WO2001080985A1 - Statisches mischelement - Google Patents

Statisches mischelement Download PDF

Info

Publication number
WO2001080985A1
WO2001080985A1 PCT/EP2001/004516 EP0104516W WO0180985A1 WO 2001080985 A1 WO2001080985 A1 WO 2001080985A1 EP 0104516 W EP0104516 W EP 0104516W WO 0180985 A1 WO0180985 A1 WO 0180985A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
media
flow
deflection surface
static mixing
Prior art date
Application number
PCT/EP2001/004516
Other languages
English (en)
French (fr)
Inventor
Manfred Schauerte
Original Assignee
Tracto-Technik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tracto-Technik Gmbh filed Critical Tracto-Technik Gmbh
Priority to US10/257,830 priority Critical patent/US20040100864A1/en
Priority to DE50105692T priority patent/DE50105692D1/de
Priority to EP01940350A priority patent/EP1278593B1/de
Priority to AU2001273957A priority patent/AU2001273957B2/en
Priority to AU7395701A priority patent/AU7395701A/xx
Priority to AT01940350T priority patent/ATE291486T1/de
Publication of WO2001080985A1 publication Critical patent/WO2001080985A1/de
Priority to US11/748,313 priority patent/US7878705B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4334Mixers with a converging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps

Definitions

  • the invention relates to a static mixing system for homogenizing and dispersing liquid, gaseous or powdery media and claims the priority of German patent application 100 19 759.0-23, to which reference is made in terms of content.
  • Homogenizing and dispersing media of the same or different aggregate states as a prerequisite for a large number of process steps in chemical or engineering technology are subject to increasingly stringent requirements, which are usually met with the help of complex static or dynamic mixing systems.
  • Horizontal drilling also requires the mixing of a liquid with a powdery substance or a liquid or a suspension if, for example, a bentonite-water suspension is to be used as drilling or rinsing liquid to facilitate and improve the drilling process.
  • a bentonite-water suspension is to be used as drilling or rinsing liquid to facilitate and improve the drilling process.
  • Such a suspension keeps the cuttings in suspension, lubricates the pipe string when it is pulled in and protects it against the surrounding soil after a certain hardening phase.
  • Additives such as soda ash or polymers can be added to vary the property of the suspension.
  • drilling fluids are mixed in a separate storage tank by an agitator working in this tank, i.e. a dynamic mixer, or by a high-speed pump.
  • Static mixing systems are also known which, in contrast to dynamic systems, have no agitator and require less space.
  • a static mixer as it is known, for example, from "Weighing + dosing" 3/1997 pages 23 to 26, usually consists of a plurality of different individual mixing elements connected in series, which are used with the aid of an adapter in a supply or discharge system can.
  • Each of these mixing elements has one or more deflection surfaces, which are possibly measured by one or more passages.
  • the deflecting surfaces following one another either within a mixing element or in downstream mixing elements are always inclined at small angles to one another and also point with respect to the direction of flow of the flow in the line Medium coincidentally a small one; of 90 ° different inclination angles.
  • the deflecting surfaces which are at a special axis angle to one another and to the direction of flow, produce a positive guidance of the flow, so that its direction of flow rotates several times.
  • the passages which possibly pass through the deflecting surfaces also run at an angle to one another and to the deflecting surfaces, so that both a distribution of the flow and a multiple change in the flow direction take place.
  • the individual flows are brought together again at other deflection surfaces.
  • the invention is therefore based on the object of providing a static mixer which enables efficient homogenization and dispersion of different media with structurally simple mixing elements which are also inexpensive to produce and easy to clean.
  • the object is achieved with a mixing element with at least one deflection surface, which is oriented at an angle of 70 to 110 ° to the main flow direction of the media in the flowed-through line.
  • the invention is based on the idea that when the media collide with the deflection surface that is only slightly inclined to the direction of flow and the edges flow around it, shear forces arise which cause the media to swirl and mix.
  • the particular advantage of the mixing element according to the invention lies in its simple construction, which can be manufactured inexpensively and without special machines. Another advantage is that due to the special orientation of the deflecting surface there are no acute angles between the surface and the surrounding housing or the wall. This makes cleaning the mixing element considerably easier.
  • the deflection surface which is only slightly inclined to the direction of flow, enables very good homogenization of the media to be mixed, which can be further improved by a plurality of deflection surfaces connected in series.
  • the deflection surface is arranged at an angle of 90 ° to the direction of flow of the media, i.e. it is perpendicular to the direction of flow.
  • the shape of the cross section of the deflecting surface can essentially correspond to the cross sectional outline of the flow through the line.
  • their diameter is advantageously smaller than that of the line, so that between the line and the Deflection surface creates at least one passage for the medium deflected from the deflection surface.
  • the deflection surface can be fastened directly to the flow through the line or to a housing of a mixing element to be inserted into the line via fastening means.
  • the housing of the mixing element can advantageously be designed such that the side surfaces of the housing lying behind the deflection surface in the direction of flow are used to guide the medium.
  • they can run in a funnel-like manner in order to narrow to a passage opening leading to a deflection surface of a downstream deflection surface or located in the same mixing system.
  • the deflection surface can be provided with openings which enable the medium striking the surface to be divided. An improvement in the homogenization can thus be achieved without, however, cleaning the system being considerably more difficult.
  • the individual mixing elements can be connected in series in a mixing system. It can also be advantageous Mixing elements in parallel next to each other if, for example, the flow rate of media is to be increased.
  • the mixing element according to the invention can be used for homogenizing and mixing gases, liquids, suspensions or dispersions. It can thus be used in a variety of different methods and devices, e.g. from the areas of chemical or process engineering as well as in the plastics industry, water treatment or in the food industry.
  • Bentonite-water suspensions can be used, for example, for horizontal or vertical drilling.
  • Fig. 1 shows a longitudinal section through a mixing system consisting of several individual elements according to the invention connected in series and
  • FIG. 2 shows a cross section through a mixing element in plane A-A of FIG. 1.
  • a single element 1 of the mixing system consists of a housing 2 with two inclined surfaces 3 and 4, which narrow in a funnel shape to a through opening 5. They allow the medium flowing in the direction of the arrow through the inlet opening 6 into the mixing system.
  • Parts 13a to d represent tie rods which pull the head piece 12 and the end piece 17 against one another and thus clamp the deflection surfaces 9 through the housing 2.
  • a mixing system is composed of 3 individual elements, each with a deflection surface and a head piece 12 and an end piece 17. These are sealed off from one another by seals 20. This arrangement can be supplemented with other mixing elements.
  • the head piece has an input opening 6 which opens onto the first deflection surface worked as part of the head piece.
  • the opening is funnel-shaped.
  • End piece 17 on the other hand, does not have a deflecting surface, but rather releases the medium through the outlet opening 16.
  • End piece 17 and head piece 12 are provided with a thread (not shown here) into which common pipe screw connections can be screwed.
  • the media flow into the head piece 12 via the inlet opening 6 and impact on the deflection surface 9. There they are deflected and flow through the passages 11a, 11b, 11c into the mixing space 19. They are partly guided along the inclined surfaces 3 and 4 , The media then flow through the passage opening 5 onto a further deflection surface. They flow through a second mixing element in the manner just described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

Statisches Mischelement zum Homogenisieren von Medien mit einem Gehäuse und einer in einem Winkel von 70 bis 110 DEG zur Strömungsrichtung angeordneten Umlenkfläche.

Description

"Statisches Mischelement"
Die Erfindung betrifft ein statisches Mischsystem zum Homogenisieren und Dispergieren flüssiger, gasförmiger oder pulverförmiger Medien und nimmt die Priorität der deutschen Patentanmeldung 100 19 759.0-23 in Anspruch, auf die inhaltlich Bezug genommen wird.
An das Homogenisieren und Dispergieren von Medien gleicher oder unterschiedlicher Aggregatzustände als Voraussetzung einer Vielzahl von Verfahrensschritten der Chemie- oder Ingenieurtechnik werden zunehmend höhere Anforderungen gestellt, die mit Hilfe meist komplexer statischer oder dynamischer Mischsysteme erfüllt werden.
Auch beim Horizontalbohren besteht das Erfordernis des Mischens einer Flüssigkeit mit einer pulverförmigen Substanz oder einer Flüssigkeit oder einer Suspension, wenn zur Erleichterung und Verbesserung des Bohrvor- gangs beispielsweise eine Bentonit-Wasser-Suspension, als Bohr- oder Spülflüssigkeit eingesetzt werden soll. Eine solche Suspension hält das Bohrklein in Schwebe, schmiert den Rohrstrang bei dessen Einziehen und schützt diesen nach einer gewissen Aushärtephase gegen das umgebende Erdreich. Zur Variation der Eigenschaft der Suspension können Additive, wie beispielsweise Sodaasche oder Polymere, hinzugefügt werden. Üblicherweise werden Bohrflüssigkeiten in einem gesonderten Vorratstank durch ein in diesem Tank arbeitendes Rührwerk, also einen dynamischen Mischer, oder durch eine schnell laufende Pumpe angemischt.
Diese Mischsysteme haben einen erhöhten Platzbedarf und führen zu zeitlichen Verzögerungen des Bohrvorgangs, wenn nach dem Verbrauch einer Bohrflüssigkeitscharge eine neue Charge angesetzt werden muß. Sie erlauben keine kompakte Bauweise der gesamten Bohranlage.
Es sind auch statische Mischsysteme bekannt, die im Gegensatz zu dynamischen Systemen kein Rührwerk aufweisen und einen geringeren Platzbedarf erfordern.
Die Verwendung statischer Mischer in Mischanlagen zum Herstellen von Bohrflüssigkeit für Horizontalbohrverfahren ist aus der deutschen Patentanmeldung 199 18 775.4 bekannt. In dem darin beschriebenen Verfahren zum Herstellen einer Bohrflüssigkeit wird das Zugabemedium, beispielsweise Bentonit, dem Wasser in Pulverform vor oder hinter einer die Bohrflüssigkeit zu der Bohranlage transportierenden Hydraulikpumpe zugeleitet. Hinter der Pumpe kann eine statische Mischstrecke angeordnet sein, die den Zugabestoff und das Wasser homogenisiert.
Ein statischer Mischer, wie er beispielsweise aus "wägen+dosieren" 3/1997 Seite 23 bis 26 bekannt ist, besteht üblicherweise aus einer Mehrzahl ver- schiedenartiger, hintereinander geschalteter einzelner Mischelemente, die mit Hilfe eines Adapters in ein Zuleitungs- oder Ableitungssystem eingesetzt werden können. Jedes dieser Mischelemente weist eine oder mehrere Umlenkflächen auf, die gegebenenfalls von ein oder mehreren Durchlässen durchmessen werden. Die aufeinander entweder innerhalb eines Mischele- ments oder in nachgeschalteten Mischelementen folgenden Umlenkflächen stehen dabei stets in kleinen Winkeln geneigt zueinander und weisen ebenso bezüglich der Strömungsrichtung des in der Leitung strömenden Mediums übereinstimmend einen kleinen; von 90° verschiedenen Neigungswinkel auf.
Die zueinander und zu der Strömungsrichtung in einem besonderen Achs- Winkel stehenden Umlenkflächen erzeugen eine Zwangsführung des Stroms, so daß mehrfach seine Strömungsrichtung dreht. Die gegebenenfalls die Umlenkflächen durchziehenden Durchlässe verlaufen ebenso winklig zueinander sowie zu den Umlenkflächen, so daß sowohl eine Aufteilung des Stroms als auch eine mehrfache Änderung der Strömungsrich- tung erfolgt. An anderen Umlenkflächen werden die Einzelströme wieder zusammengeführt.
Dieses mehrfache Aufteilen, Umlenken und Zusammenführen der Medien bewirkt ihre Homogenisierung bzw. Dispergierung.
Die Wahl verschiedener Mischergeometrien erfolgt in Abhängigkeit von der Reynolds-Zahl, die als Quotient aus den Trägheitskräften und den Reibungskräften unter anderem abhängig von den Stoffeigenschaften der Medien ist. Bei einer kritischen Strömungsgeschwindigkeit überschreiten die Trägheitskräfte einen charakteristischen Wert, verglichen mit den Reibungs- kräften, so daß die Strömung turbulent wird.
Die Wahl der Mischergeometrien und der Größe des gesamten Mischsystems, d.h. der Anzahl der nacheinander geschalteten Mischelemente, erfolgt des weiteren in Abhängigkeit von dem zulässigen Druckverlust der Strömung, der vor allem im Hinblick auf die für die Turbulenz erforderliche kritische Geschwindigkeit und die Erfordernisse der nachfolgenden Verfahrensschritte zu bewerten ist.
Ferner muß die Geometrie der Umlenkflächen und Durchgangsöffnungen sowie deren Anordnung relativ zueinander und zu der Strömungsrichtung derart angeordnet sein, daß möglichst ein Fehlen von toten Zonen gewährleistet werden kann, da diese ein homogenes Mischen verhindern. Ein erheblicher Nachteil der bekannten statischen Mischer liegt darin, daß die in komplexer Geometrie gefertigten Mischelemente in aufwendigen Produktionsverfahren hergestellt werden müssen, die einen erheblichen Zeit- und Kostenaufwand verursachen. Vor allem die zum Teil massive Gestaltung der Mischer mit unterschiedlich ausgerichteten Durchlässen macht einen hohen Materialaufwand erforderlich.
Ein weiterer Nachteil bekannter Mischer besteht darin, daß ein Reinigen der Mischer durch die zueinander in wechselnden Winkeln stehenden Umlenkflächen erheblich erschwert ist. Ein zuverlässiges einfaches Reinigen, beispielsweise durch eine lediglich den Mischer durchströmende Reinigungsflüssigkeit, ist unzureichend.
Der Erfindung liegt demnach die Aufgabe zugrunde, einen statischen Mischer bereitzustellen, der ein effizientes Homogenisieren und Dispergieren verschiedener Medien mit konstruktiv einfachen Mischelementen ermöglicht, die zudem kostengünstig herzustellen und einfach zu reinigen sind.
Die Aufgabe wird gelöst mit einem Mischelement mit mindestens einer Umlenkfläche, die in einem Winkel von 70 bis 110° zu der Hauptströmungsrichtung der Medien in der durchströmten Leitung ausgerichtet ist.
Der Erfindung liegt dabei der Gedanke zugrunde, daß bei dem Aufprall der Medien auf die nur wenig zur Strömungsrichtung geneigte Umlenkfläche und dem Umströmen ihrer Kanten Scherkräfte entstehen, die zum Verwir- beln und Vermischen der Medien führen.
Der besondere Vorteil des erfindungsgemäßen Mischelements liegt in seiner einfachen Konstruktion, die kostengünstig und ohne Spezialmaschinen gefertigt werden kann. Ein weiterer Vorteil besteht darin, daß aufgrund der besonderen Ausrichtung der Umlenkfläche keine spitzen Winkel zwischen der Fläche und dem umgebenen Gehäuse bzw. der Wand vorliegen. Damit ist das Reinigen des Mischelements erheblich erleichtert.
Überraschenderweise ermöglicht die nur wenig zur Strömungsrichtung geneigte Umlenkfläche eine sehr gute Homogenisierung der zu durchmischenden Medien, die durch mehrere hintereinander geschaltete Umlenkflächen noch verbessert werden kann.
In einer besonders bevorzugten Ausführungsform ist die Umlenkfläche in einem Winkel von 90° zu der Strömungsrichtung der Medien angeordnet, d.h. sie steht senkrecht zu der Strömungsrichtung.
Das darmit erzielte, besonders gute Ergebnis war aufgrund der bekannten Erwägungen des Durchschnittsfachmanns nicht zu vermuten, die aufgrund der angenommenen Erfordernisse des möglichst zu minimierenden Druckabfalls, der möglichst variantenreichen Zwangsführung der Strömung und des Vermeidens von toten Zonen eine nur wenig zur Strömungsrichtung geneigte oder eine dazu senkrecht stehende Umlenkfläche für besonders ungeeignet erscheinen ließen. Eine derart angeordnete Umlenkfläche läßt nämlich das Entstehen von hinter ihr liegenden toten Zonen zu und "bremst" die auf sie aufprallenden Strömungen in erheblichem Maße ab. Dies führt zu einer deutlichen Verminderung des Druckes und der Geschwindigkeit der Flüssigkeit. Des weiteren verzichtet die erfindungsgemäße Umlenkfläche auf eine gerichtete Zwangsführung, die zu einer mehrfachen gezielten Drehung der Strömungsrichtung des Mediums führt.
In dem erfindungsgemäßen Mischelement kann die Form des Querschnitts der Umlenkfläche im wesentlichen zu dem Querschnittsumriß der durchströmten Leitung korrespondieren. Vorteilhafterweise ist ihr Durchmesser jedoch kleiner als der der Leitung, so daß zwischen der Leitung und der Umlenkfläche mindestens ein Durchlaß für das von der Umlenkfläche abgelenkte Medium entsteht.
Die Umlenkfläche kann über Befestigungsmittel unmittelbar an der durchströmten Leitung oder an einem Gehäuse eines in die Leitung einzusetzenden Mischelements befestigt sein.
In einer besonderen Ausführungsform kann es zudem vorteilhaft sein, das Mischelement über einen Adapter in die Leitung einzusetzen.
Vorteilhafterweise kann das Gehäuse des Mischelementes derart gestaltet sein, daß die in Strömungsrichtung hinter der Umlenkfläche liegenden Seitenflächen des Gehäuses zu einer Führung des Mediums genutzt werden.
Beispielsweise können sie trichterartig zulaufen, um sich zu einer auf eine Umlenkfläche eines nachgeschalteten oder in demselben Mischsystem befindlichen Umlenkfläche führenden Durchgangsöffnung zu verengen.
Durch die Verengung wird die Druckenergie des Stroms teilweise in kineti- sehe Energie umgewandelt. Damit erhöhen sich die beim Aufprall auf die Umlenkfläche entstehenden, das Homogenisieren begünstigenden Scherkräfte.
In einer weiteren vorteilhaften Ausführungsform kann die Umlenkfläche mit Öffnungen versehen sein, die eine Aufteilung des auf die Fläche treffenden Mediums ermöglichen. Damit kann eine Verbesserung der Homogenisierung erreicht werden, ohne daß jedoch ein Reinigen des Systems erheblich erschwert ist.
Die einzelnen Mischelemente können in einem Mischsystem in einer Vielzahl hintereinander geschaltet werden. Es kann zudem auch vorteilhaft sein, Mischelemente parallel nebeneinander zu schalten, wenn z.B. die Durchflußmenge an Medien erhöht werden soll.
Das erfindungsgemäße Mischelement kann zum Homogensieren und Mischen von Gasen, Flüssigkeiten, Suspensionen oder Dispersionen eingesetzt werden. Es kann somit in einer Vielzahl verschiedener Verfahren und Vorrichtungen, z.B. aus den Bereichen der Chemie- oder Verfahrenstechnik sowie in der Kunststoffindustrie, der Wasseraufbereitung oder in der Lebensmittelindustrie Verwendung finden.
Im einzelnen kann es zum Mischen von Bohrflüssigkeiten, z.B. Bentonit- Wasser-Suspensionen, genutzt werden, die beispielsweise für Horizontaloder Vertikalbohrungen benötigt werden.
Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels des näheren erläutert.
In den Zeichnungen zeigen:
Fig. 1 einen Längsschnitt durch ein aus mehreren nacheinander geschalteten erfindungsgemäßen Einzelelementen bestehendes Mischsystem und
Fig. 2 einen Querschnitt durch ein Mischelement in der Ebene A-A der Fig. 1.
Ein Einzelelement 1 des Mischsystems besteht aus einem Gehäuse 2 mit zwei Schrägflächen 3 und 4, die sich zu einer Durchgangsöffnung 5 trichterförmig verengen. Sie ermöglichen den Durchlaß des in Pfeilrichtung durch die Eingangsöffnung 6 in das Mischsystem einströmenden Mediums.
Die senkrecht zu den Außenflächen 7, 8 des Gehäuses stehende Umlenkfläche 9 ist über drei Zungen 10a, 10b, 10c zwischen die Gehäuse 2 geklemmt. Sie weist im Vergleich zu dem Gehäuse einen geringeren Radius auf, so daß zwischen dem Gehäuse 2 und der Umlenkfläche 9 Durchlässe 11a, 11 b, 11c frei bleiben. Teile 13a bis d stellen Zuganker dar, die das Kopfstück 12 und das Endstücks 17 gegeneinander ziehen und so durch die Gehäuse 2 die Umlenkfächen 9 festklemmen.
In dem Ausführungsbeispiel ist ein Mischsystem aus 3 Einzelelementen mit jeweils einer Umlenkfläche und einem Kopfstück 12 und einem Endstück 17 zusammengesetzt. Diese sind über Dichtungen 20 gegeneinander abge- dichtet. Diese Anordnung kann beliebig durch weitere Mischelemente ergänzt werden.
Das Kopfstück weist eine Eingangsöffnung 6 auf, die auf die erste, als Bestandteil des Kopfstückes gearbeitete Umlenkfläche mündet. Die Öffnung ist trichterförmig gearbeitet.
Das Endstück 17 dagegen trägt keine Umlenkfläche, sondern entläßt das Medium durch die Ausgangsöffnung 16. Endstück 17 und Kopfstück 12 sind mit einem Gewinde versehen (hier nicht dargestellt), in das gängige Rohr- verschraubungen eingeschraubt werden können.
Die Medien strömen in das Kopfstück 12 über die Eingangsöffnung 6 und prallen auf die Umlenkfläche 9. Dort werden sie abgelenkt und strömen durch die Durchlässe 11a, 11 b, 11c in den Mischraum 19. Sie werden teil- weise entlang der Schrägflächen 3 und 4 geführt. Die Medien strömen im folgenden durch die Durchgangsöffnung 5 auf eine weitere Umlenkfläche. Sie durchströmen ein zweites Mischelement in der eben beschriebenen Weise.
Nach dem Durchströmen des letzten Mischelements gelangen sie in die Ausgangsöffnung 16 des Endstückes 17 und verlassen das Mischsystem.

Claims

Schutzansprüche:
1. Statisches Mischelement (1) zum Mischen von Medien mit einem Gehäuse (2), gekennzeichnet durch mindestens eine in einem Winkel von 70 bis 110° zur Strömungsrichtung der Medien angeordneten
Umlenkfläche (9).
2. Statisches Mischsystem (1 ) nach Anspruch 1 , dadurch gekennzeichnet, daß die Umlenkfläche in einem Winkel von 90° zur Strömungs- richtung der Medien angeordnet ist.
3. Statisches Mischelement nach einem der Ansprüche 1 oder 2, gekennzeichnet durch mindestens einen Durchlaß (11a, 11 b, 11c) zwischen der Umlenkfläche (9) und dem Gehäuse (2).
4. Statisches Mischelement nach einem der Ansprüche 1 bis 3, gekennzeichnet durch trichterförmig zulaufende Schrägflächen (3, 4) des Gehäuses (2).
5. Mischsystem mit mindestens einem der statischen Mischelemente nach einem der Ansprüche 1 bis 4.
6. Mischsystem nach Anspruch 4, gekennzeichnet durch mindestens zwei parallel geschaltete statische Mischelemente nach einem der An- Sprüche 1 bis 4.
7. Mischsystem nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß ein Kopfstück (12) und ein Endstück (17) über Zugmittel (13a, 13b, 13c, 13d) miteinander verspannt sind.
8. Verwendung des statischen Mischelements nach einem der Ansprüche 1 bis 4 oder des Mischsystems nach den Ansprüchen 5 bis 7 zum Herstellen einer Bohrflüssigkeit.
9. Verfahren zum Mischen mindestens zweier Medien, dadurch gekennzeichnet, daß die Medien in einem Winkel von 70 bis 1 10° auf eine in ihrer Strömungsrichtung angeordnete Umlenkfläche (9) geführt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Medien in einem Winkel von 90° auf eine in ihrer Strömungsrichtung angeordnete Umlenkfläche (9) geführt werden.
11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekenn- zeichnet, daß die Medien durch eine Zwangsführung geteilt und/oder zusammengeführt werden.
PCT/EP2001/004516 2000-04-20 2001-04-20 Statisches mischelement WO2001080985A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/257,830 US20040100864A1 (en) 2000-04-20 2001-04-20 Static mixing element
DE50105692T DE50105692D1 (de) 2000-04-20 2001-04-20 Statisches mischelement
EP01940350A EP1278593B1 (de) 2000-04-20 2001-04-20 Statisches mischelement
AU2001273957A AU2001273957B2 (en) 2000-04-20 2001-04-20 Static mixing element
AU7395701A AU7395701A (en) 2000-04-20 2001-04-20 Static mixing element
AT01940350T ATE291486T1 (de) 2000-04-20 2001-04-20 Statisches mischelement
US11/748,313 US7878705B2 (en) 2000-04-20 2007-05-14 Static mixing element and method of mixing a drilling liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10019759A DE10019759C2 (de) 2000-04-20 2000-04-20 Statisches Mischsystem
DE10019759.0 2000-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/748,313 Continuation US7878705B2 (en) 2000-04-20 2007-05-14 Static mixing element and method of mixing a drilling liquid

Publications (1)

Publication Number Publication Date
WO2001080985A1 true WO2001080985A1 (de) 2001-11-01

Family

ID=7639564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/004516 WO2001080985A1 (de) 2000-04-20 2001-04-20 Statisches mischelement

Country Status (6)

Country Link
US (2) US20040100864A1 (de)
EP (1) EP1278593B1 (de)
AT (1) ATE291486T1 (de)
AU (2) AU7395701A (de)
DE (2) DE10019759C2 (de)
WO (1) WO2001080985A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878705B2 (en) 2000-04-20 2011-02-01 Tt Schmidt Gmbh Static mixing element and method of mixing a drilling liquid
EP2492335A1 (de) * 2011-02-25 2012-08-29 RWE Power AG Verfahren und Vorrichtung zum Homogenisieren einer Mischung von Festbrennstoff in einer Flüssigkeit
EP3482820A4 (de) * 2016-07-28 2019-11-13 Aqua Solution Co., Ltd. Düse zur erzeugung von nanoblasen und vorrichtung zur erzeugung von nanoblasen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502016B1 (de) * 2005-08-24 2007-01-15 Diehl Hans Juergen Wirbelkammer
JP4713397B2 (ja) * 2006-01-18 2011-06-29 株式会社リコー 微小流路構造体及び微小液滴生成システム
US20120216899A1 (en) * 2008-07-28 2012-08-30 Broussard Chad A Piggable Static Mixer Apparatus and System for Generating a Hydrate Slurry
WO2011142894A1 (en) * 2010-03-29 2011-11-17 M-I L.L.C. High pressure shear nozzle for inline conditioning of drilling mud
US8567767B2 (en) 2010-05-03 2013-10-29 Apiqe Inc Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US20120236678A1 (en) * 2011-03-17 2012-09-20 Cavitation Technologies, Inc. Compact flow-through nanocavitation mixer apparatus with chamber-in-chamber design for advanced heat exchange
WO2012178179A2 (en) 2011-06-23 2012-12-27 Apiqe Inc. Disposable filter cartridge for water dispenser
EP2723481B1 (de) 2011-06-23 2019-05-01 Apiqe Inc. Strömungskompensator
US8755682B2 (en) 2012-07-18 2014-06-17 Trebor International Mixing header for fluid heater
US20140319401A1 (en) * 2013-04-29 2014-10-30 Delavan Inc Directionally biased valve
US9927064B2 (en) 2014-03-10 2018-03-27 Toyota Motor Engineering & Manufacturing North America, Inc. Flow-restricting plug and differential drive pinion having the same
DE102015209208A1 (de) * 2015-05-20 2016-11-24 Zf Friedrichshafen Ag Hydraulische Steuerung
CA2897994C (en) * 2015-07-22 2020-07-14 Northern Blizzard Resources Inc. Choke for a flow line
CN105195035B (zh) * 2015-11-05 2018-07-13 中核(天津)科技发展有限公司 液态物料组分静态混料器
JP7212671B2 (ja) * 2017-07-31 2023-01-25 コーニング インコーポレイテッド 改善されたプロセス強化フローリアクタ
US10967339B2 (en) * 2018-06-19 2021-04-06 Vme Process, Inc. Static mixer
US20220032243A1 (en) * 2019-04-25 2022-02-03 Jgc Japan Corporation Fluid mixing unit and fluid mixing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH182064A (de) * 1935-01-19 1936-01-31 Frischknecht Lilly Vorrichtung zur Herstellung von kohlensäurehaltigem Wasser.
DE687926C (de) * 1937-04-22 1940-02-08 Concordia Elek Zitaets Akt Ges Vorrichtung zur Erzeugung von physikalischem Schaum fuer Feuerloeschzwecke
US4313680A (en) * 1979-11-05 1982-02-02 Chevron Research Company Reactor for fast reactions
US4370062A (en) * 1980-02-19 1983-01-25 Moody Warren E Dispensing gun for two-part adhesives
US4412582A (en) * 1981-07-06 1983-11-01 Hiross, Inc. Baffle array for heat exchange apparatus
US4514095A (en) * 1982-11-06 1985-04-30 Kernforschungszentrum Karlsruhe Gmbh Motionless mixer
JPS61242624A (ja) * 1985-04-17 1986-10-28 Seitaro Nitanda スタテイツクミキサ−
DE3618062A1 (de) * 1986-05-28 1987-12-03 Kachel Charlotte Vorrichtung zum vermischen von pastoesen oder gelartigen komponenten
US4854721A (en) * 1986-03-25 1989-08-08 Equip-Mark, Inc. Blending and dispensing beverages
US5522661A (en) * 1994-02-16 1996-06-04 Tokyo Nisshin Jabara Co., Ltd. Static mixing module and mixing apparatus using the same

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977300A (en) * 1932-08-30 1934-10-16 Royden A Blunt Segregation eliminator
US2561457A (en) * 1950-02-03 1951-07-24 Kenneth R Beales Multidisk ribbon jet
US3045984A (en) * 1959-06-08 1962-07-24 Fredric E Cochran Fluid blender
GB1173302A (en) * 1966-07-20 1969-12-10 Rolls Royce Mixing Device and Mixing Method for Fluids
US3473787A (en) * 1967-12-18 1969-10-21 Floyd M Bartlett Method and apparatus for mixing drilling fluid
FR1574140A (de) * 1968-05-07 1969-07-11
IT942173B (it) * 1970-09-19 1973-03-20 Alfa Laval Gmbh Procedimento e dispositivo per l omogeneizzazione di liquidi immiscibili
ZA72100B (en) * 1971-01-18 1973-08-29 Ici Australia Ltd Method of and apparatus for filling voids with viscous material
US3693457A (en) * 1971-02-24 1972-09-26 Battelle Development Corp Source test cascade impactor
FR2234448B1 (de) * 1973-06-25 1977-12-23 Petroles Cie Francaise
US3856270A (en) * 1973-10-09 1974-12-24 Fmc Corp Static fluid mixing apparatus
US3941355A (en) * 1974-06-12 1976-03-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Mixing insert for foam dispensing apparatus
US4051065A (en) * 1974-09-03 1977-09-27 Nalco Chemical Company Apparatus for dissolving water soluble polymers and gums in water
US4050479A (en) * 1975-06-27 1977-09-27 Masoneilan International, Inc. Fluid resistance device
US4087862A (en) * 1975-12-11 1978-05-02 Exxon Research & Engineering Co. Bladeless mixer and system
JPS52151676A (en) * 1976-06-11 1977-12-16 Fuji Photo Film Co Ltd Method and equipment for dispersing
SU725689A1 (ru) * 1976-10-29 1980-04-08 Центральный Научно-Исследовательский Институт Технологической Оснастки Текстильного Оборудования Цниимашдеталь Смесительное устройство дл приготовлени кле щей смеси
DE7733456U1 (de) * 1977-10-29 1978-05-11 Augustin, Wilfried, 2057 Reinbek Statischer mischer
CA1096630A (en) * 1978-05-26 1981-03-03 David J. Tookey Static mixer
JPS5915005B2 (ja) * 1979-10-17 1984-04-07 コニカ株式会社 分散方法
US4344752A (en) * 1980-03-14 1982-08-17 The Trane Company Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
US4416610A (en) * 1980-03-14 1983-11-22 Hydroil, Inc. Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
IT1128825B (it) * 1980-06-27 1986-06-04 Fiat Ricerche Dispositivo di miscelazione statico atto a miscelare omogeneamente due o piu componenti allo stato liquido o semiliquido
US4334788A (en) * 1980-07-15 1982-06-15 Miner Robert M Pin action mixing pump
US4340311A (en) * 1980-09-26 1982-07-20 Zebron Corporation Interfacial surface generator mixer
US4415275A (en) * 1981-12-21 1983-11-15 Dietrich David E Swirl mixing device
US4409850A (en) * 1982-03-04 1983-10-18 Zeck Ted E Portable sample vessel
US4441823A (en) * 1982-07-19 1984-04-10 Power Harold H Static line mixer
US4548525A (en) * 1982-12-13 1985-10-22 Atlantic Richfield Company Method and apparatus for pre-dilution of drilling mud slurry and the like
US4729665A (en) * 1984-08-29 1988-03-08 Autotrol Corporation Fluid mixer/charger and method
US4684254A (en) * 1984-08-29 1987-08-04 Autotrol Corporation Fluid mixer/charger
EP0191453A3 (de) * 1985-02-14 1989-01-04 Siemens Aktiengesellschaft Einrichtung zur Verhinderung von Anlagerungen in Strömungsräumen für Reaktionsharze
IT1188154B (it) * 1985-03-25 1988-01-07 Staser Prodotti Petroliferi Sp Emulsionatore statico a flusso per liquidi non miscibili
US4647212A (en) * 1986-03-11 1987-03-03 Act Laboratories, Inc. Continuous, static mixing apparatus
SU1456205A1 (ru) * 1986-09-05 1989-02-07 Центральный Научно-Исследовательский И Проектно-Технологический Институт Механизации И Электрификации Животноводства Южной Зоны Ссср Смеситель
JP2513475B2 (ja) * 1986-10-21 1996-07-03 ノードソン株式会社 液体の混合吐出又は噴出方法とその装置
US4907725A (en) * 1987-01-12 1990-03-13 Lancer Corporation Liquid dispenser mixing nozzle
DE3782044T2 (de) * 1987-04-10 1993-03-25 Chugoku Kayaku Mischapparat.
US4981368A (en) * 1988-07-27 1991-01-01 Vortab Corporation Static fluid flow mixing method
US4874248A (en) * 1988-07-27 1989-10-17 Marathon Oil Company Apparatus and method for mixing a gel and liquid
US5145256A (en) * 1990-04-30 1992-09-08 Environmental Equipment Corporation Apparatus for treating effluents
DE4016727A1 (de) * 1990-05-24 1991-11-28 Apv Rosista Gmbh Vorrichtung zum mischen eines fluids und einer fluessigkeit, insbesondere zum eitragen von kohlendioxid in ein wasserhaltiges getraenk
DE4217373C2 (de) 1992-05-26 2003-02-20 Klaus Obermann Gmbh Vorrichtung zur Aufbereitung und Bereitstellung von wenigstens einen flüssigen Bestandteil enthaltenden Mischungen oder Suspensionen
GB2273529B (en) * 1992-12-15 1995-07-12 Fuelsaver Overseas Ltd Fuel reduction device
US5335992A (en) * 1993-03-15 1994-08-09 Holl Richard A Methods and apparatus for the mixing and dispersion of flowable materials
US5549222A (en) * 1994-06-09 1996-08-27 Lancer Corporation Beverage dispensing nozzle
US5688478A (en) * 1994-08-24 1997-11-18 Crescent Holdings Limited Method for scavenging sulfides
US5547281A (en) * 1994-10-11 1996-08-20 Phillips Petroleum Company Apparatus and process for preparing fluids
US5637228A (en) * 1995-01-03 1997-06-10 Texas Brine Corporation Wellhead brine treatment
US5839828A (en) * 1996-05-20 1998-11-24 Glanville; Robert W. Static mixer
US6086052A (en) * 1996-12-03 2000-07-11 Rowe; Carroll G. Foam generating apparatus
US5887977A (en) * 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
US5967658A (en) * 1998-07-28 1999-10-19 Kam Controls Incorporated Static mixing apparatus and method
AU762491C (en) 1998-10-14 2005-02-17 Tracto-Technik Paul Schmidt Spezialmaschinen Mixing system
DE29818289U1 (de) * 1998-10-14 1999-09-23 Tracto Technik Durchlauf-Mischanlage
DK1008380T3 (da) * 1998-12-07 2004-07-12 Dsm Ip Assets Bv Fremgangsmåde og indretning til blanding eller dispergering af væsker
US6305835B1 (en) * 1998-12-08 2001-10-23 Joseph Daniel Farrar Apparatus for handling and preparing fluids
US6279611B2 (en) * 1999-05-10 2001-08-28 Hideto Uematsu Apparatus for generating microbubbles while mixing an additive fluid with a mainstream liquid
US6337308B1 (en) * 1999-06-08 2002-01-08 Diamond Tank Rentals, Inc. Method and apparatus for homogenizing drilling fluid in an open-loop process
DE10019759C2 (de) * 2000-04-20 2003-04-30 Tracto Technik Statisches Mischsystem
CA2343561C (en) * 2000-05-08 2004-11-30 Sulzer Chemtech Ag Mixing element for a flange transition in a pipeline
DE10032302A1 (de) * 2000-07-04 2001-10-25 Basf Ag Rohrreaktor mit Einrichtungen zur Wärmeübertragung
US6447158B1 (en) * 2000-08-29 2002-09-10 Frank E. Farkas Apertured-disk mixer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH182064A (de) * 1935-01-19 1936-01-31 Frischknecht Lilly Vorrichtung zur Herstellung von kohlensäurehaltigem Wasser.
DE687926C (de) * 1937-04-22 1940-02-08 Concordia Elek Zitaets Akt Ges Vorrichtung zur Erzeugung von physikalischem Schaum fuer Feuerloeschzwecke
US4313680A (en) * 1979-11-05 1982-02-02 Chevron Research Company Reactor for fast reactions
US4370062A (en) * 1980-02-19 1983-01-25 Moody Warren E Dispensing gun for two-part adhesives
US4412582A (en) * 1981-07-06 1983-11-01 Hiross, Inc. Baffle array for heat exchange apparatus
US4514095A (en) * 1982-11-06 1985-04-30 Kernforschungszentrum Karlsruhe Gmbh Motionless mixer
JPS61242624A (ja) * 1985-04-17 1986-10-28 Seitaro Nitanda スタテイツクミキサ−
US4854721A (en) * 1986-03-25 1989-08-08 Equip-Mark, Inc. Blending and dispensing beverages
DE3618062A1 (de) * 1986-05-28 1987-12-03 Kachel Charlotte Vorrichtung zum vermischen von pastoesen oder gelartigen komponenten
US5522661A (en) * 1994-02-16 1996-06-04 Tokyo Nisshin Jabara Co., Ltd. Static mixing module and mixing apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 089 (C - 411) 19 March 1987 (1987-03-19) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878705B2 (en) 2000-04-20 2011-02-01 Tt Schmidt Gmbh Static mixing element and method of mixing a drilling liquid
EP2492335A1 (de) * 2011-02-25 2012-08-29 RWE Power AG Verfahren und Vorrichtung zum Homogenisieren einer Mischung von Festbrennstoff in einer Flüssigkeit
EP3482820A4 (de) * 2016-07-28 2019-11-13 Aqua Solution Co., Ltd. Düse zur erzeugung von nanoblasen und vorrichtung zur erzeugung von nanoblasen

Also Published As

Publication number Publication date
AU2001273957B2 (en) 2005-03-24
DE50105692D1 (de) 2005-04-28
AU7395701A (en) 2001-11-07
US7878705B2 (en) 2011-02-01
US20040100864A1 (en) 2004-05-27
DE10019759C2 (de) 2003-04-30
ATE291486T1 (de) 2005-04-15
EP1278593B1 (de) 2005-03-23
DE10019759A1 (de) 2001-10-31
EP1278593A1 (de) 2003-01-29
US20070211570A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
DE10019759C2 (de) Statisches Mischsystem
EP0226879B1 (de) Statische Mischvorrichtung für Feststoffteilchen enthaltende oder daraus bestehende Fluide
EP0035243B1 (de) Verfahren und Vorrichtung zur Flotation
EP1471993B1 (de) Dispergier-vorrichtung
CH581493A5 (en) Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it
DE102014007480B4 (de) Ausblaseinrichtung für eine Zellenradschleuse
DE102008022907A1 (de) Multi-Component Mixing Apparatus
EP0776689B1 (de) Mischvorrichtung
DE202016000169U1 (de) Pump- und/oder Mischeinrichtung zum Fördern, Homogenisieren und/oder Dispergieren fließfähiger Produkte
EP1771385B1 (de) Hydrodynamische homogenisation
DE3310663C2 (de) Hochdruckreinigungsgerät
DE3214143C2 (de)
EP3408229A1 (de) Vorrichtung und verfahren zur flokkulation von feststoffanteilen eines fest-fluessig-gemisches
DE10159985B4 (de) Mikroemulgator
DE3032140A1 (de) Verfahren und einrichtung zum behandeln von fluessigkeiten und/oder von grobstuecken materialien im festzustand mit gasen.
DE2422785A1 (de) Verfahren und vorrichtung zur zirkulierung eines fluids
DE19945508C2 (de) Verfahren und Vorrichtung zur Herstellung einer Emulsion aus Wasser und Öl
DE2825540A1 (de) Strahlapparat
DE102017124791B4 (de) Verfahren und Vorrichtung zum Einmischen einer Substanz in ein strömendes Fluid
DE3936080A1 (de) Drallerzeuger fuer zerstaeuberduesen
DE4110596C2 (de)
EP3189887A1 (de) Kavitationsreaktor zum behandeln von fliessfähigen substanzen
DE202007019500U1 (de) Dispergierungsmischer
DE2441335A1 (de) Verfahren und vorrichtung zum einfuehren von luft oder gas in eine in bewegung befindliche fluessigkeit
DE202021002842U1 (de) Vorrichtung zur schonenden Homogenisierung zweier getrennt erzeugter Schäume zu einem Schaum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001273957

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001940350

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001940350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10257830

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001940350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001273957

Country of ref document: AU