WO2001075442A1 - Dispositif de fabrication de jeux ordonnes de microechantillons - Google Patents

Dispositif de fabrication de jeux ordonnes de microechantillons Download PDF

Info

Publication number
WO2001075442A1
WO2001075442A1 PCT/JP2001/002868 JP0102868W WO0175442A1 WO 2001075442 A1 WO2001075442 A1 WO 2001075442A1 JP 0102868 W JP0102868 W JP 0102868W WO 0175442 A1 WO0175442 A1 WO 0175442A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
microarray
mask
electrospray
samples
Prior art date
Application number
PCT/JP2001/002868
Other languages
English (en)
French (fr)
Inventor
Yutaka Yamagata
Kozo Inoue
Original Assignee
Riken
S. T. Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, S. T. Research Co., Ltd. filed Critical Riken
Priority to NZ515996A priority Critical patent/NZ515996A/xx
Priority to US09/980,099 priority patent/US7150859B2/en
Priority to CA002376182A priority patent/CA2376182C/en
Priority to AU44710/01A priority patent/AU772576B2/en
Priority to EP01917789A priority patent/EP1186888A4/en
Publication of WO2001075442A1 publication Critical patent/WO2001075442A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00353Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/0036Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • B01J2219/00369Pipettes capillary in multiple or parallel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00371Pipettes comprising electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/0043Means for dispensing and evacuation of reagents using masks for direct application of reagents, e.g. through openings in a shutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • B01J2219/00662Two-dimensional arrays within two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00713Electrochemical synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates to a microarray manufacturing apparatus (microarrayer) for manufacturing a microarray (a DNA chip, a protein chip, an organic compound chip) and the like, which are rapidly developing in recent years.
  • a microarray manufacturing apparatus microarrayer
  • a microarray a DNA chip, a protein chip, an organic compound chip
  • the purpose of this technology is to realize a high-density experimental system by synthesizing a large number of oligonucleotides on a substrate such as a slide glass, or immobilizing cDNA and proteins.
  • a substrate such as a slide glass
  • immobilizing cDNA and proteins For example, an experimental system in which cDNA spots of all genes (genomes) are prepared on a single slide glass, hybridized, and the expression level of each gene is measured using the intensity of hybrid formation as an index. To build.
  • U.S. Pat. No. 5,445,934 discloses a DNA chip containing 1000 or more oligonucleotides per 1 cm 2 synthesized on the substrate.
  • a method of spotting on a glass slide is disclosed.
  • US Patent No. 5,807,522 discloses a method in which a cDNA solution is spotted on a slide glass by applying vibration by a solenoid.
  • (1) is a method for synthesizing oligonucleotides on a substrate by the same technology (optical lithography) as in the semiconductor manufacturing method.
  • (2) is a method of mechanically spotting cDNA or the like on a substrate using pins or the like.
  • (3) is a method in which cDNA or the like is dropped from a small nozzle using a piezoelectric element or the like.
  • one spot can be formed at intervals of about 50 to 25 zm, and a high-density microarray can be manufactured.
  • this method synthesizes oligonucleotides on the substrate and cannot be applied to separately prepared cDNA or the like. Further, photomasks are time consuming and expensive to design and manufacture.
  • separately prepared cDNA etc. can be applied, but it is difficult to make a high-density microarray because the spot is too large, about 300 to 150 jm. is there. Also, because of the mechanical operation, it is suitable for making small amounts of chips, but not for making large numbers of chips.
  • an object of the present invention is to prepare separately prepared C
  • An object of the present invention is to provide an apparatus for producing a high-density microarray consisting of spots having a size of several tens of m to several / m for a sample of DNA or protein.
  • An apparatus for producing a microarray according to the present invention comprises: an electrospray means for sequentially electrostatically spraying a plurality of solutions each containing a plurality of biologically active samples; a sample in the solution sprayed from the electrospray means.
  • Supporting means for supporting a plurality of sample chips on which a plurality of sample chips are to be deposited, and being disposed between the electrospray means and the supporting means, wherein the sample is selectively placed at a predetermined position corresponding to the plurality of sample chips.
  • Mask means having the same number of holes as the number of the sample chips so as to be simultaneously deposited; and moving the sample chips on each of the sample chips while relatively moving the sample chip supporting means and the mask means. And a moving means for simultaneously producing a plurality of microarrays by depositing a plurality of microarrays.
  • the electrospray means sequentially supplies a single cavity having electrodes and a plurality of solutions each containing the plurality of types of samples to the cavity. And a liquid supply means. If necessary, a washing means for washing the cavities after spraying a certain solution and before supplying the next solution may be provided. Further, in the microarray manufacturing apparatus according to the second embodiment of the present invention, the electrospray means contains a plurality of solutions each containing the plurality of samples, and each of the plurality of solutions selectively contains a power supply for electrostatic spraying.
  • the microarray manufacturing apparatus includes a pressurizing unit that supplies pressurized air to the capillary and conveys the solution to the tip of the capillary when performing electrostatic spraying to the electrospray unit. Is provided. Further, in both embodiments, the microarray manufacturing apparatus according to the present invention can be provided with a moving means for moving the cavities in performing the electrostatic spraying.
  • pressurized air is simultaneously supplied to all the capillaries of the multi-capillary cassette, and the solution is conveyed to the tips of these capillaries. It is also possible to provide a pressurizing means to perform the pressing.
  • the means for holding a plurality of multi-cabinet cassettes may be provided with means for controlling the temperature (for example, cooling) of the plurality of solutions contained in the held multi-cabinet cassettes. It is possible. As a result, the biological activity and biological function of the sample can be maintained.
  • FIG. 1 is a perspective view showing a configuration of a single-cabinet system according to the present invention
  • FIG. 2 is a perspective view showing a configuration of a multi-cabinet system according to the present invention
  • FIG. 3 is a sectional view and an exploded perspective view of a mask. ;
  • Figure 4 is a perspective view showing the structure of the multi-capillary cassette
  • FIG. 5 is a perspective view showing the structure of a single cavity
  • Figure 6 shows the electrical connection diagram of the multi-cabillary system
  • Figure 7 shows the electrical and plumbing connection diagram of the single-cabillary system
  • FIG. 8 is a diagram showing an XY or XYZ system and a driving method for forming a microarray
  • FIG. 9 is a diagram showing a method of moving the mask in the XY plane and the order of spot formation.
  • a single capillary system will be described as a microarray manufacturing apparatus according to the first embodiment of the present invention.
  • the single cabillary system has one cabillary 11.
  • This apparatus is mainly composed of an electrospray unit 10, a mask unit 20, and a substrate support unit 30.
  • the microarray manufacturing apparatus comprises: an electrospray means for sequentially electrostatically spraying a plurality of solutions each containing a plurality of biologically active samples; and a sample in the solution sprayed from the electrospray means.
  • Deposited Supporting means for supporting a plurality of sample chips 31, the electrospray means and the supporting means, and the sample is selectively and simultaneously placed at predetermined positions corresponding to the plurality of sample chips.
  • Mask means having the same number of holes as the number of the sample chips so as to be deposited; and moving the sample chip supporting means and the mask means relative to each other on each of the plurality of sample chips 31.
  • Moving means for simultaneously depositing a plurality of samples to produce a plurality of microarrays. .
  • This capillary 11 (made of glass, plastic, etc.) can hold a solution such as cDNA or protein, has a structure that has electrodes inside and can transmit electricity to the solution, and is required from the top of the capillary. Pressurized air can be injected accordingly.
  • a solution such as cDNA or protein
  • Pressurized air can be injected accordingly.
  • spraying various types of cDNA or protein use a separately installed cabillary exchange device (not shown in Fig. 1) or a force to sequentially apply different cabillaries 11 by hand, or contamination. To prevent this, wash the capillaries 11 with pure water each time the sample is changed, and then perform electrospray.
  • electrostatic spraying it is also possible to provide a moving means for moving the capillaries (not shown in Fig. 1).
  • the moving means may move the capillary side or the sample holder and the mask side, that is, any means can be used as long as the relative position between the capillary and the sample chip can be changed.
  • the guard ring 12 is an electrode for preventing the sprayed particles (particles) from being scattered, and is made of an electrically conductive material.
  • the entire E S (electrospray) device is covered with a case 14, which protects the entire spray section from external air disturbance and humidity.
  • the shield 13 is made of an insulating material or a dielectric material (plastic, glass, etc.) and has a role to make the spread of the sprayed particles uniform.
  • Case 14 has a dry air inlet for introducing clean and low humidity gas such as dry air. 15 is provided to promote drying of the sprayed particles and prevent contamination by introducing dry air.
  • the sample chip holder 3 2 is a holder for fixing a plurality of sample chips 3 1 (microarray).
  • the sample chip 31 is fixed by vacuum suction, electrostatic suction, etc., and the relative position with respect to the mask 21 is corrected. To be kept well. By keeping the sample chip 31 and the mask 21 exactly parallel, it has the function of keeping the distance (gap) between the sample chip 31 and the mask 21 constant.
  • the XY stage 33 changes the relative position between the sample chip 31 and the mask 21 by driving the sample holder 32 in the XY plane, and controls the sample spot to be formed at a desired position. .
  • a multi-cavity system will be described as a microarray manufacturing apparatus according to a second embodiment of the present invention.
  • the multi-cabillary system forms a sample spot without cross contamination by spraying more efficiently various types of cDNA, proteins, etc. than the single-cabinet system described above.
  • This is a system suitable for mounting multiple cavities 51 together and automatically switching the target material to be electrostatically sprayed.
  • the multi-cavity cassette 52 fixes a plurality of capillaries 51 together, and provides wiring and multi-wiring connectors 53 for making electrical connections to the electrodes in each of the capillaries, and gas supply for pressurization. Have a route.
  • the multi-wiring connector 53 is connected to the multi-wiring high-voltage cable 55, and the high-voltage power supply and the electrodes in the cab can be electrically connected by mounting the multi-cabinet cassette 52.
  • ESD Electrostatic Discharge
  • the electrical unit generates the high voltage required for the electrification port spray and multi-wiring high-voltage cables 5 5 Controls the switching of the electrostatic spray material by switching high voltage through (3).
  • a high-voltage power supply is required for the guard ring (not shown in Fig. 2) and the collimating ring, in addition to the high voltage (2000 to 400 V) supplied to the sample solution to be sprayed electrostatically. High voltage (approximately 500 to 300 V).
  • Case 56 protects the electrospray from disturbances, similar to a single-cabinet system.
  • the large shield 57 is made of an insulator or a dielectric mesh, and has an effect of making the distribution of particles sprayed electrostatically uniform.
  • the automatic kyary exchange device 58 is composed of a mouth pot arm or an XYZ stage, is movable between the electrospray section and the multi-capilla cassette storage location 59, and exchanges multi-capillary cassettes.
  • the supply of the suncare solution to the cabillary 51 is performed by a supply device provided in the storage location 59, or aspirated from a separately prepared sample pallet 60 by an automatic exchange machine.
  • the relative position of each mask and the target mask or substrate is different, but if the distance between the mask and substrate is sufficient, the particles are uniformly dispersed and It can be uniformly deposited in the deposition area.
  • the multi-capillary system can also provide a means for moving the capillary for electrostatic spraying (not shown in Fig. 2).
  • the mask structure 40 has a function of collecting particles (particles) emitted from the cavities by electrostatic spraying into respective spots and depositing them at desired positions as spots of a desired size.
  • the mask 40 can be used commonly in a single-cavity system and a multi-cavity system, and the mask 40 is composed of an insulator layer 41, an electric conductor layer 42, and an insulator layer 4 3 sequentially from the cabillaries side. And a mask layer 44 (insulator mask layer).
  • the insulator layer 41 is used at the beginning of electrospray. The charged particles become charged by adhering, and the electrostatic repulsion prevents subsequent particles from adhering, so that the sprayed material concentrates in the micropores.
  • the collimating ring which is the electric conductor layer 42, is formed of an electric conductor such as a metal, and repels the particles electrostatically by applying an intermediate voltage, thereby causing the particles to become small holes. It generates a magnetic field that converges at the center of the surface and has the function of improving collection efficiency.
  • the insulator layer 43 also has a function of insulating the collimating ring and a mask layer 44 described later.
  • the mask layer 44 is formed of a thin layer (10 to 100 m) made of an insulator or dielectric made of My power, quartz glass, or the like, and has a hole having substantially the same size as a target spot. It has 4 4 a (pore number / m to 100 m). It is considered that the mask layer 44 also functions to collect charged particles in the pores by electrostatic repulsion, as in the case of the insulator layer 41 and the insulator layer 43.
  • the spacer 45 is provided to keep a gap between the mask structure and the sample chip (sample holder) so as not to make direct contact, and is made of plastic, metal or metal having a thickness of several m to several tens / m. It is composed of an insulator such as glass.
  • a single mask can be provided with about ten to several tens of thousands of mask holes, so that a large number of sample chips can be formed simultaneously.
  • the number of sample chips arranged in the same number as the number of holes in the mask is the same, and a plurality of chips are manufactured in one operation.
  • the sample chip is coated with a conductive material (IT ⁇ (Indium Tin Oxide) metal thin film, etc.) on the surface of optical glass or the like, or a metal plate, soda glass (conductive glass), and conductive glass.
  • a conductive material I ⁇ (Indium Tin Oxide) metal thin film, etc.
  • plastic or the like is used. However, even plastics, which are generally considered to be insulators, usually have slight conductivity, so they can be used as substrates without applying a conductive coating agent. is there. Therefore, not suitable for substrate Things are actually limited to fluororesin, quartz glass, etc. These conductive parts are grounded via a sample holder or the like.
  • tip size 10 mm x 10 mm
  • number of sample tips that can be sprayed at once 100 (10 x 10) to several thousand Pieces (approximately 33 x 33)
  • number of spots 1,000 to 100,000 spots
  • spot size circular with a diameter of about 10 to 50 microns
  • spot pitch 20 microns to 100 microns
  • sample generally include enzymes, purified receptors, monoclonal antibodies, antibody fragments, and the like as proteins.
  • DNA or cDNA and its fragments, various organic high molecular compounds, or microparticles such as intramembrane receptors and viruses can also be used as samples.
  • Use 96-well as a storage container for capillaries, each containing a different type of sample solution.
  • To prepare a total of 100,000 spots prepare 1000 different sample solutions and 105 96-well multi-cavity cassettes containing the sample solutions.
  • To make one spot It takes about 10 seconds, and it takes about 28 hours to produce 100,000 spots on one chip. That is, 100 chips with 10,000 spots can be manufactured in about 28 hours.
  • the entire structure of the mask structure is easy to manufacture because of its structure.
  • the manufacturing process is as follows.
  • An insulator PMMA, fluororesin, etc.
  • a metal aluminum, copper, etc.
  • the multi-cabinet cassette 70 shown in FIG. 4 has a structure in which a plurality of capillaries 72 such as glass or plastic are attached to a capillaries holding base 71 (plastic such as PMMA). Wiring 74 is applied to each of the cavities from the electrical connector 73 (multiple wiring) and connected to the electrodes in the cavities.
  • Each capillary contains a different type of sample solution.
  • it has an inlet 75 for pressurized air and a flow path 75 thereof separately, so that the sample solution can be pressurized during electrostatic spraying or depressurized during suction.
  • pressurization and depressurization in the apparatus configuration of the present embodiment, pressurization and depressurization are simultaneously performed on the cavities.
  • the sample solution is conveyed to the tip of each capillary by pressurization of the capillary, so that electrostatic spraying can be easily performed.
  • This pressurization is not always necessary, but is used as a supplement to create a condition that facilitates electrospray.
  • the electrostatic force causes the sample solution to fly out of the tip of the cavities in the form of small droplets.
  • it is also possible to control the pressurization for each of the cavities for example, to apply the pressure to each of the cavities one at a time, and simultaneously apply a voltage to the pressurized cavities in conjunction therewith. It is possible.
  • the multi-cabillary cassette 70 is usually disposable and usually does not require cleaning, but can be reused by providing a cleaning means.
  • various kinds of samples may be simultaneously sucked from the sample pallet as shown in FIG. 2, or the cavities in which the sample solutions are stored in advance may be attached to a holding base.
  • a single capillary 80 is a single capillary 81 (diameter 1 to 10) having a thin (several to several tens; m) tip made of glass or plastic. It consists of conductive wires 82 (platinum, etc.) as electrodes and cavillary holders 83. The cavities can hold the sample solution.
  • the retainer 83 is usually electrically connected to the conductive wire 82 and is connected to a high-voltage power supply for electrospray.
  • An entrance 84 is provided at the top of the capillary holder 83 to allow the introduction of pressurized air for assisting electrospray and to reduce the pressure when the sample is supplied from the tip of the capillary. Can supply the sample continuously.
  • Figure 6 shows the electrical connection diagram of the multi-cabillary system.
  • multiple cabs 90 high-voltage switches 91 (built-in the electrical components), high-voltage power supplies VI, V2, V3, guard rings 92, mask structures 93, and sample chips 94 are arranged. It is composed of a substrate support.
  • Sample chip 9 4 The surface is coated with or made of conductive material and is connected to 0 V (ground potential).
  • the mask structure 93 is located immediately above the Sankare tip 94, and the guard ring electrode 95 is connected to the collimating voltage V3.
  • the guard ring 92 is connected to V 2, and an electrospray voltage V 1 is supplied to a portion of the cabillary 90 to be electrostatically sprayed through the high-voltage switch 91.
  • the lower mask structure 93 is driven by the XY (or XYZ) stage to form a sample spot of a desired size at a desired position. By repeating this, a plurality of chips having a desired number and size of spots can be simultaneously manufactured.
  • FIG. 7 is a diagram showing the electrical and piping connections of the single-cabillary system. While the multiple capillary system described above has a plurality of capillaries, the single capillary system forms a microarray by sequentially supplying a sample solution to one capillary 100. Behind this single capillary 100, a liquid feed pump 101 and a sampler 102 for sequentially sucking the sample solution are equipped, and a sample solution 103 of cDNA and protein is sequentially supplied. be able to. In this case, the diameters of the pipes are small enough so that each sample solution forms its own layer and the samples do not mix.
  • the microarray is formed by moving the sample chip 104 or mask 105 to a new position by the XY (or XYZ) stage each time the sample solution to be sprayed changes, and spots the desired deposition area. It is performed by forming. In this case as well, for the purpose of screening experiments, etc., slight contamination does not pose a problem. Therefore, the sample solution is suctioned sequentially without exchanging the capillaries and washing, and the electrospray is performed. Or pure water as a washing solution between sample solutions. After the sample solution is sprayed, the pure water can be sprayed to wash the inside of the capillary and the inside of the pipe. In this case, the pure water used for cleaning is released from the capillary by pressurized air and then evaporates, so a mechanism for collecting the cleaning liquid is not generally required.
  • FIG. 8 is a diagram showing a driving method when a microarray is formed by an XY or XYZ stage. That is, FIG. 8 shows how the mask structure and the sample chip move relative to each other when the microarray is formed.
  • a spacer is attached to the lower part of the mask structure. This measures the distance between the mask and the sample chip, and makes contact with the mask and spots of already formed cDNA or protein. It works so as not to cause damage or damage. For this reason, the sprayer and the sample chip surface are in contact during the elect opening spraying. The thickness of the spacer is determined according to the height of the spot.
  • the spacer is designed to have a shape and dimensions that do not interfere with the already deposited sample spot.
  • a method that moves only in the XY plane Fig. 8A
  • a method that moves in the XY plane and the Z direction the direction in which the mask moves away
  • Fig. 8B the direction in which the mask moves away
  • the former is an effective method when the surface of the sample chip and the spacer are formed of a material having relatively excellent wear resistance, and does not require control in the Z direction, so that the structure can be simplified.
  • the latter method is applied when the sampler or the surface of the sampler may be damaged by the movement of the sampler.
  • the mask structure is positioned at a predetermined position on the sample chip.
  • a spot is newly formed by electrospray.
  • the required number of spots is formed by repeating the above (3) and (4).
  • the mask structure is positioned at a predetermined position on the sample chip.
  • the sample chip is moved in the XY plane by driving the XY stage, and moves to the next spot position.
  • the mask structure is brought into contact with the sample chip by driving the Z stage.
  • FIG. 9 shows the method of moving the mask in the XY plane and the order of spot formation. As shown in the upper left part of the figure, when the mask is viewed from above, a mask structure having many fine holes and a sample chip 110 are arranged below the mask structure.
  • the spacer 112 is arranged on the back side of the mask structure having the fine holes 111.
  • the movement in the cross-sectional direction is as described in Fig. 8, but the relative movement between the mask structure and the sample chip does not damage or contaminate already formed spots even when moving in the XY direction. Need to be properly controlled.
  • a spot forming procedure in the case of a mask structure having a spacer 112 as shown in the figure will be described.
  • the fine hole 111 of the mask is positioned at the upper left of the sample chip 110.
  • spot formation is performed from the top left of the sample chip to the top, and when formation is completed up to the right end of the sample chip, formation starts from the left spot one row below.
  • many spots can be formed in a plane without the spacer 112 coming into contact with the already formed spots.
  • the relationship between the trajectory indicating the order of spot formation and the spacer is not limited to the shape shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Peptides Or Proteins (AREA)

Description

明 細 書 マイクロアレイ作製装置
技 術 分 野
本発明は、 近年急速に発展しつつあるマイクロアレイ (D NAチップ、 蛋白質 チップ、 有機化合物チップ) 等を作製するマイクロアレイ作製装置 (マイクロア レイヤー) に関するものである。
背 景 技 術
近年、 種々の細菌や酵母等のゲノム、 即ち全遺伝子の塩基配列が決定され、 ヒ 卜のゲノム塩基配列も近い将来に全て決定されようとしている。 この様なゲノム 科学の急速な進展は、 決定された各遺伝子及びそれぞれの遺伝子によって生産さ れる蛋白質の機能解明を可能にするものである。 遺伝子の数は、 酵母で約 6200、 ヒトでは約 1 0万と言われており、 各遺伝子 ·蛋白質の機能解明には膨大な数の 遺伝子 ·蛋白質等を一度に扱える技術が必要とされている。 その目的を満たす技 術として注目され近年急激に発展しつつあるのが「マイクロアレイ」技術である。 この技術の目的は、 スライドガラス等の基板上に多数のオリゴヌクレオチドを合 成したり、 c D N Aや蛋白質を固定化させたりすることにより高密度の実験系を 実現しょうとするものである。 例えば、 1つのスライドガラス上に全遺伝子 (ゲ ノム) の c D NAスポットを作製し、 ハイブリダィゼーシヨンさせ、 ハイブリツ ド形成の強度を指標にして各遺伝子の発現量を測定する実験系を構築するもので ある。
例えば、米国特許 5445934号には、その基板上で合成されたオリゴヌクレオチ ドを lcm2に 1000個以上含有する DNAチップが開示されている。一方、 ネイチ ヤー ·ジエネティック ·サプリメント Vol.21 (1999年 1月、 p33〜37;Patrick O.Brown他、 p25〜32;David D丄. Bowtell) 等には、 c D NA溶液をピンを用い てスライドガラス上にスポットする方法が開示されている。 また、 米国特許 5807522には、 ソレノイドにより振動を与えて、 cDNA溶液をスライドガラス 上にスポッ卜する方法が開示されている。
従来のマイクロアレイ作製方法として
(1) 光リソグラフィ法
(2) マイクロスポッティング法
(3) インクジェット法
が知られている。 (1) は、 半導体製造法と同様の技術(光リソグラフィ) によつ て基板上でオリゴヌクレオチドを合成する方法である。 (2)は、 ピン等を用いて 機械的に基板上に cDNA等をスポットさせる方法である。 (3) は、 圧電素子等 を用いて小さいノズルから cDNA等を滴下させる方法である。
(1) の方法によれば、 約 50〜25 zm間隔に 1つのスポットを作ることが でき、高密度のマイクロアレイを作製することができる。し力 ^し、この方法では、 その基板上でオリゴヌクレオチドを合成するため、 別途に調製された c D N A等 には適用できない。 更に、 フォトマスクは、 設計、 作製に時間がかかり高価であ る。 (2) (3) の方法では、 別途に調製された cDNA等を適用することができ るが、 スポットが 300〜150 j m位と大きすぎるため、 高密度のマイクロア レイを作ることが困難である。 また、 機械的操作によるため、 少量のチップを作 るのには適しているが、 大量のチップを作るのには適さない。 スポットの大きさ が 200 mから 50 mになると必要な試料の量は約 100分の 1で済むとい う計算もある (文献ネイチヤー ·ジェネティック ·サプリメント Vol.21 (1999 年 1月、 pl5〜19;Vivian G.Cheung他)。 従って、 マイクロアレイの実用化にあ たっては、 スポットをどれ位小さくして高密度のアレイを形成できるかは、 解決 すべき極めて重要な問題の 1つである。
大量の遺伝子 ·蛋白質の機能解明が行われ、 これらの知見を新薬の開発 ·疾患 の診断 ·個々の患者への最適な薬剤の選択等の実際の用途に生かしていくために は、 cDNAや蛋白質からなるマイクロアレイをより小さく高密度に、 そして安 価に作製する方法が必要である。 従って、 本発明の目的は、 別途に調製された C
D NAや蛋白質の試料を対象として、 数十^ mから数/ mの大きさのスポットか ら成る高密度マイクロアレイを作製する装置を提供することである。
P C T国際公開 W098/58745や文献アナリティカル 'ケミストリ Vol.71 (1999 年、 pl415〜: 1420及び p3110〜3117;モロゾフ他) には、エレクトロスプレイ (静 電噴霧) により核酸ゃ蛋白質等の生体高分子の生物活性を保持したまま基板上に フィルム状やスポット状に固化する方法 *装置が開示されている。 また、 種々の 条件を変える事により極めて小さいスポットを同時に多数作る方法 ·装置も開示 されている。 しかし、 これらの方法 ·装置では、 既にメッシュ状構造を持つフィ ル夕等を用いるのみで、 多くの試料を目的の位置に配置させるマイクロアレイを 作製することはできない。
発 明 の 開 示
本発明は、 これらの知見を発展させ、 任意のパターンを持つ c D N Aや蛋白質 の高密度マイクロアレイを作製する装置を提供するものである。 本発明によるマ ィクロアレイ作製装置は、 生物学的に活性な複数種類の試料の各々を含む複数の 溶液を順次静電噴霧するエレクトロスプレイ手段と、 このエレクトロスプレイ手 段から噴霧される溶液中の試料が堆積される複数のサンプルチップを支持する支 持手段と、 前記エレクトロスプレイ手段と前記支持手段との間に配置され、 前記 複数のサンプルチップの対応する所定の位置に、 前記試料を選択的に同時に堆積 させるように前記サンプルチップの個数と同数の孔を有するマスク手段と、 前記 サンプルチップ支持手段とマスク手段とを相対的に移動させながら前記複数のサ ンプルチップのそれぞれの上に前記複数の試料を堆積させて複数のマイクロアレ ィを同時に作製する移動手段と、 を具えることを特徴とするものである。 更に、 本発明によるマイクロアレイ作製装置は、 エレクトロスプレイの際に、 キヤビラ リをエレクトロスプレイ中心部へ移動させ高圧電源と接触させた後、 P C T国際 公開 WQ98/58745や文献アナリティカル ·ケミストリ Vol.71 (1999年、 pl415 〜 1420及び p3110〜3117;モロゾフ他) に開示された方法によって行うことを特 徴とするものである。
また、 本発明の第 1の実施態様によるマイクロアレイ作製装置は、 このエレク 卜ロスプレイ手段が、 電極を有する単一のキヤビラリと、 このキヤビラリに前記 複数種類の試料をそれぞれ含む複数の溶液を順次に供給する液体供給手段とを具 えることを特徴とする。 また、 必要に応じて、 キヤビラリを或る溶液の噴霧後、 次の溶液の供給前に洗浄する洗浄手段を設けても良い。 更に、 本発明の第 2の実 施態様によるマイクロアレイ作製装置は、 前記エレクトロスプレイ手段が、 それ ぞれが前記複数の試料を含む複数の溶液を収容し、 それぞれが選択的に静電噴霧 用電源に接続される電極を有する複数のキヤビラリを保持する複数のマルチキヤ ピラリカセットを保持する手段と、 これら複数のマルチキヤビラリカセットを順 次に切換えてエレクトロスプレイ位置へ搬送する手段とを具えることを特徴とす る。 更に、 本発明によるマイクロアレイ作製装置は、 両実施態様共に、 前記エレ クトロスプレイ手段に、 静電噴霧を行うにあたり、 前記キヤビラリに加圧空気を 供給してキヤピラリの先端に溶液を搬送する加圧手段を設けたことを特徴とする。 更に、 本発明によるマイクロアレイ作製装置は、 両実施態様共に、 静電噴霧を行 うにあたり、 キヤビラリを移動する移動手段を設ける事も可能である。
また、 エレクトロスプレイを補助するために、 エレクトロスプレイ手段におい て、 静電噴霧を行うにあたり、 前記マルチキヤピラリカセットの全てのキヤピラ リに同時に加圧空気を供給してこれらキヤビラリの先端に溶液を搬送する加圧手 段を設けさせることも可能である。 また、 複数のマルチキヤビラリカセットを保 持する手段に、 これら保持されているマルチキヤビラリカセッ卜に収容されてい る複数の溶液を温度制御 (例えば、 冷却) する手段を設けさせることも可能であ る。 これによつて、 試料の生物学的活性や生物学的機能などを保持することがで さる。 図面の簡単な説明
図 1は、 本発明によるシングルキヤビラリシステムの構成を示す斜視図; 図 2は、 本発明によるマルチキヤビラリシステムの構成を示す斜視図; 図 3は、 マスクの断面図及び分解斜視図;
図 4は、 マルチキヤピラリカセットの構造を示す斜視図;
図 5は、 シングルキヤビラリの構造を示す斜視図;
図 6は、 マルチキヤビラリシステムの電気接続図;
図 7は、 シングルキヤビラリシステムの電気 ·配管接続図;
図 8は、 X Y或いは X Y Zシステムとマイクロアレイ形成時の駆動方法を示す 線図;そして
図 9は、 XY平面内でのマスクの移動方法とスポット形成の順序を示す線図で ある。
発明を実施するための最良の形態
実施態様 1
本発明の第 1の実施態様によるマイクロアレイ作製装置としてシングルキヤピ ラリシステムについて説明する。 図 1に示すように、 シングルキヤビラリシステ ムは、 キヤビラリ 1 1が 1本である。 本装置は、 大きくは、 エレクトロスプレイ 部 1 0、 マスク部 2 0、 基板支持部 3 0からなる。 生物学的に活性な試料を含む 溶液をエレクトロスプレイし、 マスクを通過させることによって基板の堆積エリ ァ上の所望の位置に堆積させるマイクロアレイ作製装置であつて、 この装置は、 電極を有するキヤビラリ 1 1とガードリング 1 2とシールド 1 3を具えたエレク トロスプレイ部 1 0と、 マスク 2 1及びマスクホルダ 2 2を有するマスク部 2 0 と、 サンプルチップ 3 1とサンプルチップホルダ 3 2を具えた移動可能な基板支 持部 3 0とを有する。 本発明によるマイクロアレイ作製装置は、 生物学的に活性 な複数種類の試料の各々を含む複数の溶液を順次静電噴霧するエレクトロスプレ ィ手段と、 このエレクトロスプレイ手段から噴霧される溶液中の試料が堆積され る複数のサンプルチップ 3 1を支持する支持手段と、 前記エレクトロスプレイ手 段と前記支持手段との間に配置され、 前記複数のサンプルチップの対応する所定 の位置に、 前記試料を選択的に同時に堆積させるように前記サンプルチップの個 数と同数の孔を有するマスク手段と、 前記サンプルチップ支持手段とマスク手段 とを相対的に移動させながら前記複数のサンプルチップ 3 1のそれぞれの上に前 記複数の試料を堆積させて複数のマイクロアレイを同時に作製する移動手段と、 を特徴とする装置である。 .
このキヤビラリ 1 1 (ガラス、 プラスチック製等) には、 c D NA或いは蛋白 質等の溶液を収めることができ、 内部に電極を持ち溶液に電気を伝達できる構造 であり、 かつキヤビラリ上部より必要に応じて加圧空気を注入できる。 多種類の c D NA或いは蛋白質等をスプレイする場合は、 別途装備されるキヤビラリ交換 装置 (図 1には示さず) 或いは手動により異なるキヤビラリ 1 1を順次装着する 力、、 または、 コンタミネーシヨンを防ぐため試料の変更毎にキヤビラリ 1 1を純 水等で洗浄した後、 エレクトロスプレイを行う。 静電噴霧を行うにあたり、 キヤ ビラリを移動させる移動手段を設けることも可能である(図 1には示さず)。キヤ ビラリを移動させることによって、 一回でより大きな面積、 即ち、 より大量のサ ンプルチップに対して、試料を堆積させることができるようになる。移動手段は、 キヤビラリ側を移動させても、サンプルホルダ及びマスク側を移動させても良く、 即ちキヤビラリとサンプルチップの相対位置を変えることができれば良い。 ガー ドリング 1 2は、 スプレイされたパーティクル (粒子) が散乱するのを防ぐため の電極であり電気伝導性の物質により構成される。 E S (エレクトロスプレイ) 装置全体は、 ケース 1 4で覆われ、 このケース 1 4によって外部の空気撹乱ゃ湿 度からスプレイ部分全体を保護する。 シールド 1 3は、 絶縁体或いは誘電体 (プ ラスチック、 ガラス等) から構成され、 スプレイされたパーティクルの広がりを 均一にする役割を持つ。
ケース 1 4には乾燥空気等の清浄かつ低湿度の気体を導入する乾燥空気入り口 1 5を設け、 乾燥空気を導入することによってスプレイされたパーティクルの乾 燥を促進するとともに汚染を防止する。 サンプルチップホルダ 3 2は複数のサン プルチップ 3 1 (マイクロアレイ) を固定するホルダであり、 サンプルチップ 3 1を真空吸着、 静電吸着等の方法により固定し、 マスク 2 1との相対位置が正し く保たれるようにする。 サンプルチップ 3 1とマスク 2 1とを正確に平行に保つ ことにより、 サンプルチップ 3 1とマスク 2 1との距離 (ギャップ) を一定に保 つ機能を持つ。 XYステージ 3 3は、 サンプルホルダ 3 2を X Y平面内で駆動さ せることによりサンプルチップ 3 1とマスク 2 1の相対位置を変化させ所望の位 置に試料スポッ卜が形成されるように制御する。
実施態様 2
本発明の第 2の実施態様によるマイクロアレイ作製装置としてマルチキヤビラ リシステムについて説明する。図 2に示すように、マルチキヤビラリシステムは、 前述したシングルキヤビラリシステムよりも多種類の c D NAや蛋白質等を効率 よく静電噴霧しクロスコンタミネ一シヨンの無い試料スポットを形成するために 複数のキヤビラリ 5 1を一緒に装着し自動的に静電噴霧する対象物質を切り替え るのに適したシステムである。 マルチキヤビラリカセット 5 2は、 複数のキヤピ ラリ 5 1を一緒に固定させ、 それぞれのキヤビラリ内の電極に電気的接続を行う ための配線及び多配線コネクタ 5 3及び加圧のための気体供給経路を持っている。 これにより、 5 3 0電装ュニット5 4 (高電圧発生 ·スイッチング) から供給さ れる多配線高電圧ケーブル 5 5の電圧を電気的に切り替えることにより静電噴霧 される物質を選択することが可能であり、 高速に多種類の物質を切り替えて静電 噴霧しスポットを形成することが可能となる。
多配線コネクタ 5 3は多配線高電圧ケーブル 5 5と接続されており、 マルチキ ャビラリカセット 5 2の装着によって、 高圧電源とキヤビラリ内の電極との電気 的接続を行うことができる。 E S D (静電気放電) 電装ユニットは、 エレクト口 スプレイに必要な高電圧を発生し多配線高電圧ケーブル 5 5、 多配線コネクタ 5 3を通じての高電圧の切り替え (スィッチ) による静電噴霧物質の切り替えを制 御する。 高圧電源は、 静電噴霧するサンプル溶液に供給される高電圧 (2 0 0 0 〜4 0 0 0 V)以外にもガードリング(図 2には示さず)、 コリメ一ティングリン グに必要とされる高電圧 (5 0 0〜3 0 0 0 V程度) の供給も行う。
ケース 5 6は、 シングルキヤビラリシステムと同様にエレクトロスプレイを外 乱から保護する。 大型シールド 5 7は、 絶縁体或いは誘電体のメッシュ状のもの で構成されており、静電噴霧されたパーティクルの分布を均一にする効果を持つ。 キヤビラリ自動交換装置 5 8は、 口ポットアーム或いは X Y Zステージ等で構成 され、 エレクトロスプレイ部とマルチキャプラリカセット格納場所 5 9との間を 移動可能であり、 マルチキヤビラリカセットを交換する。 また、 キヤビラリ 5 1 に対するサンカレ溶液の供給は、 格納場所 5 9に装備された供給装置で行うか或 いは別途用意されたサンプルパレツト 6 0から自動交換機により吸引する。 マルチキヤビラリシステムにおいては、 各キヤビラリと、 対象となるマスクや 基板との相対位置が異なるが、 キヤビラリとマスクや基板との距離が十分にあれ ばパーティクルは均一に分散し、 各チップ上の堆積エリアに均一に堆積させるこ とができる。 もちろん、 各キヤビラリをエレクトロスプレイ部の中心部分に移動 させ、 そこでエレクトロスプレイを各キヤビラリ毎に順次行うような装置を構成 させることも可能である。 シングルキヤビラリシステムと同様にマルチキヤピラ リシステムにおいても、 静電噴霧を行うにあたり、 キヤビラリを移動する移動手 段を設けることが可能である (図 2には示さず)。
マスク構造体 4 0は、 静電噴霧によってキヤビラリから放出されたパーテイク ル (粒子) を各スポットに集め、 所望の大きさのスポットとして所望の位置へ堆 積させる働きを持つ。 マスク 4 0はシングルキヤビラリシステム及びマルチキヤ ビラリシステムで共通に利用可能であり、 マスク 4 0は、 キヤビラリ側から順次 に絶縁体層 4 1、 電気導電体層 4 2、 絶縁体層 4 3、 マスク層 4 4 (絶縁体マス ク層) を積層させたものである。 絶縁体層 4 1は、 エレクトロスプレイの初期に 荷電された粒子が付着することにより帯電し、 静電気的な反発により、 その後の 粒子の付着を防ぎ、スプレイされた材料が微小孔内に集中するように働く。また、 マスク構造体全体として、エレクトロスプレイ手段に対向する側の孔のサイズを、 サンプルチップ側 (基板支持部側)の孔のサイズよりも大きくすることによって、 試料粒子を収束させる効果がある。 電気導伝体層 4 2であるコリメ一ティングリ ングは、 金属等の電気導伝体で形成されており、 中間的な電圧を加えることによ り粒子と静電気的に反発し、 粒子を小孔の中央に集めるような磁界を発生させ、 補集効率を向上させる働きを持つ。 絶縁体層 4 3は、 コリメ一ティングリングと 後述するマスク層 4 4を絶縁する働きも持つ。
マスク層 4 4は、 マイ力、 石英ガラス等を材料とする絶縁体或いは誘電体から なる薄い層 (1 0〜数 1 0 0 m) で形成され、 目的とするスポットとほぼ同じ 大きさの孔 4 4 a (孔径数/ m〜 1 0 0 m) を持つ。 このマスク層 4 4も、 絶 縁体層 4 1、 絶縁体層 4 3と同様に荷電粒子が付着して、 静電気的な反発によつ てパーティクルを孔の中に集める働きをするものと考えられる。スぺーサ 4 5は、 マスク構造体とサンプルチップ (サンプルホルダ) が直接接触しないように間隔 を保っためのものであり、 厚さ数^ mから数十/ m程度のプラスチック、 金属或 いはガラス等の絶縁体から構成される。 一枚のマスクには、 約十〜数万個のマス ク孔を設けることができ、 これにより多数個のサンプルチップを同時に形成する ことができる。
即ち、 通常は、 マスクの孔の数と並べるサンプルチップの個数を同数にして、 複数個のチップを一回の作業で作製する。 サンプルチップとしては、 光学ガラス 等の表面に導電性の物質 (I T〇 (Indium Tin Oxide) 金属薄膜等) をコ一テ イングしたもの、 または金属板、 ソーダガラス (導電性ガラス)、 及び導電性ブラ スチック等が用いられる。 但し、 一般的には絶縁体であると考えられるプラスチ ック類であっても通常は僅かな導電性を有するため、 導電性のコ一ティング剤を 塗布することなく基板として用いることは可能である。 従って、 基板に適さない ものは、 実際にはフッ素樹脂、 石英ガラス等に限られる。 また、 これらの導電性 の部分等は、 サンプルホルダ等を介してアースされている。 各チップ上に堆積し た粒子の電荷を抜く必要があるからである。 本装置例では、 チップ側の位置を移 動させて、 チップの堆積エリアを調整しているが、 マスク側の位置を移動させて も良い。 また、 透明ガラスの上に光によって導伝性を示す物質をコーティングし て、 下部から光を照射することによって各チップの堆積エリアを移動させるよう な装置 (この場合、 マスク部は不要となる) とすることも可能である。 チップの サイズ等は、 様々なバリエーションが考えられ、 例えば、 チップサイズ: 1 0 m m X 1 0 mm、 一度にスプレー可能なサンプルチップの個数: 1 0 0個 (1 0 X 1 0 ) 〜数千個 (3 3 X 3 3程度)、 スポットの数: 1, 0 0 0個〜 1 0 0 , 0 0 0個、 スポットサイズ:直径 1 0ミクロン〜 5 0ミクロン程度の円形、 スポッ 卜のピッチ: 2 0ミクロン〜 1 0 0ミクロンが考えられる。 スポットのサイズを 大きくすることは容易であるが、 その分チップの大きさが大きくなるか、 スポッ 卜の数が減少することとなる。 サンプルとしては、 一般的には、 タンパク質とし て、 酵素、 精製レセプ夕一、 モノクロナール抗体、 抗体フラグメント等が挙げら れる。 また、 DNA或いは c DNAおよびそのフラグメント、 各種有機高分子化合 物、 或いは、 膜内レセプター、 ウィルスなどの微小パーティクルもサンプルとし て利用できる。
本実施例の場合は、 1枚のマスクに 1 0 0個の孔が空いているものを使用する。 従って、 サンプルホルダには 1 0 X 1 0 = 1 0 0個のチップ (マイクロアレイ)) を並べる。 キヤビラリ収納器具として、 9 6ゥエルを使用し、 各々のキヤビラリ には異なる種類のサンプル溶液を収める。 全部で 1 0 0 0 0個のスポットを作製 するため 1 0 0 0 0種類のサンプル溶液とこれを収めた 1 0 5個の 9 6ゥエルの マルチキヤビラリカセットを用意する。 チップは、 1 O mmX 1 O mmのものを 使用し、 直径 2 0 mのスポットを 8 0 m間隔で形成させる。 従って、 1枚の チップには 1 0 0 0 0個のスポットを形成させる。 1個のスポットを作製するの に約 1 0秒かかり、 このチップ 1個に 1 0 0 0 0個のスポットを作製するには約 2 8時間かかる。 即ち、 約 2 8時間で 1万個のスポットを持つチップを 1 0 0個 作製することができる。
また、 このマスク構造体の全体の構造は、 その構成から製作が容易な構成とな つている。 製作の工程は以下の通りである。
( 1 ) 絶縁体 ( P MMA, フッ素樹脂等)、 金属 (アルミニウム、 銅等) 及び絶縁 体を順次積層する。
( 2 ) 積層されたプレートに上方からエンドミル等の工具により円錐形の孔を開 ける。 この状態で、 コリメ一ティングリング電極 (金属) が上方に向けて 露出した状態となる。
( 3 ) マイ力、 石英ガラス等のマスクに、 アブレイシブジエット、 エッチング或 いは微細機械加工等に方法により微細孔を多数形成し、 これを (2 ) で形 成された積層プレートに張り合わせる。
( 4 ) 更に下部にスぺーサを張り合わせ、 マスク構造体を完成させる。
図 4に示すマルチキヤビラリカセット 7 0は、 キヤビラリ保持ベース 7 1 ( P MMA等のプラスチック等) に、 ガラス或いはプラスチック等のキヤビラリ 7 2 を複数取り付けた構造となっている。 各キヤビラリには (多配線) 電気コネクタ 7 3より配線 7 4が施され、 キヤビラリ内の電極と接続されている。 各キヤピラ リには、 各々異なる種類のサンプル溶液が収められる。 また、 これとは別途に加 圧空気の入り口 7 5及びその流路 7 5を持っており、 静電噴霧時にはサンプル溶 液の加圧、 或いは吸引時にはサンプル溶液の減圧を可能としている。 この加圧、 減圧については、 本実施例の装置構成では、 各キヤビラリに対して同時に加圧、 減圧を行う。 即ち、 キヤビラリの加圧によって、 各キヤビラリの先端にサンプル 溶液を搬送して、 静電噴霧を行い易い状態にするためのものである。 この加圧は 必ずしも必要は無いが、 エレクトロスプレイがし易い状態を作り出すために補助 的に用いられる。 このようにキヤビラリ先端にサンプル溶液を搬送した状態で、 キヤビラリの 1つに電圧をかけると、 静電気的な力によって、 このキヤビラリ先 端部からサンプル溶液が微小液滴状態で飛び出す。 もちろん、 この加圧を各キヤ ビラリ毎に制御して、 例えば、 各キヤビラリ 1本づっ加圧をかけて、 それと連動 して同時にその加圧したキヤビラリに対して電圧をかけるという構成をとること も可能である。 このマルチキヤビラリカセット 7 0は、 通常はデイスポーザブル であり、 通常は洗浄を要しないが、 洗浄手段を設けて再使用することも可能であ る。 サンプル溶液は、 図 2に示すようなサンプルパレットから同時に多種類のサ ンプルを吸引しても良いし、 予めサンプル溶液が収められたキヤビラリを保持べ —スに取り付けても良い。
図 5に示すように、 シングルキヤビラリ 8 0は、 ガラス或いはプラスチック等 からできている構成された細い (数 m〜数十; m) 先端を持つ単一のキヤピラ リ 8 1 (直径 1〜数 mm程度) と電極としての導電性ワイヤ 8 2 (プラチナ等) とキヤビラリ保持具 8 3より構成され、 このキヤビラリ内には、 サンプル溶液を 収めることができる。 キヤビラリ保持具 8 3は、 通常導電性ワイヤ 8 2と電気的 に接続され、 エレクトロスプレイ用の高圧電源へ接続される。 キヤビラリ保持具 8 3の上部には、 エレクトロスプレイを補助する加圧空気の導入やサンプルをキ ャピラリ先端から供給する場合の減圧を行うことができるように入り口 8 4が設 けられており、 これによりサンプルを連続して供給することができる。 多種類の サンプルを使用する場合は、 各種類毎にキヤビラリを交換するか、 または純水を 吸弓 I、 排出を行うこと等によって洗浄を行う。 但し、 スクリーニング実験等を目 的とする等の場合は、 多少のコンタミネ一シヨンは問題とならないため、 キヤピ ラリ交換、 キヤビラリ洗浄は必要でない。
図 6は、 マルチキヤビラリシステムの電気接続図を示すものである。 マルチキ ャビラリシステムにおいては、 複数のキヤビラリ 9 0、 高電圧スィッチ 9 1 (電 装部に内臓)及び高圧電源 VI、 V2、 V3、ガードリング 9 2、マスク構造体 9 3、 サンプルチップ 9 4を並べた基板支持部より構成される。 サンプルチップ 9 4の 表面は、 導電性の物質によってコーティングされているか、 または導電性の物質 でできており、 0 V (グランド電位) に接続されている。 マスク構造体 9 3は、 サンカレチップ 9 4のすぐ上方に位置し、 ガードリング電極 9 5は、 コリメ一テ ィング電圧 V 3に接続されている。ガードリング 9 2は、 V 2に接続されており、 キヤビラリ 9 0のうち静電噴霧すべき部分に高電圧スィッチ 9 1を介してエレク トロスプレイ電圧 V 1が供給される。 3種類の電圧は、 通常 V I = 2 0 0 0〜 5 0 0 0 V、 V 2 = 2 0 0 0〜5 0 0 0 V、 V 3 = 5 0 0〜 3 0 0 0 V程度となつ ており、 V 1≥V 2〉V 3の関係を持つ。 順次電圧がスィッチされるに従い、 下 方のマスク構造体 9 3が XY (或いは XY Z ) ステージにより駆動され所望の位 置に所望の大きさでサンプルのスポッ卜が形成される。 これを繰り返すことによ り所望の個数、 サイズのスポットを持つチップを同時に複数個作製することが可 能となる。
図 7は、 シングルキヤビラリシステムの電気 ·配管接続を示す図である。 前述 したマルチプルキヤピラリシステムは複数のキヤピラリを擁するのに対して、 シ ングルキヤピラリシステムは、 1本のキヤビラリ 1 0 0に順次サンプル溶液を供 給することによりマイクロアレイを形成させるものである。 このシングルキヤピ ラリ 1 0 0の後方には、 送液ポンプ 1 0 1とサンプル溶液を順次吸引するための サンプラー 1 0 2が装備されており、 c D N Aや蛋白質のサンプル溶液 1 0 3を 順次供給することができる。 この場合、 送管の径が十分に小さいため、 各サンプ ル溶液はそれぞれの層を形成し、 サンプル同志が混合することは無い。 マイクロ アレイの形成は、静電噴霧されるサンプル溶液が変わる毎に X Y (或いは XY Z ) ステージにより新たな位置にサンプルチップ 1 0 4またはマスク 1 0 5を移動し、 所望の堆積エリアにスポットを形成させることにより行う。 この場合も、 スクリ —ニング実験等を目的とする等の場合には、 多少のコン夕ミネーションは問題と ならないため、 キヤビラリ交換 ·洗浄をせずに順次サンプル溶液を吸引して、 ェ レクトロスプレイを行う力、、 または、 サンプル溶液の間に純水を洗浄液として取 り込み、 サンプル溶液をスプレイ後、 この純水をスプレイしてキヤビラリ内と送 管内とを洗浄することも可能である。 この場合、 洗浄に用いられた純水は、 キヤ ピラリ内から加圧空気で放出された後、 蒸発してしまうため洗浄液を回収する機 構などは一般的に必要ではない。
図 8は、 X Y或いは X Y Zステージによるマイクロアレイ形成時の駆動方法を 示す図である。 即ち、 図 8では、 マイクロアレイ形成時のマスク構造体とサンプ ルチップの相対的な移動の様子を示している。 前述したようにマスク構造体下部 にはスぺ一サが装着されているが、 これはマスクとサンプルチップ間の距離を適 当にとり、 マスクと既に形成された c D NAや蛋白質のスポットに接触し損傷或 いはコン夕ミネーシヨン起こさないよう働くものである。 このため、 エレクト口 スプレイ時にはスぺ一サ一とサンプルチップ表面が接触している。 スぺ一サの厚 さは、 スポットの高さに応じて決定される。 また、 スぺーサは、 既に堆積された 試料スポットと干渉しないような形状及び寸法にデザインされる。 マイクロアレ ィ形成時の移動方法には、 XY平面内のみで動く方法 (図 8 A) と X Y平面内及 び Z方向 (マスクが離れる方向) に移動する方法 (図 8 B) の 2方法が考えられ る。 前者は、 サンプルチップ表面及びスぺーザが比較的耐摩耗性に優れた材料で 形成されている場合に有効な方法であり、 Z方向の制御を必要としないため、 構 造を簡素にできる。 一方、 後者の方法は、 スぺーザが移動することによってサン プルチップ或いはスぺーザの表面が損傷される可能性がある場合に適応される。
X Y平面内駆動法 (図 8 A)
( 1 ) 開始時に、 マスク構造体はサンプルチップの所定の位置に位置決めされて いる。
( 2 ) エレクトロスプレイによりスポットを形成する。
( 3 ) XYステージを駆動することにより、 XY平面内でサンプルチップを移動 させ、 次のスポット位置へと移動する。
( 4 ) 新たにエレクトロスプレイによりスポットを形成する。 上記 (3)、 (4) を繰り返すことにより必要な数のスポットを形成する。
XYZ駆動法 (図 8B)
(1) 開始時に、 マスク構造体はサンプルチップの所定の位置に位置決めされて いる。
(2) エレクトロスプレイによりスポットを形成する。
(3) Zステージに駆動によりマスク構造体とサンプルチップを離す。
(4) XYステージの駆動により、 XY平面内でサンプルチップを移動させ、 次 のスポット位置に移動する。
(5) Zステージの駆動によりマスク構造体とサンプルチップを接触させる。
(6) エレクトロスプレイによりスポットを形成する。
(7) 上記 (3)、 (4) を繰り返すことにより必要な数のスポットを形成する。 上記移動は、 サンプルチップが XY或いは XYZステージ上に搭載され、 マスク が固定されているという仮定の下で説明を行っているが、 サンプルチップ、 マス ク構造体の相対位置が変化すれば良いため、 サンプルチップ或いはマスク構造体 のいずれかを X軸、 Y軸、 Z軸方向に駆動することによつても可能である。 図 9は、 XY平面内でのマスクの移動方法とスポット形成の順序を示している。 図の左上部に示すように、 マスクを上から見ると多数の微細孔を持つマスク構造 体とその下方にサンプルチップ 110が配置されている。 サンプルチップ 1個を 拡大すると、 微細孔 111を持つマスク構造体の裏側にスぺーサ 112が配置さ れている。 断面方向の移動の様子は図 8で説明した通りであるが、 XY方向の移 動に際しても、既に形成されたスポットを損傷或いは汚染(コンタミネーション) しないようにマスク構造体とサンプルチップの相対移動を正しく制御する必要が ある。 図のようなスぺ一サ 112を持つマスク構造体の場合のスポット形成手順 を示す。
(1) サンプルチップ 110の左上部に、 マスクの微細孔 111が位置決めされ る。 (2) エレクトロスプレイによりスポットを形成する。
(3) マスクを移動する。
(4) 2番目のスポットをエレクトロスプレイによって形成する。
(5) 移動 (3) とスポット形成 (4) を繰り返し行い、 サンプルチップ上のに 多数のスポットを形成する。 その際に、 スぺーサが既に形成されたスポッ 卜に接触しないよいうに軌跡を制御する。
図の場合、 サンプルチップの左上からおに向かってスポット形成を行い、 サンプ ルチップの右端部まで形成を完了した時点で、 1列下側の左側のスポットから形 成を開始する。 これにより既に形成されたスポットにスぺ一サ 112が接触する ことなく多数のスポットを平面状に形成することができる。 以上のような、 スポ ット形成に順序を示す軌跡とスぺーザの関係は本図に示された形状に限らず様々 な組み合わせが考えられる。
産業上の利用可能性
本発明の利点をまとめると、
(1) 別途に調製された DNA、 蛋白質その他の化合物に適用できる。
(2) 短時間で同時に多くのスポットを形成させ、 同時に多数のサンプルチップ を作製することができる。
(3) 極めて小さいスポット (l〜2 m) も作製することができるので高密度 のチップを作製できる。
(4) 基板の移動を機械的に制御しているため、 スポット間隔を短くでき、 これ によって高密度のチップを作製できる。
( 5 ) 必要なサンプル量が少ない
(6) 従って、 最終商品としてのチップの価格も現在のレベルから相当低減でき る。
上述したように、 本発明は様々な DNA'蛋白質に適用できるため、 多くの用 途がある。 大別すれば、
(1) 遺伝子解析 (発現モニタリング、 塩基配列決定等)
(2) 蛋白質の機能解明
(3) 診断薬 (遺伝子診断、 酵素のタイピング、 アレルゲンの特定、 感染菌の同 定 ·タイピング等)
(4) 疾患治療 (患者の遺伝的 ·生理的状態に合った最適薬剤の選択等)
( 5 ) 医薬品等のスクリ一ニング (多元的な High-Throughput Screenin が可 能)
(6) 分析(化合物の毒性、環境分析、食品の微生物コンタミネーシヨン分析等) 等があるが、 将来、 更に広い分野での応用が期待される。

Claims

請 求 の 範 囲
1 . 生物学的に活性な複数種類の試料の各々を含む複数の溶液を順次静電噴霧 するエレクトロスプレイ手段と;
このエレクトロスプレイ手段から噴霧される溶液中の試料が堆積される複数 のサンプルチップを支持する支持手段と;
前記エレクトロスプレイ手段と前記支持手段との間に配置され、 前記複数の サンプルチップの対応する所定の位置に、前記試料を選択的に同時に堆積させ るように前記サンプルチップの個数と同数の孔を有するマスク手段と; 前記サンプルチップ支持手段とマスク手段とを相対的に移動させながら前記 複数のサンプルチップのそれぞれの上に前記複数の試料を堆積させて複数の マイクロアレイを同時に作製する移動手段と、
を具えるマイクロアレイ作製装置。
2 . 前記エレクトロスプレイ手段が、 電極を有する単一のキヤビラリと、 この キヤビラリに前記複数種類の試料をそれぞれ含む複数の溶液を順次に供給す る液体供給手段とを具えることを特徴とする請求項 1に記載のマイクロアレ ィ作製装置。
3 . 前記キヤビラリを或る溶液の噴霧後、 次の溶液の供給前に洗浄する洗浄手 段を設けたことを特徴とする請求項 2に記載のマイクロアレイ作製装置。
4. 前記エレクトロスプレイ手段に、 静電噴霧を行うにあたり、 前記キヤビラ リに加圧空気を供給してキヤビラリの先端に溶液を搬送する加圧手段を設け たことを特徴とする請求項 2に記載のマイクロアレイ作製装置。
5 . 前記エレクトスプレイ手段に、 前記キヤビラリから静電噴霧される物質が 拡散するのを防止するガードリングおよびシールドを設けたことを特徴とす る請求項 2に記載のマイクロアレイ作製装置。 前記キヤビラリと、 前記サンプルチップ支持手段及びマスク手段とを相対 的に移動させながら前記複数のサンプルチップのそれぞれの上に前記複数の 試料を堆積させて複数のマイクロアレイを同時に作製する移動手段を具える ことを特徴とする請求項 2に記載のマイクロアレイ作製装置。
前記エレクトロスプレイ手段が、 それぞれが前記複数の試料を含む複数の 溶液を収容し、それぞれが選択的に静電噴霧用電源に接続される電極を有する 複数のキヤビラリを保持する複数のマルチキヤビラリカセットを保持する手 段と、 これら複数のマルチキヤピラリカセットを順次に切換えてエレクトロス プレイ位置へ搬送する手段とを具えることを特徴とする請求項 1に記載のマ イクロアレイ作製装置。
前記エレクトロスプレイ手段に、 静電噴霧を行うにあたり、 前記マルチキ ャピラリカセッ卜の全てのキヤビラリに同時に加圧空気を供給してこれらキ ャビラリの先端に溶液を搬送する加圧手段を設けたことを特徴とする請求項 7に記載のマイクロアレイ作製装置。
前記複数のマルチキヤビラリカセットを保持する手段に、 これら保持され ているマルチキヤビラリカセッ卜に収容されている複数の溶液を温度制御す る手段を設けたことを特徴とする請求項 7に記載のマイクロアレイ作製装置。0 . 前記エレクトスプレイ手段に、 前記マルチキヤピラリカセットのキヤピラ リから静電噴霧される物質が拡散するのを防止するガードリングおよびシ一 ルドを設けたことを特徴とする請求項 7に記載のマイクロアレイ作製装置。1 . 前記マルチキヤビラリカセットと、 前記サンプルチップ支持手段及びマ スク手段とを相対的に移動させながら前記複数のサンプルチップのそれぞれ の上に前記複数の試料を堆積させて複数のマイクロアレイを同時に作製する 移動手段を具えることを特徴とする請求項 7に記載のマイクロアレイ作製装
2 . 前記マスク手段の孔の、 前記エレクトロスプレイ手段に対向する側のサ ィズを、前記支持手段に対向する側のサイズょりも大きくしたことを特徴とす る請求項 1に記載のマイクロアレイ作製装置。
3 . 前記マスク手段が、 前記孔内の粒子を静電的に収束するコリメーティン ダリングを一体的に具えることを特徴とする請求項 1に記載のマイクロアレ ィ作製装置。
4. 前記マスク手段のコリメ一ティングリングを、 一対の絶縁体層の間に挟 んだことを特徴とする請求項 1 3に記載のマイクロアレイ作製装置。
5 . 前記サンプルチップ支持手段とマスク手段とを相対的に移動させる移動 手段が、前記サンプルチップ支持手段をマスク手段に対して移動させる XYス テージまたは X Y Zステージを具えることを特徴とする請求項 1に記載のマ イクロアレイ作製装置。
6 . 前記マスク手段に形成された複数の孔の各々の近傍において、 マスク手 段の前記サンカレチップと対向する面に固着され、既に堆積された試料スポッ 卜と干渉しない形状および寸法を有する複数のスぺーサを具えることを特徴 とする請求項 1に記載のマイクロアレイ作製装置。
7 . 少なくともエレクトロスプレイが行なわれる空間をケースで囲み、 この ケースを経て清浄な乾燥空気を流す手段を具えることを特徴とする請求項 1 に記載のマイクロアレイ作製装置。
8 . 前記サンプルチップが、 導電性の物質をコーティングした非導電性の物 質、 または導電性の物質から作られており、 アースされていることを特徴とす る請求項 1に記載のマイクロアレイ作製装置。
PCT/JP2001/002868 2000-04-03 2001-04-02 Dispositif de fabrication de jeux ordonnes de microechantillons WO2001075442A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NZ515996A NZ515996A (en) 2000-04-03 2001-04-02 Microarray fabricating device
US09/980,099 US7150859B2 (en) 2000-04-03 2001-04-02 Microarray fabricating device
CA002376182A CA2376182C (en) 2000-04-03 2001-04-02 Device for manufacturing microarrays
AU44710/01A AU772576B2 (en) 2000-04-03 2001-04-02 Microarray fabricating device
EP01917789A EP1186888A4 (en) 2000-04-03 2001-04-02 DEVICE FOR MANUFACTURING ORDERS OF MICROECHANTILLONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000100395A JP4425420B2 (ja) 2000-04-03 2000-04-03 マイクロアレイ作製装置
JP2000-100395 2000-04-03

Publications (1)

Publication Number Publication Date
WO2001075442A1 true WO2001075442A1 (fr) 2001-10-11

Family

ID=18614611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002868 WO2001075442A1 (fr) 2000-04-03 2001-04-02 Dispositif de fabrication de jeux ordonnes de microechantillons

Country Status (7)

Country Link
US (1) US7150859B2 (ja)
EP (1) EP1186888A4 (ja)
JP (1) JP4425420B2 (ja)
AU (1) AU772576B2 (ja)
CA (1) CA2376182C (ja)
NZ (1) NZ515996A (ja)
WO (1) WO2001075442A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270969B2 (en) 1999-05-05 2007-09-18 Phylogica Limited Methods of constructing and screening diverse expression libraries
US7220590B2 (en) * 2001-03-14 2007-05-22 Beckman Coulter, Inc. Conductive plastic rack for pipette tips
JP3634796B2 (ja) * 2001-11-30 2005-03-30 財団法人工業技術研究院 生化学分析用マイクロディスペンサおよび計量分配装置
US20030166263A1 (en) * 2002-12-30 2003-09-04 Haushalter Robert C. Microfabricated spotting apparatus for producing low cost microarrays
JPWO2004074172A1 (ja) * 2003-02-19 2006-06-01 谷岡 明彦 固定化方法、固定化装置および微小構造体製造方法
US20040233250A1 (en) * 2003-03-05 2004-11-25 Haushalter Robert C. Microcontact printhead device
JP2011053225A (ja) * 2003-09-19 2011-03-17 Foundation For The Promotion Of Industrial Science 流体分散可能物質を基板上にパターニングする方法及び装置
JP4127171B2 (ja) 2003-09-19 2008-07-30 富士ゼロックス株式会社 画像読取装置
DE10349493A1 (de) * 2003-10-23 2005-06-02 Scienion Ag Verfahren und Vorrichtungen zur Probenablage auf einem elektrisch abgeschirmten Substrat
KR100543176B1 (ko) * 2003-11-06 2006-01-20 한국기계연구원 나노 패터닝용 프린팅헤드 장치
ITNA20040067A1 (it) 2004-12-03 2005-03-03 Consiglio Nazionale Ricerche Immobilizzazione di biomolecole su supporti porosi, tramite fascio elettronici, per applicazioni in campo biomedico ed elettronico.
GB2437227B (en) * 2005-02-14 2009-07-01 Univ Nottingham Electrostatic deposition of polymeric films
WO2006094049A2 (en) * 2005-03-01 2006-09-08 Parallel Synthesis Technologies, Inc. Polymeric fluid transfer and printing devices
ATE508208T1 (de) * 2005-03-08 2011-05-15 Postech Foundation Verfahren zur de-novo-peptidsequenzierung mittels maldi-massenspektrometrie
JP4508105B2 (ja) * 2005-12-27 2010-07-21 パナソニック株式会社 静電噴霧装置
JP5207334B2 (ja) * 2006-02-28 2013-06-12 独立行政法人理化学研究所 マイクロパターン形成装置、マイクロパターン構造体、および、その製造方法
JP4709059B2 (ja) * 2006-04-28 2011-06-22 キヤノン株式会社 検査装置及び検査方法
WO2008044737A1 (fr) * 2006-10-12 2008-04-17 Fuence Co., Ltd. Appareil de pulvérisation électrostatique et procédé de pulvérisation électrostatique
JP4656038B2 (ja) * 2006-10-16 2011-03-23 パナソニック株式会社 静電噴霧方法及びマイクロ流体チップ
JP4880540B2 (ja) * 2007-08-03 2012-02-22 パナソニック株式会社 試料堆積装置
JP4974923B2 (ja) 2008-02-06 2012-07-11 浜松ホトニクス株式会社 ナノ材料の観察試料作製装置及び作製方法
WO2011133516A1 (en) * 2010-04-19 2011-10-27 Battelle Memorial Institute Electrohydrodynamic spraying
JP6296536B2 (ja) 2010-11-05 2018-03-20 メドベット サイエンス ピーティーワイエルティーディーMedvet Science Pty Ltd 内皮前駆細胞のマーカーおよびその使用
DE102012101240A1 (de) * 2012-02-16 2013-08-22 Technische Universität Ilmenau Verfahren zur bestimmung der ansiedelbarkeit von biologischen zellen auf strukturen aus einem polymer sowie verfahren zur herstellung solcher strukturen
CN102649931A (zh) * 2012-05-28 2012-08-29 上海理工大学 一种微阵列生物芯片制备方法
EP2968458A4 (en) 2013-03-15 2016-08-24 Madeleine Pharmaceuticals Pty Ltd DOSAGE SCHEME FOR THERAPEUTIC PROCESS
US12017245B2 (en) 2021-01-22 2024-06-25 Xerox Corporation Electrospray fog generation for fountain solution image generation
JP2023110564A (ja) * 2022-01-28 2023-08-09 国立大学法人東京工業大学 パターン形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503841A (ja) * 1994-06-17 1998-04-07 ザ ボード オブ トランティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 生体試料から成るミクロ配列を作成するための方法および装置
WO1998058745A1 (en) 1997-06-20 1998-12-30 New York University Electrospraying solutions of substances for mass fabrication of chips and libraries
JPH11187900A (ja) * 1997-08-01 1999-07-13 Canon Inc プローブの固相へのスポッティング方法、プローブアレイとその製造方法、及びそれを用いた標的物質の検出方法、標的物質の構造の特定化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058743A1 (en) * 1997-06-23 1998-12-30 Innovatek, Inc. Electrostatic precipitator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503841A (ja) * 1994-06-17 1998-04-07 ザ ボード オブ トランティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 生体試料から成るミクロ配列を作成するための方法および装置
WO1998058745A1 (en) 1997-06-20 1998-12-30 New York University Electrospraying solutions of substances for mass fabrication of chips and libraries
JPH11187900A (ja) * 1997-08-01 1999-07-13 Canon Inc プローブの固相へのスポッティング方法、プローブアレイとその製造方法、及びそれを用いた標的物質の検出方法、標的物質の構造の特定化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY, vol. 71
MOROZOV ET AL., ANALYTICAL CHEMISTRY, vol. 71, 1999, pages 1415 - 1420,3110-3117
See also references of EP1186888A4
VICTOR N. MOROZOV ET AL.: "Electrospray deposition as a method for mass fabrication of mono- and multicomponent microarrays of biological and biologically active substances", ANAL. CHEM., vol. 71, 1999, pages 3110 - 3117, XP002942984 *
VICTOR N. MOROZOV ET AL.: "Electrospray deposition as a method to fabricate functionally active protein films", ANAL. CHEM., vol. 71, 1999, pages 1415 - 1420, XP002942985 *

Also Published As

Publication number Publication date
CA2376182C (en) 2008-08-12
CA2376182A1 (en) 2001-10-11
AU4471001A (en) 2001-10-15
JP4425420B2 (ja) 2010-03-03
EP1186888A1 (en) 2002-03-13
JP2001281252A (ja) 2001-10-10
AU772576B2 (en) 2004-04-29
US7150859B2 (en) 2006-12-19
EP1186888A4 (en) 2005-07-20
US20020136821A1 (en) 2002-09-26
NZ515996A (en) 2004-01-30

Similar Documents

Publication Publication Date Title
JP4425420B2 (ja) マイクロアレイ作製装置
JP4433100B2 (ja) チップ及びライブラリの大量製造における物質溶液の静電噴霧
KR100723425B1 (ko) 기판상에 생체분자 액적을 프린팅하는 장치 및 방법
KR100649342B1 (ko) 기판 상으로 서브마이크로리터 볼륨들을 전달하기 위한 방법 및 장치
JP4216257B2 (ja) 電気水力学的現象を利用して基板上に生体分子をプリンティングする装置及びそのプリンティング方法
US20040021068A1 (en) Interface members and holders for microfluidic array devices
US20050126480A1 (en) Immobilizing device
JP2003529056A (ja) マイクロアレイ作製技術及び装置
US20060228771A1 (en) Apparatus for and method of making electrical measurements on objects
JP3593525B2 (ja) 微粒子アレー作製方法およびその装置
US20030107386A1 (en) Apparatus for and method of making electrical measurements of objects
KR100723427B1 (ko) 기판상에 생체분자 액적을 프린팅하는 장치 및 방법
EP1721667A1 (en) Device for printing biomolecules on substrate using electrohydrodynamic effect
WO2021236916A1 (en) An integrated dielectrophoresis-trapping and nanowell transfer approach to enable double-sub-poisson single-cell rna-sequencing
JP4504501B2 (ja) 粒子移動/固定装置
JP2000093816A (ja) 小型実験プレートの製造方法及びインライン型小型実験プレートの製造装置
JP4199360B2 (ja) 粒子移動/固定装置
AU2002300555B2 (en) Electrospraying solutions of substances for mass fabrication of chips and libraries
JP2001183373A (ja) Dnaチップ補修方法及び装置
Eickhoff et al. Robotic equipment and microsystem technology in biological research
KR20170029247A (ko) 마이크로 어레이 기판 제조방법 및 마이크로 어레이 기판 제조장치
WO2004035834A1 (en) Method using indium tin oxide substrate in high throughput screening

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2376182

Country of ref document: CA

Ref country code: CA

Ref document number: 2376182

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 44710/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 515996

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001917789

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001917789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09980099

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 44710/01

Country of ref document: AU