WO2001096233A9 - Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene - Google Patents

Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene

Info

Publication number
WO2001096233A9
WO2001096233A9 PCT/JP2001/004992 JP0104992W WO0196233A9 WO 2001096233 A9 WO2001096233 A9 WO 2001096233A9 JP 0104992 W JP0104992 W JP 0104992W WO 0196233 A9 WO0196233 A9 WO 0196233A9
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cassette
metal oxide
oxide
metal
Prior art date
Application number
PCT/JP2001/004992
Other languages
English (en)
French (fr)
Other versions
WO2001096233A1 (fr
Inventor
Kiyoshi Otsuka
Kiyozumi Nakamura
Kazuyuki Iizuka
Original Assignee
Uchiya Thermostat
Kiyoshi Otsuka
Kiyozumi Nakamura
Kazuyuki Iizuka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat, Kiyoshi Otsuka, Kiyozumi Nakamura, Kazuyuki Iizuka filed Critical Uchiya Thermostat
Priority to JP2002510383A priority Critical patent/JP3766063B2/ja
Priority to DE60143573T priority patent/DE60143573D1/de
Priority to AU2001274504A priority patent/AU2001274504A1/en
Priority to US10/110,395 priority patent/US6869585B2/en
Priority to CA002389276A priority patent/CA2389276A1/en
Priority to EP01941018A priority patent/EP1291318B1/en
Publication of WO2001096233A1 publication Critical patent/WO2001096233A1/ja
Publication of WO2001096233A9 publication Critical patent/WO2001096233A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • C01B3/063Cyclic methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the present invention relates to a technology for producing hydrogen from hydrocarbons such as natural gas mainly composed of methane-methane using a catalyst without generating carbon oxides such as carbon monoxide and carbon dioxide. .
  • Hydrogen is a clean fuel that does not emit carbon dioxide when burned or used in fuel cells.
  • the production of carbon dioxide-free L ⁇ hydrogen and the safe storage of hydrogen are expected in the fuel cell era of the next century. Background art
  • Another method is to decompose methane, the main component of natural gas, into carbon and hydrogen using a catalyst.
  • Japanese Patent No. 2767390 proposes to thermally decompose hydrocarbons such as menus in the presence of a carbon substance having an outer surface of 1 m 2 or more.
  • this proposed method is disadvantageous because it needs to be heated to an extremely high temperature of about 100 (around TC) during dissolving.
  • Metal and aluminum earth metal For the decomposition of hydrocarbons such as methane supporting at least one metal compound selected from them has been proposed.
  • methane cannot be sufficiently decomposed due to thermodynamic restrictions. Further, since methane is mixed and supplied to other nitrogen gas, etc., the decomposition of methane in the supplied gas Rate was low and could not be used.
  • one of the hydrogen supply methods is to supply hydrogen using a high-pressure cylinder.
  • high-pressure cylinders are large in weight and capacity, making it difficult to load a large amount of hydrogen into automobiles, and have problems such as the danger of explosion.
  • an object of the present invention is to produce hydrogen at low cost without generating carbon dioxide or carbon monoxide, and at the same time to include carbon monoxide as a hydrogen supply device for fuel cells and the like. It is an object of the present invention to provide a method and an apparatus capable of supplying pure hydrogen, and a cassette for supplying an operable hydrogen. Disclosure of the invention
  • the above problem is solved by introducing hydrocarbons into a reaction vessel containing a hydrocarbon decomposition catalyst carrying nickel, cobalt or iron, as described in claim 1. Heating, a hydrogen production step for decomposing the hydrocarbons to generate hydrogen, and a gas containing hydrogen generated in the hydrogen production step are introduced into a cassette containing a metal oxide and heated, A reduction step of reducing the metal oxide to a lower valence oxide or elemental metal. The hydrocarbons are returned to the hydrogen production step in a closed state, and the hydrogen production step and the reduction step are repeated, thereby achieving a hydrocarbon decomposition method.
  • the hydrocarbons used as a raw material are preferably a gas at room temperature or a liquid at a large hydrogen-Z carbon ratio.
  • hydrocarbons include aliphatic hydrocarbons from 0 to 1Q such as methane, ethane, ethylene, and propane; cycloaliphatic hydrocarbons such as cyclohexane and cyclopentane; benzene; toluene; Aromatic hydrocarbons such as xylene are preferred, but room temperature solid hydrocarbons such as paraffin can also be used. When a room temperature liquid or room temperature solid hydrocarbon is used in the present invention, it is used after gasification. These hydrocarbons may be used alone or in combination of two or more. Particularly preferably, methane or natural gas containing methane is used as the hydrocarbons of the present invention.
  • hydrocarbons such as methane a hydrocarbon-based raw material containing methane such as methane gas, natural gas or petroleum
  • a specific catalyst such as nickel, cobalt or iron
  • Hydrogen production step it was impossible to completely decompose hydrocarbons such as methane due to thermodynamic limitations only by the reaction of decomposing hydrocarbons such as methane into carbon and hydrogen. Therefore, in the present invention, a gas containing hydrogen generated in the hydrogen production step is introduced into the reduction step, and hydrogen generated by the decomposition of hydrocarbons such as methane is consumed by reduction of the metal oxide, thereby reducing methane.
  • the decomposition reaction of hydrocarbons such as does not take an equilibrium state.
  • the temperature of the reduction step is set to less than 700 ° C. so that even if hydrocarbons such as methane that are not decomposed in the hydrogen production step are introduced into the reduction step, they do not react with the metal oxide in the reduction step. Furthermore, the gas discharged from the reduction step is refluxed in a closed state to the hydrogen production step, and the hydrogen production step and the reduction step are repeated to achieve complete decomposition of hydrocarbons such as methane into carbon and hydrogen. ing.
  • the water generated in the reduction step be in a non-reactive state, as described in claim 3. More specifically, at the time of reflux from the reduction step to the hydrogen generation step, It is preferable to coagulate the water generated in the reduction step.
  • carbon produced by the decomposition of hydrocarbons such as methane may be returned to a natural gas field, or may be carbon black, graphite, carbon fiber, plastic, carbon composite, or the like. Can also be used as a raw material.
  • an iron group metal selected from the group consisting of Nigel, Cobalt, and Iron is supported on a carrier made of any of silica, alumina, and magnesia. .
  • the metal oxide used in the present invention is preferably an oxide of iron, indium, tin, magnesium, or cerium. These metal oxides may be supported on any one of alumina, zinc oxide, magnesia, activated carbon, silica, and titania.
  • hydrocarbons are introduced into a reaction vessel containing a hydrocarbon decomposition catalyst carrying nickel, cobalt or iron, and the mixture is heated, and A hydrogen production step of decomposing hydrogen to generate hydrogen, and a gas containing hydrogen produced in the hydrogen production step is introduced into a cassette containing a metal oxide and heated to further decompose the metal oxide.
  • a reduction step of reducing to a low-valent oxide or an elemental metal wherein the gas discharged from the reduction step is returned to the hydrogen production step in a closed state, and the hydrogen production step and the reduction step are repeated.
  • the cassette containing the reduced low-valent oxide or elemental metal is removed from the above-mentioned system, and water or steam is injected into the cassette, and hydrogen generated by the decomposition of water is replaced with hydrogen.
  • a hydrogen supply method characterized by supplying to the required equipment.
  • metal oxides are reduced in the reduction step using hydrogen generated by decomposing hydrocarbons such as methane in the hydrogen production step.
  • This reduced metal oxide ie, elemental metal or low valent metal oxide
  • Can be used Wear According to the present invention, this reaction is carried out at a temperature of less than 600 ° C. so that hydrogen generated by oxidizing the reduced metal oxide does not reduce the metal oxide in situ.
  • Hydrogen can be supplied inexpensively and safely to devices that require a wide range of hydrogen, such as fuel cells for local facilities, factories, homes or vehicles, or hydrogen donors for welding.
  • the present invention provides a device for performing the above-described method for decomposing hydrocarbons such as methane according to the present invention, wherein the device for decomposing hydrocarbons carrying nickel, cobalt or iron is described in claim 7.
  • a disassembly device is provided.
  • the present invention also provides, as an apparatus which makes the hydrogen supply method according to the present invention difficult, a reaction vessel containing a hydrocarbon decomposition catalyst carrying nickel, cobalt or iron as described in claim 9.
  • a hydrogen production apparatus that heats hydrocarbons introduced as a raw material into the reaction vessel and decomposes the hydrocarbons to generate hydrogen; and a cassette containing metal oxides in ⁇ .
  • the cassette includes at least two pipe mounting means that can be detachably connected to the pipe, and the pipe mounting means allows gas introduced from one of the pipe mounting means to pass through the metal oxide and be discharged from the other pipe mounting means.
  • the cassette is connectable to the hydrogen production apparatus in a closed state by the pipe mounting means, receives the gas containing hydrogen generated by the hydrogen production apparatus, and The reduction device reduces the oxides to lower valence oxides or elemental metals and recirculates the discharged gas to the hydrogen production device to obtain reduced valence oxides or elemental metals reduced inside the cassette.
  • a hydrogen supply device which serves as a hydrogen supply device for supplying hydrogen to a device that requires hydrogen.
  • the portable hydrogen supply device comprises a portable cassette containing a metal oxide therein and having at least two pipe mounting means, as described in claim 11. ,
  • the cassette is selectively connectable to a reducing hydrogen supply device and a hydrogen consuming device via a pipe mounting means.
  • the internal metal oxide is reduced to a lower valent oxide or While being reduced to elemental metal, water can be discharged from the other connecting hole piping installation means,
  • the hydrogen supply device is characterized in that the generated hydrogen can be supplied to the hydrogen consuming device from the other connecting hole pipe mounting means.
  • the reducing hydrogen supply device connected to the portable cassette supplies hydrogen obtained by decomposing hydrocarbons such as methane (methane gas, natural gas or hydrocarbon-based raw materials such as petroleum) using a catalyst.
  • hydrocarbons such as methane (methane gas, natural gas or hydrocarbon-based raw materials such as petroleum) using a catalyst.
  • high pressure hydrogen cylinders, liquid hydrogen cylinders, hydrogen generated by electrolysis of water, hydrogen generated by methanol reforming, and the like can also be used.
  • the present inventor decomposes a hydrocarbon-based raw material such as methane gas, natural gas or petroleum into carbon and nitrogen in a step (1) using a catalyst.
  • the reaction of step (1) the reaction is carried out in a state where the metal oxide used in the reaction of step (2) is present in the system. It has been found that the complete decomposition of a class can be performed.
  • hydrogen generated by the decomposition of hydrocarbons such as methane is consumed by the reduction of metal oxides so that an equilibrium state is not attained.
  • the hydrogen produced in the step (1) is introduced into a cassette containing a metal oxide, and the metal oxide is reduced to an elemental metal or a low-valent metal oxide.
  • the gas is circulated in the closed system, and the reactions of the steps (1) and (2) are performed to decompose hydrocarbons such as methane almost completely and to reduce metal oxides.
  • the reduction step may be performed with metal oxide. Do not react.
  • a cassette containing the metal oxide reduced in step (2) (here, an elemental metal or a low-valent metal oxide) is installed in a device requiring hydrogen, and water or steam is used. It can be used to supply pure hydrogen by oxidizing the metal oxide reduced by the method. As described above, this reaction is performed at a temperature of less than 600 ° C. so that hydrogen generated by oxidizing the reduced metal oxide does not reduce the metal oxide in situ. .
  • step (3) the oxidized metal oxide is returned to step (1), and is reduced again by hydrogen produced by cracking of hydrocarbons such as methane, and can be used repeatedly.
  • reaction of the step (1) of the present invention can be written as the following equation when methane is used for hydrocarbons.
  • This reaction usually uses the main gas separated from natural gas, but may use methane produced from resources such as petroleum, coal, and methane hydrate. Furthermore, natural gas itself containing methane can be used as a raw material.
  • the catalyst material is prepared by supporting an iron group metal selected from the group consisting of Nigel, cobalt and iron on a support made of an oxide such as silica, alumina or magnesia.
  • an iron group metal selected from the group consisting of Nigel, cobalt and iron
  • a support made of an oxide such as silica, alumina or magnesia.
  • Nigel is supported using finely divided silica as a carrier is preferable because of its high activity and long life.
  • the shape of the catalyst As for the shape of the catalyst, a shape suitable for a reaction with a large surface area, such as powder, granules, a honeycomb structure, and a nonwoven fabric, is selected in order to use the catalyst efficiently.
  • a large amount of heat is supplied by external heating.
  • the carbon generated during the reaction is removed and can be used as functional tt ⁇ elemental materials such as carbon black, carbon fiber and activated carbon.
  • the hydrogen produced in step (1) is used in step (2).
  • the reaction of step (2) of the present invention can be written as the following equation when the metal oxide is expressed as MO v ( ⁇ is a metal element).
  • Metal oxide used in the reaction is iron oxide (F e. 0 4, F e 9 Og, F e O), indium oxide, tin oxide, magnesium oxide, either cerium oxide. Further, the above-mentioned metal oxide (M0 v ) may be supported on a carrier such as alumina, zinc oxide, magnesia, activated carbon, silica and titania.
  • the cassette which is a reaction vessel, requires heat during the reduction reaction in this step (2), but the cassette may have a built-in heater, or heat may be taken from an external heater. It may have a structure.
  • This cassette is connected to the reaction vessel for step (1) for the production of nitrogen.
  • the steam generated during the reduction in step ( 2) is condensed and removed from the system by a trap device while refluxing to the reaction vessel for hydrogen production, and the gas containing no steam is recovered again in step (1). This promotes the decomposition reaction of hydrocarbons such as methane in step (1).
  • the step (2) is carried out by the hydrogen produced by decomposing the hydrocarbons such as methane injected in a fixed amount in the step (1). ) the metal oxide ( ⁇ ⁇ ) is reduced to consume hydrogen. Unreacted hydrocarbons such as undecomposed unreacted monomer and hydrogen not used for reduction are repeatedly circulated, and the reaction is continued until both are completely eliminated from the system.
  • the metal oxide reduced in the step (2) is generally expressed as ⁇ 0. (Here, an elemental metal or a low-valent metal oxide).
  • This reaction involves removing the cassette containing the metal oxide ( ⁇ 0 ⁇ ⁇ ⁇ ) reduced in step (2) and connecting it to a device that requires hydrogen, such as a fuel cell, and then adding water or water. Is a reaction that introduces steam and generates hydrogen.
  • step (3) as in the reduction in the step (2), heat is required to generate hydrogen from water. Therefore, as described above, heat is taken in from the heater built in the cassette or an external heater, and the reaction in step (3) proceeds.
  • the hydrogen generated in the step (3) does not contain any impurities other than water vapor, and the electrode takes a countermeasure against CO poisoning even when used in a fuel cell. There is no need to do so, and the economic effect is great.
  • step (3) The metal oxide (MO v ) oxidized in step (3) is returned to step (2) again for reduction. For this reason, the cassette is removed from the device requiring hydrogen and returned to the system for performing the steps (1) and (2).
  • the cassette of the present invention is detachable and has a portable structure in order to perform the above-described steps.
  • the entire system connecting the methane decomposition device and the cassette is incorporated into a device requiring hydrogen to supply hydrogen. It can be used as it is.
  • FIG. 1 is a conceptual diagram of a reaction apparatus and experimental procedures used in Examples.
  • FIG. 2 shows the reduction and reoxidation cycle of indium oxide at 400 ° C.
  • FIG. 3 shows the complete decomposition of the monomer over Ni / Cab-O-Sil at 450 ° C. and the recovery of hydrogen from reduced indium oxide at 400 ° C.
  • FIG. 4 shows the iron oxide reduction and re-oxidation cycle at 400 ° C.
  • FIG. 5 shows complete decomposition of the monomer on Ni / Cab-O-Sil at 450 ° C. and recovery of hydrogen from reduced iron oxide at 400 ° C.
  • FIG. 6 shows an embodiment for industrially implementing the present invention.
  • FIG. 7 shows a state where the cassette 2 containing the reduced metal oxide is detached from the system of FIG. 6 and connected to the fuel cell 18.
  • the reaction system used in this example is schematically shown in FIG.
  • two reactors (hydrogen production unit and cassette) 4 and 2 are connected in a closed state by glass tubes 3 and 9, and downstream of the reactor (power set) 2
  • a trapping device 1 (dry ice temperature) and a gas circulation pump 8 are installed in the system, and a closed gas circulation system is configured by being connected by glass tubes 3a, 3b, 9a, and 9b. .
  • a nickel catalyst supported on fine powder silica (fumed silica: Cab-0-Sil (trademark) of CABOT) was used.
  • the catalyst 0.1 Ni: 10 wt%) was put into the reaction vessel 4 and heated to 450 ° C by a heating furnace.
  • Indium trioxide (Wako Pure Chemical Industries, Ltd.) was used as the gold oxide 10 stored in the reactor (power set) 2 and reduced. 0.17 g of nidium nitroxide was placed in cassette 2, and the cassette temperature was set to 400 ° C.
  • a predetermined amount of methane gas was introduced into the reactor 4 from outside, the pulp 26 was closed, and the system was closed.
  • the methane gas was decomposed by the methane decomposition catalyst 7 according to the formula 1 to generate hydrogen, and the hydrogen was introduced into the cassette 2 to reduce the metal oxide (nidium dioxide) 10 according to the formula 2.
  • the water vapor generated during the reduction in cassette 2 was coagulated at the dry ice temperature (178 ° C.) in trap device 12.
  • methane decomposition on a Ni / Cab-0-Sil catalyst is carried out at 450 ° C, and metal oxide (Ni3O3) is obtained by circulating gas.
  • the reduction was carried out at 400 ° C.
  • Fig. 2 shows the cycle of reduction and re-oxidation of nidium dioxide with hydrogen at 400 ° C to confirm the characteristics of metal oxide (nidium dioxide). This check was performed with the valves 27 and 28 connected to the reactor 4 closed in the reaction system shown in FIG.
  • the cassette 2 was heated to 400 ° C., and a predetermined amount of hydrogen and argon were first introduced from the valve 26, and the valve 26 was closed. Thus, first, the metal oxide was reduced. At this time, the generated steam was aggregated by the trap device 12.
  • Regeneration of hydrogen from the reduced metal oxide was performed by evaporating water in the trap device 12 at 15 ° C. and circulating water vapor with argon. Thus, water vapor was introduced into the cassette 2 heated to 400 ° C. after the reduction to generate hydrogen.
  • the reduction and re-oxidation of the metal oxide (indium trioxide) were repeated three times. That is, at time (a) (a) (a), a predetermined amount of hydrogen (an amount at which the reduction ratio of indium trioxide becomes approximately 50%) was added, and the hydrogen was circulated to perform reduction.
  • a predetermined amount of hydrogen an amount at which the reduction ratio of indium trioxide becomes approximately 50%
  • FIG. 3 shows the completion of methane on Ni / Cab-O-Sil at 450 ° C described above.
  • FIG. 2 shows a cycle of hydrogen recovery from reduced oxides at 400 ° C. with total decomposition.
  • a N i (1 O wt%) / Cab-O-Sil 0. 1 g
  • I n 2 0 3 0. 1 7 g.
  • six cycles are repeated.
  • —naichi indicates the amount of CH 4 (methane) and — ⁇ ichi indicates the amount of H 2 (hydrogen).
  • Example 1 The same experiment as in Example 1 was performed using 0.1 g of diiron trioxide (Wako Pure Chemical Industries, Ltd.) instead of 0.17 g of nidium dioxide of metal oxide 10. The experiment was performed under the same conditions as in Example 1 except for all the other conditions.
  • FIGS. 4 and 5 show the obtained results similar to those in FIGS. 2 and 3.
  • FIG. 4 shows the state of decomposition of water vapor at 400 ° C. by reduction with hydrogen and reduced iron oxide.
  • (a) about 10000 ⁇ m01 of hydrogen was introduced from the outside first, and the reduction and re-oxidation of trioxide were repeated in a closed state.
  • FIG. 4 in Example 2 in which iron oxide was used as the metal oxide, the first generation of hydrogen from the introduction of steam from the point (b) to the point (c) resulted in about 7% at the point (c). It was 0 0 mo 1 and slightly S ⁇ than the amount of hydrogen introduced at (a), but almost the same amount of hydrogen could be generated up to the second to fourth times.
  • the methane decomposition rate was higher than that of the fiber example 1 at a speed t.
  • the amount of hydrogen generated by the first introduction of methane was smaller than the amount of methane. This is once reduced It is because not return only up F e 3 0 4 when the iron oxide power Saipisani spoon was. From the second time onward, the amount of methane introduced was reduced to about 1/2 of the amount of hydrogen generated last time.
  • the reduction when the reduction was completed at 1500 minutes from the start of the experiment, the reduced metal oxide was left in the air for 15 hours, and then steam was introduced. Activity decreased slightly. In each case, the same amount of hydrogen as the hydrogen decomposed from methane could be recovered.
  • FIG. 6 shows an embodiment for industrially implementing the present invention.
  • FIG. 6 shows a hydrogen production apparatus 1 for producing hydrogen from methane gas according to the present invention and a cassette 2 containing a metal oxide serving as an oxidation / reduction medium, connected by tubes 3a, 3b, 9a, 9b.
  • 1 is a schematic drawing showing an embodiment of the system.
  • the reaction vessel 4 as the hydrogen production device 1 has a methane gas introduction pipe 5, a pipe 3 b for discharging hydrogen decomposed from methane gas, and a pipe 3 for returning unreacted methane and hydrogen returned from the cassette 2 to the reaction vessel 4 3 a is connected, and a heater 6 is installed as a heat source for supplying heat.
  • the heat source may be any of an electric furnace, a heater, and an induction heater, which are selected one by one.
  • the reaction vessel 4 contains a methane decomposition catalyst 7 and decomposes the methane gas injected into the vessel into hydrogen and carbon.
  • the outlet of the reaction vessel 4 is provided with a filter 13a.
  • the generated hydrogen and unreacted methane gas are sent out from the discharge pipe 3 by the gas circulation pump 8 and injected into the cassette 2 through the introduction pipe 9b.
  • the container 16 of the cassette 2 is made of metal such as stainless steel or aluminum or ceramics, has a structure that can withstand heat and internal and external pressures, and is connected to the pipes 9a and 9b with the joint 17.
  • This joint 17 is detachable with respect to the tubes 9a, 9b, so that the cassette 2 can be removed from the closed system shown in FIG. It is preferable that the joint 17 has a structure that can be attached and detached with one touch (for example, a member conventionally connected to a gas pipe by ⁇ ffl).
  • the heat source may be any of the commonly selected electric furnaces, heat ovens, and induction heating.
  • Insulation material 14 is inserted into cassette 2 and covered with cover 15. Gas inlet of cassette 2 * Filter outlets are provided at filter outlets 13b and 13c, respectively.
  • the water vapor generated when the metal oxide 10 is reduced passes through the discharge pipe 9a and is sent to the water trap device 12, where it is aggregated and collected as water.
  • Unreacted methane gas and hydrogen not used for reduction are also discharged from cassette 2 through discharge pipe 9a, returned to reaction vessel 4 and cassette 2 again, and unreacted methane gas is converted to hydrogen on catalyst 7.
  • the newly generated unreacted hydrogen reduces the metal oxide 10 in the force set 2.
  • the methane gas thus injected is completely decomposed into hydrogen, and each gas is circulated until all the produced hydrogen is used for reduction of metal oxides.
  • the carbon generated by the decomposition of methane gas is adsorbed and collected by the catalyst 7 in the hydrogen production apparatus 1.
  • FIG. 7 shows a state in which the cassette 2 containing the reduced metal oxide 10 has been removed from the system of FIG. 6 and connected to a known polymer electrolyte fuel cell 18.
  • the generated hydrogen is supplied to the fuel electrode 21 of the fuel cell 18 through the tubes 20a and 20b connected to the fuel cell 18.
  • the cassette containing the metal oxide has a detachable and portable structure, and since only this cassette can be mounted on the fuel cell, the fuel cell system can be simplified and the cost can be reduced.
  • the fuel cell system can be simplified and the cost can be reduced.
  • the fuel is stored and transported in the form of metal oxide, which is safe.There is no danger like a high-pressure hydrogen cylinder, and it can be stored in the atmosphere. is there. For these reasons, it will be the closest L hydrogen supply device for practical use.
  • a hydrogen generator using, for example, methanol reforming which is a conventional technique, generates carbon monoxide, and therefore requires a CO removal device by poisoning the electrodes of the fuel cell, and is more complete. Cannot be removed, which greatly affects the life of the fuel cell.
  • the gas generated from the cassette does not contain impurities other than pure hydrogen and water vapor, and therefore does not poison the fuel cell anode, does not require a CO removal device, and is a simple system.
  • the supply of pure hydrogen from city gas can be achieved by incorporating a system that integrates carbonized fuel such as methane. It can be performed at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

明 細 書 水素供給方法、 装置および可^ M水素供給用カセット 技術分野
本発明は、 メ夕ンゃメタンを主成分とする天然ガス等の炭化水素類から触媒を 用いて、一酸化炭素や二酸化炭素などの炭素酸化物を生成することなく、 水素を 製造する技術に関する。
現代文明は、 石油'天然ガス *石炭のような化石燃料に強く依存している。 そ のような化石燃料を燃やし続けることにより大気中の炭酸ガス (主たる温暖化ガ ス) が増加し、 地球の気候を著しく変化させている。
水素は、 燃やしたり燃料電池に使用したときに、 炭酸ガスを発生しないクリ一 ンな燃料である。 炭酸ガスを発生しな Lゝ水素の製造と水素の安全な貯蔵方法が、 次世紀の燃料電池時代において期待されている。 背景技術
従来から水素の製造方法の一つとして、石油 ·天然ガスを原料とした部分酸ィ匕 や水蒸気改 法が提案されているが、 これらの方法では、 水素合成の際に多く の炭酸.ガスを発生する。
そこで、炭酸ガスを発生しない方法として、太陽熱を利用した U T— 3サイク ルゃ、 特開平 0 7— 2 6 7 6 0 1公報の方法が提案されている。 しかし、 これら の方法は太陽熱を利用するに当たり、大きなシステムが必要で、 コストもそれに 伴い多大なものになる。
別の方法として、 天然ガスの主成分であるメタンを、触媒を用いて炭素と水素 に分解する方法が考えられる。例えば、 特許第 2 7 6 7 3 9 0号公報には、外表 面が 1 m2 以上の炭素物質の存在下にメ夕ン等の炭化水素類を熱分解するこ とが提案されている。 しかし、 この提案方法では 解時に 1 0 0 (TC前後とい う極めて高温に加熱する必要があり、不利である。 また、 特許第 2 8 3 8 1 9 2 号公報には、 炭素物質にニッケル化合物及びアル力リ金属とアル力リ土類金属の 中から選ばれた少なくとも 1種の金属の化合物を担持させたメタン等の炭化水素 分解用,が提案されている。 しカヽし、 この提案では、 熱力学的制約によりメタ ンを充分に分解することができず、更に; «の窒素ガス等にメタンを混合して供 給するため、 供給ガス中におけるメタンの分解される割合が低く、 実際に使用で きなかった。
また、 水素と空気を原料とした燃料電池の場合、 メタノールゃガソリンの水蒸 気改質により水素を 給する方法が一般的で多くの発明が提案されている。 しか し、何れの提案方法も一酸化炭素、炭酸ガスの発生が同時に起こり、 特に一酸化 炭素は、 燃料電池電極の被毒の問題から、 1 Oppm以下に除去するための装置が 必要となり、 コストが多大に掛かってている。
一方、 水素供給方法の一つとしては、 高圧ボンベにより供給することがある。 しかし、 高圧ボンべは重量、 容量が大きく、 水素を大量に自動車に積むのは困難 であり、 また、 爆発の危険性等の問題がある。
また、 水素を安全に貯蔵 ·運搬する手段として高圧ボンベの代わりに、 7素吸 蔵合金を用いることが多数提案されている。 しかし、 水素麵合金への水素吸蔵 には高い水素圧が必要であつたり、 このような水素吸蔵合金に した状態では、 依然として空気および水蒸気雰囲気下で使用できない等の問題点がある。
上述のような従来技術に鑑みて、本発明の課題は、 炭酸ガスや一酸化炭素の発 生なしに、安価に水素の製造が行え、 同時に燃料電池等の水素供給装置として一 酸化炭素を含まない純粋な水素が供給できる方法および装置並びに可醒水素供 給用カセットを提供することを目的とする。 発明の開示
本発明においては、上記の課題を、請求項 1に記載のように、 ニッケル、 コバ ルトまたは鉄を担持している炭化水素類分解触媒を収納した反応容器に、炭化水 素類を導入して加熱し、 前記炭化水素類を分解して水素を発生させる水素製造ス テツプと、前記水素製造ステップで生成した水素を含むガスを、 金属酸化物を収 納したカセットに導入して加熱し、前記金属酸化物をより低原子価酸化物または 元素金属に還元する還元ステップとからなり、前記還元ステップから排出したガ スをクローズ状態で前記水素製造ステップへ還流して、 前記水素製造ステップと 前記還元ステツプとを繰返すことを特徴とする炭化水素類の分解方法により、 達 成する。
本発明において、 原料として使用する炭化水素類は、 水素 Z炭素比の大きい常 温気体状または液体状のものが好ましい。 このような炭化水素類の例としては、 メタン、 ェタン、 エチレン、 プロパンなどの 0丄 〜c 1Qの脂肪族炭化水素、 シク 口へキサン、 シクロペンタンなどの脂環式炭化水素、 ベンゼン、 トルエン、 キシ レンなどの芳香族炭化水素を好ましく挙げることができるが、 パラフィンヮック スなどの常温固体状炭化水素を使用することもできる。 常温液体状または常温固 体状炭化水素を本発明に使用する場合には、 ガス化して用いる。 これらの炭化水 素類は単独で用いてもよいし、 2種以上組み合わせて用いてもよい。 特に好まし くは、 本発明の炭化水素類として、 メタンやメタンを 分とする天然ガスが用 いられる。
本発明においては、 メタン (メタンガス、 天然ガスあるいは石油等のメタンを 含む炭化水素系原料) 等の炭化水素類を、 ニッケル、 コバルトまたは鉄という特 定の触媒を用いて炭素と水素に分解する (水素製造ステップ)。 しかし、 メタン 等の炭化水素類を炭素と水素に分解する反応のみでは、 熱力学的制約によりメ夕 ン等の炭化水素類の完全分解が不可能であった。 そこで、 本発明においては、 水 素製造ステップで生成した水素を含むガスを還元ステップに導入して、 メタン等 の炭化水素類分解により発生した水素を金属酸化物の還元により消費することで、 メタン等の炭化水素類の分解反応が平衡状態を取らないようにしている。 なお、 還元ステツプの温度を 7 0 0 °C未満として、 水素製造ステップで未分解のメタン 等の炭化水素類が還元ステツプに導入されても、 還元ステップにおいて酸化金属 と反応しないようにする。更に、還元ステップから排出したガスをクローズ状態 で水素製造ステップへ還流して、 水素製造ステップと還元ステップとを繰返すこ とにより、 メタン等の炭化水素類の炭素と水素への完全分解を達成している。 本発明においては、 メタン等の炭化水素類を一層完全に分解するために、請求 項 3に記載のように、還元ステツプにおいて発生した水を非反応状態とすること が好ましい。 より具体的には、還元ステップから水素発生ステップへの還流時に 還元ステツプにおいて発生した水を凝集することが好ましい。
なお、 本発明においてメタン等の炭化水素類の分解により生成した炭素は、 天 然ガスのガス田に戻してもよく、 または、 カーボンブラック、 グラフアイ ト、 炭 素繊維、 プラスチック、 炭素合成物等の原料として用いることもできる。
本発明に用いる炭化水素類分解触媒は、 シリカ、 アルミナ、 マグネシアのいず れかよりなる担体に二ッゲル、 コバルトまたは鉄よりなる群から選ばれた鉄族金 属を担持させていることが好ましい。
また、 本発明に用いる金属酸化物は、 鉄、 インジウム、 スズ、 マグネシウム、 セリウムの 、ずれかの酸化物であること力く好ましい。 これら金属酸化物はアルミ ナ、 酸化亜鉛、 マグネシア、 活性炭、 シリカ、 チタニアのいずれかの担体に担持 させてもよい。
更に、 本発明は、 請求項 2に記載のように、 ニッケル、 コバルトまたは鉄を担 持している炭化水素類分解触媒を収納した反応容器に、 炭化水素類を導入して加 熱し、 前記炭化水素類を分解して水素を発生させる水素製造ステップと、 前記水 素製造ステップで生成した水素を含むガスを、 金属酸化物を収納したカセッ 卜に 導入して加熱し、 前記金属酸化物をより低原子価酸化物または元素金属に還元す る還元ステップとからなり、 前記還元ステップから排出したガスをクローズ状態 で前記水素製造ステップへ還流して、 前記水素製造ステツプと前記還元ステップ とを繰返して、 前記カセッ ト内部に還元された低原子価酸化物または元素金属を 得るシステムを構成し、
次いで、 前記還元された低原子価酸化物または元素金属が入ったカセッ トを前 記システムから取外し、 該カセッ 卜に水または水蒸気を注入して、 水が分解して 発生した水素を、 水素を必要とする装置へ供給することを特徴とする水素供給方 法を提供する。
前述のように、 本発明においては、 水素製造ステップにおいてメタン等の炭化 水素類を分解することにより発生した水素を用 L、て、 還元ステップにおいて金属 酸化物を還元している。 この還元された金属酸化物 (すなわち、 元素金属または 低原子価金属酸化物) は水または水蒸気により酸化することにより純粋な水素を 供給するので、 水素を必要とする装置への水素の供給源として使用することがで きる。 なお、 この反応は 6 0 0 °C未満の温度で行ない、 還元された金属酸化物を 酸化することにより発生した水素が、 その場で金属酸化物を還元しないようにす 本発明によれば、 局地設備用、 工場用、 家庭用もしくは車両搭載用の燃料電池 または溶接用水素ノ 一ナ等の広範な水素を必要とする装置へ水素を安価に且つ安 全に供給することができる。
更に、 本発明は上述の本発明に係るメタン等の炭化水素類の分解方法を実施す る装置として、請求項 7に記載のように、 ニッケル、 コバルトまたは鉄を担持し ている炭化水素類分解触媒を収納した反応容器を備え、該反応容器内に導入され た炭化水素類を加熱し、 前記炭化水素類を分解して水素を発生させる水素製造装 置と;金属酸化物を収納したカセットを備え、前記水素製造装置に接続されて該 水素製造装置で生成した水素を含むガスを受取り、加熱し、前記金属酸化物をよ り低原子価酸化物または元素金属に還元する還元装置とから構成され;前記還元 装置と前記水素製造装置とはクローズ状態で接続されており、 前記還元装置から 排出したガスを前記水素製造装置へ還流するようになっていることを特徴とする 炭化水素類の分解装置を提供する。
また、本発明は上述の本発明に係る水素供給方法を難する装置として、請求 項 9に記載のように、 ニッケル、 コバルトまたは鉄を担持している炭化水素類分 解触媒を収納した反応容器を備え、該反応容器内に原料として導入された炭化水 素類を加熱し、前記炭化水素類を分解して水素を発生させる水素製造装置と、 金 属酸化物、を Φ 内したカセットとからなり、
該カセットは、着脱可能に配管可能な少なくとも 2つの配管取付け手段を具備 し、 該配管取付け手段は一方の配管取付け手段から導入されたガスが金属酸化物 を通過して他方の配管取付け手段から排出されるように配置されており、 前記カセットは、 該配管取付け手段により、前記水素製造装置にクローズ状態 で接続可能であり、 該水素製造装置で生成した水素を含むガスを受取り、 Ml己金 属酸化物をより低原子価酸化物または元素金属に還元するとともに排出したガス を前記水素製造装置へ還流して、 前記カセット内部に還元された低原子価酸化物 または元素金属を得る還元装置となるとともに、 該カセットは、 前記還元された低原子纖化物または元素金属が入った状態で 一方の配管取付け手段から水または水蒸気が注入されて、 水が分解して発生した 水素を他方の配管取付け手段から排出して、 水素を必要とする装置へ供給する水 素供給装置となることを特徴とする水素供給装置を提供する。
更に、本発明によれば、可搬型水素供給装置として、請求項 1 1に記載のよう に、 内部に金属酸化物が収納されるとともに少なくとも 2つの配管取付け手段を 具備した可搬カセッ卜からなり、
該カセットは前言己配管取付け手段を介して還元用水素供給装置および水素消費 装置に選択的に接続可能であり、
該カセッ卜が前記配管取付け手段の一方を介して前記還元用水素供給装置に接 続されると該還元用水素供給装置から供給された水素により内部の金属酸化物が より低原子価酸化物または元素金属に還元されるとともに他方の連結孔配管取付 け手段から水が排出可能であるとともに、
該カセット内部の金属酸化物がより低原子価酸化物または元素金属に還元され た状態で該カセットが前記連結孔配管取付け手段の一方を介して水または水蒸気 が注入されて、水が分解して発生した水素を、他方の連結孔配管取付け手段から 前記水素消費装置へ供給可能であることを特徴とする水素供給装置が提供される。 この場合に、可搬カセットに接続される還元用水素供給装置はメタン (メタン ガス、 天然ガスあるいは石油等の炭化水素系原料) 等の炭化水素類を触媒を用い て分解した水素を供給してもよいが、 高圧水素ボンべ、 液体水素ボンべ、 水の電 解による水素、 メタノール改質による水素等で発生した水素を用いることも できる。
本発明者は、上記目的を達成するために、段階 (1 ) でメタンガス、 天然ガス あるいは石油等の炭化水素系原料を触媒を用いて炭素と 7素に分解する。 この段 階 (1) の反応に際して、段階 (2) の反応に用いる金属酸化物が系に存在する 状態で反応を行うことで、従来では熱力学的制約により不可能だつたメタン等の 炭化水素類の完全分解が行えることを見出した。 これは、 メタン等の炭化水素類 分解により発生した水素を金属酸化物の還元により消費することで、平衡状態を 取らないようにするものである。 本発明の段階 (2 ) においては、段階 (1 ) で製造した水素を金属酸化物が入 つたカセットに導入し、 金属酸化物を元素金属または低原子価金属酸化物に還元 する。 本発明においては、 クローズされた系内でガスを循環させて、段階 (1 ) および段階 (2 ) の反応を行わせて、 メタン等の炭化水素類をほぼ完全に分解す るとともに金属酸化物を還元する。 なお、前述のように、 還元ステップの温度を 7 0 0 °C未満として、 水素製造ステツプで未分解のメ夕ン等の炭化水素類が還元 ステップに導入されても、還元ステップにおいて酸化金属と反応しないようにす 。
更に、 段階 (3) として、 段階 (2) で還元された金属酸化物 (ここでは元素 金属または低原子価金属酸化物) が入ったカセットを、水素を必要とする装置に 組み込み、 水または水蒸気により還元された金属酸化物を酸ィ匕することにより純 粋な水素を供給することに使用できる。 なお、前述のように、 この反応は 6 0 0 °C未満の温度で行ない、還元された金属酸化物を酸化することにより発生した水 素が、 その場で金属酸化物を還元しないようにする。
段階 (3 ) を経ると、酸化された金属酸化物は、段階 (1 ) に戻され、 メタン 等の炭化水素類分解により製造された水素により再び還元し、 繰返し使用するこ とができる。
本発明の段階 (1 ) の反応は、 炭化水素類にメタンを用いた場合、下式のごと く書ける。
徵式 1 ) C H4→C ( s ) + 2 H2
この反応は、 通常天然ガスから分離したメ夕ンを用いるが、 石油 ·石炭 ·メタ ンハイドレートなどの資源から製造されたメタンを用いてもよい。 更に、 メタン を含む天然ガスそのものを原料として用いることもできる。
触媒材料としてはシリカ、 アルミナ、 マグネシア等の酸化物よりなる担体に二 ッゲル、 コバルトおよび鉄よりなる群から選ばれた鉄族金属を担持させて調製さ れる。 特に微粉末シリカを担体としニッゲルを担持させた触媒が高活性で長寿命 であり好ましい。
触媒の形状も粉体、粒状、 ハニカム構造、 不織布形状等、 触媒を効率よく利用 するために、 表面積の大きい反応に適した形状が選択される。 前述の反応に必要 な熱量を外部加熱により供給する。 反応と同時に生成した炭素は除去され、 力一 ボンブラック ·炭素繊維 ·活性炭などの機能 tt^素材料として利用することがで きる。 前述したように、 段階 (1 ) で製造した水素を段階 (2) で使用する。 本発明の段階 (2) の反応は、 一般に金属酸化物を MOv (Μは金属元素) と 表示すると下式のごとく書ける。
(数式 2 ) ΜΟχ0→ΜΟχ一丄 +H2 0
この反応に用いる金属酸化物 (ΜΟχ ) は酸化鉄 (F e。 04 , F e 9 Og, F e O) 、 酸化インジウム、 酸化スズ、 酸化マグネシウム、 酸化セリウムの何れ かである。 更に前述の金属酸化物 (M0v ) がアルミナ、 酸化亜鉛、 マグネシア、 活性炭、 シリカ、 チタニア等の担体に担持させたものでもよい。
反応容器であるカセットは、 この段階 (2 ) の還元反応の際に熱を必要とする が、 カセットにヒータが内蔵された構造としてもよいし、 または外部に設けたヒ 一夕から熱を取り入れる構造としてもよい。
このカセッ卜が段階 (1 ) の、 7素製造のための反応容器に接続されている。 段階 (2 ) の還元の際に発生する水蒸気は、 水素製造のための反応容器に還流す る間に、 トラップ装置により凝集され系から除去されて、 水蒸気を含まないガス が再び段階 (1 ) にもたらされ、 これにより、段階 (1 ) のメタン等の炭化水素 類分解反応が促進される。
すなわち、本発明においては、 段階 (1) と段階 (2 ) を同時に行うので、一 定量注入したメタン等の炭化水素類から段階 ( 1 ) で分解して製造した水素によ り、段階 (2 ) では金属酸化物 (ΜΟγ ) が還元されて水素を消費する。 未反応 の分解しなかつたメ夕ン等の炭化水素類と、 還元に使用されなかつた水素を繰り 返し循環し、両者が完全に系内から無くなるまで反応を続ける。
本発明の段階 (3 ) の反応は、 段階 (2) で還元された金属酸化物を一般に Μ 0 . (ここでは元素金属または低原子価金属酸化物) と表示すると下式のごと 丄
く書ける。
傲式 3 ) Μ Οχ-1 + Η¾ 0→ΜΟχ9
この反応は段階 (2) で還元された金属酸化物 (Μ0χ_χ ) の入ったカセット を取り外し、水素を必要とする装置、 例えば燃料電池に接続されたのち、 水また は水蒸気を導入し、 水素を発生させる反応である。
なお、 段階 (3 ) においては、 段階 (2 ) の還元時と同じく、水から水素を発 生させるために熱を必要とする。 このため、 前述のように、 カセットに内蔵され たヒータ、 あるいは外部ヒータから熱を取り入れ、 段階 (3) の反応を進行させ る。
この場合に、 本発明によれば、 段階 ( 3) で発生する水素は水蒸気以外の不純 物を全く含まないものであり、 燃料電池に使用した場合にも、 電極の C O被毒対 策をとる必要はなくなり、経済的効果が大きい。
なお、 カセットを燃料電池に使用した場合には、 カセットから燃料電池へ水素 を供給することにより燃料電池で熱カ発生するので、 この熱を用いて上述のカセ ットの加熱を行うようにしてもよい。 このようにすると、 段階 ( 3 ) の反応開始 時のみカセット用ヒー夕へ加熱エネルギーを供給すればよい。
段階 (3 ) により酸化された金属酸化物 (MOv ) は、 再び段階 (2 ) に戻し て還元させる。 このため、 カセットを水素を必要とする装置から外し、段階 (1 ) および段階 (2 ) を行う系に戻される。
前述のような段階を践むため、 本発明のカセットは着脱可能であり、可搬型の 構造である。
本発明は、 このようにカセットを取り外して水素の発生を行う方法以外にも、 メタン分解のための装置とカセッ 卜を結ぶシステム全体を、 水素を必要とする装 置に組み込んで水素の供給を行うようにして使用することもできる。 図面の簡単な説明
以下、本発明の実施例を図示した添付 0®を参照して、本発明につき詳細に説 明する。
第 1図は、 実施例に用いた反応装置および実験手順の概念図である。
第 2図は、 4 0 0 °Cにおける酸化インジウムの還元および再酸化サイクルを示 す。
第 3図は、 4 5 0 °Cにおける N i /Cab-O-Sil上でのメ夕ンの完全分解および 4 0 0 °Cにおける還元された酸化ィンジゥムからの水素の回収を示す。 第 4図は、 4 0 0 °Cにおける酸化鉄の還元および再酸化サイクルを示す。 第 5図は、 4 5 0 °Cにおける N i /Cab-O-Sil 上でのメ夕ンの完全分解および 4 0 0 °Cにおける還元された酸化鉄からの水素の回収を示す。
第 6図は、 本発明を産業的に実施する形態を示す。
第 7図は、 還元された金属酸化物の入ったカセット 2が第 6図のシステムから 外され、燃料電池 1 8に接続された状態を示す。 発明を実施するための最良の形態
〔実施例 1〕
本実施例に用いた反応システムを概略的に第 1図に示す。 本実施例のメタンの 分解装置は、 2つの反応器 (水素製造装置、 カセット) 4、 2がガラス管 3、 9 によりクローズ状態に連結されており、 反応器 (力セット) 2の下流にはトラッ プ装置 1 2 (ドライアイス温度) とガス循環ポンプ 8が系内に設置され、 ガラス 管 3 a、 3 b、 9 a、 9 bにより連結されクローズされたガス循環システムが構 成されている。
反応器(水素製造装置) 4におけるメタン分解触媒 7として、 微粉末シリ力 (C A B O T社のヒュームドシリカ: Cab- 0- Sil 〔商標〕 ) に担持させたニッケ ル触媒を用いた。 この触媒 0. 1 (Ni: 1 0wt%) を反応容器 4に入れて加熱 炉により 4 5 0 °Cに加熱した。
反応器 (力セット) 2に収納されて還元される金虜酸化物 1 0として三酸化二 インジウム (和光純薬工業株式会社) を用 、た。 三酸化ニインジゥム 0. 1 7 g をカセット 2に入れ、 カセット温度が 4 0 0 °Cになるように設定した。
外部から所定量のメタンガスを反応容器 4へ導入し、 パルプ 2 6を閉じて、 系 をクロ一ズ状態とした。 メタンガスは数式 1に従いメタン分解触媒 7により分解 して水素を発生し、 その水素をカセット 2に導入し、 数式 2に従い金属酸化物 (三酸化ニインジゥム) 1 0を還元した。
カセット 2における還元の際に生成した水蒸気を、 トラップ装置 1 2にてドラ ィアイス温度(一 7 8°C) で凝集した。 すなわち、 Ni/Cab- 0- Sil触媒上でのメタ ン分解は 4 5 0 °Cで行い、 ガスを循環させることによる金属酸化物 (三酸化ニイ ンジゥム) の還元を 4 0 0 °Cで行つた。
第 2図に金属酸化物 (三酸化ニインジゥ厶) の特性の確認として、 4 0 0°Cに おける三酸化ニインジゥムの水素による還元および再酸化サイクルを示す。 この 確認は第 1図の反応システムにおいて、 反応器 4に接続したバルブ 2 7、 2 8を 閉じた状態で行なった。
カセット 2を 4 0 0 °Cに加熱するとともに最初にバルブ 2 6から所定量の水素 とアルゴンを導入し、 バルブ 2 6を閉じた。 このようにして、 まず、金属酸化物 の還元を行なった。 この際に、発生した水蒸気はトラップ装置 1 2により凝集し た。
還元した金属酸ィ匕物からの水素の再生は、 トラップ装置 1 2中の水を 1 5°Cで 蒸発させ、 アルゴンとともに水蒸気を循環させることにより行った。 このように、 還元後の 4 0 0 °Cに加熱したカセット 2に水蒸気を導入して水素を発生させた。 第 2図において、 金属酸化物 (三酸化二インジウム) の還元と再酸化を 3回繰 返した。 すなわち、 (a) の時点 (0分) で所定量 (三酸化二インジウムの還元 率が約 5 0 %となる量) の水素を添加し、 水素を循環して還元を行なつた。 還元 により発生する水蒸気をトラップ装置 1 2で凝集することにより、 (a )〜(b) の間において、 三酸化ニインジゥムの水素による還元が円滑に行われた。
次いで、 (b) の時点 (9 5分、 2 1 0分および 3 3 0分) においてトラップ 装置 1 2に凝縮した水を蒸発させることにより、上述のように還元された三酸化 二インジウムにより水を分解して水素を再生した。 この際に再生された水素量は、 還元において消費された水素量とほぼ完全に (約 1 0 0 %) 等しかった。 一方、 還元された三酸化二インジウムは、水の分解により発生した酸素により、 再び酸 ィ匕された。
次いで、 (c ) の時点で、 再びトラップ装置 1 2の温度をドライアイス温度 (一 7 8°C) として水蒸気の凝集を再開すると、再び酸化物の還元が開始された。 このサイクルを 3回繰り返し、反応ガスの分析をォンラインガスクロマトグラ フで行つた結果を第 2図に示している。 これにより添カロした水素と同量の水素を ほぼ 1 0 0 %繰返して回収することができることが分かった。
次に第 3図は、 上述した 4 5 0 °Cにおける N i /Cab-O-Sil 上でのメタンの完 全分解および 4 0 0 °Cにおける還元された酸化ィンジゥムからの水素の回収サイ クルを示す。 なお、 N i ( 1 O wt%) /Cab-O-Sil = 0. 1 g、 I n2 03 = 0. 1 7 gである。 第 3図では 6サイクル繰り返している。 第 3図において、 —拿一は C H4 (メタン) 量を示し、 —〇一は H2 (水素) 量を示す。 時点 (a ) で C H4 (メタン) を系に添加し (3 0 0〃m o 1 ) 、 時点 (b) ではメタンが ほぼ完全に分解され、 素は水として凝集されている。 この時点 (b) において 1 5 °Cでトラップ装置 1 2の凝縮水を蒸発させ、還元された酸化インジウムに接 触させ、 水素を発生させた。 この水素量は約 6 0 0〃m o 1で、 添加したメ夕ン から分解した水素とほぼ同量であった。 時点 (c ) では系から気体相を排出して いる。
C H4 (メタン) の分解を 5回繰り返した後に、 時点 (d) において、還元さ れた金属酸化物を室温の空気中に 1 6時間放置した後、 弓 1き続き 6回目の実験を 行った。 金属酸化物の活性は保持されており、何の問題もなかった。 〔実施例 2〕
実施例 1と同様の実験を、金属酸化物 1 0の三酸化ニインジゥム 0. 1 7 gの 代わりに、三酸化二鉄 (和光純薬工業株式会社) 0. 1 gを用いて行った。 他の 条件は全て実施例 1と同じにして実験を行った。 得られた第 2図、 第 3図と同様 の結果を第 4図、 第 5図に示す。
第 4図は、 水素による還元および還元された酸化鉄による 4 0 0 °Cにおける水 蒸気の分解状態を示す。 ( a ) の時点で最初に外部から約 1 0 0 0 ^ m 0 1の水 素を導入して、 クローズ状態で、 三酸化 の還元と再酸化を繰返した。 第 4図 に示されるように、 金属酸化物として酸化鉄を用いた実施例 2では、 1回目の (b) 時点から (c ) 時点までの水蒸気導入による水素発 は (c) 時点で約 7 0 0 m o 1であり、 (a ) 時点で導入した水素量よりやや S ^したが、 2〜 4回目まではほぼ同量の水素を発生することができた。
また、 第 3図と第 5図との比較から分かるように、 実施例 2の場合には、 メタ ン分解の割合が纖例 1よりも速 t、速度で行われた。 なお、 1回目のメタン導入 により、発生する水素量がメタンの量に対して少なかった。 これは、 一旦還元さ れた酸化鉄力再ぴ酸ィ匕される際に F e 3 04迄しか戻らないためと考えられる。 2回目以降は導入するメタンの量を前回発生の水素量の約 1 /2とした。 第 5図 において、 実験開始から 1 5 0 0分目の還元が終了した時点で、還元された金属 酸化物を大気中に 1 5時間放置した後、 水蒸気の導入を行ったところ、水分解の 活性がやや 下した。 し力、し、 2〜 6回目までの何れの場合も、 メタンから分解 した水素とほぼ同じ量の水素を回収することができた。
〔発明の産業的な実施の形態〕
本発明を産業的に実施する形態を第 6図に示す。 第 6図は本発明のメタンガス から水素を製造する水素製造装置 1と、酸化 ·還元媒体となる金属酸化物が入つ たカセット 2を管 3 a、 3 b、 9 a、 9 bで結合させた構成であり、 システムの 一実施例を示す概略図面である。
水素製造装置 1としての反応容器 4はメタンガスの導入管 5、 メタンガスから 分解された水素が排出される管 3 b、 カセット 2から戻ってきた未反応メタンと 水素を再び反応容器 4に戻す管 3 aが接続され、 熱を供給する熱源としてヒータ 6が設置される。 熱源は一 ^的に選択される電気炉、 ヒータ、 誘導加熱のいずれ でもよい。
反応容器 4にはメタン分解触媒 7が入れられており、容器内部に注入されたメ タンガスを水素と炭素に分解する。 反応容器 4の排出口にはフィルター 1 3 aが 設けられている。
発生した水素および未反応のメタンガスは排出管 3 より、 ガス循環ポンプ 8 により送り出され、 導入管 9 bを通してカセット 2へ注入される。
カセット 2の容器 1 6はステンレススチール、 アルミ等の金属やセラミックで 作られ、 熱や内外圧力に耐え得る構造をとり、管 9 a、 9 bと継手 1 7により接 続される。 この継手 1 7は管 9 a、 9 bに対して着脱自在であり、 従って、 カセ ット 2を第 6図に示したクローズしたシステムから取外すことができる。 継手 1 7はワンタッチで着脱できる構造 (例えば、従来からガス配管に^ fflされてい るもの) とすることが好ましい。
カセット 2内の金属酸化物 1 0を水素により還元させるため、 反応に必要な熱 を供給する熱源ヒータ 1 1が設置される。 熱源は一般的に選択される電気炉、 ヒ 一夕、誘導加熱のいずれでもよい。 カセット 2内は断熱材 1 4が挿入され、 カバ —1 5で覆われる。 カセット 2のガス導入口 *排出口にはそれぞれフィルタ一 1 3 b、 1 3 c力《設けられる。
金属酸化物 1 0が還元する際に発生した水蒸気は排出管 9 aを通し、水のトラ ップ装置 1 2に送り込まれ、 凝集して水として回収される。
未反応のメタンガスと還元に使用されなかった水素も排出管 9 aを通し、 カセ ット 2より排出され、再び反応容器 4とカセット 2に戻され、 未反応のメタンガ スは触媒 7上で水素に分解する反応を起こし、 新たに発生した未反応の水素は力 セット 2において金属酸化物 1 0を還元する。 このように注入したメタンガスが 全て水素に分解され、製造した水素が全て金属酸化物の還元に使用されてしまう まで、 それぞれのガスを循環する。 なお、 メタンガスの分解により発生する炭素 は水素製造装置 1において触媒 7に吸着し捕集される。
第 7図は、還元された金属酸化物 1 0の入ったカセット 2が第 6図のシステム から外され、 公知の固体高分子型燃料電池 1 8に接続された状態を示す。
カセット 2に水または水蒸気を導入管 1 9より注入する。 カセット 2は内蔵さ れたヒータ 1 1からの熱源により熱せられる。 還元された金属酸化物 1 0と水が 反応し、水素が発生する。
発生した水素は燃料電池 1 8と接続された管 2 0 a、 2 0 bを通して、 燃料電 池 1 8の燃料極 2 1へ供給される。
燃料電池 1 8の空気極 2 2へは が導入され、水素と空気中の酸素の反応に より、電気エネルギーが取り出される。
燃料電池反応の生成物である水は、 排出管 2 4を通して水のリザーブタンク 2 5に戻され金属酸化物 1 0との反応に使用される。 また、 未反応の水素は接続管 2 3によりカセット 2に戻され、 再び燃料電池 1 8まで循環する。 産 の利用可能性
本発明に係る水素供給方法および装置並びに水素供給カセットは、以上のよう に構成されているため、 次のような効果を得ることができる。
4 一 本発明の水素供給においては、 メ夕ン等の炭化水素類の分解を金属酸化物存在 下で行うことで、 熱力学制約により不可能だったメ夕ン等の炭化水素類の完全分 解を行うことができる。
また、本発明では、金属酸化物の入ったカセットは着脱可能な可搬型構造であ り、 このカセットだけを燃料電池に搭載できるため、 燃料電池システムを簡略化 できコストが低く押さえられる。 燃料電池自動車、水素自動車にカセットを搭載 する際に、 燃料を金属酸化物の状態で貯蔵 ·運搬するため安全であり、高圧水素 ボンベのように危険性がなく、 大気中での保管も可能である。 これらのため、 実 用化に最も近 L水素供給装置となる。
また、 従来技術である例えばメタノール改質を用いた水素発生装置は一酸ィ匕炭 素の発生があるため、 燃料電池の電極を被毒することより C O除去装置を必要と し、 更に完全には除去できないため、 燃料電池の寿命にも大きく影響している。 これに対して、 本発明ではカセットから発生するガスは純粋な水素と水蒸気以外 の不純物は含まないため、燃料電池の燃料極を被毒することなく、 C O除去装置 も必要でなくシンプルなシステムで構成されることにより、経済的な効果が大き い o
また、 本発明を家庭用のオンサイト型燃料電池に用いる場合、 メタン等の炭化 フ]<:素類分解部とカセットを一体化したシステムを組み込むことで、 都市ガスから 純粋な水素の供給を低コストで行うことができる。

Claims

請 求 の 範 囲
1. ニッケル、 コバルトまたは鉄を担持している炭化水素類分解触媒を収納し た反応容器に、 炭化水素類を導入して加熱し、前記炭化水素類を分解して水素を 発生させる水素製造ステップと、 前記水素製造ステップで生成した水素を含むガ スを、 金属酸ィ匕物を収納したカセットに導入して加熱し、 前記金属酸化物をより 低原子価酸化物または元素金属に還元する還元ステツプとからなり、 前記還元ス テップからお出したガスをクロ一ズ状態で前記水素製造ステップへ還流して、 前 記水素製造ステップと前記還元ステップとを繰返すことを特徴とする炭化水素類 の分解方法。
2. ニッケル、 コバルトまたは鉄を担持している炭化水素類分解触媒を収納し た反応容器に、 炭化水素類を導入して加熱し、前記炭化水素類を分解して水素を 発生させる水素製造ステップと、 前記水素製造ステツプで生成した水素を含むガ スを、 金属酸化物を収納したカセッ トに導入して加熱し、 前記金属酸化物をより 低原子価酸化物または元素金属に還元する還元ステップとからなり、 前記還元ス テツプから排出したガスをクローズ状態で前記水素製造ステップへ還流して、 前 記水素製造ステップと前記還元ステップとを繰返して、 前記カセット内部に還元 された低原子価酸化物または元素金属を得るシステムを構成し、
次いで、 前記還元された低原子価酸化物または元素金属が入ったカセットを前 記システムから取外し、 該カセットに水または水蒸気を注入して、 水が分解して 発生した水素を、 水素を必要とする装置へ供給することを特徴とする水素供給方
3. 前記還元ステップにおいて発生した水を非反応状態とすることを特徵とす る請求項 1または 2に記載の方法。
4. 前記炭化水素類分解触媒が、 シリカ、 アルミナ、 マグネシアのいずれかよ りなる担体に二ッゲル、 コパルトまたは鉄よりなる群から選ばれた鉄族金属を担 持させたものであることを特徴とする請求項 1〜 3の何れか 1項に記載の方法。
5. 前記金属酸匕物が、 鉄、 インジウム、 スズ、 マグネシウム、 セリウムのい ずれかの酸化物であることを特徵とする請求項 1〜 4の何れか 1項に記載の方法。
6. 前記金属酸化物がアルミナ、 酸化亜鉛、 マグネシア、 活性炭、 シリカ、 チ タニアのいずれかの担体に担持させたものであることを特徵とする請求項 5に記 載の方法。
7. ニッケル、 コバルトまたは鉄を担持している炭化水素類分解触媒を収納し た反応容器を備え、 該反応容器内に導入された炭化水素類を加熱し、前記炭化水 素類を分解して水素を発生させる水素製造装置と;金属酸化物を収納したカセッ トを備え、前記水素製造装置に接続されて該水素製造装置で生成した水素を含む ガスを受取り、 加熱し、 前記金属酸化物をより低原子価酸化物または元素金属に 還元する還元装置とから構成され;前記還元装置と前記水素製造装置とはクロ一 ズ状態で接続されており、前記還元装置から排出したガスを前記水素製造装置へ 還流するようになつていることを特徴とザる炭化水素類の分解装置。
8 · 前記還元装置から前記水素製造装置への還流通路に該還元装置において発 生した水を凝集する手段が設けられていることを特徵とする請求項 7に記載炭化 水素類の分解装置。
9. ニッケル、 コバルトまたは鉄を担持している炭化水素類分解触媒を収納し た反応容器を備え、 該反応容器内に原料として導入された炭化水素類を加熱し、 l己炭化水素類を分解して水素を発生させる水素製造装置と、 金属酸化物を収納 したカセットとからなり、 '
該カセットは、 着脱可能に配管可能な少なくとも 2つの配管取付け手段を具備 し、該配管取付け手段は一方の配管取付け手段から導入されたガスが金属酸化物 を通過して他方の配管取付け手段から排出されるように配置されており、 前記カセットは、 該配管取付け手段により、前記水素製造装置にクローズ状態 で接続可能であり、 該水素製造装置で生成した水素を含むガスを受取り、前記金 属酸化物をより低原子価酸化物または元素金属に還元するとともに排出したガス を前記水素製造装置へ還流して、 前記カセット内部に還元された低原子価酸化物 または元素金属を得る還元装置となるとともに、
該カセットは、 前記還元された低原子 «化物または元素金属が入った状態で 一方の配管取付け手段から水または水蒸気が注入されて、 水が分解して発生した 水素を他方の配管取付け手段から排出して、 水素を必要とする装置へ供給する水 素供給装置となることを特徵とする水素供給装置。
1 0. 前記カセットが前記還元装置として作用している際に、前記水素製造装 置に接続された該カセットにおいて発生した水を凝集する手段が該カセットから 前記水素製造装置への還流通路に設けられていることを特徵とする請求項 9に記 載の水素供給装置。
1 1. 内部に金属酸化物が収納されるとともに少なくとも 2つの配管取付け手 段を具備した可搬カセットからなり、
該カセットは前記配管取付け手段を介して還元用水素供給装置および水素消費 装置に選択的に接続可能であり、
該カセットが前記配管取付け手段の一方を介して前記還元用水素供給装置に接 続されると該還元用水素供給装置から供給された水素により内部の金属酸化物が より低原子価酸化物または元素金属に還元されるとともに他方の連結孔配管取付 け手段から水が排出可能であるとともに、
該カセット内部の金属酸化物がより低原子価酸化物または元素金属に還元され た状態で該カセットが前記連結孔配管取付け手段の一方を介して水または水蒸気 が注入されて、 水が分解して発生した水素を、他方の連結孔配管取付け手段から 前記水素消費装置へ供給可能であることを特徴とする水素供給装置。
1 2. 前記金属酸化物が、 鉄、 インジウム、 スズ、 マグネシウム、 セリウムの いずれかの酸化物であることを特徵とする請求項 7〜1 1の何れか 1項に記載の 装置。
1 3. 前記金属酸化物がアルミナ、 酸化亜鉛、 マグネシァ、 活性炭、 シリカ、 チタニアのいずれかの担体 担持させたものであることを特徵とする請求項 1 2 に記載の装置。
PCT/JP2001/004992 2000-06-16 2001-06-13 Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene WO2001096233A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002510383A JP3766063B2 (ja) 2000-06-16 2001-06-13 水素供給方法、装置および可搬型水素供給用カセット
DE60143573T DE60143573D1 (de) 2000-06-16 2001-06-13 Verfahren und vorrichtung zur wasserstoffversorgung
AU2001274504A AU2001274504A1 (en) 2000-06-16 2001-06-13 Method and apparatus for supplying hydrogen and portable cassette for supplying hydrogen
US10/110,395 US6869585B2 (en) 2000-06-16 2001-06-13 Method and apparatus for supplying hydrogen and portable cassette for supplying hydrogen
CA002389276A CA2389276A1 (en) 2000-06-16 2001-06-13 Method and apparatus for supplying hydrogen and portable cassette for supplying hydrogen
EP01941018A EP1291318B1 (en) 2000-06-16 2001-06-13 Method and apparatus for supplying hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-181261 2000-06-16
JP2000181261 2000-06-16

Publications (2)

Publication Number Publication Date
WO2001096233A1 WO2001096233A1 (fr) 2001-12-20
WO2001096233A9 true WO2001096233A9 (fr) 2002-05-30

Family

ID=18682221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004992 WO2001096233A1 (fr) 2000-06-16 2001-06-13 Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene

Country Status (8)

Country Link
US (1) US6869585B2 (ja)
EP (1) EP1291318B1 (ja)
JP (1) JP3766063B2 (ja)
CN (2) CN1241828C (ja)
AU (1) AU2001274504A1 (ja)
CA (1) CA2389276A1 (ja)
DE (1) DE60143573D1 (ja)
WO (1) WO2001096233A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288070C (zh) * 2001-04-02 2006-12-06 打矢恒温器株式会社 氢气生产方法和氢气供应设备
US7399325B1 (en) * 2002-03-15 2008-07-15 Fuelsell Technologies, Inc. Method and apparatus for a hydrogen fuel cassette distribution and recovery system
US7169489B2 (en) * 2002-03-15 2007-01-30 Fuelsell Technologies, Inc. Hydrogen storage, distribution, and recovery system
AU2003231473A1 (en) * 2002-06-26 2004-01-19 Kiyoshi Otsuka Method for producing hydrogen and apparatus for supplying hydrogen
US8354081B2 (en) * 2003-04-04 2013-01-15 Texaco, Inc. Portable fuel processor apparatus and enclosure and method of installing same
JP4829471B2 (ja) * 2003-05-09 2011-12-07 大塚 潔 水素製造方法
DE502005002744D1 (de) 2005-02-10 2008-03-20 Electrovac Ag Verfahren und Vorrichtung zur Herstellung von Wasserstoff
JP4652841B2 (ja) * 2005-02-21 2011-03-16 キヤノンアネルバ株式会社 真空処理装置における水素原子発生源及び水素原子輸送方法
US7429373B2 (en) * 2005-06-24 2008-09-30 Air Products And Chemicals, Inc. Process for autothermal generation of hydrogen
WO2007044009A1 (en) * 2005-10-07 2007-04-19 Midwest Research Institute Attrition resistant fluidizable reforming catalyst
CN100439238C (zh) * 2005-12-14 2008-12-03 微宏科技(湖州)有限公司 金属镁及其掺杂其他金属的混合物催化分解碳氢化合物制氢
JP4959311B2 (ja) * 2006-12-04 2012-06-20 ハビックス株式会社 バイオマスと酸化鉄からの水素製造方法および装置
KR20100017227A (ko) * 2007-04-23 2010-02-16 미츠비시 쥬고교 가부시키가이샤 에너지 공급 시스템
JP2009179526A (ja) * 2008-01-31 2009-08-13 Toho Gas Co Ltd 金属酸化物の還元方法,水素製造方法および水素貯蔵装置
JP2010150055A (ja) * 2008-12-24 2010-07-08 Toho Gas Co Ltd 水素貯蔵装置
KR101570882B1 (ko) * 2009-08-04 2015-11-23 에스케이이노베이션 주식회사 메탄의 열분해 및 이산화탄소 전환 반응을 포함하는 탄소 함유 물질의 가스화 방법
WO2011029144A1 (en) * 2009-09-10 2011-03-17 The University Of Western Australia A process for producing hydrogen from hydrocarbons
US8637198B2 (en) 2009-12-24 2014-01-28 Konica Minolta Holdings, Inc. Reaction container and fuel cell system equipped with same
EP2681294A2 (en) * 2011-02-28 2014-01-08 The Trustees of Columbia University in the City of New York Methods and systems for converting gaseous hydrocarbons to synthetic gas
EP2650401A1 (de) * 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Kraftwerk basiertes Methanisierungssystem
US9868636B1 (en) * 2012-12-06 2018-01-16 National Technology & Engineering Solutions Of Sandia, Llc Thermochemically active iron titanium oxide materials
GB201510659D0 (en) * 2015-06-17 2015-07-29 Isis Innovation Ltd And King Abdulaziz City For Science And Technology Hydrogen production process
CN106684406B (zh) * 2017-02-14 2019-06-21 武汉市能智达科技有限公司 一种MgH2储氢材料反应腔及其燃料电池发电装置
WO2020113242A1 (en) * 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Anode exhaust processing for molten carbonate fuel cells
KR20200101027A (ko) * 2019-02-19 2020-08-27 현대자동차주식회사 수명성능이 개선된 복합 나노섬유 촉매 및 그 제조방법
KR20200101028A (ko) * 2019-02-19 2020-08-27 현대자동차주식회사 수명성능이 개선된 수소 생산용 나노복합재료 및 그 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1035298A (en) * 1973-12-13 1978-07-25 United Aircraft Corporation Catalytic cracking hydrogen generator
US3962411A (en) 1973-12-13 1976-06-08 United Technologies Corporation Method for catalytically cracking a hydrocarbon fuel
US4126668A (en) * 1975-05-23 1978-11-21 Erickson Donald C Production of hydrogen rich gas by combined steam reforming and intermediate oxidation-reduction
US4547356A (en) * 1980-08-05 1985-10-15 Unique Energy Systems, Inc. Method of generating hydrogen and using the generated hydrogen
JPS5836901A (ja) * 1981-08-24 1983-03-04 Jgc Corp 水素、一酸化炭素の製造法
US4877550A (en) * 1988-03-28 1989-10-31 Exxon Research And Engineering Company Synthesis gas preparation and catalyst therefor
EP0637291B1 (en) * 1992-04-24 1997-10-15 H-Power Corporation Improved hydrogen generating system
JPH07144901A (ja) 1993-11-17 1995-06-06 Mitsubishi Heavy Ind Ltd 水素発生設備
DE4410915A1 (de) 1994-03-29 1995-10-12 Erno Raumfahrttechnik Gmbh Verfahren zur Erzeugung von Wasserstoff
JP2767390B2 (ja) * 1994-12-14 1998-06-18 工業技術院長 水素の製造方法
JP2838192B2 (ja) 1996-03-01 1998-12-16 工業技術院長 炭化水素分解用触媒及びそれを用いた水素製造方法
JP3211666B2 (ja) * 1996-06-25 2001-09-25 トヨタ自動車株式会社 水素とカーボンブラックの同時製造方法

Also Published As

Publication number Publication date
JP3766063B2 (ja) 2006-04-12
EP1291318A4 (en) 2006-05-17
CN1233545C (zh) 2005-12-28
DE60143573D1 (de) 2011-01-13
EP1291318B1 (en) 2010-12-01
CN1241828C (zh) 2006-02-15
WO2001096233A1 (fr) 2001-12-20
AU2001274504A1 (en) 2001-12-24
CN1533981A (zh) 2004-10-06
EP1291318A1 (en) 2003-03-12
CA2389276A1 (en) 2001-12-20
US20020155037A1 (en) 2002-10-24
US6869585B2 (en) 2005-03-22
CN1388790A (zh) 2003-01-01

Similar Documents

Publication Publication Date Title
JP3766063B2 (ja) 水素供給方法、装置および可搬型水素供給用カセット
US7588746B1 (en) Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
Muradov Emission-free fuel reformers for mobile and portable fuel cell applications
EP3978434A1 (en) Gas production device, gas production system, iron production system, chemical product production system, and gas production method
Wang et al. Coking can enhance product yields in the dry reforming of methane
JP2009513466A (ja) 水素の製造方法の使用
WO2004002881A1 (ja) 水素製造方法および水素供給装置
KR101995128B1 (ko) 가스 개질을 위한 마이크로웨이브 개질기
Liu et al. Application of chemical looping process for continuous high purity hydrogen production by methane thermocatalytic decomposition
JP4323184B2 (ja) 水素製造装置及び水素製造方法
Ledjeff-Hey et al. Portable PEFC generator with propane as fuel
JPH0757756A (ja) 燃料電池発電システム
JP3671040B2 (ja) 水素基軸インフラシステム
Muradov Production of hydrogen from hydrocarbons
JP3822022B2 (ja) 炭化水素分解材料および炭化水素分解装置
JP2005255505A (ja) 水素供給方法
JP2004359536A (ja) 金属酸化物の還元方法及び水素製造方法
JP4795741B2 (ja) 窒素ガス発生装置及びそれを用いた燃料電池発電システム
JP5098073B2 (ja) エネルギーステーション
JP2000340242A (ja) 燃料電池の排熱利用ヒートポンプ式水素精製装置
JP3782311B2 (ja) 化学反応装置
JP2004244274A (ja) 水素含有ガス製造装置及びその運転方法
KR20230110000A (ko) 건식 수소 생산 장치 및 방법
TW201940413A (zh) 氫製造裝置及氫製造方法
JP2004327191A (ja) 燃料電池用改質ガス製造方法及び改質ガス製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001941018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110395

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018025234

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2389276

Country of ref document: CA

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGE 4, DESCRIPTION, REPLACED BY CORRECT PAGE 4

WWP Wipo information: published in national office

Ref document number: 2001941018

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642