WO2001077071A1 - Verfahren zur herstellung von ditaurin und seinen salzen - Google Patents

Verfahren zur herstellung von ditaurin und seinen salzen Download PDF

Info

Publication number
WO2001077071A1
WO2001077071A1 PCT/EP2001/003519 EP0103519W WO0177071A1 WO 2001077071 A1 WO2001077071 A1 WO 2001077071A1 EP 0103519 W EP0103519 W EP 0103519W WO 0177071 A1 WO0177071 A1 WO 0177071A1
Authority
WO
WIPO (PCT)
Prior art keywords
taurine
salts
reaction
process according
range
Prior art date
Application number
PCT/EP2001/003519
Other languages
English (en)
French (fr)
Inventor
Lutz Heuer
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10033580A external-priority patent/DE10033580A1/de
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU2001263822A priority Critical patent/AU2001263822A1/en
Publication of WO2001077071A1 publication Critical patent/WO2001077071A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups

Definitions

  • ditaurinate can be obtained from taurine and barium hydroxide by heating to 220 ° C for a long time (Chem. Ber. 7, 117 (1874)). Ditaurinate is also formed in the reaction of hydroxyethyl sulfonate with ammonia under pressure and at temperatures of 195 to 245 ° C. in a reaction time of 3 to 5 hours (DRP 612.994, DRP 646.707 and DD-A 219 023). Up to 33.7% of ditaurinate is produced in addition
  • ditaurin or its salts or mixtures of ditaurinate and hydroxy- or haloethyl sulfonate are obtained which are difficult to separate and can therefore only be used as a mixture in subsequent reactions, which often leads to disturbances.
  • a surprisingly simple process has now been found which makes ditaurinate from taurine accessible in a targeted manner and in high yield.
  • the process for the preparation of ditaurin and its salts according to the present invention is characterized in that taurine or its salts or mixtures thereof are heated to temperatures in the range from 130 to 300 ° C. in the presence of a reaction medium.
  • reaction proceeds surprisingly quickly in the presence of a reaction medium and only small amounts of taurine and / or its salts remain in the mixture.
  • Preferred temperatures to which heating is carried out according to the invention are those in the range from 150 to 270 ° C., in particular those in the range from 190 to 230 ° C.
  • the resulting ammonia can e.g. be distilled off with water.
  • ditaurinate salts are produced according to the invention, they are preferably alkali or ammonium salts, in particular sodium, ammonium or potassium salts.
  • the reaction medium can be, for example, water, molten
  • Act alkali hydroxides or molten other electrolytes such as sodium sulfate or mixtures thereof.
  • Sodium hydroxide, potassium hydroxide, aqueous sodium hydroxide solution or aqueous potassium hydroxide solution are preferably used. If sodium or potassium hydroxide is used, a small amount of water can optionally be added to it, for example 0.1 to 10 ml of water per 100 g of solid hydroxide.
  • alkali metal hydroxide must be added to the reaction mixture in solid form or as an aqueous solution, for example 0.1 to 15 moles of alkali metal hydroxide per mole of taurine used.
  • taurine salts for example sodium or
  • Alkaline lyes are possible, but reduce the yield, since free taurine is then present in the product.
  • the process according to the invention can also be carried out only up to a partial conversion of taurine of, for example, 1 to 70%. Because the equilibrium reaction is shifted on the product side by removing the ammonia formed the conversion depends, among other things, on the ammonia content in the reaction mixture.
  • the method according to the invention can be carried out at different pressures. For example, if there are no low-boiling (i.e. boiling at normal pressure below the reaction temperature) components other than the ammonia formed, you can work in an open vessel at atmospheric pressure. It is also possible, particularly in the presence of low-boiling constituents, to work in a closed vessel under the pressure which sets itself at the reaction temperature. You can also use other prints, e.g. such in
  • the process according to the invention can be carried out continuously or batchwise, as can the ammonia formed which can be removed during or after the reaction.
  • the time for carrying out the method according to the invention can vary, for example, in the range from 10 minutes to 24 hours.
  • a mixture is generally present which contains ditaurinate, taurinate, optionally excess alkali metal hydroxide, optionally water, optionally free taurine and optionally other constituents in small amounts (e.g. below 5% by weight).
  • the reaction mixture particularly if it does not contain large amounts of alkali hydroxide, can often be used as such, e.g. as an auxiliary in detergents, for detergents and as an intermediate for various secondary products.
  • the reaction mixture can also be purified, e.g. neutralize or acidify, e.g. Mineral acids such as hydrochloric acid and sulfuric acid, acetic acid and
  • Products are obtained that do not contain hydroxy or halogen sulfonate.
  • Example 1 The procedure was as in Example 1, but an additional 114 g of solid sodium hydroxide were used. Details are shown in Table 1.
  • Example 1 The procedure was as in Example 1, but 23.5% strength by weight aqueous sodium hydroxide solution was used. Details are shown in Table 1.
  • Example 1 The procedure was as in Example 1, but the temperature was raised to 190.degree. Details are shown in Table 1.
  • Example 6 The procedure was as in Example 1, but only 50 g of taurine and not an aqueous sodium hydroxide solution, but 16.8 g of solid sodium hydroxide and 1 ml of water were used and heated to 215 ° C. Details are shown in Table 1.
  • Example 6 The procedure was as in Example 1, but only 50 g of taurine and not an aqueous sodium hydroxide solution, but 16.8 g of solid sodium hydroxide and 1 ml of water were used and heated to 215 ° C. Details are shown in Table 1. Example 6
  • Example 1 The procedure was as in Example 1, but only 150 g of 35% strength by weight aqueous sodium hydroxide solution were used. Details are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Verfahren zur Herstellung von Ditaurin und seinen Salzen aus Taurin oder seinen Salzen oder Gemischen davon durch Erhitzen auf Temperaturen im Bereich 130 °C bis 300 °C in Gegenwart eines Reaktionsmediums.

Description

Verfahren zur Herstellung von Ditaurin und seinen Salzen
Ditaurin (= 2,2'-Imino-bis-sulfonsäure) und seine Salze wurden als Produkt in eini- gen Reaktionen beobachtet. Verfahren zur gezielten Herstellung sind keine bekannt.
So kann etwas Ditaurinat aus Taurin und Bariumhydroxid bei langem Erhitzen auf 220°C gewonnen werden (Chem. Ber. 7, 117 (1874)). Auch entsteht Ditaurinat bei der Reaktion von Hydroxyethylsulfonat mit Ammoniak unter Druck und bei Temperaturen von 195 bis 245°C in 3 bis 5 Stunden Reaktionszeit (DRP 612.994, DRP 646.707 und DD-A 219 023). Hierbei entstehen bis zu 33,7 % Ditaurinat neben
21,1 % Taurinat. Es wurde auch die Reaktion von Taurin mit Hydroxyethylsulfonat zu Ditaurin beschrieben (JP-A 50-149 706) und mit Halogenethylsulfonat (Anal Sei. 1996 (12), 515 und JP-A 07-053 503).
Bei diesen Verfahren ist nachteilig, dass sie entweder zu geringe Ausbeuten an
Ditaurin bzw. dessen Salzen erbringen oder Mischungen aus Ditaurinat und Hydroxy- oder Halogenethylsulfonat anfallen, die schwer trennbar sind und deshalb nur als Mischung in Folgereaktionen Verwendung finden kann, was häufig zu Störungen führt.
Es wurde nun ein überraschend einfaches Verfahren gefunden, das gezielt und mit hoher Ausbeute Ditaurinat aus Taurin zugänglich macht. Das Verfahren zur Herstellung von Ditaurin und seinen Salzen gemäß der vorliegenden Erfindung ist gekennzeichnet dadurch, dass man Taurin oder seine Salze oder Gemische davon auf Tem- peraturen im Bereich 130 bis 300°C in Gegenwart eines Reaktionsmediums erhitzt.
Die Reaktion verläuft in Gegenwart eines Reaktionsmediums überraschend schnell und es verbleiben nur geringe Mengen an Taurin und/oder dessen Salzen in der Mischung. Bevorzugte Temperaturen, auf die erfindungsgemäß erhitzt wird, sind solche im Bereich 150 bis 270°C, insbesondere solche im Bereich 190 bis 230°C.
Der entstehende Ammoniak kann z.B. mit Wasser destillierend abgetrennt werden.
Soweit man erfindungsgemäß Ditaurinatsalze herstellt, handelt es sich vorzugsweise um Alkali- oder Ammoniumsalze, insbesondere um Natrium-, Ammonium- oder Kaliumsalze.
Bei dem Reaktionsmedium kann es sich beispielsweise um Wasser, geschmolzene
Alkalihydroxide oder geschmolzene sonstige Elektrolyte wie Natriumsulfat oder Gemische davon handeln. Vorzugsweise gelangt Natriumhydroxid, Kaliumhydroxid, wässrige Natronlauge oder wässrige Kalilauge zum Einsatz. Beim Einsatz von Natrium- oder Kaliumhydroxid kann man diesem gegebenenfalls eine kleine Menge Wasser hinzufügen, beispielsweise auf 100 g festes Hydroxid 0,1 bis 10 ml Wasser.
Setzt man in das erfindungsgemäße Verfahren Taurin ein, so muss dem Reaktionsgemisch Alkalihydroxid in fester Form oder als wässrige Lösung zugegeben werden, beispielsweise pro Mol eingesetztem Taurin 0,1 bis 15 Molen Alkalihydroxid. Setzt man in das erfindungsgemäße Verfahren Taurinsalze, beispielsweise Natrium- oder
Kaliumsalze ein, so ist ein Zusatz von Alkalihydroxid nicht zwingend erforderlich, aber vorteilhaft.
Überschüsse von Alkylihydroxiden oder wässrigen Alkalilaugen stören den Reakti- onsverlauf im allgemeinen nicht. Unterschüsse an Alkalihydroxiden oder wässrigen
Alkalilaugen sind möglich, verringern aber die Ausbeute, da dann im Produkt freies Taurin vorhanden ist.
Als Variante kann das erfindungsgemäße Verfahren auch nur bis zu einem Teilum- satz von Taurin von z.B. 1 bis 70 % durchgeführt werden. Da die Gleichgewichtsreaktion durch das Entfernen des entstehenden Ammoniaks produktseitig verschoben werden kann, ist der Umsatz unter anderem vom Ammoniakgehalt im Reaktionsgemisch abhängig.
Das erfmdungsgemäße Verfahren kann bei verschiedenen Drucken durchgeführt werden. Beispielsweise kann man, wenn außer dem entstehenden Ammoniak keine niedrigsiedenden (d.h. bei Normaldruck unter der Reaktionstemperatur siedenden) Bestandteile vorhanden sind, im offenen Gefäß bei atmosphärem Druck arbeiten. Man kann auch, insbesondere beim Vorhandensein von niedrig siedenden Bestandteilen, im geschlossenen Gefäß unter dem sich bei Reaktionstemperatur von selbst einstellendem Druck arbeiten. Man kann auch bei anderen Drucken, z.B. solchen im
Bereich von 0,9 bis 40 bar arbeiten.
Das eriϊndungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden, ebenso die Entfernung des entstehenden Ammoniaks, die während oder nach der Reaktion erfolgen kann.
Die Zeit für die Durchführung des erfindungsgemäßen Verfahrens kann beispielsweise im Bereich von 10 Minuten bis 24 Stunden variieren.
Nach Durchführung des erfindungsgemäßen Verfahrens und Abtrennung des gebildeten Ammoniaks liegt im allgemeinen ein Gemisch vor, das Ditaurinat, Taurinat, gegebenenfalls überschüssiges Alkalihydroxid, gegebenenfalls Wasser, gegebenenfalls freies Taurin und gegebenenfalls sonstige Bestandteile in kleinen Mengen (z.B. unter 5 Gew.-%) enthält. Man kann das Reaktionsgemisch, insbesondere wenn es keine größeren Mengen Alkalihydroxid enthält, häufig als solches verwenden, z.B. als Hilfsstoff in Waschmitteln, für Detergentien und als Zwischenprodukt für diverse Folgeprodukte.
Man kann das Reaktionsgemisch auch reinigen, z.B. neutralisieren oder sauer ein- stellen, wobei z.B. Mineralsäuren wie Salzsäure und Schwefelsäure, Essigsäure und
Taurin in Frage kommen. Wenn man Alkalihydroxide oder wässrige Alkalilaugen im Unterschuß eingesetzt hat, kann man z.B. mit Alkalihydroxid oder Ammoniak neutralisieren und gegebenenfalls alkalisch einstellen.
Beim erfmdungsgemäßen Verfahren ist vorteilhaft, dass sich mit ihm gezielt und auf einfache Weise Ditaurin und seine Salze in guten Ausbeuten herstellen lassen, wobei
Produkte anfallen, die kein Hydroxy- oder Halogensulfonat enthalten.
Beispiele
Beispiel 1
200 g Taurin wurden in 300 g 35 gew.-%iger wässriger Natronlauge gelöst und in einem Autoklaven auf 210°C erhitzt. Nach Abkühlung, Zugabe von 160 g Wasser und destillativer Abtrennung des Ammoniaks wurde das Reaktionsgemisch analysiert. Einzelheiten sind aus der Tabelle 1 ersichtlich. Die Ditaurinatgehalte wurden auf Basis der Primär- und Gesamtstickstoffgehalte errechnet bzw. mittels HPLC gemessen.
Beispiel 2
Es wurde verfahren wie in Beispiel 1, jedoch wurden zusätzlich 114 g festes Natriumhydroxid eingesetzt. Einzelheiten sind aus Tabelle 1 ersichtlich.
Beispiel 3
Es wurde verfahren wie in Beispiel 1, jedoch wurde 23,5 gew.-%ige wässrige Natronlauge eingesetzt. Einzelheiten sind aus Tabelle 1 ersichtlich.
Beispiel 4
Es wurde verfahren wie in Beispiel 1, jedoch wurde auf 190°C erhitzt. Einzelheiten sind aus Tabelle 1 ersichtlich.
Beispiel 5
Es wurde verfahren wie in Beispiel 1, jedoch wurden nur 50 g Taurin und keine wässrige Natronlauge, sondern 16,8 g festes Natriumhydroxid und 1 ml Wasser eingesetzt und auf 215°C erhitzt. Einzelheiten sind aus der Tabelle 1 ersichtlich. Beispiel 6
Es wurde verfahren wie in Beispiel 1, jedoch nur 150 g 35 gew.-%iger wässrige Natronlauge eingesetzt. Einzelheiten sind aus Tabelle 1 ersichtlich.
Tabelle 1
Figure imgf000008_0001

Claims

Patentansprüche:
1. Verfahren zur Herstellung von Ditaurin und seinen Salzen, dadurch gekennzeichnet, dass man Taurin oder seine Salze oder Gemische davon auf Tempe- raturen im Bereich von 130°C bis 300°C in Gegenwart eines Reaktionsmediums erhitzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man es bis zu einem Umsatz an Taurin von 1 bis 70 % durchführt.
3. Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, dass Natriumhydroxid, Kaliumhydroxid, wässrige Natronlauge oder wässrige Kalilauge als Reaktionsmedium verwendet wird.
4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass der entstehende Ammoniak während oder nach der Reaktion mit Wasser destillierend abgetrennt wird.
5. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man pro Mol Taurin 0,1 bis 15 Mole Alkalihydroxid einsetzt.
6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man als Reaktionsmedium Wasser, geschmolzene Alkalihydroxide, geschmolzene sonstige Elektrolyte oder Gemische davon verwendet.
7. Verfahren nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man es bei Drucke im Bereich von 0,9 bis 40 bar durchführt.
8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Reak- tionszeit im Bereich von 10 Minuten bis 24 Stunden liegt.
. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man nach der Reaktion das Reaktionsgemisch neutralisiert.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man zur Neutralisation Mineralsäuren, Essigsäure oder Taurin einsetzt.
PCT/EP2001/003519 2000-04-10 2001-03-28 Verfahren zur herstellung von ditaurin und seinen salzen WO2001077071A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001263822A AU2001263822A1 (en) 2000-04-10 2001-03-28 Method for producing ditaurine and salts thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10017313 2000-04-10
DE10017313.6 2000-04-10
DE10033580A DE10033580A1 (de) 2000-04-10 2000-07-11 Verfahren zur Herstellung von Ditaurin und seinen Salzen
DE10033580.2 2000-07-11

Publications (1)

Publication Number Publication Date
WO2001077071A1 true WO2001077071A1 (de) 2001-10-18

Family

ID=26005216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003519 WO2001077071A1 (de) 2000-04-10 2001-03-28 Verfahren zur herstellung von ditaurin und seinen salzen

Country Status (2)

Country Link
AU (1) AU2001263822A1 (de)
WO (1) WO2001077071A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428450B2 (en) 2014-04-18 2016-08-30 Songzhou Hu Process for producing taurine from alkali taurinates
US9428451B2 (en) 2014-04-18 2016-08-30 Songzhou Hu Cyclic process for the production of taurine from alkali isethionate
US9573890B2 (en) 2014-04-18 2017-02-21 Vitaworks Ip, Llc Process for producing taurine
US9593076B2 (en) 2014-04-18 2017-03-14 Vitaworks Ip, Llc Cyclic process for producing taurine
US9745258B1 (en) 2016-09-16 2017-08-29 Vitaworks Ip, Llc Cyclic process for producing taurine
US9815778B1 (en) 2016-09-16 2017-11-14 Vitaworks Ip, Llc Cyclic process for producing taurine
EP3279186A1 (de) 2016-08-04 2018-02-07 Vitaworks IP, LLC Verfahren zur herstellung von taurin
EP3284737A1 (de) 2016-08-16 2018-02-21 Vitaworks IP, LLC Kreisprozess zur herstellung von taurin
US10112894B2 (en) 2016-09-16 2018-10-30 Vitaworks Ip, Llc Cyclic process for producing taurine
US10683264B2 (en) 2016-09-16 2020-06-16 Vitaworks Ip, Llc Process for producing taurine
USRE48369E1 (en) 2014-04-18 2020-12-29 Vitaworks Ip, Llc Process for producing taurine
USRE48392E1 (en) 2014-04-18 2021-01-12 Vitaworks Ip, Llc Cyclic process for the production of taurine from alkali isethionate
US20230192603A1 (en) * 2014-04-18 2023-06-22 Vitaworks Ip, Llc Process for producing alkali taurinate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149706A (de) * 1974-05-21 1975-12-01
DD219023A3 (de) * 1982-08-13 1985-02-20 Leuna Werke Veb Verfahren zur herstellung von natriumtaurinat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149706A (de) * 1974-05-21 1975-12-01
DD219023A3 (de) * 1982-08-13 1985-02-20 Leuna Werke Veb Verfahren zur herstellung von natriumtaurinat

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 84, no. 20, 17 May 1976, Columbus, Ohio, US; abstract no. 137625m, page 123; XP002174638 *
E. SALKOWSKI: "Über die Einwirkung von Kaliumcyanat auf Sarkosin", BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, vol. 7, 1874, Verlag Chemie, Weinheim, DE, pages 117 - 119, XP001015722 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230192603A1 (en) * 2014-04-18 2023-06-22 Vitaworks Ip, Llc Process for producing alkali taurinate
USRE48238E1 (en) 2014-04-18 2020-10-06 Vitaworks Ip, Llc Process for producing taurine from alkali taurinates
US9573890B2 (en) 2014-04-18 2017-02-21 Vitaworks Ip, Llc Process for producing taurine
US9593076B2 (en) 2014-04-18 2017-03-14 Vitaworks Ip, Llc Cyclic process for producing taurine
US9598360B2 (en) 2014-04-18 2017-03-21 Vitaworks Ip, Llc Cyclic process for production of taurine from alkali vinyl sulfonate
US11851395B2 (en) 2014-04-18 2023-12-26 Vitaworks Ip, Llc Process for producing alkali taurinate
US9428450B2 (en) 2014-04-18 2016-08-30 Songzhou Hu Process for producing taurine from alkali taurinates
USRE48354E1 (en) 2014-04-18 2020-12-15 Vitaworks Ip, Llc Process for producing taurine from alkali taurinates
USRE48333E1 (en) 2014-04-18 2020-12-01 Vitaworks Ip, Llc Process for producing taurine from alkali taurinates
US9428451B2 (en) 2014-04-18 2016-08-30 Songzhou Hu Cyclic process for the production of taurine from alkali isethionate
USRE48369E1 (en) 2014-04-18 2020-12-29 Vitaworks Ip, Llc Process for producing taurine
CN108314634A (zh) * 2014-04-18 2018-07-24 维生源知识产权有限责任公司 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法
CN108314633A (zh) * 2014-04-18 2018-07-24 维生源知识产权有限责任公司 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法
EP3351529A1 (de) 2014-04-18 2018-07-25 Vitaworks IP, LLC Verfahren zur herstellung von alkalitaurinat
US10040755B2 (en) 2014-04-18 2018-08-07 Vitaworks Ip, Llc Process for producing alkali taurinate
US10961183B2 (en) * 2014-04-18 2021-03-30 Vitaworks Ip, Llc Process for producing alkali taurinate
USRE48392E1 (en) 2014-04-18 2021-01-12 Vitaworks Ip, Llc Cyclic process for the production of taurine from alkali isethionate
US11845714B2 (en) 2014-04-18 2023-12-19 Vitaworks Ip, Llc Process for producing taurine
EP3279186A1 (de) 2016-08-04 2018-02-07 Vitaworks IP, LLC Verfahren zur herstellung von taurin
EP3284737A1 (de) 2016-08-16 2018-02-21 Vitaworks IP, LLC Kreisprozess zur herstellung von taurin
US9815778B1 (en) 2016-09-16 2017-11-14 Vitaworks Ip, Llc Cyclic process for producing taurine
US10793517B2 (en) 2016-09-16 2020-10-06 Vitaworks Ip, Llc Process for producing taurine
US10683264B2 (en) 2016-09-16 2020-06-16 Vitaworks Ip, Llc Process for producing taurine
US10112894B2 (en) 2016-09-16 2018-10-30 Vitaworks Ip, Llc Cyclic process for producing taurine
US9926265B1 (en) 2016-09-16 2018-03-27 Vitaworks Ip, Llc Cyclic process for producing taurine
EP3296290A1 (de) 2016-09-16 2018-03-21 Vitaworks IP, LLC Kreisprozess zur herstellung von taurin
US9745258B1 (en) 2016-09-16 2017-08-29 Vitaworks Ip, Llc Cyclic process for producing taurine

Also Published As

Publication number Publication date
AU2001263822A1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
WO2001077071A1 (de) Verfahren zur herstellung von ditaurin und seinen salzen
DE69119234T2 (de) Verfahren zur herstellung von reiner hydroxyessigsäure
DE4211190A1 (de) Verfahren zur Herstellung von wäßrigen Betainlösungen
DE2800324C2 (de)
EP0000493B1 (de) Verfahren zur Herstellung von 1-Amino-8-naphthol-3,6-disulfonsäure (H-Säure).
DE60012491T2 (de) Verfahren zur herstellung von hydroxymethylbuttersäureestern
DE3334517A1 (de) Waessrige aufschlaemmung mit einer hohen konzentration an (alpha)-sulfofettsaeureestersalz
DE69302848T2 (de) Verfahren zur Herstellung von Guanidinderivativen
EP0000495B1 (de) Verfahren zur Herstellung von 1-Amino-8-naphthol-3,6-disulfonsäure (H-Säure).
EP0464582A2 (de) Verfahren zur Reinigung von fermentativ hergestelltem Riboflavin
DE10033580A1 (de) Verfahren zur Herstellung von Ditaurin und seinen Salzen
EP0083555B1 (de) Verfahren zur Herstellung von p-Nitrotoluol-2-sulfonsäure
DE69302036T2 (de) Verfahren zur Darstellung von o-Hydroxymandelsäure und ihren Salzen
DE2810975A1 (de) Verfahren zur herstellung von glykolsaeure
DE2237750C2 (de) Verfahren zur Herstellung von Brenzcatechin
DE3872916T2 (de) Herstellung und reinigung eines n,n-diethylaminophenols.
DE2716030B2 (de) Verfahren zur Herstellung des Monoalkalisalzes der l-Amino-S-naphthol-3,6disulfonsäure
DE69014284T2 (de) Verfahren zur Herstellung von Kupferformiat.
DE1618885B1 (de) Verfahren zur Herstellung von 2,3:4,6-Di-O-isopropyliden-L-sorbofuranose
EP0601353B1 (de) Verfahren zur Herstellung von N-(2-Sulfatoethyl)piperazin hoher Reinheit
DE4018245A1 (de) Verfahren zur herstellung von sulfonierten anthranilsaeuren
DE749643C (de) Verfahren zur Herstellung ungesaettigter Carbonsaeureamide
EP0064693A1 (de) Verfahren zur Herstellung von 1-Benzoylamino-8-hydroxy-naphthalin-4,6-disulfonsäure (Benzoyl-K-Säure)
DE2227504C3 (de) Verfahren zur Herstellung von trans-4-Aminomethylcyclohexan-i-carbonsäure oder deren Salzen
DE338281C (de) Verfahren zur Herstellung von Alkylaethern des Vinylalkohols und seiner Homologen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP