WO2001072643A1 - Procede et dispositif pour traiter des eaux usees - Google Patents

Procede et dispositif pour traiter des eaux usees Download PDF

Info

Publication number
WO2001072643A1
WO2001072643A1 PCT/JP2001/002473 JP0102473W WO0172643A1 WO 2001072643 A1 WO2001072643 A1 WO 2001072643A1 JP 0102473 W JP0102473 W JP 0102473W WO 0172643 A1 WO0172643 A1 WO 0172643A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
solid
liquid separation
sludge
filter
Prior art date
Application number
PCT/JP2001/002473
Other languages
English (en)
French (fr)
Inventor
Yousei Katsu
Toshihiro Tanaka
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP01915832A priority Critical patent/EP1270514A4/en
Priority to US10/239,199 priority patent/US6824685B2/en
Priority to JP2001570564A priority patent/JP3853657B2/ja
Publication of WO2001072643A1 publication Critical patent/WO2001072643A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to wastewater treatment, and more particularly, to solid-liquid separation of activated sludge and concentration of excess sludge, and more specifically, it can be used for treatment of organic industrial wastewater and domestic wastewater.
  • the present invention relates to a method and an apparatus for treating wastewater including solid-liquid separation of activated sludge.
  • FIG. 1 shows the concept of the caching method.
  • an aeration tube 202 for aeration and a filter 204 are arranged in a biological reactor 201, and a filter is further provided.
  • An air diffuser 203 for washing the excess body is placed below the filter.
  • treated raw water is supplied from the raw water supply pipe 205 into the biological reaction tank 201, and air is diffused from the diffuser pipe 202, so that the inside of the tank is exposed.
  • Biological treatment with activated sludge is performed, and the treated liquid is filtered through a filter 204, and treated water (filtered water) is taken out from a discharge pipe 206.
  • a cross-flow of the activated sludge mixed liquid which flows downward on the filter body surface is generated in the biological reaction tank 201 (Fig. La).
  • a dynamic filtration layer of activated sludge is formed on the surface of the filter body 204, and the activated sludge mixture is filtered by the formed dynamic filtration layer and taken out from the discharge pipe 206. Then, when the filtration layer formed on the surface of the filter body 204 becomes compacted, the filtration resistance increases, and the amount of filtered water decreases, the aeration from the diffuser pipe 202 is stopped, and the air is diffused from the diffuser pipe 203. The filter layer on the surface of the filter body is washed and removed by aeration (Fig. Lb). According to this method, clear filtered water is obtained by separation of the sludge formed on the surface of the filter by the dynamic filtration layer.
  • the “sludge dynamic filtration layer” is a layer of activated sludge particles attached to the surface of the filtration body as the filtration proceeds.
  • the filtration medium of the filter body used in this method has a pore size substantially larger than that of the activated sludge particles and allows the particles to pass through.
  • An adhering layer of activated sludge particles (a sludge dynamic filtration layer) is formed on the surface, and the dynamic filtration layer can prevent the passage of the activated sludge particles.
  • Non-woven fabric, » wire mesh, etc. are usually used as this type of filter.
  • an adhering layer of activated sludge particles as a filtration layer on the surface of the filtration medium is uniformly and efficiently so as to have a thickness and a pressure density appropriate for the filtration of activated sludge. It is important to ensure that the formation of activated sludge particles is prevented and that treated water of good quality is obtained stably.
  • the method of forming a dynamic filtration layer is to average the activated sludge flow rate on the filter surface from 0.05 to 0.4 m / s, preferably from 0.15 to 0.2. It is regulated to control to 5 m / s.
  • the filtration flux is about 2 m / d and the filtration duration is more than 2.5 h at a filter body surface velocity of 0.2 m / s, whereas Filter body surface flow velocity 0.0 3m / s
  • the filtration flux is initially 4. lm / d, but drops to 3.3 md after 45 minutes, and the filtration flux is said to decrease in a short time.
  • a filter is immersed in at least one of the biological reaction tank and the final sedimentation basin, and treated water is extracted from the filter through the outlet of the filter due to the head pressure difference from the tank.
  • a sewage treatment apparatus using the activated sludge method has been proposed.
  • the performance of the sludge dynamic filtration layer formed on the surface of the filter will decrease, and the filtration flux may drop sharply.
  • the frequency of cleaning increases and the flux recovery rate after cleaning decreases.
  • organic pollutants such as BOD (biological oxygen consumption) in the raw water flowing into the biological reaction tank remains, they will directly adhere to the filter and cause biological contamination on the filter surface.
  • the membrane grows, causing a significant decrease in the amount of filtered water.
  • the present inventors have examined in detail the relationship between the filtration flux of the filter and the surface flow velocity in the method of filtering the activated sludge mixed liquid by the dynamic filtration layer.
  • the sludge flow on the surface of the filter body is severe, and a uniform dynamic filtration layer of the sludge is formed. It is difficult to form, and effective filtration area cannot be obtained.
  • the surface of the filter body is quickly blocked by fine sludge floc, and it is necessary to perform empty washing and water washing. It was found that the effect would be reduced.
  • a stable dynamic filtration layer is formed in an extremely short time of less than 5 minutes by setting the surface flow velocity to less than 0.05 m / s, in which case the filtration flux is reduced.
  • the dynamic filtration layer formed on the filter body surface can be easily peeled off only by empty washing. Was found.
  • the present inventors have conducted intensive research to provide a method for more efficiently performing a solid-liquid separation of an activated sludge mixed solution.
  • the activated sludge mixed solution treated in the biological reaction tank is introduced into a solid-liquid separation tank in which the water-permeable filter is immersed, and a dynamic filtration layer of sludge is formed on the surface of the water-permeable filter. It has been found that solid-liquid separation of activated sludge can be performed very efficiently by obtaining filtered water while performing filtration.
  • the dynamic filtration layer of the sludge can be stably applied to the surface of the water permeable filter. It has also been found that it can be formed. Furthermore, a rectifying device is arranged in the solid-liquid separation tank so that the activated sludge mixed liquid passes through the surface of the water-permeable filter after being rectified by the rectifying device, so that the solid-liquid separation is more efficient. I found that it progressed well. The present invention has been completed based on these findings. Disclosure of the invention
  • the present invention has the following configuration.
  • a wastewater treatment method for solid-liquid separation of an activated sludge mixture obtained after biological treatment of raw wastewater where raw water flows into a biological reaction tank for biological treatment, and then treated in a biological reaction tank.
  • the activated sludge mixture thus obtained is introduced into a solid-liquid separation tank in which the water-permeable filter is immersed, and a dynamic filtration layer of sludge is formed on the surface of the water-permeable filter.
  • a method for treating wastewater comprising obtaining filtered water at a higher head pressure.
  • This is a wastewater treatment method in which the activated sludge mixture obtained after biological treatment of the wastewater is solid-liquid separated.
  • the raw water flows into the biological reaction tank for biological treatment, and then treated in the biological reaction tank.
  • Activated sludge mixed liquid, solid-liquid with water-permeable filter It is introduced into a separation tank, a sludge dynamic filtration layer is formed on the surface of the water-permeable filter, and filtered water is obtained by sucking the permeate side of the water-permeable filter with a pump.
  • Wastewater treatment method is a wastewater treatment method.
  • a rectifier is installed in the solid-liquid separation tank so that the activated sludge mixture passes through the surface of the water-permeable filter after passing through the rectifier.
  • a wastewater treatment device for solid-liquid separation of the activated sludge mixture obtained after biological treatment of raw wastewater in which a biological reaction tank for inflowing raw water for biological treatment and a water-permeable filter are immersed. And a solid-liquid separation tank for introducing the activated sludge mixed liquid treated in the biological reaction tank to perform solid-liquid separation.
  • a dynamic filtration layer of sludge is formed on the surface of the water-permeable filter,
  • a method for treating wastewater characterized in that filtered water is obtained from the filter at a head pressure.
  • Wastewater treatment equipment for solid-liquid separation of the activated sludge mixed liquid obtained after biological treatment of wastewater raw water in which a biological reaction tank for inflowing raw water for biological treatment and a water-permeable filter are immersed and arranged. And a solid-liquid separation tank for introducing the activated sludge mixed liquid treated in the biological reaction tank to perform solid-liquid separation.
  • a dynamic filtration layer of sludge is formed on the surface of the water-permeable filter,
  • a method for treating wastewater characterized in that filtered water is obtained by sucking the permeate side of the filter with a pump.
  • the rectifying device is installed in the solid-liquid separation tank, and the activated sludge mixed liquid is configured to pass through the rectifying device and then pass through the surface of the water-permeable filter body.
  • a solid-liquid separation tank is provided at the subsequent stage of a biological reaction tank, and a water-permeable filter is immersed and arranged in the solid-liquid separation tank. You can get water.
  • any of a head pressure and a suction pressure by a pump can be used as a driving pressure for obtaining filtered water from the filter.
  • Filtration by head pressure does not require power because it is filtration drive pressure by natural gravity.
  • a low filtration pressure for forming a filtration layer can be easily formed, but there is a disadvantage that the amount of filtered water tends to decrease due to consolidation of the filtration layer.
  • filtration by pump suction I pressure requires power, and it is difficult to stably maintain a low filtration pressure at which a dynamic filtration layer is formed. This is advantageous in that the decrease in the resistance is unlikely to occur.
  • any preferred method can be adopted in consideration of the disadvantages and advantages of both.
  • the same effect can be obtained by using any of the water-permeable filters known in the prior art, such as a nonwoven fabric, a filter cloth, and a metal net, as the water-permeable filter that can be used in the present invention.
  • the shape of the filter may be any shape known in the prior art, such as a flat type, a cylindrical type, and a hollow type.
  • a plurality of filters may be bundled and used as a module filter.
  • the average flow rate of the sludge mixture introduced into the solid-liquid separation tank with respect to the surface of the filter is 0. It is preferably less than 0.5 is. By doing so, it is possible to easily form a good dynamic filtration layer on the surface of the filter even if the sludge mixture passes through the surface of the filter in either a downward flow or an upward flow. .
  • the average flow rate of the sludge mixture to the filter body surface is less than 0.05 m / s, the reduction of the filtration flux is small and a high flux can be obtained stably.
  • the volume can be made much smaller than the conventional sedimentation basin, and the processing equipment can be made compact.
  • the sludge mixed liquid (concentrated sludge mixed liquid) treated in the solid-liquid separation tank is removed by a pump or the like on the opposite side of the sludge mixed liquid introduction point in the solid-liquid separation tank. Thereby, a flow of the sludge mixed liquid in a certain direction with respect to the filter body surface can be formed.
  • the activated sludge mixed liquid treated in the biological treatment tank is introduced into the solid-liquid separation tank from the top of the solid-liquid separation tank, the concentrated sludge mixed liquid is pumped from the bottom of the solid-liquid separation tank.
  • a flow of the sludge mixed liquid in a certain direction with respect to the surface of the filter can be formed. Therefore, the flow rate of the sludge mixture to the surface of the filter is adjusted by controlling the removal of the sludge mixture from the solid-liquid separation tank. Concentrated soil removed The mud mixture can be returned to the biological reaction tank, sludge concentration tank, sludge digestion tank, etc., or can be taken out as excess sludge.
  • the sludge mixture passing through the surface of the filter is lower than the sedimentation velocity of the sludge particles, the sludge mixture flows downward on the surface of the filter, i.e., in the solid-liquid separation tank. It is preferable to introduce from the upper part to the lower part. With this configuration, even if the inflow sludge settles, it always passes through the surface of the filter, so that a good sludge dynamic filtration layer is formed.
  • a rectifying device is installed inside the solid-liquid separation tank so that the activated sludge mixed liquid passes through the rectifying device and then passes through the surface of the filter.
  • a washing device below the filter in the solid-liquid separation tank. By periodically stopping filtration and washing the filter using this washing device, the sludge layer formed on the surface of the filter can be easily peeled off.
  • a washing method one or both of empty washing and water washing can be used.
  • a perforated pipe with a larger vent hole than the conventional diffuser pipe is desirable.
  • the diameter of the vent hole of the porous tube is 2 mm or more.
  • the sludge infiltrates into the filtration module until a dynamic sludge layer is formed on the surface of the filter. For this reason, it is advisable to periodically discharge sludge in order to eliminate the accumulation of sludge inside the filtration module.
  • this sludge discharging method it is preferable to provide a sludge pipe penetrating from the lower part of the filtration module to the inside, and connect the discharged sludge so as to be introduced into the biological reaction tank.
  • the discharge power is preferably a natural flow due to the head pressure, and the discharge head pressure is about the same as the filtration head pressure. It is preferable to set the temperature.
  • a pump can also be used as the power for discharging sludge, especially when a pump is used as the filtration driving pressure.
  • the apparatus it is preferable to return the concentrated sludge formed in the solid-liquid separation tank to the biological reaction tank.
  • the BOD load in the biological reaction tank can be appropriately controlled, and stable biological treatment can be performed.
  • the activated sludge mixture passes along the surface of the filter, the filtered water is gradually filtered and concentrated. It is preferable to return the concentrated sludge mixture thus formed to the biological reaction tank as return sludge.
  • return sludge When sludge flows in a downward flow from the upper part of the solid-liquid separation tank, it is preferable to return the sludge mixture having a higher concentration than the lower part of the solid-liquid separation tank to the biological reaction tank as return sludge.
  • the apparatus according to the present invention includes a biological treatment tank and a solid-liquid separation tank, and these tanks are, for example, as shown in Example 1 and FIG.
  • Two tanks may be formed by dividing a single tank with a partition, and the two tanks may be in liquid communication by providing an opening at the bottom of the partition, or, for example, in Example 2 below.
  • two tanks may be separately formed and connected by piping.
  • FIG. 1 is a diagram showing the concept of a conventional solid-liquid separation method for an activated sludge mixture.
  • FIG. 2 is a flow sheet of one embodiment of the method for treating wastewater according to the present invention.
  • FIG. 3 is a graph showing the change over time in the average filtration flux in Example 1.
  • FIG. 4 is a graph showing the change over time in the turbidity of filtered water in Example 1.
  • FIG. 5 is a graph showing the change over time in the average filtration flux in Comparative Example 1.
  • FIG. 6 is a graph showing the change in turbidity of filtered water with time in Comparative Example 1.
  • FIG. 7 is a flow sheet of another embodiment of the method for treating wastewater according to the present invention.
  • FIG. 8 is a graph showing the change over time in the average filtration flux in Example 2.
  • FIG. 9 is a graph showing the change over time in the turbidity of filtered water in Example 2.
  • reference numeral 201 denotes a biological reaction tank
  • reference numeral 202 denotes an aeration pipe for aeration
  • reference numeral 203 denotes an aeration pipe for empty washing
  • reference numeral 204 denotes a filter
  • reference numeral 205 denotes a raw water supply pipe
  • reference numeral 206 denotes a raw water supply pipe. It is a filtered water discharge pipe.
  • 1 is raw water inflow
  • 2 is a biological reactor
  • 3 is a blower
  • 4 is an opening at the outlet of the biological reactor
  • 5 is a rectifier
  • 6 is a solid-liquid separation tank
  • 7 is a water-permeable filter
  • 8 is An intake pipe
  • 9 is treated water
  • 10 is a washing device
  • 11 is a concentrated sludge mixed liquid returning device
  • 12 is a sludge line
  • 13 is an air diffuser
  • 14 is an air diffuser
  • 15 is a partition.
  • 101 is the raw water inflow
  • 102 is the biological reaction tank
  • 103 is the effluent of the biological reaction tank
  • 104 is the sludge stationary tank
  • 105 is the agitator
  • 106 is the sludge supply pump
  • 107 is the solid-liquid separation tank
  • 108 is Filtration module
  • 109 is a filtered water level control valve
  • 110 is a solenoid valve
  • 111 is a solenoid valve
  • 112 is filtered water
  • 113 is a treated water tank
  • 114 is a water backwash drainage water level control valve
  • 115 is a solenoid valve
  • 116 is water backwash A pump
  • 117 is a check valve
  • 118 is return sludge
  • 119 is a washing blower
  • 120 is a diffuser
  • 121 is a solenoid valve
  • 122 is a solenoid valve
  • 123 is a filtration water discharge pipe.
  • COD Mn is the chemical oxygen consumption by potassium permanganate at 100 ° C
  • S—COD Mn is the soluble chemical oxygen consumption by potassium permanganate at 100 ° C
  • BOD 5 Is the biochemical oxygen consumption for 5 days
  • S-BOD 5 is the soluble biochemical oxygen consumption for 5 days.
  • FIG. 2 is a flow sheet showing an example of the wastewater treatment method of the present invention for groundwater.
  • the biological reaction tank 2 and the solid-liquid separation tank 6 are integrally formed, and the biological reaction tank 2 and the solid-liquid separation tank 6 are separated by the P wall 15. Liquid communication is provided by an opening 4 opened to the bottom of the partition wall 15.
  • the inflow raw water 1 is first introduced into the biological reaction tank 2.
  • air is supplied through the air diffuser 13 by the blower 13, and aerobic treatment is performed by the action of microorganisms in the activated sludge accommodated in the tank.
  • the activated sludge liquid flowing out of the biological reaction tank 2 is supplied to the bottom of the solid-liquid separation tank 6 through the opening 4 formed at the bottom of the partition 15.
  • a water-permeable filter 7 is arranged in the solid-liquid separation tank 6, and a rectifying device 5 is arranged below the water-permeable filter.
  • the activated sludge that has passed through the opening 4 is supplied to the bottom of the rectifier 5. Paid.
  • the activated sludge mixture that has passed through the rectifier 5 flows uniformly upward in the solid-liquid separation tank 6, and is separated into solid and liquid by the water-permeable filter 7.
  • the treated water 9 is obtained from the intake pipe 8 of the water-permeable filter 7 by a pressure difference of 7 heads.
  • Washing of the filter 7 is performed by periodically stopping the filtration and blowing air through a diffuser 14 through a washing device 10 installed under the rectifier.
  • the concentrated sludge mixture in the solid-liquid separation tank 6 is returned to the biological reaction tank 2 by the concentrated sludge mixture return pump 11. Excess sludge is periodically discharged out of the system through a sludge pipe 12.
  • Table 1 below shows the treatment conditions for the biological reaction tank 2 and Table 2 below shows the treatment conditions for the solid-liquid separation tank 6 in the wastewater treatment experiment conducted using the system shown in Fig. 2.
  • the amount of raw water flowing into the biological reactor 2 was 10 m 3 / d, and the amount of the mixed sludge mixture returned from the solid-liquid separation tank 6 was 5 m 3 / d.
  • the MLSS in the biological reaction tank 2 was set to about 250 mg / L. In this case, the BOD load of the entire tank was about 0.15 kg / kg.d.
  • the mixed solution from the biological reaction tank 2 was collected at the opening (ie, the exit of the biological reaction tank) 4 at the bottom of the partition wall 15 and the residual B ⁇ D 5 of the treated liquid was measured.
  • the BOD load of the biological reaction tank 2 is preferably set to 0.3 kg / kg.d or less.
  • a biological method for removing N and P such as an anaerobic / aerobic method or a nitrification / denitrification method, can be used instead of a method for removing BOD alone.
  • a solid-liquid separation tank 6 having an effective area of 0.04 m 2 and an effective volume of 0.06 m 3 was used.
  • the average head pressure during filtration was about 1 Ocm.
  • the amount of filtered water was 10 m 3 / d, and the flow rate of the activated sludge mixture on the surface of the filter was about 0.006 m / s.
  • the filtration was stopped for 3 minutes every 6 hours of filtration, and the filter was washed by aerating air from the washer 10.
  • the amount of aeration was adjusted so that the average flow velocity of air bubbles on the surface of the filter during washing was 0.5 m / s.
  • Table 3 below shows the quality of treated water after continuous treatment of wastewater for about two months under these conditions, together with the quality of raw water.
  • Table 3 Raw water and treated water quality (Example 1)
  • FIG. 3 shows the change over time of the filtration flux in Example 1.
  • the average filtration flux was about 3.2 m / d, and stable treatment was obtained.
  • Fig. 4 shows the change in turbidity of the treated water. As shown in Fig. 4, the turbidity of the treated water was always around 5 degrees in the continuous treatment for about 150 hours, no large fluctuation was observed, and the dynamic filtration layer of sludge was formed and stabilized. It can be seen that the treated water quality was obtained.
  • Example 2 Using the same treatment apparatus as in Example 1, the sludge mixture flow on the surface of the filter body was controlled by setting the return amount of the concentrated sludge mixture from the solid-liquid separation tank 6 to the biological treatment tank 2 at 85 m 3 / d. An experiment on continuous treatment of wastewater was performed under the same conditions as in Example 1 except that the speed was set to 0.1 m / s, which was about 17 times faster than Example 1.
  • FIG. 5 shows the change over time of the filtration flux in Comparative Example 1
  • FIG. 6 shows the change in the turbidity of the treated water.
  • the filtration flux is only 2.7 m / d even at the start of treatment, and the flow rate of the sludge mixture is low. It is about 10% or more lower than that of Example 1 which is 0.06 m / d.
  • the filtration flux decreased rapidly with the lapse of time. The filtration flux became 2 m / d or less after about 170 hours, and became lm / d or less after about 500 hours.
  • the turbidity of the filtered water was as high as 10 ° C or more until 200 hours after the start of the treatment, and the dynamic filtration layer of sludge was not well formed on the surface of the filter.
  • FIG. 7 is a flow sheet showing a wastewater treatment method according to another embodiment of the present invention for the groundwater.
  • the inflowing raw water 101 is first introduced into the biological reaction tank 102, and is subjected to aerobic treatment by the action of microorganisms in the activated sludge contained in the tank.
  • the effluent from the biological reaction tank 102 flows down through the line 103 into the sludge standing tank 104.
  • the sludge settling tank 104 the floc formation and uniformity of the sludge are performed while slowly stirring with a stirrer 105.
  • a sludge mixture is supplied from the sludge standing tank 104 to the upper part of the solid-liquid separation tank 107 by a sludge supply pump 106.
  • the sludge mixture is filtered by the filtration module 108 arranged in the solid-liquid separation tank 107, and filtered water 112 is obtained from the intake pipe at the top of the filtration module, and is processed through the solenoid valve 111. It flows into 7 1 1 3.
  • the treated water in the treated water tank 1 13 is discharged out of the system as appropriate through the drain pipe 1 2 3.
  • the sludge passing through the solid-liquid separation tank 107 is taken out from the bottom of the solid-liquid separation tank 107 as returned sludge 118, and returned to the biological reaction tank 102.
  • the head pressure of the filtration module at the time of filtration can be set by moving the filtration water level adjustment valve 109 up and down and opening the electromagnetic valve 110.
  • the air washing outside the filtration module is performed by closing the solenoid valve 1 1 1, starting the air washing blower 1 1 1 9, closing the solenoid valve 1 2 1, and opening the solenoid valve 1 2 2. This is done by insufflating the trachea 120.
  • the inside of the filtration module is washed by blowing air from the blower 119 with the solenoid valve 122 closed and the solenoid valve 121 opened.
  • backwashing of water inside the filtration module closes the solenoid valves 110 and 1 This is performed by starting the water backwash pump 1 16 with 15 open, and introducing the filtered water from the treatment tank into the filter module from above.
  • the backwash wastewater that has passed through the inside of the filtration module is discharged from the discharge pipe at the bottom of the module through the solenoid valve 115 into the sludge storage tank 104.
  • the water level of the backwash water is adjusted by adjusting the 7th control valve 114 so that the head pressure of backwash is equal to the head pressure of filtration. In this way, the operation can be automated by switching the solenoid valve in the order of empty washing-water backwash-water backwash drainage-> filtration.
  • a set of five flat woven fabric filters having an effective area of 1 m 2 was installed in the solid-liquid separation tank 1 17 as a filtration module.
  • a 0.1 thigh, 20 O mesh mesh and a pore diameter of about 72 m made of polyester was used as the material of the woven fabric.
  • the head pressure during filtration and the head pressure during backwashing drainage were both set to 1 Ocm, and the average flow rate of the activated sludge mixture passing through the filtration module surface was set to 0.01 m / s.
  • the amount of air in the outside of the filtration module was 15 OLMn, and the amount of air in the inside of the filter module was 3 OL / fflin.
  • the amount of water during backwashing was set to 14 OL / min. .
  • Table 5 shows the time chart of continuous operation. Washing of the filtration module was performed continuously every 120 minutes with a cycle of 3 minutes of empty washing, 30 seconds of water backwashing, and 2 minutes of ⁇ backwash drainage discharge. The washing was usually performed by aeration outside the filtration module, and the washing inside the filtration module was performed once every 50 cycles. Table 5: Time chart of automatic continuous operation (Example 2)
  • FIG. 8 shows the change over time in the filtration flux of the filtration module in Example 2.
  • the average filtration flux of the filtration module was about 3 m / d, and stable treatment was obtained.
  • Figure 9 shows the change in turbidity of the treated water. According to Fig. 9, the turbidity of the treated water was around 5 degrees in the continuous treatment for about 150 hours, and no large fluctuation was observed.Therefore, the dynamic filtration layer of the sludge was stable in the filtration module. It was recognized that good treated water quality was obtained stably. Industrial applicability
  • a solid-liquid separation tank is provided at the latter stage of a biological reaction tank, and a water-permeable filter is immersed and arranged in the solid-liquid separation tank to obtain clear filtered water with a low filtration pressure.
  • the activated sludge mixed solution flows in a constant direction along the surface of the filter at a flow rate of less than 0.05 m / s, so that a good sludge dynamic filtration layer can be easily formed.
  • the reduction of filtration flux is small and a high flux can be obtained stably, so the volume of the solid-liquid separation tank can be made significantly smaller than the conventional sedimentation basin, and the processing equipment can be made compact. It becomes possible.
  • a rectifier is installed in the solid-liquid separation tank, Since the activated sludge mixture passes through the filter after passing through the flow straightening device, the average velocity of the activated sludge mixture in the solid-liquid separation tank is uniform, and a dynamic filtration tank for sludge is provided on the surface of the filter. Formed uniformly.
  • a sludge tank formed on the surface of the filter is easily provided by providing a washing device below the filter to periodically stop the filtration and perform the washing. It can be peeled off.
  • the concentrated sludge is returned from the solid-liquid separation tank to the biological reaction tank, whereby the B ⁇ D load of the biological reaction tank can be appropriately controlled, and stable biological treatment can be performed. Can be performed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

明 細 書 排水の処理方法及び装置 技術分野
本発明は排水処理に関し、 より詳しくは、 活性汚泥の固液分離や余剰汚泥の濃 縮等に関するものであり、 具体的には、 有機性工業廃水や生活排水等の処理に用 いることができる活性汚泥の固液分離を含む排水の処理方法及び装置に関する。 背景技術
活性汚泥法による水処理では、 処理水を得るためには、 活性汚泥の固液分離を 行わなければならない。 通常、 このためには、 ?舌性汚泥を沈殿池に導入して、 重 力沈降によって汚泥を沈降させ、 上澄液を処理水として沈殿池から流出される方 法が用いられていた。 しかしながら、 この方法においては、 活性汚泥を沈降させ るために十分な沈降面積及び滞留時間を有する沈殿池が必要であり、 処理装置の 大型化と設置容積の増大要因となっていた。 また、 活性汚泥が、 バルキング等で 沈降性が悪化した場合には、 沈殿池から汚泥が流出して処理水の悪化を招いてい た。
近年、 沈殿池に代わって、 膜分離によって活性汚泥の固液分離を行う手法も用 いられている。 この場合、 固液分離用膜としては、 一般的に精密濾過膜や 濾 過膜が用いられている。 しかしながら、 この方法では、 濾過分離主眼として、 ポ ンプによる吸引や加圧が必要であり、 通常、 数十〜数百 kPaの圧力で濾過を行う ため、 ポンプによる動力が大きく、 ランニングコストの増大要因となっていた。 また、 膜分離で S S (懸濁物質) の全くない清澄な処理水が得られる一方で、 透 過フラックスが低く、 膜汚染を防止するために定期的に薬洗する必要があった。 更に最近、 沈殿池に代わる活性汚泥の固液分離法として、 曝気槽に不織布等の 通気性シートからなる濾過体を浸漬させ、 低い水頭圧で濾過水を得る方法が提案 されている。 カゝかる方法の概念を図 1に示す。 提案されている方法によれば、 生 物反応槽 2 0 1内に、 曝気用の散気管 2 0 2及び瀘過体 2 0 4を配置し、 更に濾 過体の空洗用の散気管 2 0 3を濾過体の下方に配置する。 生物反応処理時 (濾過 運転時) には、 原水供給管 2 0 5より処理原水を生物反応槽 2 0 1内に供給する と共に、 散気管 2 0 2から空気等を曝気することにより、 槽内の活性汚泥による 生物処理を行い、 処理液を濾過体 2 0 4で濾過して処理水 (濾過水) を排出管 2 0 6より取出す。 この際、 散気管 2 0 2による曝気によって、 生物反応槽 2 0 1 内には、 濾過体表面において下向流となる活性汚泥混合液のクロスフロー流が生 じる (図 l a) 。 このクロスフロー流によって、 濾過体 2 0 4の表面に活性汚泥 のダイナミック濾過層が形成され、 形成されたダイナミック濾過層によって活性 汚泥混合液が濾過され、 排出管 2 0 6より取出される。 そして、 濾過体 2 0 4の 表面に形成された濾過層が圧密化し、 濾過抵抗が増大して濾過水量が低下してき たら、 散気管 2 0 2からの曝気を止め、 散気管 2 0 3より空気を散気することに より、 濾過体表面の濾過層を空洗除去する (図 l b) 。 この方法によれば、 濾過 体表面に形成された汚泥のダイナミック濾過層による分離によって、 清澄な濾過 水が得られる。 ここで、 「汚泥のダイナミック濾過層」 とは、 濾過の進行により 濾過体表面に形成される活性汚泥粒子の付着物層である。 この方式において用い られる濾過体の濾過媒体は、 実質的には活性汚泥粒子よりも大きな孔径を有して いて粒子を通過させるものである力 濾過の駆動圧が小さい条件下においては、 濾過媒体の表面に活性汚泥粒子の付着物層 (汚泥のダイナミック濾過層) が形成 され、 このダイナミック濾過層によって活性汚泥粒子の通過を阻止することがで きるようになるのである。 この方式の濾過体としては、 通常、 不織布、 »、 金 網などが用いられている。 ダイナミック濾過層を用いる方法においては、 濾過媒 体の表面に濾過層としての活性汚泥粒子の付着物層を活性汚泥の濾過に適当な厚 さ及び圧密度等となるように均一に且つ効率的に形成させることが、 活性汚泥粒 子の通過を確実に阻止して良好な水質の処理水を安定に得る上で重要である。 提 案されている方法においては、 ダイナミック濾過層の形成手法としては、 濾過体 表面を流通する活性汚泥流速を平均 0. 0 5〜0. 4m/s、 好ましくは 0. 1 5 〜 0. 2 5 m/sに制御することが規定されている。 提案されている方法では、 濾 過体表面流速が 0. 2 m/sにおいては、 濾過フラックスが約 2 m/dで、 濾過継続 時間が 2. 5 h以上となっているのに対して、 濾過体表面流速 0. 0 3m/sにお いては、 濾過フラックスは、 初期は 4. l m/dであるが、 4 5分後には 3. 3 m dまで低下し、 短時間で濾過フラックスが低下するとされている。
また、 生物反応槽内及び最終沈殿池内の少なくとも一方に、 濾過体を浸漬配置 して、 後镜槽との水頭圧差によつて濾過体の流出口を介して濾過体から処理済水 を引き抜くという活性汚泥法による汚水処理装置が提案されている。
しかしながら、 これらの提案されている方法においては、 次のような問題点が あった。 即ち、 提案されている方法においては、 濾過体表面での汚泥混合液の流 れは、 曝気によって槽内を循環する流れを引き起こすことによって形成される。 しかしながら、 この方法では濾過体表面での流速が一様でないため、 濾過体表面 に均一な汚泥のダイナミック濾過層を形成することができず、 汚泥が濾過体表面 に堆積しやすい。 更に、 生物反応槽の水位が流入水量及ぴ璩気風量によって変動 するため、 濾過体への水頭圧が一定でなぐ 濾過水量が変化し、 安定した水量が 得られない。 水頭圧が不安定で、 極端に高くなつた場合には、 濾過体表面に形成 される汚泥ダイナミック濾過層の通水性能が低下し、 濾過フラックスの急激な低 下を招く恐れがある。 その結果、 洗浄頻度が高くなり、 洗浄後のフラックス回復 率も低くなる。 更に、 生物反応槽に流入する原水中の B OD (生物学的酸素消費 量) 等の有機汚濁物が僅かでも残留した場合には、 それが濾過体に直接付着して、 濾過体表面に生物膜が成長し、 濾過水量を著しく低下させる原因となる。
また、 濾過体を最終沈殿池に浸漬した場合には次のような問題点がある。 即ち、 汚泥の重力沈降を利用した最終沈殿池においては、 底部に濃縮汚泥が堆積し、 上 部より上澄水が得られることからも分かるように、 沈殿池内部の汚泥濃度が均一 ではない。 このため、 濾過体浸漬部の汚泥濃度が不均一となり、 良好なダイナミ ック濾過層の形成が不可能で、 安定した処理水を得ることができない。
更に、 本発明者らは、 活性汚泥混合液のダイナミック濾過層による濾過方法に おいて、 濾過体の濾過フラックスと表面流速との関係を詳細に検討した結果、 濾 過体表面の流速を 0. 0 5〜0. 4iii/s、 特に、 好ましいとされていた 0. 1 5 〜0. 2 5ffl/sとした場合には、 濾過体表面の汚泥流動が激しく、 汚泥の均一な ダイナミック濾過層の形成が困難であり、 有効な濾過面積も得られず、 更にこの 場合には微細な汚泥フロックによる濾過体表面の閉塞が早く、 空洗や水洗を行つ ても効果が少なくなつてしまうという知見を得た。 そして、 濾過体の洗浄直後に おいては、 表面流速は 0 . 0 5 m/s未満とすることにより安定したダイナミック 濾過層が 5分以内と極めて短時間で形成され、 その場合、 濾過フラックスは 5 ra/d以上を 4時間以上継続でき、 更に表面流速が 0 . 0 5m/s未満の条件では、 濾過体表面に形成されたダイナミック濾過層が空洗のみで容易に剥離することが できることが見出された。
本発明者らは、 上記の課題点を鑑みてより効率的に活性汚泥混合液の固液分離 を行う方法を提供すべく鋭意研究を重ねた結果、 原水を生物反応槽に流入させて 生物処理した後に、 生物反応槽で処理された活性汚泥混合液を、 通水性濾過体が 浸漬配置されている固液分離槽に導入し、 該通水性濾過体の表面に汚泥のダイナ ミック濾過層を形成させながら濾過水を得ることによって、 極めて効率的に活性 汚泥の固液分離を行うことができることを見出した。 また更に、 通水性濾過体表 面に対する活性汚泥混合液の移動速度を平均 0 . 0 5 m/s未満にすることによつ て、 通水性濾過体表面へ汚泥のダイナミック濾過層を安定して形成することがで きることも見出された。 更には、 固液分離槽内に整流装置を配置して、 活性汚泥 混合液が、 整流装置で整流された後に通水性濾過体表面を通過するようにするこ とによって、 固液分離が更に効率よく進行することを見出した。 本発明は、 これ らの知見に基づき完成されたものである。 発明の開示
即ち、 本発明は、 次の構成からなるものである。
1. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理方法であって、 原水を生物反応槽に流入させて生物処理を行い、 次に生物 反応槽で処理された活性汚泥混合液を、 通水性濾過体が浸漬配置されている固液 分離槽に導入して、 該通水性濾過体の表面に汚泥のダイナミック濾過層を形成さ せ、 該通水性濾過体より水頭圧で濾過水を得ることを特徴とする排水の処理方法。
2. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理方法であって、 原水を生物反応槽に流入させて生物処理を行い、 次に生物 反応槽で処理された活性汚泥混合液を、 通水性濾過体が浸漬配置されている固液 分離槽に導入して、 該通水性濾過体の表面に汚泥のダイナミック濾過層を形成さ せ、 該通水性濾過体の透過側をポンプで吸弓 Iすることにより濾過水を得ることを 特徴とする排水の処理方法。
3. 通水性濾過体表面に対する活性汚泥混合液の移動速度が平均 0. 0 5m/s 未満であることを特徴とする上記第 1項又は 2項に記載の方法。
4. 固液分離槽内に整流装置を設置し、 活性汚泥混合液が、 整流装置を通過し た後に通水性濾過体表面を通過するようにしたことを特徴とする上記第 1項〜第 3項のいずれかに記載の方法。
5 · 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理装置であって、 原水を流入させて生物処理を行う生物反応槽、 通水性濾過 体が浸漬配置されていて、 生物反応槽で処理された活性汚泥混合液を導入して固 液分離を行う固液分離槽を具備し、 該通水性濾過体の表面に汚泥のダイナミック 濾過層が形成され、 通水性濾過体より水頭圧で濾過水が得られるように構成され ていることを特徴とする排水の処理方法。
6. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理装置であって、 原水を流入させて生物処理を行う生物反応槽、 通水性濾過 体が浸漬配置されていて、 生物反応槽で処理された活性汚泥混合液を導入して固 液分離を行う固液分離槽を具備し、 該通水性濾過体の表面に汚泥のダイナミック 濾過層が形成され、 通水性濾過体の透過側をポンプで吸弓 Iすることにより濾過水 が得られるように構成されていることを特徴とする排水の処理方法。
7. 固液分離槽内に整流装置が設置されており、 活性汚泥混合液が整流装置を 通過した後に通水性濾過体表面を通過するように構成されていることを特徴とす る上記第 5項又は第 6項に記載の装置。
本発明によれば、 生物反応槽の後段に固液分離槽を設置して、 該固液分離槽に 通水性濾過体を浸漬配置することにより、 従来の方法よりも少ない濾過圧で清澄 な濾過水を得ることができる。
本発明の方法においては、 濾過体から濾過水を得るための駆動圧としては、 水 頭圧及びポンプによる吸引圧のいずれを用いることもできる。 7頭圧による濾過 では、 自然重力による濾過駆動圧であるので動力が不要であると共に、 ダイナミ ック濾過層が形成される低い濾過圧を容易に構築することができるという利点が ある反面、 濾過層の圧密ィ匕による濾過水量の低下が起こり易いという欠点がある。 これに対して、 ポンプ吸弓 I圧による濾過では、 動力が必要であること、 及びダイ ナミック濾過層が形成される低い濾過圧を安定して維持することが難しいという 欠点がある反面、 濾過水量の低下が起こりにくいという利点がある。 本発明にお いては、 両者の欠点と利点とを考慮の上でいずれか好ましい方法を採用すること ができる。
本発明において用いることのできる通水性濾過体としては、 不織布、 濾布、 金 属網等の従来技術において公知の通水性濾過体のいずれを用いても同様の効果を 得ることができる。 また、 濾過体の形状も、 平面型、 円筒型、 中空型等の従来技 術において公知の任意の形状を用いることができ、 複数個を束ねてモジュール濾 過体として用いることも可能である。
なお、 本発明においては、 通水性濾過体の表面に安定にダイナミック濾過層を 形成させるためには、 固液分離槽内に導入される汚泥混合液の濾過体表面に対す る平均流速を 0. 0 5i s未満とすることが好ましい。 このようにすることによ り、 汚泥混合液が濾過体表面を下向流及び上向流の何れで通過しても、 濾過体表 面に良好なダイナミック濾過層を容易に形成することができる。 また、 汚泥混合 液の濾過体表面に対する平均流速を 0. 0 5m/s未満とすることにより、 濾過フ ラックスの低下が少なく、 高いフラックスが安定して得られることから、 固液分 離槽の容積を従来の沈殿池よりも大幅に小さくすることができ、 処理装置をコン パクトにすることが可能になる。 なお本発明においては、 例えば、 固液分離槽内 で処理された、汚泥混合液 (濃縮汚泥混合液) を、 固液分離槽内における汚泥混合 液の導入箇所の反対側でポンプなどによって取出すことによって、 汚泥混合液の 濾過体表面に対する一定方向の流れを形成することができる。 例えば、 生物処理 槽で処理された活性汚泥混合液を、 固液分離槽の上部から固液分離槽内に導入す る場合には、 固液分離槽の底部より、 濃縮汚泥混合液をポンプなどで取出すこと により、 汚泥混合液の濾過体表面に対する一定方向の流れを形成することができ る。 したがって、 汚泥混合液の濾過体表面に対する流速は、 固液分離槽からの汚 泥混合液取出し などを制御することによって調節される。 取出された濃縮汚 泥混合液は、 生物反応槽ゃ汚泥濃縮槽、 汚泥消化槽等に返送したり、 余剰汚泥と して取出したりすることができる。
なお、 濾過体表面を通過する汚泥混合液の平均流速が、 汚泥粒子の沈降速度以 下である場合には、 汚泥混合液は、 濾過体表面に対して下向流、 即ち固液分離槽 の上部から下部に向かって導入することが好ましい。 このように構成すれば、 流 入汚泥が沈降しても、 必ず濾過体表面を通過するので、 良好な汚泥ダイナミック 濾過層が形成される。
また、 本発明の更に好ましい態様においては、 固液分離槽の内部に整流装置を 設置し、 活性汚泥混合液が、 整流装置を通過した後に濾過体表面を通過するよう に構成することが好ましい。 このような構成とすると、 固液分離槽内の流れ方向 が一定となり、 濾過体表面に汚泥のダイナミック濾過層を均一に形成することが できる。
なお、 本発明にかかる装置においては、 固液分離槽の濾過体下部に洗浄装置を 設置することが好ましい。 この洗浄装置を用いて、 定期的に濾過を停止して濾過 体を洗浄することにより、 濾過体表面に形成された汚泥層を容易に剥離すること ができる。 洗浄方法としては、 空洗及び水洗の一方又は両方を用いることができ る。 なお、 空洗時の空気気泡の上昇流速は、 少なくとも 0 . 2 m/sとなるように 空洗風量の調整を行うことが好ましい。 濾過モジュール下部に設置する空洗管と しては、 従来の散気管よりも通気孔の大きな多孔管が望ましい。 多孔管を用いれ ば、 同等の曝気量で散気管よりも高い上昇速度を得ることができ、 上昇気泡も大 きいため、 濾過体表面の汚泥層を容易に剥離することが可能である。 なお、 多孔 管の通気孔径は 2咖以上であることが好ましい。
本発明にかかる装置においては、 濾過体表面に汚泥のダイナミツク^過層が形 成されるまでの間に濾過モジュール内に汚泥が侵入する。 このため、 濾過モジュ —ル内部の汚泥の堆積を無くすために、 定期的に排泥を行うことが ましい。 こ の排泥方法としては、 濾過モジュール下部より内部に貫通する排泥管を設け、 排 出汚泥を生物反応槽に導入するように接続することが好ましい。 なお、 排出動力 としては水頭圧による自然流下が好ましく、 排出の水頭圧は濾過の水頭圧と同程 度にすることが好ましい。 しかしながら、 特に濾過駆動圧としてポンプを用いる 場合などには、 汚泥排出の排出動力としてポンプを用いることもできる。
また、 本発明にかかる装置においては、 固液分離槽で形成される濃縮汚泥を生 物反応槽に返送することが好ましい。 このようにすると、 生物反応槽での B OD 負荷を適切に管理することができ、 安定した生物処理を行うことが可能になる。 なお、 活性汚泥混合液は、 濾過体表面に沿って通過するにしたがって徐々に濾過 水が濾過されて濃縮される。 このようにして形成される濃縮汚泥混合液を、 返送 汚泥として生物反応槽に返送することが好ましい。 また、 固液分離槽の上部から 汚泥を下向流で流入させる場合には、 固液分離槽の下部より濃度の高い汚泥混合 液を返送汚泥として生物反応槽に返送することが好ましい。
上記に説明するように、 本発明にかかる装置は、 生物処理槽と固液分離槽とを 具備するものであるが、 これらの槽は、 例えば 記の実施例 1及び図 2に示すよ うに、 単一の槽を隔壁で区切ることによって二つの槽を形成し、 隔壁の底部に開 口を設けることによって両槽を液体連絡させることによって構成してもよいし、 或いは例えは下記の実施例 2及び図 7に示すように、 二つの槽を別々に形成し、 これらを配管で接続することによって構成してもよい。 図面の簡単な説明
図 1は、 従来技術の活性汚泥混合液の固液分離法の概念を示す図である。
図 2は、 本発明に係る排水の処理方法の一実施例のフローシートである。
図 3は、 実施例 1における平均濾過フラックスの経時変化を示すグラフである。 図 4は、 実施例 1における濾過水濁度の経時変化を示すグラフである。
図 5は、 比較例 1における平均濾過フラックスの経時変化を示すグラフである。 図 6は、 比較例 1における濾過水濁度の経時変ィ匕を示すダラフである。
図 7は、 本発明に係る排水の処理方法の他の実施例のフローシートである。 図 8は、 実施例 2における平均濾過フラックスの経時変化を示すグラフである。 図 9は、 実施例 2における濾過水濁度の経時変化を示すダラフである。
図 1において、 2 0 1は生物反応槽、 2 0 2は曝気用散気管、 2 0 3は空洗用 散気管、 2 0 4は濾過体、 2 0 5は原水供給管、 2 0 6は濾過水排出管である。 図 2において、 1は流入原水、 2は生物反応槽、 3はブロワ一、 4は生物反応槽 出口の開口、 5は整流装置、 6は固液分離槽、 7は通水性濾過体、 8は取水管、 9は処理水、 10は洗浄装置、 11は濃縮汚泥混合液返送装置、 12は排泥ライ ン、 13は散気管、 14は散気管、 15は隔壁である。 図 7において、 101は 流入原水、 102は生物反応槽、 103は生物反応槽流出液、 104は汚泥静置 槽、 105は撹拌機、 106は汚泥供給ポンプ、 107は固液分離槽、 108は 濾過モジュール、 109は濾過水位調整弁、 110は電磁弁、 111は電磁弁、 112は濾過水、 113は処理水槽、 114は水逆洗排水水位調整弁、 115は 電磁弁、 116は水逆洗ポンプ、 117は逆止弁、 118は返送汚泥、 119は 空洗ブロワ一、 120は散気管、 121は電磁弁、 122は電磁弁、 123は濾 過水排出管である。 以下、 実施例により本発明を具体的に説明するが、 本発明はこれらの実施例に よって限定されるものではない。 なお、 以下の記載において、 CODMnは 10 0°Cにおける過マンガン酸カリウムによる化学的酸素消費量; S— CODMnは 100°Cにおける過マンガン酸カリウムによる溶解性化学的酸素消費量; BOD 5は 5日間における生物化学的酸素消費量; S— BOD5は 5日間における溶解 性の生物化学的酸素消費量である。
実施例 1
図 2に、 団地下水に対する本発明による排水処理法の一例をフローシートで示 す。 図 2に示されている装置は、 生物反応槽 2と固液分離槽 6とが一体に形成さ れていて、 生物反応槽 2と固液分離槽 6とは、 P鬲壁 15によって分離され、 隔壁 15の底部に開放された開口 4によって液体連絡している。 流入原水 1は、 まず 生物反応槽 2に導入される。 生物反応槽 2では、 ブロワ一 3によって散気管 13 を通して空気が供給され、 槽内に収容されている活性汚泥中の微生物の作用によ つて好気処理が行われる。 生物反応槽 2から流出する活性汚泥液は、 隔壁 15の 底部に形成されている開口 4を通して固液分離槽 6の底部に供給される。 固液分 離槽 6内には、 通水性濾過体 7が配置されており、 通水性濾過体の下部に整流装 置 5が配置されている。 開口 4を通過した活性汚泥液は、 整流装置 5の底部に供 給される。 整流装置 5を通過した活性汚泥混合液は、 固液分離槽 6内で均一に上 向流で流れて、 通水性濾過体 7によって固液分離される。 処理水 9は、 7頭圧差 によって通水性濾過体 7の取水管 8より得られる。 濾過体 7の洗浄は、 定期的に 濾過を停止して、 整流装置の下部に設置された洗浄装置 1 0力 ^ら散気管 1 4を通 して空気を吹き込むことによって行う。 固液分離槽 6内の濃縮汚泥混合液は、 濃 縮汚泥混合液返送ポンプ 1 1によって生物反応槽 2に返送される。 なお、 余剰汚 泥は、 排泥管 1 2より定期的に系外に排出される。
図 2に示すシステムを用いて行った排水処理実験における、 生物反応槽 2の処 理条件を下表 1に、 固液分離槽 6の処理条件を下表 2に、 それぞれ示す。 表 1 :生物反応槽処理条件 (実施例 1 )
Figure imgf000012_0001
表 1に示すように、 生物反応槽 2への原水流入量を 1 0 m3/dとし、 固液分離槽 6からの濃縮汚泥混合液返送量を 5m3/dとした。 また、 生物反応槽 2での ML S Sを約 2 5 0 0mg/Lとした。 この場合、 槽全体の B OD負荷は約 0. 1 5 kg/kg. dであった。 生物反応槽 2からの混合液を隔壁 1 5底部の開口 (即ち生物反応槽出口) 4に おいて採取し、 その処理液の残留 B〇D 5を測定したところ, 生物反応槽 2にお いて、 流入原水 1の B ODがほぼ完全に: ¾ 除去され、 固液分離槽 6に流入する 活性汚泥混合液中に未分解 B〇Dの残留が全くないことが分かった。 このため、 固液分離槽 6において、 濾過分離に伴う濾過体表面の生物汚染を抑制することが 可能であった。 この結果、 濾過体寿命が長くなり、 安定した濾過水量を長期間に おいて確保することができた。 なお、 上述の処理効果を得るためには、 生物反応 槽 2の B OD負荷を 0. 3 kg/kg. d以下とするのが好ましい。 また、 嫌気'好気 法、 硝化脱窒法等の B ODだけを除去する方法でなぐ N, Pも除去する生物学 的方法を利用することもできる。
表 2に示されるように、 本実施例での固液分離処理には、 有効面積 0. 0 4m2, 有効容積 0. 0 6m3の固液分離槽 6を用いた。 通水性濾過体 7としては、 厚さ 0. 4鹏、 目開き 2 0〜 3 0 mのポリエステル製不織布より作成した有効面積 0. 4 m2の平面形不織布濾過体 8枚を濾過体モジュールとして固液分離槽 6内に設置 した。 濾過時の平均水頭圧を約 1 O cmとした。 濾過水量は 1 0m3/d、 濾過体表面 の活性汚泥混合液流速は約 0. 0 0 6 m/sとなった。 また、 濾過 6時間毎に、 3 分間濾過を停止して、 洗浄機 1 0より空気を曝気することによって濾過体の洗浄 を行った。 曝気量は、 洗浄時の空気気泡の濾過体表面流速が平均 0. 5m/sとな るように調節した。
このような条件で約 2力月間、 排水の連続処理を行った後の処理水の水質を、 原水の水質と合わせて下表 3に示す。 表 3 :原水及び処理水の水質 (実施例 1 )
Figure imgf000013_0001
* SS 表 3に示されるように、 原水が、 p H= 7. 1、 濁度 = 1 5 0度、 S S = 8 6 mg/Lであるのに対して、 処理水では、 p H= 7. 6、 濁度 = 5. 0度、 S S = 4. 6mg/Lとなり、 不»濾過体上に形成された汚泥のダイナミック濾過層に よって得られた濾過水が清澄であると認められた。 また、 C ODMnと S— C〇 DMn, B OD 5と S— B OD 5については、 原水ではそれぞれ 7 5 mg/Lと 4 2 mg/L, 1 1 Omg/Lと 6 5mg Lであるのに対して、 処理水ではそれぞれ 1 2. 5 mg/Lと 1 1 . 0 mg/L、 6. 3 ig/Lと 5 mg/L以下であり、 処理水質も良好である と認められた。
実施例 1における濾過フラックスの経時変化を図 3に示す。 図 3から明らかな ように、 約 1 5 0 0時間の連続処理において、 平均濾過フラックスが約 3. 2 m/dで、 安定した処理が得られた。 また、 図 4に処理水の濁度変化を示す。 図 4 より、 約 1 5 0 0時間の連続処理において、 処理水の濁度が常時 5度前後であり、 大きな変動が見られず、 汚泥のダイナミック濾過層が安定して形成され、 安定し た処理水質が得られたことが分かる。
比較例 1
実施例 1と同様の処理装置を用い、 固液分離槽 6からの濃縮汚泥混合液の生物 処理槽 2への返送量を 8 5m3/dとすることによって濾過体表面の汚泥混合液の流 速を実施例 1と比べて約 1 7倍速い 0. 1 m/sとした以外は、 実施例 1と同様の 条件で排水の連続処理実験を行った。
比較例 1における濾過フラックスの経時変化を図 5に、 処理水の濁度変化を図 6に示す。 図 5に示すように、 濾過体表面の汚泥混合液流速を 0. 1 m/sとした 場合には、 濾過フラックスが処理開始時においても 2. 7m/dしかなく、 汚泥混 合液流速が 0. 0 0 6 m/dである実施例 1と比べると約 1 0 %以上低い。 更に、 比較例 1においては、 時間の経過と共に濾過フラックスの低下が速く、 約 1 7 0 時間後に濾過フラックスが 2m/d以下となり、 約 5 0 0時間後では l m/d以下に なった。 処理時間 5 0 0時間より、 濾過体に対する洗浄の間隔を、 濾過 6時間毎 に 3分間の空洗から、 濾過 2時間毎に 3分間の空洗に短縮したが、 濾過フラック スの増加は見られず、 徐々に低下した。 これらの結果から、 濾過体表面に対する 汚泥混合液の流速が 0. 0 5BI S以上の場合には、 濾過体表面に微細汚泥付着に 伴う濾過フラックスの低下が認められた。 また、 洗浄頻度を高くしても濾過フラ ックスの保持には全く効果がなかったことから、 これらの付着汚泥によって目詰 まりを起こして濾過体孔径が閉塞される可能性が高いと考えられる。
また、 図 6に示されるように、 濾過水濁度は処理開始 2 0 0時間後までは 1 0 度以上と高く、 濾過体表面に汚泥のダイナミック濾過層が良好に形成されていな レ^考えられる。 なお、 濾過水濁度が 2 0 0時間後に徐々に低下したのは、 濾過 体の目詰まりに伴つて濾過フラックスが低下して、 濾過体内部への汚泥侵入も少 なくなつたためであると考えられる。
実施例 2
図 7に、 団地下水に対する本発明の他の態様に係る排水処理法をフローシート で示す。 流入原水 1 0 1は、 まず生物反応槽 1 0 2に導入され、 槽内に収容され ている活性汚泥中の微生物の作用によって好気処理が行われる。 生物反応槽 1 0 2からの流出液は、 ライン 1 0 3を通して、 汚泥静置槽 1 0 4に流下する。 汚泥 静置槽 1 0 4においては、 撹拌機 1 0 5によって緩速撹拌しながら、 汚泥のフロ ック形成及び均一化が行われる。 汚泥静置槽 1 0 4から汚泥混合液が汚泥供給ポ -ンプ 1 0 6によって固液分離槽 1 0 7の上部に供給される。 汚泥混合液は、 固液 分離槽 1 0 7内に配置されている濾過モジュール 1 0 8によって濾過され、 濾過 モジュール上部の取水管より濾過水 1 1 2が得られ、 電磁弁 1 1 1を通して処理 7 1 1 3に流入する。 処理水槽 1 1 3内の処理水は排水管 1 2 3を通して適宜 系外に排出される。 なお、 固液分離槽 1 0 7の通過汚泥は、 返送汚泥 1 1 8とし て、 固液分離槽 1 0 7の底部から取出されて生物反応槽 1 0 2に返送される。 濾 過時の濾過モジュールに対する水頭圧は、 濾過水位調整弁 1 0 9を上下させ、 電 磁弁 1 1 0を開放することによって設定することができる。 濾過モジュール外部 の空洗は、 通常、 電磁弁 1 1 1を閉じ、 空洗ブロワ一 1 1 9を起動させて、 電磁 弁 1 2 1を閉じ、 電磁弁 1 2 2を開放することにより、 散気管 1 2 0へ送気する ことによって行う。 また、 濾過モジュール内部の空洗は、 電磁弁 1 2 2を閉じ、 電磁弁 1 2 1を開放した状態でブロワ一 1 1 9より送気することにより行う。 ま た、 濾過モジュール内部の水逆洗は、 電磁弁 1 1 0及ぴ 1 1 1を閉じ、 電磁弁 1 1 5を開放した状態で水逆洗ポンプ 1 1 6を起動させて、 処理水槽の濾過水を濾 過モジュール上部からモジュール内部に導入することによって行う。 濾過モジュ ール内部を通過した水逆洗排水は、 モジュール下部の排出管から電磁弁 1 1 5を 通して汚泥静置槽 1 0 4に排出される。 なお、 水逆洗排水の水位は、 7位調節弁 1 1 4を調節して、 逆洗の水頭圧が濾過の水頭圧と同等になるように設定する。 このように、 空洗—水逆洗—水逆洗排水排出→瀘過の順に電磁弁を切り替えるこ とによって、 運転を自動化することができる。
図 7に示すシステムを用いて排水処理の連続運転実験を行った。 生物反応槽 1 0 2の処理条件は、 実施例 1と同様とした。 下表 4に、 固液分離槽 1 0 7の処理 条件を示す。 表 4:固液分離槽の処理条件 (実施例 2 )
Figure imgf000016_0001
本実施例では、 濾過モジュールとして有効面積 1 m2の平面形織布濾過体を 5 枚セットにしたものを固液分離槽 1 1 7に設置した。 織布の素材としては、 ポリ エステル製の厚み 0 . 1腿、 2 0 O meshで孔径約 7 2 mのものを用いた。 濾過 時の水頭圧及び水逆洗排水時の水頭圧を共に 1 O cmとし、 活性汚泥混合液が濾 過モジュール表面を通過する平均流速を 0 . 0 1 m/sとした。 濾過モジュール外 部空洗時の空洗風量は 1 5 OLMn, 内部空洗時の空洗風量は 3 OL/fflinとした。 また、 水逆洗時の水量は 1 4 O L/minとした。 .
下表 5に、 連続運転のタイムチャートを示す。 濾過モジュールに対する洗浄は、 濾過 1 2 0分毎に、 空洗 3分、 水逆洗 3 0秒、 τΚ逆洗排水排出 2分のサイクルで 連続運転した。 なお、 空洗は、 通常、 濾過モジュール外部への曝気によって行い、 濾過モジュール内部の空洗は 5 0サイクル中 1回の頻度で行つた。 表 5:自動連続運転のタイムチャート (実施例 2 )
Figure imgf000017_0001
実施例 2における濾過モジュールの濾過フラックスの経時変化を図 8に示す。 図 8から明らかなように、 約 1 5 0 0時間の連続処理において、 濾過モジュール の平均濾過フラックスが約 3m/d前後で、 安定した処理が得られた。 また、 図 9 に処理水の濁度変化を示す。 図 9より、 約 1 5 0 0時間の連続処理において、 処 理水の濁度がおよそ 5度前後であり、 大きな変動が見られなかったことから、 濾 過モジュールにおいて汚泥のダイナミック濾過層が安定して形成され、 良好な処 理水質が安定して得られたと認められた。 産業上の利用の可能性
本発明によれば、 生物反応槽の後段に固液分離槽を設置し、 該固液分離槽内に 通水性濾過体を浸漬配置したことにより、 少ない濾過圧で清澄な濾過水を得るこ とができる。 また、 本発明の好ましい態様においては、 活性汚泥混合液を濾過体 表面に沿つて 0 . 0 5 m/s未満の流速で一定方向に流れるので、 良好な汚泥のダ ィナミック濾過層が容易に形成されると共に、 濾過フラックスの低下が少なく、 高いフラックスが安定して得られるため、 固液分離槽の容積を従来の沈殿池より も大幅に小さくすることができ、 処理装置をコンパクトにすることが可能となる。 更に、 本発明の好ましい態様においては、 固液分離槽内に整流装置を設置して、 活性汚泥混合液が整流装置を通過した後に濾過体を通過するようにしているので、 固液分離槽内における活性汚泥混合液の平均速度が均一で、 濾過体の表面に汚泥 のダイナミック濾過槽が均一に形成される。 更に、 本発明の好ましい態様におい ては、 濾過体の下部に洗浄装置を設けることにより、 定期的に濾過を停止して洗 浄を行うことによって、 濾過体表面に形成された汚泥槽を容易に剥離することが できる。 更に、 本発明の好ましい態様においては、 固液分離槽から濃縮汚泥を生 物反応槽に返送すること〖こより、 生物反応槽の B〇 D負荷を適切に管理すること ができ、 安定した生物処理を行うことが可能になる。

Claims

請求の範囲
1. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理方法であって、 原水を生物反応槽に流入させて生物処理を行い、 次に生物 反応槽で処理された活性汚泥混合液を、 通水性濾過体が浸漬配置されている固液 分離槽に導入して、 該通水性濾過体の表面に汚泥のダイナミック濾過層を形成さ せ、 該通水性濾過体より水頭圧で濾過水を得ることを特徴とする排水の処理方法。
2. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理方法であって、 原水を生物反応槽に流入させて生物処理を行い、 次に生物 反応槽で処理された活性汚泥混合液を、 通水性濾過体が浸漬配置されている固液 分離槽に導入して、 該通水性濾過体の表面に汚泥のダイナミック濾過層を形成さ せ、 該通水性濾過体の透過側をポンプで吸弓 ることにより濾過水を得ることを 特徴とする排水の処理方法。
3. 通水性濾過体表面に対する活性汚泥混合液の移動速度が平均 0 . 0 5in/s 未満であることを特徴とする請求項 1又は 2に記載の方法。
4. 固液分離槽内に整流装置を設置し、 活性汚泥混合液が、 整流装置を通過し た後に通水性濾過体表面を通過するようにしたことを特徵とする請求項 1〜 3の いずれかに記載の方法。
5. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理装置であって、 原水を流入させて生物処理を行う生物反応槽、 通水性濾過 体が浸漬配置されていて、 生物反応槽で処理された活性汚泥混合液を導入して固 液分離を行う固液分離槽を具備し、 該通水性濾過体の表面に汚泥のダイナミック 濾過層が形成され、 通水性濾過体より水頭圧で濾過水が得られるように構成され ていることを特徴とする排水の処理装置。
6. 排水原水を生物処理した後に得られた活性汚泥混合液を固液分離する排水 の処理装置であって、 原水を流入させて生物処理を行う生物反応槽、 通水性濾過 体が浸漬配置されていて、 生物反応槽で処理された活性汚泥混合液を導入して固 液分離を行う固液分離槽を具備し、 該通水性濾過体の表面に汚泥のダイナミック 濾過層が形成され、 通水性濾過体の透過側をポンプで吸引することにより濾過水 が得られるように構成されていることを特徴とする排水の処理方法。
7. 固液分離槽内に整流装置が設置されており、 活性汚泥混合液が整流装置を 通過した後に通水性濾過体表面を通過するように構成されていることを特徴とす る請求項 6に記載の装置。
PCT/JP2001/002473 2000-03-27 2001-03-27 Procede et dispositif pour traiter des eaux usees WO2001072643A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01915832A EP1270514A4 (en) 2000-03-27 2001-03-27 METHOD AND DEVICE FOR TREATING WASTEWATER
US10/239,199 US6824685B2 (en) 2000-03-27 2001-03-27 Method and apparatus for treating waste water
JP2001570564A JP3853657B2 (ja) 2000-03-27 2001-03-27 排水の処理方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-86507 2000-03-27
JP2000086507 2000-03-27

Publications (1)

Publication Number Publication Date
WO2001072643A1 true WO2001072643A1 (fr) 2001-10-04

Family

ID=18602661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002473 WO2001072643A1 (fr) 2000-03-27 2001-03-27 Procede et dispositif pour traiter des eaux usees

Country Status (6)

Country Link
US (1) US6824685B2 (ja)
EP (1) EP1270514A4 (ja)
JP (1) JP3853657B2 (ja)
CN (1) CN1232453C (ja)
TW (1) TWI233429B (ja)
WO (1) WO2001072643A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273117A (ja) * 2001-03-19 2002-09-24 Mitsubishi Heavy Ind Ltd 汚水処理装置
WO2005002706A1 (en) * 2003-07-01 2005-01-13 Blue Air Ab Water filtering device
JP2005169288A (ja) * 2003-12-11 2005-06-30 Kokudo Sogo Kensetsu Kk 自動水質浄化装置及び水質浄化方法
JP2014217816A (ja) * 2013-05-09 2014-11-20 株式会社クボタ ろ過方法、ならびに、ろ過モジュールおよびこれを備えたろ過装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025884B2 (en) * 2000-11-10 2006-04-11 Ch2M Hill, Inc. Method and apparatus for treatment of a fluid system
WO2003043941A1 (fr) * 2001-11-22 2003-05-30 Ebara Corporation Appareil et procede de traitement des eaux usees organiques
AUPR987802A0 (en) 2002-01-08 2002-01-31 Commonwealth Scientific And Industrial Research Organisation Complexing resins and method for preparation thereof
TWI251581B (en) * 2002-10-24 2006-03-21 Kang Na Hsiung Entpr Co Ltd Non-woven fabric filter for processing activated sludge and method for treating wastewater by using such non-woven fabric filter
AU2003901583A0 (en) 2003-04-04 2003-05-01 Orica Australia Pty Ltd A process
US7291272B2 (en) 2004-05-07 2007-11-06 Orica Australia Pty Ltd. Inorganic contaminant removal from water
US7763666B2 (en) 2004-07-28 2010-07-27 Orica Australia Pty Ltd. Plug-flow regeneration process
DE102006001603A1 (de) 2005-12-09 2007-06-14 Aquadetox International Gmbh Biologische Kläranlagen und Verfahren für die biologische Reinigung von ölbelastetem Abwasser
GB0610384D0 (en) 2006-05-25 2006-07-05 Boc Group Plc Treatment of aqueous liquid
WO2008004292A1 (fr) * 2006-07-06 2008-01-10 Hitachi Plant Technologies, Ltd. Support d'immobilisation à inclusion et dispositif et procédé d'élimination d'eaux usées au moyen du support d'immobilisation à inclusion
DE102006034984A1 (de) * 2006-07-28 2008-01-31 Universität Kassel Verfahren und Vorrichtung zur biologischen Abwasserreinigung
JP5262287B2 (ja) * 2007-12-27 2013-08-14 Jfeエンジニアリング株式会社 散気装置および散気装置の運転方法
CN101811809A (zh) * 2010-05-21 2010-08-25 北京中关村国际环保产业促进中心有限公司 生活污水处理装置
CN103180031B (zh) 2010-09-28 2015-04-15 可隆工业株式会社 过滤系统和过滤方法
TWI555708B (zh) * 2011-01-17 2016-11-01 財團法人工業技術研究院 同時去除有機及無機性污染物之廢水處理系統以及廢水處理方法
WO2012136214A1 (en) * 2011-04-05 2012-10-11 Grundfos Holding A/S Method and system for filtration and filtration cake layer formation
US10196291B1 (en) * 2015-09-09 2019-02-05 Adelante Consulting, Inc. Wastewater treatment
CN108240184A (zh) * 2016-12-27 2018-07-03 北京九尊能源技术股份有限公司 煤层气井反循环洗井方法及装置
CN108751400B (zh) * 2018-06-11 2021-01-12 佛山市玉凰生态环境科技有限公司 一种城市污水处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137016A (en) * 1979-04-11 1980-10-25 Ebara Corp Filter unit
EP0326359A2 (en) * 1988-01-26 1989-08-02 Pall Corporation Precoat filter element
JPH09276889A (ja) * 1996-04-15 1997-10-28 Nitto Denko Corp 膜分離活性汚泥処理槽の保守方法及び膜分離活性汚泥処理槽
JPH1015573A (ja) * 1996-07-09 1998-01-20 Kubota Corp 汚水処理装置
JPH10128375A (ja) * 1996-11-01 1998-05-19 Hitoshi Daidou 汚水処理装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490590A (en) * 1968-01-02 1970-01-20 Dorr Oliver Inc Carbon in membrane systems
US4568463A (en) * 1983-02-24 1986-02-04 Klein Samuel H Method and apparatus for the purification of water and other aqueous liquids
US4861471A (en) * 1987-03-20 1989-08-29 Toshiba Ceramics Co., Ltd. Activated sludge treatment apparatus
JPH1119671A (ja) 1997-07-02 1999-01-26 Hitoshi Daidou 活性汚泥濾過方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137016A (en) * 1979-04-11 1980-10-25 Ebara Corp Filter unit
EP0326359A2 (en) * 1988-01-26 1989-08-02 Pall Corporation Precoat filter element
JPH09276889A (ja) * 1996-04-15 1997-10-28 Nitto Denko Corp 膜分離活性汚泥処理槽の保守方法及び膜分離活性汚泥処理槽
JPH1015573A (ja) * 1996-07-09 1998-01-20 Kubota Corp 汚水処理装置
JPH10128375A (ja) * 1996-11-01 1998-05-19 Hitoshi Daidou 汚水処理装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1270514A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273117A (ja) * 2001-03-19 2002-09-24 Mitsubishi Heavy Ind Ltd 汚水処理装置
WO2005002706A1 (en) * 2003-07-01 2005-01-13 Blue Air Ab Water filtering device
US7323104B2 (en) 2003-07-01 2008-01-29 Blue Air Ab Water filtering device
JP2005169288A (ja) * 2003-12-11 2005-06-30 Kokudo Sogo Kensetsu Kk 自動水質浄化装置及び水質浄化方法
JP2014217816A (ja) * 2013-05-09 2014-11-20 株式会社クボタ ろ過方法、ならびに、ろ過モジュールおよびこれを備えたろ過装置

Also Published As

Publication number Publication date
JP3853657B2 (ja) 2006-12-06
EP1270514A1 (en) 2003-01-02
US20030121852A1 (en) 2003-07-03
CN1232453C (zh) 2005-12-21
US6824685B2 (en) 2004-11-30
EP1270514A4 (en) 2005-02-09
CN1426379A (zh) 2003-06-25
TWI233429B (en) 2005-06-01

Similar Documents

Publication Publication Date Title
WO2001072643A1 (fr) Procede et dispositif pour traiter des eaux usees
JPH07155758A (ja) 廃水処理装置
JP6184541B2 (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP2014000495A (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP2008221133A (ja) 排水処理装置
JP3284903B2 (ja) 生物処理方法
JP3171746B2 (ja) 生活排水処理装置
JP3204125B2 (ja) 生物処理方法
JP4335193B2 (ja) 有機性廃水の処理方法及び装置
JP2003033764A (ja) オゾンを用いたろ過体の洗浄方法及び装置
JP4124957B2 (ja) ろ過体の洗浄方法及び装置
JP6834733B2 (ja) 排水処理装置
JP3721092B2 (ja) 活性汚泥の固液分離方法及び装置
JP3807945B2 (ja) 有機性廃水の処理方法及び装置
JP4104806B2 (ja) 有機性排水処理の固液分離方法及び装置
JP3666064B2 (ja) 排水処理装置
JP3761154B2 (ja) 活性汚泥の固液分離装置
JP3883358B2 (ja) 汚水処理のろ過分離方法及びその装置
JP2006043706A (ja) 排水の処理方法及び装置
JP3244012B2 (ja) 活性汚泥濾過装置
JP4813143B2 (ja) 活性汚泥の固液分離方法及びその装置
JP3391222B2 (ja) 活性汚泥用濾過体
JP3716461B2 (ja) 生物ろ過逆洗排水の受槽での濃縮方法
JP2002035783A (ja) 生物処理汚水のろ過分離方法及び装置
JP3687841B2 (ja) 通水性ろ過体モジュールを用いる汚泥の処理方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE DK ES FI FR GB IT LU NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 570564

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001915832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10239199

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018085091

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001915832

Country of ref document: EP