparin-binding protein 10-positive cells.
  • the invention also relates to a diagnostic test method for quantitatively and locally detecting the level of heparin-binding protein 10.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • the levels of heparin-binding protein 10 detected in the test can be used to explain the importance of heparin-binding protein 10 in various diseases and to diagnose diseases in which heparin-binding protein 10 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding heparin-binding protein 10 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of heparin-binding protein 10.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express variant heparin-binding protein 10 to inhibit endogenous heparin-binding protein 10 activity.
  • a variant heparin-binding protein 10 may be a shortened heparin-binding protein 10 lacking a signaling domain, and although it can bind to downstream substrates, it lacks signaling activity.
  • recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of heparin-binding protein 10.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding a heparin-binding protein 10 into a cell.
  • a method for constructing a recombinant viral vector carrying a polynucleotide encoding a heparin-binding protein 10 can be found in the existing literature (Sambrook, et al.).
  • a recombinant polynucleotide encoding heparin-binding protein 10 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: injecting the polynucleotide directly into a tissue in vivo; or introducing the polynucleotide into a cell through a vector (such as a virus, phage, or plasmid) in vitro, The cells are then transplanted into the body and the like.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DM
  • ribozymes that inhibit heparin-binding protein 10 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense NA, DNA, and ribozymes can be obtained using any existing RNA or DM synthesis techniques, such as solid-phase phosphate amide chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of DM sequences encoding the RNA.
  • This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector.
  • it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphorothioate or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding heparin-binding protein 10 can be used for the diagnosis of diseases related to heparin-binding protein 10.
  • the polynucleotide encoding heparin-binding protein 10 can be used to detect the expression of heparin-binding protein 10 or the abnormal expression of heparin-binding protein 10 in a disease state.
  • the DNA sequence encoding heparin-binding protein 10 can be used to hybridize biopsy specimens to determine the expression of heparin-binding protein 10.
  • Hybridization techniques include Southern blotting, Northern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • a part or all of the polynucleotide of the present invention can be used as a probe to be fixed on a microarray (Microarray) or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues.
  • Heparin-binding protein 10 specific primers can also be used to detect the transcription products of heparin-binding protein 10 by RNA-polymerase chain reaction (RT-PCR) in vitro amplification.
  • Detection of mutations in the heparin-binding protein 10 gene can also be used to diagnose heparin-binding protein 10-related diseases.
  • Heparin-binding protein 10 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type heparin-binding protein 10 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared based on the cDNA, which can be used to position the sequence for staining. Heterozygous cells that contain human genes corresponding to the primers produce amplified fragments.
  • the PCR bit method for somatic hybrid cells is a quick way to locate DNA to a specific chromosome.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Heparin-binding protein 10 to effectively treat and / or prevent specific The amount of indication to be administered.
  • the amount and range of heparin binding protein 10 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.
  • Total human fetal brain RNA was extracted with guanidine isothiocyanate / amidine / chloroform in one step.
  • Poly (A) mRNA was isolated from total RNA using the Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • a Smart cDM cloning kit (purchased from Clontech) was used to insert the cDNA fragment into the multicloning site of the pBSK (+) vector (Clontech) to transform DH5a. The bacteria formed a cDNA library.
  • Dye terminate cycle reaction sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public D sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0660D02 was the new D.
  • the inserted cDNA fragments contained in this clone were determined in both directions by synthesizing a series of primers.
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification: Primer 1: 5'- AAATGTAAGAAAATATCAGGCACC -3 '(SEQ ID NO: 3) Primer2: 5'- TTCTTTATGTGGCTTGCTGTTTGC -3' (SEQ ID NO: 4)
  • Primer2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
  • Conditions for the amplification reaction 50 mmol / L KCI, 10 mmol / L Tris-HCl, pH 8.5, 1.5 mmol / L MgCl 2 , 200 ⁇ 1/1 dNTP, lOpmol primer, 1U Taq DM polymerase (Clontech).
  • the reaction was performed on a PE9600 DM thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94. C 30sec; 55 ° C 30sec; 72 ° C 2min 0
  • set ⁇ -actin as a positive control and template blank as a negative control during RT-PCR.
  • the amplified product was purified using a QIAGEN kit, and ligated to a pCR vector (Invitrogen product) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as that of 1 to 1865 bp shown in SEQ ID NO: 1.
  • This method involves acid guanidinium thiocyanate phenol-chloroform extraction. That is, 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0) were used to uniformly paddle the tissue, and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1) were added. ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • a 32P-labeled probe (approximately 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 ( P H7.4) -5 ⁇ SSC-5 ⁇ Denhardt's solution and 20 ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed in lx SSC-0.1% SDS at 55 ° C for 30 minutes. Then, use Analysis and quantification using Phosphor Imager.
  • Example 5 In vitro expression, isolation and purification of recombinant heparin-binding protein 10
  • Primer3 5'- CCCCATATGATGTCCCTCCAGTTCAAAATCAAC -3 '(Seq ID No: 5)
  • Primer 4 5'- CCCGAGCTCTTACCATCTTCTGCAATCAAGTGA -3 '(Seq ID No: 6)
  • the 5' ends of these two primers contain Ndel and Sacl digestion sites, respectively, followed by the 5 'end and 3.
  • the coding sequence at the end, the Ndel and Sacl restriction sites correspond to the selective endonuclease sites on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865. 3).
  • the pBS-0660D02 plasmid containing the full-length target gene was used as a template for the PCR reaction.
  • the PCR reaction conditions were as follows: 10 pg of plasmid pBS-0660D02, primers Primer-3 and Primer-4 in 50 ⁇ 1 total volume, 1 J Opmol, Advantage polymerase Mi x
  • Cycle parameters 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles.
  • Ndel and Sacl were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligation product was transformed into Ca. bacillus DH5o by the calcium chloride method.
  • the final concentration of 3 ( ⁇ g / ml) was cultured overnight in a 1 ⁇ plate.
  • the positive clones were screened by colony PCR and sequenced.
  • the positive clones (PET-0660D02) with the correct sequence were selected and the recombinant plasmid was transformed by the calcium chloride method.
  • the host strain BL21 was cultured at 37 ° C to logarithm.
  • Polypeptide synthesizer (product of PE company) was used to synthesize the following specific peptides of heparin-binding protein 10: -Glu-C00H (SEQ ID NO: 7).
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex.
  • Rabbits were immunized with 4 mg of the hemocyanin polymorphic complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin polypeptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • a titer plate coated with a 15 g / ml bovine serum albumin peptide complex was used as an ELISA to determine antibody titers in rabbit serum.
  • Total IgG was isolated from antibody-positive rabbit sera using protein A-Sepharose.
  • the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
  • the immunoprecipitation method demonstrated that the purified antibody specifically binds to heparin-binding protein 10.
  • the probes can be used to hybridize to the genome or CDM library of normal tissue or pathological tissue from different sources.
  • the probe can further be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or Whether the expression in pathological tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern imprinting, Nor thern blotting, and copying methods. They all use the same steps to fix the polynucleotide sample to be tested on the filter and then hybridize.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt) 5'- TGTCCCTCCAGTTCAAAATCAACCTHCGAAAACAAAACAA -3 '(SEQ ID NO: 8)
  • Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41Nt):
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membrane nitrocellulose membrane
  • the sample membrane was placed in a plastic bag, and 3-1 Omg pre-hybridization solution (OxDenhardf s; 6xSSC, 0.1 mg / ml CT DM (calf thymus DNA)) was added. After sealing the bag, shake at 68 ° C for 2 hours.
  • 3-1 Omg pre-hybridization solution OxDenhardf s; 6xSSC, 0.1 mg / ml CT DM (calf thymus DNA)
  • Gene chip or gene micro matrix (DNA Mi croarray) is a new technology that many national laboratories and large pharmaceutical companies are currently developing and developing. It refers to the orderly and high density arrangement of a large number of target gene fragments on glass. , Silicon and other carriers, and then use fluorescence detection and computer software to compare and analyze the data, in order to achieve the purpose of rapid, efficient, high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as Targeting D for gene chip technology for high-throughput research on new gene functions; finding and screening new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases. The specific method steps have been reported in the literature.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were respectively amplified by PCR. After purification, the concentration of the amplified product was adjusted to about 500 ng / ul, and spotted on a glass medium with a Cartesian 7500 spotter (purchased from Cartesian Company, USA). The distance between them is 280 ⁇ . The spotted slides were hydrated, dried, and cross-linked in a UV cross-linker. After elution, the slides were fixed to D to fix the slides to prepare chips. The specific method steps have been reported in the literature. The sample post-processing steps in this embodiment are:
  • Total mRNA was extracted from normal and cancer cells in one step, and mRNA was purified using Oligotex mRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP (5- Amino- propargy 1-2 '- deoxyuri dine 5'-tripha te coupled to C 3 f luorescent dye, purchased from Amersham Phamacia Biotech Company, labeled mRNA of normal tissues, using a fluorescent reagent Cy5dUTP (5-Araino-propargy 1-2 '-deoxyur i dine 5'-tr iphate coupled to Cy5 fluorescent dye (purchased from Amersham Phamac ia Biotech)) labeled ⁇ 3 ⁇ 4 tissue mRNA, and the probe was prepared after purification.
  • Cy3dUTP 5- Amino- propargy 1-2 '- deoxyuri dine 5'-tripha te coupled to C 3 f luorescent dye, purchased from Am

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une protéine de liaison de l'héparine 10, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, de l'hémopathie, de l'infection par VIH, de maladies immunitaires et de diverses inflammations. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la protéine de liaison de l'héparine 10.
PCT/CN2000/000704 1999-12-27 2000-12-25 Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide WO2001048004A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21459/01A AU2145901A (en) 1999-12-27 2000-12-25 A new polypeptide-heparin bind protein 10 and the polynucleotide encoding it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99125384A CN1301722A (zh) 1999-12-27 1999-12-27 一种新的多肽——肝素结合蛋白10和编码这种多肽的多核苷酸
CN99125384.1 1999-12-27

Publications (1)

Publication Number Publication Date
WO2001048004A1 true WO2001048004A1 (fr) 2001-07-05

Family

ID=5283911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000704 WO2001048004A1 (fr) 1999-12-27 2000-12-25 Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1301722A (fr)
AU (1) AU2145901A (fr)
WO (1) WO2001048004A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201102108D0 (en) * 2011-02-07 2011-03-23 Hansa Medical Ab Diagnostic method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040787A1 (fr) * 1995-06-07 1996-12-19 The University Of Arizona Detection par anticorps monoclonaux de proteines sur des spermatozoides afin de determiner la fecondite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040787A1 (fr) * 1995-06-07 1996-12-19 The University Of Arizona Detection par anticorps monoclonaux de proteines sur des spermatozoides afin de determiner la fecondite

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOFTUS B.J. ET AL.: "Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q", GENOMICS, vol. 60, no. 3, 1999, pages 295 - 308 *
SULSTON J.E. AND WATERSTON R.: "Toward a complete human genome sequence", GENOME RES., vol. 8, no. 11, 1998, pages 1097 - 1108 *

Also Published As

Publication number Publication date
CN1301722A (zh) 2001-07-04
AU2145901A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
WO2001055189A1 (fr) NOUVEAU POLYPEPTIDE, SECp43, 32 S'ASSOCIANT AVEC L'ARNt DE LA SELENOCYSTEINE HUMAINE, ET POLYNUCLEOTIDE CODANT POUR CE POLYPEPTIDE
WO2001048004A1 (fr) Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide
WO2001081594A1 (fr) Nouveau polypeptide, proteine pax humaine 17, et polynucleotide codant pour ce polypeptide
WO2001075101A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 8, et polynucleotide codant pour ce polypeptide
WO2001087949A1 (fr) Nouveau polypeptide, proteine pax humaine 9, et polynucleotide codant pour ce polypeptide
WO2001072796A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 11, et polynucleotide codant pour ce polypeptide
WO2001070965A1 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide
WO2001072793A1 (fr) Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide
WO2001090177A1 (fr) Nouveau polypeptide, activateur humain de la mort naturelle des cellules b13.64, et polynucleotide codant ce polypeptide
WO2001079432A2 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 58, et polynucleotide codant pour ce polypeptide
WO2001081420A1 (fr) Nouveau polypeptide, laminine 19, et polynucleotide codant pour ce polypeptide
WO2001075048A2 (fr) Nouveau polypeptide, proteine ribosomale humaine s11 23, et polynucleotide codant pour ce polypeptide
WO2001081399A1 (fr) Nouveau polypeptide, proteine pax humaine 14, et polynucleotide codant pour ce polypeptide
WO2001087951A1 (fr) Nouveau polypeptide, helicase humaine 11, et polynucleotide codant pour ce polypeptide
WO2001090171A1 (fr) Nouveau polypeptide, proteine humaine ribosomale sii 12, et polynucleotide codant ce polypeptide
WO2001074895A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 12.1, et polynucleotide codant pour ce polypeptide
WO2001074893A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 11.8, et polynucleotide codant pour ce polypeptide
WO2001087962A1 (fr) Nouveau polypeptide, proteine pax humaine 11, et polynucleotide codant ce polypeptide
WO2001047998A1 (fr) Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide
WO2001083742A1 (fr) Nouveau polypeptide, proteine pax humaine 11.7, et polynucleotide codant pour ce polypeptide
WO2001074998A2 (fr) Nouveau polypeptide, proteine humaine de regulation 10 de la serine proteinase, et polynucleotide codant pour ce polypeptide
WO2001081398A1 (fr) Nouveau polypeptide, proteine pax humaine 16, et polynucleotide codant pour ce polypeptide
WO2001072806A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 8, et polynucleotide codant pour ce polypeptide
WO2001047985A1 (fr) Nouveau polypeptide, proteine kinase c-13, et polynucleotide codant pour ce polypeptide
WO2001083544A1 (fr) Nouveau polypeptide, proteine pax humaine 18, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP