WO2001069056A1 - Procede et dispositif de refroidissement d'un moteur de vehicule automobile - Google Patents

Procede et dispositif de refroidissement d'un moteur de vehicule automobile Download PDF

Info

Publication number
WO2001069056A1
WO2001069056A1 PCT/FR2001/000238 FR0100238W WO0169056A1 WO 2001069056 A1 WO2001069056 A1 WO 2001069056A1 FR 0100238 W FR0100238 W FR 0100238W WO 0169056 A1 WO0169056 A1 WO 0169056A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coolant
branch
engine
radiator
Prior art date
Application number
PCT/FR2001/000238
Other languages
English (en)
Inventor
Armel Le Lievre
Ludovic Tomasseli
Original Assignee
Peugeot Citroen Automobiles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles filed Critical Peugeot Citroen Automobiles
Priority to EP01907697A priority Critical patent/EP1264086B1/fr
Priority to DE60123587T priority patent/DE60123587T2/de
Priority to JP2001567912A priority patent/JP4606683B2/ja
Priority to US10/221,153 priority patent/US6880495B2/en
Publication of WO2001069056A1 publication Critical patent/WO2001069056A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed

Definitions

  • the invention relates to a method and a device for cooling an automobile vehicle engine.
  • the invention relates more particularly to a cooling device comprising a hydraulic circuit of coolant coolant, associated with a circulation pump thereof through the vehicle engine and different branches of the circuit. Vehicle thermal equipment can be placed in the different branches of the circuit.
  • the cooling systems are designed to guarantee that the engines withstand the thermomechanical stresses resulting from combustion.
  • additional functions are implemented in addition to the main engine cooling, to improve overall performance or to offer and guarantee benefits to vehicle users, such as, for example, passenger compartment heating .
  • the cooling systems are dimensioned from the only operating points at maximum speed and at full load of the engine and are therefore oversized in the majority of vehicle use cases.
  • the engine operating parameters are not optimized, which results in a degradation of the performance of the latter, such as increased consumption, a high level of pollutant emission as well as a reduction in the thermal and acoustic comfort of the engine. vehicle.
  • Document EP55711 3 describes a system for cooling an engine comprising, a loop of heat-transfer liquid connected to a radiator, and means for regulating the flow rate of the liquid in this loop.
  • the flow regulation means are controlled by the operating conditions of the vehicle, in particular by means of sensors. of the temperature of the liquid located in different places of the loop.
  • the flow of the heat transfer liquid in the radiator loop is controlled in particular to regulate the temperatures of the liquid at the outlet and at the inlet of the engine around respective set values.
  • this system has a complex structure and uses a large number of measured state quantities, without however optimizing the heat exchanges with the heat transfer liquid.
  • An object of the present invention is to provide a method of cooling a motor vehicle engine, pal l iant all or part of the drawbacks of the prior art noted above.
  • the method of cooling an automobile vehicle engine consists in regulating the volume and the flow rate of a coolant coolant in a hydraulic circuit provided with a branch provided with an actuator. electronically controlled and provided with means forming a radiator, the method comprising a first step of determining the temperature of the coolant, a step of comparing this temperature with a threshold temperature determined from which the engine is said to be "hot” , and, when the temperature of the fluid is higher than the threshold temperature, the flow rate in the radiator branch is regulated so as to maintain the temperature of the cooling liquid around a predetermined set value, characterized in that the representative curve of the opening of the thermostatic valve depending on the temperature of the coolant has a hyster ésis around the set temperature, so as to regulate the temperature of the coolant to said set temperature.
  • the cooling device of a motor vehicle engine is of the type comprising a hydraulic circuit of heat transfer fluid, associated with a circulation pump thereof through the vehicle engine and different branches of the circuit, in which the thermal equipment of the vehicle are arranged, at least some of the branches of the circuit being provided with electronically controlled actuators for regulating the circulation of the fluid therein, the device comprising means for acquiring information relating to the operating conditions of the vehicle, connected to means for controlling the operation of the actuators, for regulating the volume and the flow rate of fluid in circulation in the hydraulic circuit in order to optimize the operation of the engine, the circuit comprising a branch provided an electronically controlled actuator provided with means forming a radiator, the acquisition means n of information being able to determine the temperature of the cooling fluid, so that, when the temperature of the fluid is greater than a temperature only determined from which the engine is said to be "hot", the control means
  • the invention may include one or more of the following characteristics:
  • the set temperature is between 60 and 120 degrees approximately
  • the batching means cooperate with the information acquisition means, to determine the temperature of the engine intake air, so as to increase the flow rate in said branch when the temperature of the engine intake air increases above a first determined threshold,
  • control means increase the flow in the radiator branch when the temperature of the intake air of the engine increases, so as to ensure a maximum flow in the branch when the temperature of the intake air of the engine reaches a second determined threshold
  • the footing means cooperate with the information acquisition means, to determine the speed of the vehicle, so as to increase the speed in said branch when the speed of the vehicle increases beyond a first determined threshold,
  • control means increase the flow in the radiator branch when the vehicle speed increases, so as to ensure a maximum flow in the branch when the vehicle speed reaches a second determined threshold
  • the device comprises ventilation means, or "Moto Fan Group", capable of cooperating with the means forming a radiator, the control means ensuring the control of the ventilation means as a function of the temperature of the coolant, so that the speed of rotation of the ventilation means increases when the temperature of the cooling fluid increases,
  • the increase in the speed of rotation of the ventilation means is controlled as a function of the speed of variation of the temperature of the cooling liquid
  • the speed of rotation of the ventilation means as a function of the temperature of the coolant describes a straight line whose slope is proportional to the speed of variation of the temperature of the coolant
  • the ventilation means are switched on when the temperature of the cooling fluid is higher than the set temperature and the flow rate of the liquid cooling in the radiator branch is substantially maximum
  • the loting means cooperate with the information acquisition means to determine the temperature of the air located under the hood of the vehicle so as to turn on the ventilation means when the temperature of the air located under the hood is greater than a determined threshold
  • FIG. 1 schematically represents the structure and the operation of an exemplary embodiment of the cooling device according to the invention
  • FIG. 2 represents, on the same graph, an example of variation over time t of the temperature T of the cooling liquid and of a first threshold temperature Ti,
  • FIG. 3 represents the variation of a set temperature Te as a function of the torque C of the vehicle engine, at constant engine speed,
  • FIG. 4 represents the variation in the percentage of opening of the radiator valve as a function of the temperature T of the cooling fluid
  • FIG. 5 represents an example of variation of the electric pulse I for controlling the radiator valve as a function of the temperature of the intake air Ta of the engine, at constant torque, constant speed and vehicle speed,
  • FIG. 6 represents the state of opening of a bypass valve as a function of the temperature T of the cooling liquid
  • FIG. 7 schematically represents an example of coupling of the opening of the bypass valve as a function of the opening of the radiator valve
  • FIG. 8 shows two examples of variation of the speed of rotation of a fan motor unit, depending on the variation of the temperature T of the coolant.
  • FIG. 1 shows an example of a preferred embodiment of a cooling device according to the invention.
  • the cooling device comprises a hydraulic circuit 2 containing a coolant coolant.
  • a hydraulic pump 3 is associated with circuit 2, to ensure the circulation of the fluid through the motor 1 and different branches 4, 5, 6, 7, 8, 44 of circuit 2.
  • pump 3 is a type pump mechanical, however, the use of an electric pump can also be considered.
  • the branches 4, 5, 6, 7, 8, 44 of circuit 2 are supplied with cooling liquid from a housing 122, or "Water Outlet Housing” (BSE).
  • BSE Water Outlet Housing
  • the housing 122 which is fixed to the engine 1, and preferably to the cylinder head of the engine 1, collects the coolant having circulated in the engine 1.
  • the coolant having circulated in the branches is recovered by a water inlet reader neck 23 before its recirculation in the engine 1.
  • the branches 4, 5, 6, 7, 8, 44 of the circuit 2 are provided with respective electronically actuated pi actuators 14, 15, 16, 17, 18, 29 for regulating the circulation of the fluid therein. the latter.
  • the electronically batched pi actuators can be, for example, electrically controlled solenoid valves or thermostatic valves, that is to say controlled thermostats.
  • the device comprises means 22 for acquiring information relating to the operating conditions of the vehicle.
  • the acquisition means 22 are connected to means 1 9 for setting the operation of at least part of the actuators 14, 1 5, 16, 17, 1 8, 29, for regulating the volume and the flow rate of fluid in circulation in the hydraulic circuit 2 so optimize engine operation.
  • the control means 19 or information processing unit can comprise any suitable computer 20, such as, for example, a "Smart Servitude Box” (BSI) of known type.
  • the computer 20 is associated with information storage means 21 comprising, for example, a programmable memory and / or a read-only memory.
  • the computer 20 is also connected to means 22 for acquiring information relating to the operating conditions of the vehicle, comprising, for example, various sensors or other computers such as an engine control computer.
  • the information acquisition means 22 are capable of determining at least one of the following parameters: the engine speed, the engine torque, the vehicle speed, the temperature of the engine lubricating oil , the temperature of the engine coolant, the temperature of the engine exhaust gas, the temperature of the air outside the vehicle and the temperature inside the passenger compartment.
  • the various information relating to the operating conditions of the vehicle are processed and analyzed by the computer 20, to control the operation of the actuators 14, 1 5, 16, 1 7, 1 8, 29 and possibly that of the pump 3.
  • the flow rate or volume of the cooling liquid admitted or not to circulate in the different branches 4, 5, 6, 7, 8, 44 of the circuit 2 is a function of the temperature rise state of the engine 1.
  • the thermal state of the engine 1 is characterized as a function of the temperature T of the cooling liquid, preferably at the outlet of the engine 1.
  • the state of the engine 1 is said to be cold.
  • the first Ti and / or the second T 2 threshold temperature can be fixed or variable values determined as a function of the type of motor 1.
  • the first Ti and / or the second T 2 threshold temperature are variables as a function of the type of the motor 1 and of at least one operating parameter of the motor 1.
  • the first Ti and / or second T 2 threshold temperatures are functions of the average power Pm supplied by the motor 1. That is to say that the control means 1 9 cooperate with the acquisition means 22, to calculate the instantaneous average power Pm supplied by the motor 1.
  • the control means 19 then calculate the first T-, and / or the second T 2 threshold temperature, as a function of the instantaneous average power Pm and of a determined modeling of the operation of the engine 1.
  • the modeling of the engine defines the cold, hot and intermediate states (first T ⁇ t second T 2 threshold temperatures) as a function of the average power Pm supplied by the latter.
  • the values of the speed N and of the torque C can be measured by the data acquisition means 22, that is to say tell by appropriate sensors.
  • the engine speed N is between 0 and 6000 rpm. approx., while the torque C is between 0 and 350 N. m. about.
  • the batching means 1 9 then calculate the power P (t) supplied by the engine at time t and the average power Pm (t) supplied by the engine at time t.
  • the average power Pm (t) at time t can be calculated by the following relationship:
  • Pm (t) -, in which Pm (t-1) is the average power at the instant (t-1).
  • the computer 1 9 and / or the means 21 for storing information 21 may contain the modeling of the operation of the engine 1, defining its cold, hot and intermediate state (first Ti and second temperatures only l T 2 ) as a function of average power Pm. That is to say that for a given type of engine, it is established empirically and / or by calculation of the correspondence tables giving the threshold temperatures Ti and T 2 as a function of the average power Pm of the engine 1. These tables or modelizations, which are function of the type of engine, are for example polynomial functions.
  • the first threshold temperature Ti is thus, in general, a decreasing function of the average power.
  • the first temperature only can vary between about 20 and 60 degrees, and preferably between 30 and 50 degrees.
  • the second threshold temperature T 2 can vary as for between 60 and 100 degrees. However, the second threshold temperature T 2 is generally substantially constant around the value of 80 degrees.
  • control means 19 cooperate with the data acquisition means 22, to compare the temperature T of the cooling liquid with the only two temperatures Ti and T 2 .
  • the value of the first threshold temperature Ti can be frozen by the control means 1 9 as soon as the measured temperature T of the cooling liquid reaches the first threshold temperature T L
  • FIG. 2 illustrates , on the same graph, an example of variation over time t: of the temperature T of the cooling liquid, and of the first temperature only T ⁇ (Pm) which is a function of the average power.
  • the circuit comprises a branch 4 provided with an pi-actuated electronically actuator 14 and provided with means 9 forming a radiator.
  • the radiator means 9 can be coupled to a fan motor unit 30, which can also be controlled by the control means 19.
  • the information acquisition means 22 determine the temperature T of the cooling fluid, so that, when the latter is higher than the second threshold temperature T 2 , the control means 19 regulate the flow in branch 4 of the radiator so as to maintain the temperature T of the coolant around a given setpoint Te.
  • the set temperature Te is the temperature of the coolant ensuring optimal operation of the engine 1.
  • This setpoint temperature Te is defined, for example, by modeling the motor concerned.
  • the set temperature Te is for example between 60 and 120 degrees, and preferably between 80 and 100 degrees approximately.
  • the means 1 9 for batching cooperate with the means 22 for acquiring information to determine the set temperature Te as a function of the speed N and / or of the torque C of the motor 1.
  • the set temperature Te decreases when the torque C of the motor 1 increases.
  • the set temperature Te decreases when the speed N of engine 1 increases.
  • FIG. 3 illustrates an example of a curve representative of the variation of the set temperature Te as a function of the torque C of the engine, at constant speed N.
  • the curve representative of the variation of the set temperature Te as a function of the torque C at constant speed N can have a general appearance comparable to that of the curve of FIG. 3.
  • the actuator 14 of the radiator branch 4 may consist of a thermostatic valve able to be controlled electronically.
  • the valve 14 can contain an element capable of expanding or shrinking, to regulate the degree of opening of the valve as a function of its temperature.
  • the element capable of expanding can also be electrically heated to control the opening and closing of the valve in real time.
  • FIG. 4 represents two examples of variation of the opening percentage% O of the thermostatic valve 14 of radiator as a function of the temperature T of the coolant.
  • FIG. 4 illustrates two examples of regulating the temperature T of the coolant around respectively two set set temperatures Tel, Tc2.
  • the opening curve O of the thermostatic valve 14 has a first hysteresis h1 around the first set temperature Tel and a second hysteresis h2 around the second set temperature Tc2.
  • the sequence of closing phases F 1, progressive opening F2, opening F3, and progressive closing F4 of the valve 14 is symbolized by arrows.
  • the first setpoint temperature Tel may correspond, for example, to a phase of high demand on the motor, while the second setpoint temperature Tc2, which is higher, may correspond to a lower request on the motor.
  • the actuator 14 of the branch 4 of the radiator can consist of a proportional valve controlled electronically.
  • the control means 19 can increase the opening of the valve 14 proportional.
  • the control means 1 9 can reduce the opening of the valve 14 proportional.
  • control means 19 can cooperate with the information acquisition means 22, to determine the temperature Ta of the intake air of the engine 1 and increase the flow rate of the cooling fluid in the branch 4 of the radiator when the air temperature Ta engine 1 intake increases beyond a first determined threshold S 1.
  • control means 19 can ensure maximum flow in the radiator branch 4 when the temperature Ta of the intake air of the engine 1 reaches a second determined threshold S2.
  • the first S1 and second S2 temperature thresholds for the intake air can be of the order of 40 degrees and 60 degrees respectively.
  • FIG. 5 represents an example of variation of the electric pulse or current I for controlling the valve
  • 11 designates the electrical pulse delivered to the actuator 14 (proportional solenoid valve or thermovalve) for a given setpoint temperature Tel.
  • This electrical pulse 11 which is between 0 and 100% of the maximum pulse, defines a partial opening of the determined actuator 14.
  • the electrical pulse I delivered to the actuator 14 tends towards 11.
  • the lottery means 19 can cooperate with the information acquisition means 22 to determine the speed of the vehicle, so as to increase the flow in lad ite branch 4 when the vehicle speed increases beyond a first determined threshold.
  • the footing means 19 can ensure maximum flow in the branch 4 of the radiator when the vehicle speed reaches a second determined threshold.
  • the curve of variation of the electric pulse or intensity I for controlling the radiator valve 14 as a function of vehicle speed may have a general appearance similar to that of the curve of FIG. 5.
  • the first and second vehicle speed thresholds can be of the order of half the maximum authorized speed and the maximum speed respectively.
  • the circuit 2 comprises another branch 5 provided with an electronically controlled actuator 1 5 and associated with means 10 forming direct return of fluid or bypass.
  • the means 1 9 for batching can regulate the circulation of the cooling fluid in the branch 5 of bypass as a function of the temperature T of this fluid.
  • the quantity of fluid admitted to circulate in the branch 5 by-pass increases when the temperature of the fluid increases from the first Ti towards the second threshold temperature T 2 .
  • the electronically lot pi actuator 15 of the bypass branch 5 is of the proportional type.
  • the control means 19 can limit the circulation of fluid in the branch 5 bypass to a determined leakage rate.
  • the actuator 1 5 of the branch 5 by-pass is partially open Of.
  • the partial opening Of of the actuator 1 5 can ensure a leakage rate in the branch 5 by- pass between 1/50 th to about 1/5 th of the maximum flow of branch 5.
  • the control means 19 at least temporarily control the total opening O of the bypass actuator 1 5 ( Figure 6). Furthermore, when the temperature of the fluid is between the first Ti and second threshold temperatures T 2 , the degree of opening of the actuator 15 can be at least temporarily proportional to the temperature T of the cooling fluid. More precisely, between 1 ⁇ and T 2 , the opening of the bypass actuator 1 5 increases when the temperature T of the fluid increases and decreases when the temperature T of the fluid decreases. The variation in the opening of the actuator 15 can be proportional to the temperature of the fluid T.
  • the curve representative of the opening of the actuator 15 as a function of the temperature T of the fluid can have a hysteresis H. That is to say, the increase in the opening of the actuator 1 5 begins after the temperature of the liquid T exceeds the first reference temperature Ti by a first determined value E. Likewise, the reduction in the opening of the actuator 15 begins after the temperature T of the liquid becomes lower, by a first determined value E, than the second reference temperature T 2 . That is to say that the openings and closings of the actuator 1 5 are produced in a manner offset relative to the temperature thresholds Ti and T 2 respectively .
  • the E values of these offsets are, for example, of the order of 5 degrees.
  • control means 19 can control the actuator 15 of the branch
  • FIG 7 it shows the percentage of opening% O of the actuators 1 5, 14 of the branches 5 of bypass and radiator
  • control means 1 9 can close F the actuator 15 of the branch
  • the actuator 14 of branch 4 radiator when the actuator 14 of branch 4 radiator is open O.
  • the actuator 15 of the branch 5 bypass is open O when the actuator 14 of the branch 4 radiator is closed F.
  • the opening of the actuator 1 5 of the branch 5 bypass is inversely proportional to the opening of the actuator 14 of the branch 4 radiator.
  • the closings and openings of the actuator 1 5 of the branch 5 bypass can be produced with a temperature offset R determined with respect to the openings and closings of the actuator 14 of the branch 4 radiator.
  • the temperature shift R can be of the order of a few degrees, for example five degrees.
  • the piotage means 1 9 can control the ventilation means 30 depending on the temperature of the coolant. More specifically, the speed of rotation of the ventilation means 30 can increase when the temperature T of the cooling liquid increases.
  • the speed V of rotation of the ventilation means 30 increases in proportion to the speed of
  • FIG. 8 illustrates two examples of lines d 1 and d 2 representing the speed of rotation of the motor fan unit as a function of the temperature T of the liquid.
  • the two lines d1 and d2 have different slopes, each representative of a speed of variation - of the temperature T of the coolant.
  • the speed of variation - of temperature dt is the speed of variation - of temperature dt
  • T coolant can be calculated by means 1 9 of loting.
  • the ventilation means 30 are switched on when the temperature T of the cooling fluid is higher than the set temperature Te and the flow rate of the cooling liquid in the branch 4 radiator is substantially maximum.
  • the means 1 9 of loting can cooperate with the means 22 for acquiring information to determine the temperature of the air located under the hood of the vehicle, so as to start the ventilation means 30 when the air temperature under the hood is above a certain threshold.
  • the means 22 for acquiring information can be configured to detect a possible defect in at least one of the electronically controlled actuators.
  • the control means 1 9 can ensure the free circulation of the fluid in at least some of the branches, and preferably in all branches. That is, when a system failure is detected, all of the valves in circuit 2 are open.
  • the cooling device according to the invention while being of simple structure, makes it possible to manage heat exchanges in real time and in an optimum manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un procédé de refroidissement d'un moteur de véhicule automobile, consistant à réguler le volume et le débit d'un fluide caloporteur dans un circuit hydraulique (2) pourvu d'une branche (4) munie d'un actionneur (14) piloté électroniquement et pourvue de moyens (9) formant radiateur, le procédé comportant une première étape de détermination de la température (T) du fluide de refroidissement, une étape de comparaison de cette température avec une température seuil (T2) déterminée à partir de laquelle le moteur (1) est dit 'chaud', et, lorsque la température (T) du fluide est supérieure à la température seuil (T2), le débit dans la branche (4) de radiateur est régulé de façon à maintenir la température (T) du liquide de refroidissement autour d'une valeur consigne (Tc) déterminée, caractérisé en ce que la courbe représentative de l'ouverture (O) de la vanne thermostatique (4) en fonction de la température (T) du fluide de refroidissement présente une hystérésis (h1, h2) autour de la température consigne (Tc1, Tc2), de façon à réguler la température (T) du liquide de refroidissement à ladite température consigne (Tc1, Tc2). L'invention concerne également un dispositif de refroidissement d'un moteur de véhicule automobile.

Description

Procédé et dispositif de refroidissement d'un moteur de véhicule automobile
L' invention se rapporte à un procédé et à un dispositif de refroidissement d'un moteur de véhicule automobi le.
L' invention concerne plus particulièrement un d ispositif de refroidissement comportant un circuit hydraul ique de fluide caloporteur de refroidissement, associé à une pompe de circulation de celui-ci à travers le moteur du véhicule et d ifférentes branches du circuit. Des équipements thermiques du véhicule peuvent être disposés dans les différentes branches du circuit.
Les systèmes de refroidissement sont conçus pour garantir la tenue des moteurs aux contraintes thermomécaniques issues de la combustion. Par ai l leurs, des fonctions complémentaires sont mises en œuvre en plus du refroidissement principal du moteur, pour amél iorer le rendement global ou offrir et garantir des prestations aux utilisateurs de véhicules, tel les que, par exemple, le chauffage de l'habitacle.
Les systèmes de refroidissement sont dimensionnés à partir des seuls points de fonctionnement à régime maximal et à pleine charge du moteur et sont donc surdimensionnés dans la majorité des cas d' utilisation des véhicules.
Ainsi , les paramètres de fonctionnement du moteur ne sont pas optimisés, ce qui entraîne une dégradation des performances de ce dernier, tel qu'une consommation accrue, un niveau élevé d'émission de polluants ainsi qu'une réduction du confort thermique et acoustique du véhicule.
Le document EP55711 3 décrit un système de refroidissement d'un moteur comportant, une boucle de liquide caloporteur reliée à un radiateur, et des moyens de régulation du débit du liquide dans cette boucle. Les moyens de régulation du débit sont asservis aux conditions de fonctionnement du véhicule, au moyen notamment de capteurs de la température du liquide situés en différents endroits de la boucle. Le débit du liquide caloporteur dans la boucle radiateur est contrôlé notamment pour réguler les températures du liquide à la sortie et à l'entrée du moteur autour de valeurs consignes respectives.
Cependant, ce système a une structure complexe et utilise un grand nombre de grandeurs d'état mesurées, sans pour autant optimiser les échanges thermiques avec le liquide caloporteur.
Un but de la présente invention est de proposer un procédé de refroidissement d'un moteur de véhicule automobile, pal l iant tout ou partie des inconvén ients de l'art antérieur relevés ci-dessus.
Ce but est atteint par le fait que le procédé de refroidissement d'un moteur de véhicule automobi le, consiste à réguler le volume et le débit d'un fluide caloporteur de refroidissement dans un circuit hydraulique pourvu d'une branche munie d'un actionneur piloté électroniquement et pourvue de moyens formant radiateur, le procédé comportant une première étape de détermination de la température du fluide de refroidissement, une étape de comparaison de cette température avec une température seui l déterminée à partir de laquel le le moteur est dit "chaud", et, lorsque la température du fluide est supérieure à la température seuil , le débit dans la branche de radiateur est régulé de façon à maintenir la température du l iquide de refroidissement autour d'une valeur consigne déterminée, caractérisé en ce que la courbe représentative de l'ouverture de la vanne thermostatique en fonction de la température du fluide de refroidissement présente une hystérésis autour de la température consigne, de façon à réguler la température du liquide de refroidissement à ladite température consigne.
Un autre but de la présente invention est de proposer un dispositif de refroidissement d'un moteur de véhicule automobile, pall iant tout ou partie des inconvénients de l'art antérieur relevés ci-dessus. Ce but est atteint par le fait que le dispositif de refroidissement d'un moteur de véhicule automobile est du type comportant un circuit hydraul ique de fluide caloporteur, associé à une pompe de circulation de celui-ci à travers le moteur du véhicule et différentes branches du circuit, dans lesquel les sont disposés des équipements thermiques du véhicule, au moins certaines des branches du circuit étant munies d'actionneurs pilotés électroniquement de régulation de la circulation du fluide dans celles-ci, le dispositif comportant des moyens d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule, raccordés à des moyens de pilotage du fonctionnement des actionneurs, pour réguler le volume et le débit de fluide en circulation dans le circuit hydraulique afin d'optimiser le fonctionnement du moteur, le circuit comportant une branche munie d'un actionneur piloté électroniquement et pourvue de moyens formant radiateur, les moyens d'acquisition d'informations étant aptes à déterminer la température du fluide de refroidissement, de façon que, lorsque la température du fluide est supérieure à une température seui l déterminée à partir de laquel le le moteur est dit "chaud", les moyens de pilotage régulent le débit dans la branche de radiateur de façon à maintenir la température du liquide de refroidissement autour d'une valeur consigne déterminée, caractérisé en ce que l'actionneur de la branche de radiateur est constitué d' une vanne thermostatique apte à être pi lotée électroniquement, et en ce que la courbe représentative de l'ouverture de la vanne thermostatique en fonction de la température du fluide de refroidissement présente une hystérésis autour de la température consigne, de façon à réguler la température du liquide de refroidissement à ladite température consigne.
Par ailleurs, l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :
- la température consigne est comprise entre 60 et 120 degrés environ,
- les moyens de pi lotage coopèrent avec les moyens d'acquisition d'informations, pour déterminer la température de l'air d'admission du moteur, de façon à augmenter le débit dans ladite branche lorsque la température de l'air d'admission du moteur augment au-delà d'un premier seuil déterminé,
-les moyens de pilotage augmentent le débit dans la branche de radiateur lorsque la température de l'air d'admission du moteur croît, de façon à assurer un débit maximal dans la branche lorsque la température de l'air d'admission du moteur atteint un second seuil déterminé,
-les moyens de pi lotage coopèrent avec les moyens d'acquisition d' informations, pour déterminer la vitesse du véhicule, de façon à augmenter le débit dans ladite branche lorsque la vitesse du véhicule augmente au-delà d' un premier seui l déterminé,
-les moyens de pilotage augmentent le débit dans la branche de radiateur lorsque la vitesse du véhicule croît, de façon à assurer un débit maximal dans la branche lorsque la vitesse du véhicule atteint un second seuil déterminé,
-le dispositif comporte des moyens de ventilation, ou "Groupe Moto Ventilateur", aptes à coopérer avec les moyens formant radiateur, les moyens de pilotage assurant la commande des moyens de ventilation en fonction de la température du liquide de refroidissement, de façon que la vitesse de rotation des moyens de ventilation augmente lorsque la température du fluide de refroidissement croît,
- l'augmentation de la vitesse de rotation des moyens de ventilation est commandée en fonction de la vitesse de variation de la température du l iquide de refroidissement,
-la vitesse de rotation des moyens de venti lation en fonction de la température du liquide de refroidissement décrit une droite dont la pente est proportionnelle à la vitesse de variation de la température du liquide de refroidissement,
-les moyens de ventilation sont mis en marche lorsque la température du fluide de refroidissement est supérieure à la température consigne et que le débit du liquide de refroid issement dans la branche radiateur est sensiblement maximal ,
-les moyens de pi lotage coopèrent avec les moyens d'acquisition d'informations pour déterminer la température de l'ai r situé sous le capot du véhicule de façon à mettre en marche les moyens de ventilation lorsque la température de l'air situé sous le capot est supérieure à un seui l déterminé
D'autres particularités et avantages apparaîtront à la lecture de la descri ption ci-après, faite en référence aux figures dans lesquelles
- la figure 1 représente schématiquement la structure et le fonctionnement d'un exemple de réalisation du dispositif de refroidissement selon l' invention,
- la figure 2 représente, sur un même graphique, un exemple de variation au court du temps t de la température T du l iquide de refroidissement et d'une première température seuil Ti ,
- la figure 3 représente la variation d'une température consigne Te en fonction du couple C du moteur du véhicule, à régime moteur constant,
- la figure 4 représente la variation du pourcentage d'ouverture de la vanne de radiateur en fonction de la température T du fluide de refroidissement,
- la figure 5 représente un exemple de variation de l' impulsion électrique I de commande de la vanne de radiateur en fonction de la température de l'air d'admission Ta du moteur, à couple, régime et vitesse du véhicule constants,
- la figure 6 représente l'état d'ouverture d'une vanne de by-pass en fonction de la température T du l iquide de refroidissement, - la figure 7 représente schématiquement un exemple de couplage de l'ouverture de la vanne de by-pass en fonction de l'ouverture de la vanne de radiateur,
- la figure 8 représente deux exemples de variation de la vitesse de rotation d'un groupe moto venti lateur, en fonction de la variation de la température T du liquide de refroidissement.
La figure 1 représente un exemple de réal isation préféré d'un dispositif de refroidissement selon l'invention. Le dispositif de refroidissement comporte un circuit hydraulique 2 contenant un fluide caloporteur de refroidissement.
Une pompe 3 hydraulique est associée au circuit 2 , pour assurer la circulation du fluide à travers le moteur 1 et différentes branches 4, 5, 6, 7, 8, 44 du circuit 2. De préférence, la pompe 3 est une pompe de type mécanique, cependant, l'emploi d'une pompe électrique peut également être envisagé.
Les branches 4, 5, 6, 7, 8, 44 du circuit 2 sont alimentées en l iquide de refroidissement à partir d'un boîtier 122, ou "Boîtier de Sortie d'Eau" (BSE). Le boîtier 122, qui est fixé au moteur 1 , et de préférence à la culasse du moteur 1 , assure la collecte du l iquide de refroidissement ayant circulé dans le moteur 1 . Le liquide de refroidissement ayant circulé dans les branches est récupéré quant à lui par un col lecteur d'entrée d'eau 23 avant sa recirculation dans le moteur 1 .
Avantageusement, au moins certaines des branches 4, 5, 6, 7, 8, 44 du circuit 2 sont munies d'actionneurs pi lotés électroniquement respectifs 14, 15, 16, 17, 18, 29 de régulation de la circulation du fluide dans cel les-ci. Les actionneurs pi lotés électroniquement peuvent être, par exemple, des électrovannes ou des vannes thermostatiques pilotées électriquement, c'est-à-dire des thermostats pilotés. Par ailleurs, le dispositif comporte des moyens 22 d'acquisition d' informations relatives aux conditions de fonctionnement du véhicule. Les moyens 22 d'acquisition sont raccordés à des moyens 1 9 de pi lotage du fonctionnement d'au moins une partie des actionneurs 14, 1 5, 16, 17, 1 8, 29, pour réguler le volume et le débit de fluide en circulation dans le circuit hydraulique 2 afin d'optimiser le fonctionnement du moteur.
Les moyens de pilotage 1 9 ou unité de traitement d'information peuvent comporter tout calculateur 20 approprié, tel que, par exemple, un "Boîtier de Servitude Intelligent" (BSI) de type connu. Le calculateur 20 est associé à des moyens de stockage d' information 21 comportant, par exemple, une mémoire programmable et/ou une mémoire à lecture seule. Le calculateur 20 est également relié à des moyens 22 d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule, comportant, par exemple, divers capteurs ou d'autres calculateurs tel qu'un calculateur de pilotage du moteur.
De préférence, les moyens 22 d'acquisition d' informations sont aptes à déterminer au moins l'un des paramètres suivants : le régime du moteur, le couple du moteur, la vitesse du véhicule, la température de l'huile de lubrification du moteur, la température du liquide de refroidissement du moteur, la température des gaz d'échappement du moteur, la température de l'air extérieur au véhicule et la température à l' intérieur de l'habitacle. Les différentes informations relatives aux conditions de fonctionnement du véhicule sont traitées et analysées par le calculateur 20, pour piloter le fonctionnement des actionneurs 14, 1 5, 16, 1 7, 1 8, 29 et éventuel lement celui de la pompe 3.
Selon l' invention, le débit ou volume de l iquide de refroidissement admis ou non à circuler dans les différentes branches 4, 5, 6, 7, 8, 44 du circuit 2 est fonction de Tétat d'échauffement du moteur 1 . Par exemple, il est possible de définir trois états du moteur 1 , un premier état dans lequel le moteur est dit "froid", un second dans lequel le moteur 1 est dit "chaud", et un troisième état dit "intermédiaire" entre les états chaud et froid. De préférence, l'état thermique du moteur 1 est caractérisé en fonction de la température T du l iquide de refroidissement, de préférence à la sortie du moteur 1 . Ainsi, lorsque la température du liquide de refroidissement est inférieure à une première température seuil Ti détermi née, l'état du moteur 1 est dit froid. De même, lorsque la température T du l iquide de refroidissement est supérieure à une seconde température seui l T2 déterminée, l'état du moteur 1 est dit chaud. Enfin, lorsque la température du liquide de refroidissement est comprise entre les première Ti et seconde T2 températures seui l , l'état du moteur 1 est dit intermédiaire.
La première Ti et/ou la seconde T2 température seuil peuvent être des valeurs fixes ou variables déterminées en fonction du type du moteur 1 . De préférence, la première Ti et/ou la seconde T2 température seuil sont des variables en fonction du type du moteur 1 et d'au moins un paramètre de fonctionnement du moteur 1 . Par exemple, les première Ti et/ou seconde T2 températures seuil sont des fonctions de la puissance moyenne Pm fournie par le moteur 1 . C'est-à-dire que les moyens de pilotage 1 9 coopèrent avec les moyens 22 d'acquisition, pour calculer la puissance moyenne instantanée Pm fournie par le moteur 1 .
Les moyens de pilotage 19 calculent ensuite la première T-, et/ou la seconde T2 température seuil, en fonction de la puissance moyenne Pm instantanée et d'une modélisation déterminée du fonctionnement du moteur 1 . La modélisation du moteur définit les états froid, chaud et intermédiaire (première T^t seconde T2 températures seuil) en fonction de la puissance moyenne Pm fournie par ce dernier.
La puissance instantanée P(t) en kiloWatt (kW) fournie par le moteur à l' instant t est donnée par la relation suivante :
2JΓ.N.C
P(t) = ; dans laquel le N est le régime instantané du
60x1000 moteur en tour/min, et C le couple instantané du moteur en
N . m. Les valeurs du régime N et du couple C peuvent être mesurées par les moyens 22 d'acquisition de données, c'est-à- dire par des capteurs appropriés. Classiquement, le régime N du moteur est compris entre 0 et 6000 tr/min. envi ron, tandis que le couple C est compris entre 0 et 350 N . m. envi ron.
Les moyens de p i lotage 1 9 calculent ensuite la puissance P(t) fournie par le moteur à l'instant t et la puissance moyenne Pm(t) fournie par le moteur à l'instant t. La puissance moyenne Pm(t) à l'instant t peut être calculée par la relation suivante :
_ ... (t - l)xPm(t -l) + Pm(t) , . , . n ,, „ . , ,
Pm(t) = — , dans laquelle Pm(t-1 ) est la puissance moyenne à l' instant (t-1 ). Bien entendu, la puissance moyenne peut être calculée par tout autre formule équiva ,len .te, . te ,l .le que : n Pm( /*t\) = c.Pm(t - l) -r- AP( —t) , d ,ans l .aque .l .le c + k Pm(t-1 ) est la puissance moyenne à l' instant (t-1 ), P(t) la puissance instantanée à l' instant t, et c et k des coefficients pondérateurs.
Le calculateur 1 9 et/ou les moyens 21 de stockage d'information 21 peuvent contenir la modél isation du fonctionnement du moteur 1 , définissant son état froid, chaud et intermédiaire (première Ti et seconde températures seui l T2) en fonction puissance moyenne Pm. C'est-à-dire que pour un type de moteur donné, on établ it empiriquement et/ou par calcul des tables de correspondance donnant les températures seuil Ti et T2 en fonction de la puissance moyenne Pm du moteur 1 . Ces tables ou modélisations, qui sont fonction du type de moteur, sont par exemple des fonctions polynomiales. La première température seuil Ti est ainsi, en général, une fonction décroissante de la puissance moyenne.
La première température seui l Ji peut varier entre 20 et 60 degrés environ, et de préférence entre 30 et 50 degrés. La seconde température seuil T2 peut varier quant à el le entre 60 et 100 degrés environ . Cependant, la seconde température seui l T2 est en général sensiblement constante autour de la valeur de 80 degrés.
Ainsi , les moyens de pilotage 19 coopèrent avec les moyens 22 d'acquisition de données, pour comparer la température T du l iquide de refroidissement avec les deux températures seui l Ti et T2.
Par soucis de simpl ification, la valeur de la première température seuil Ti peut être figée par les moyens 1 9 de pilotage dès que la température T mesurée du l iquide de refroidissement atteint la première température seuil TL En effet, la figure 2 i llustre, sur un même graphique, un exemple de variation au court du temps t : de la température T du l iquide de refroidissement, et de la première température seui l Tι (Pm) qui est fonction de la puissance moyenne. En déterminant ces températures T et Ti (Pm), on constate que, pour une puissance moyenne donnée, à partir du moment où la température T du fluide atteint la première valeur seui l T1 , cette première température seui l Ti varie peu autour d'une constante T-,f.
En se référant à la figure 1 , le circuit comprend une branche 4 munie d'un actionneur pi loté électroniquement 14 et pourvue de moyens 9 formant radiateur. Les moyens 9 radiateur peuvent être couplés à un groupe moto venti lateur 30, qui peut lui aussi être commandé par les moyens de pilotage 19.
Selon l' invention, les moyens 22 d'acquisition d'informations déterminent la température T du fluide de refroidissement, de façon que, lorsque cel le-ci est supérieure à la seconde température seuil T2, les moyens de pilotage 19 régulent le débit dans la branche 4 de radiateur de façon à maintenir la température T du liquide de refroidissement autour d'une valeur consigne Te déterminée.
La température consigne Te est la température du liquide de refroidissement assurant un fonctionnement optimal du moteur 1 . Cette température consigne Te est définie, par exemple, par une modélisation du moteur concerné. La température consigne Te est comprise, par exemple, entre 60 et 120 degrés, et de préférence entre 80 et 100 degrés environ. De préférence, les moyens 1 9 de pi lotage coopèrent avec les moyens 22 d'acquisition d' informations pour déterminer la température consigne Te en fonction du rég ime N et/ou du couple C du moteur 1 .
De préférence, la température consigne Te est décroissante lorsque le couple C du moteur 1 augmente. De même, la température consigne Te est décroissante lorsque le régime N du moteur 1 augmente.
La figure 3 i llustre un exemple de courbe représentative de la variation de la température consigne Te en fonction du couple C du moteur, à régime N constant. La température consigne Te décrit sensiblement un tronçon d'une courbe du type Te = A1 +(A2/Cn), dans lequel Te est la température consigne, A1 et A2 des constantes, C le couple, et n un entier supérieur ou égal à un. Plus précisément, pour un régime N maximal Nmax de l'ordre, lorsque le couple C est inférieur ou égal à la moitié du couple maximal, la température consigne Te est sensiblement égale à 1 00 degrés. Par ai lleurs, lorsque le couple C tend vers le couple maximal , la température consigne Te tend vers 80 degrés environ.
De la même façon, la courbe représentative de la variation de la température consigne Te en fonction du couple C à régime N constant, peut avoir une allure générale comparable à cel le de la courbe de la figure 3.
L'actionneur 14 de la branche 4 de radiateur peut être constitué d'une vanne thermostatique apte à être pilotée électroniquement. Classiquement, la vanne 14 peut contenir un élément apte à se dilater ou à se rétracter, pour réguler le degré d'ouverture de la vanne en fonction de sa température. De plus, l'élément apte à se dilater peut être également chauffé électriquement pour commander en temps réel l'ouverture et la fermeture de la vanne.
La figure 4 représente deux exemples de variation du pourcentage d'ouverture %O de la vanne thermostatique 14 de radiateur en fonction de la température T du fluide de refroidissement.
Plus précisément, la figure 4 illustre deux exemples de régulation de la température T du liquide de refroidissement autour respectivement de deux températures consignes Tel , Tc2 distinctes. Ainsi , la courbe d'ouverture O de la vanne thermostatique 14 présente une première hystérésis h1 autour de la première température consigne Tel et une seconde hystérésis h2 autour de la seconde température consigne Tc2. L'enchaînement des phases de fermeture F 1 , d'ouverture progressive F2, d'ouverture F3, et de fermeture progressive F4 de la vanne 14 est symbol isées par des flèches.
La première température consigne Tel peut correspondre, par exemple, à une phase de forte sollicitation du moteur, tandis que la seconde température consigne Tc2, qui est plus élevée, peut correspondre à une sollicitation plus faible du moteur.
Bien entendu, l' invention n'est pas limitée au mode de réalisation préféré décrit ci-dessus. Ainsi, l'actionneur 14 de la branche 4 de radiateur peut être constitué d'une vanne proportionnelle pilotée électroniquement.
Dans ce cas, lorsque la température T du fluide de refroidissement est supérieure à la température consigne Te d'un écart dT déterminé de l'ordre, par exemple, de 3 degrés, les moyens de pilotage 19 peuvent augmenter l'ouverture de la vanne 14 proportionnelle. De même, lorsque la température T du fluide de refroidissement devient inférieure à la température consigne Te d'un écart dT déterminé de l'ordre, par exemple, de 3 degrés, les moyens de pilotage 1 9 peuvent diminuer l'ouverture de la vanne 14 proportionnelle.
Avantageusement, les moyens 19 de pilotage peuvent coopérer avec les moyens 22 d'acquisition d'informations, pour déterminer la température Ta de l'air d'admission du moteur 1 et augmenter le débit du fluide de refroidissement dans la branche 4 de radiateur lorsque la température Ta de l'air d'admission du moteur 1 augment au-delà d'un premier seui l S 1 déterminé.
Par ailleurs, les moyens 19 de pilotage peuvent assurer un débit maximal dans la branche 4 de radiateur lorsque la température Ta de l'air d'admission du moteur 1 atteint un second seuil S2 déterminé. Les premier S1 et second S2 seuils de température pour l'air d'admission peuvent être de l'ordre respectivement de 40 degrés et 60 degrés.
La figure 5 représente un exemple de variation de l' impulsion ou intensité électrique I de commande de la vanne
14 de radiateur, en fonction de la température Ta de l'air d'admission du moteur, à régime N , couple C et vitesse du véhicule constants.
En se référant à la figure 5, 11 désigne l' impulsion électrique délivrée à l'actionneur 14 (électrovanne proportionnelle ou thermovanne) pour une température consigne Tel donnée. Cette impulsion électrique 11 , qui est comprise entre 0 et 100% de l'impulsion maximale, définit une ouverture partiel le déterminée de l'actionneur 14. Lorsque la température Ta de l'air d'admission tend vers le premier seui l S 1 , l'impulsion électrique I délivrée à l'actionneur 14 tend vers 11 .
Lorsque la température Ta de l'air d'admission tend vers le second seui l S2, l' impulsion électrique I délivrée à l'actionneur 14 augmente et tend vers la l'impulsion maximale ( 1 00%), c'est-à-dire vers une ouverture totale de la vanne 14. Cela signifie que, pour une température consigne Te donnée définissant un débit donné dans la branche 4 de radiateur, l'augmentation de la température Ta d'admission peut générer une augmentation de débit, même lorsque la température consigne Te ne varie pas.
De la même façon, les moyens 19 de pi lotage peuvent coopérer avec les moyens 22 d'acquisition d'informations pour déterminer la vitesse du véhicule, de façon à augmenter le débit dans lad ite branche 4 lorsque la vitesse du véhicule augment au-delà d'un premier seui l déterminé.
De même, les moyens 19 de pi lotage peuvent assurer un débit maximal dans la branche 4 de radiateur lorsque la vitesse du véhicule atteint un second seui l déterminé.
La courbe de variation de l' impulsion ou intensité électrique I de commande de la vanne 14 de radiateur en fonction de vitesse du véhicule peut avoir une allure générale semblable à celle de la courbe de la figure 5.
Les premier et second seuils de vitesse du véhicule peuvent être de l'ordre respectivement de la moitié de la vitesse maximale autorisée et la vitesse maximale.
Comme illustré à la figure 1 , le circuit 2 comporte une autre branche 5 munie d'un actionneur piloté électroniquement 1 5 et associée à des moyens 10 formant retour direct de fluide ou by-pass. Les moyens 1 9 de pi lotage peuvent réguler la circulation du fluide de refroidissement dans la branche 5 de by-pass en fonction de la température T de ce fluide. En particulier, la quantité de fluide admise à circuler dans la branche 5 by-pass augmente lorsque la température du fluide croît de la première Ti vers la seconde température seuil T2. De préférence, l'actionneur pi loté électroniquement 15 de la branche 5 by-pass est du type proportionnel .
Comme représenté à la figure 6, lorsque la température T du fluide est inférieure à la première température seuil Ti , les moyens de pilotage 19 peuvent limiter à un débit de fuite déterminé la circulation de fluide dans la branche 5 by-pass. C'est à dire que l'actionneur 1 5 de la branche 5 by-pass est partiel lement ouvert Of. Par exemple, l'ouverture partielle Of de l'actionneur 1 5 peut assurer un débit de fuite dans la branche 5 by-pass compris entre 1 /50è e à 1 /5eme environ du débit maximal de la branche 5.
Lorsque la température du fluide est supérieure à la seconde température seui l T2, les moyens de pilotage 19 commandent au moins temporairement l'ouverture totale O de l'actionneur 1 5 de by-pass (figure 6) . Par ai lleurs, lorsque la température du fluide est comprise entre les première Ti et seconde températures seuil T2, le degré d'ouverture de l'actionneur 15 peut être au moins temporairement proportionnel à la température T du fluide de refroidissement. Plus précisément, entre 1^ et T2, l'ouverture de l'actionneur 1 5 de by-pass croît lorsque la température T du fluide croît et diminue lorsque la température T du fluide diminue. La variation de l'ouverture de l'actionneur 15 peut être proportionnel le à la température du fluide T.
Avantageusement, la courbe représentative de l'ouverture de l'actionneur 15 en fonction de la température T du fluide peut présenter une hystérésis H . C'est-à-dire que, l'augmentation de l'ouverture de l'actionneur 1 5 commence après que la température du l iquide T excède la première température de référence Ti d'une première valeur E déterminée. De même, la diminution de l'ouverture de l'actionneur 15 commence après que la température T du liquide devient inférieure, d'une première valeur E déterminée, à la seconde température de référence T2. C'est-à-dire que les ouvertures et fermetures de l'actionneur 1 5 sont réalisées de façon décalée par rapport respectivement aux seuils de températures Ti et T2. Les valeurs E de ces décalages sont par, exemple, de l'ordre de 5 degrés.
Avantageusement, lorsque la température T du fluide est supérieure à la seconde température seuil T2, les moyens de pilotage 19 peuvent commander l'actionneur 15 de la branche
5 by-pass en fonction de l'ouverture et la fermeture de l'actionneur 14 de la branche 4 radiateur.
La figure 7 il lustre le pourcentage d'ouverture %O des actionneurs 1 5, 14 des branches 5 de by-pass et de radiateur
4 en fonction de la température T du liquide de refroidissement. Comme représenté à la figure 7, les moyens de pilotage 1 9 peuvent fermer F l'actionneur 15 de la branche
5 by-pass lorsque l'actionneur 14 de la branche 4 radiateur est ouvert O. De même, l'actionneur 15 de la branche 5 by-pass est ouvert O lorsque l'actionneur 14 de la branche 4 radiateur est fermé F. De préférence, l'ouverture de l'actionneur 1 5 de la branche 5 by-pass est inversement proportionnelle à l'ouverture de l'actionneur 14 de la branche 4 radiateur.
Par ai l leurs, les fermetures et ouvertures de l'actionneur 1 5 de la branche 5 by-pass peuvent être réalisées avec un décalage de température R déterminé par rapport aux ouvertures et fermetures de l'actionneur 14 de la branche 4 radiateur. Le décalage de température R peut être de l'ordre de quelques degrés, par exemple cinq degrés.
Comme représenté à la figure 8, les moyens de pi lotage 1 9 peuvent commander les moyens 30 de ventilation en fonction de la température du liquide de refroidissement. Plus précisément, la vitesse de rotation des moyens 30 de ventilation peut augmenter lorsque la température T du liquide de refroidissement croît.
De préférence, la vitesse V de rotation des moyens 30 de venti lation augmente proportionnellement à la vitesse de
HT variation de la température du liquide de refroidissement — . dt
La figure 8 illustre deux exemples de droites d 1 et d2 représentant la vitesse de rotation du groupe moto ventilateur en fonction de la température T du liquide. Les deux droites d1 et d2 ont des pentes différentes représentatives chacune d'une vitesse de variation — de la température T du liquide de dt refroidissement. La vitesse de variation — de la température dt
T du liquide de refroidissement peut être calculée par les moyens 1 9 de pi lotage.
De préférence, les moyens 30 de ventilation sont mis en marche lorsque la température T du fluide de refroidissement est supérieure à la température consigne Te et que le débit du liquide de refroidissement dans la branche 4 radiateur est sensiblement maximal . De même, les moyens 1 9 de pi lotage peuvent coopérer avec les moyens 22 d'acquisition d'informations pour déterminer la température de l'air situé sous le capot du véhicule, de façon à mettre en marche les moyens 30 de ventilation lorsque la température de l'air situé sous le capot est supérieure à un seui l déterminé.
Avantageusement, les moyens 22 d'acquisition d' informations peuvent être conformés pour détecter une éventuelle défai llance d'au moins un des actionneurs pilotés électroniquement. De cette façon, lorsqu'au moins une défaillance d'un actionneur est détectée et quelle que soit la température du fluide , les moyens de pilotage 1 9 peuvent assurer la circulation l ibre du fluide dans au moins certaines des branches, et de préférence dans toutes les branches. C'est-à-dire que, lorsqu'une défaillance du système est détectée, toutes les vannes du circuit 2 sont ouvertes.
On conçoit donc aisément que le dispositif de refroidissement selon l'invention, tout en étant de structure simple, permet de gérer en temps réel et de manière optimum les échanges de chaleur.
Enfin, bien que l' invention ait été décrite en liaison avec des modes de réal isation particuliers, elle comprend tous les équivalents techniques des moyens décrits.

Claims

REVENDICATIONS
1 . Procédé de refroidissement d'un moteur de véhicule automobi le, consistant à réguler le volume et le débit d'un fluide caloporteur de refroidissement dans un circuit hydraul ique (2) pourvu d'une branche (4) munie d' un actionneur ( 14) pi loté électroniquement et pourvue de moyens (9) formant radiateur, le procédé comportant une première étape de détermination de la température (T) du fluide de refroidissement, une étape de comparaison de cette température avec une température seui l (T2) déterminée à partir de laquel le le moteur ( 1 ) est dit "chaud", et, lorsque la température (T) du fluide est supérieure à la température seuil (T2), le débit dans la branche (4) de radiateur est régulé de façon à maintenir la température (T) du liquide de refroidissement autour d'une valeur consigne (Te) déterminée, caractérisé en ce que la courbe représentative de l'ouverture (O) de la vanne thermostatique (4) en fonction de la température (T) du fluide de refroidissement présente une hystérésis (h 1 , h2) autour de la température consigne (Tel , Tc2), de façon à réguler la température (T) du liquide de refroidissement à ladite température consigne (Tel , Tc2).
2. Dispositif de refroidissement d'un moteur de véhicule automobile, du type comportant un circu it hydraulique (2) de fluide caloporteur, associé à une pompe (3) de circulation de celui-ci à travers le moteur ( 1 ) du véh icule et différentes branches (4, 5, 6, 7, 8, 44) du circuit, dans lesquelles sont disposés des équipements thermiques (9, 1 0, 11 , 12, 13, 140, 150, 160) du véhicule, au moins certaines des branches (4, 5, 6, 7, 8, 44) du circuit (2) étant munies d'actionneurs pilotés électroniquement (14, 1 5, 16, 17, 1 8, 29) de régulation de la circulation du fluide dans celles-ci , le dispositif comportant des moyens (22) d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule, raccordés à des moyens ( 1 9) de pilotage du fonctionnement des actionneurs ( 14, 1 5, 16, 1 7, 1 8, 29), pour réguler le volume et le débit de fluide en circulation dans le circuit hydraulique (2) afin d'optimiser le fonctionnement du moteur (1 ) , le circuit (2) comportant une branche (4) munie d'un actionneur (14) piloté électroniquement et pourvue de moyens (9) formant radiateur, les moyens (22) d'acquisition d' informations étant aptes à déterminer la température (T) du fluide de refroidissement, de façon que, lorsque la température (T) du fluide est supérieure à une température seuil (T2) déterminée à partir de laquelle le moteur ( 1 ) est dit "chaud", les moyens de pi lotage ( 1 9) régulent le débit dans la branche (4) de radiateur de façon à maintenir la température (T) du l iquide de refroidissement autour d'une valeur consigne (Te) déterminée, caractérisé en ce que l'actionneur ( 14) de la branche (4) de radiateur est constitué d'une vanne thermostatique apte à être pilotée électroniquement, et en ce que la courbe représentative de l'ouverture (O) de la vanne thermostatique (4) en fonction de la température (T) du fluide de refroidissement présente une hystérésis (h1 , h2) autour de la température consigne (Tel , Tc2), de façon à réguler la température (T) du liquide de refroidissement à ladite température consigne (Tel , Tc2).
3. Dispositif selon la revendication 2, caractérisé en ce que la température consigne (Te) est comprise entre 60 et 120 degrés environ.
4. Dispositif selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que les moyens ( 19) de pilotage coopèrent avec les moyens (22) d'acquisition d' informations, pour déterminer la température (Ta) de l'air d'admission du moteur (1 ), de façon à augmenter le débit dans ladite branche (4) lorsque la température (Ta) de l'air d'admission du moteur ( 1 ) augment au-delà d'un premier seuil (S 1 ) déterminé.
5. Dispositif selon la revendication 4, caractérisé en ce que les moyens ( 19) de pilotage augmentent le débit dans la branche (4) de radiateur lorsque la température (Ta) de l'air d'admission du moteur ( 1 ) croît, de façon à assurer un débit maximal dans la branche (4) lorsque la température (Ta) de l'air d'admission du moteur ( 1 ) atteint un second seuil (S2) déterminé.
6. Dispositif selon Tune quelconque des revendications 2 à 5, caractérisé en ce que les moyens ( 19) de pilotage coopèrent avec les moyens (22) d'acquisition d'informations, pour déterminer la vitesse du véhicule, de façon à augmenter le débit dans ladite branche (4) lorsque la vitesse du véhicule augmente au-delà d'un premier seuil déterminé.
7. Dispositif selon la revendication 6, caractérisé en ce que les moyens ( 19) de pilotage augmentent le débit dans la branche (4) de radiateur lorsque la vitesse du véhicule croît, de façon à assurer un débit maximal dans la branche (4) lorsque la vitesse du véhicule atteint un second seuil déterminé.
8. Dispositif selon Tune quelconque des revendications 2 à 7, caractérisé en ce qu' i l comporte des moyens (30) de venti lation, ou "Groupe Moto Ventilateur", aptes à coopérer avec les moyens (9) formant radiateur, les moyens de pilotage (19) assurant la commande des moyens (30) de ventilation en fonction de la température (T) du liquide de refroidissement, de façon que la vitesse (V) de rotation des moyens (30) de ventilation augmente lorsque la température (T) du fluide de refroidissement croît.
9. Dispositif selon la revendication 8, caractérisé en ce que l'augmentation de la vitesse (V) de rotation des moyens (30)
HT de ventilation est commandée en fonction de la vitesse ( — ) dt de variation de la température (T) du liquide de refroidissement.
10. Dispositif selon la revendication 9, caractérisé en ce que la vitesse de rotation des moyens (30) de ventilation en fonction de la température (T) du liquide de refroidissement décrit une droite dont la pente est proportionnelle à la vitesse
H
( — ) de variation de la température du l iquide de dt refroidissement.
1 1 . Dispositif selon Tune quelconque des revendications 8 à 1 0, caractérisé en ce que les moyens (30) de ventilation sont mis en marche lorsque la température (T) du fluide de refroidissement est supérieure à la température consigne (Te) et que le débit du l iquide de refroidissement dans la branche (4) radiateur est sensiblement maximal .
12. Dispositif selon Tune quelconque des revend ications 8 à 11 , caractérisé en ce que les moyens ( 19) de pilotage coopèrent avec les moyens (22) d'acquisition d' informations pour déterminer la température de Tair situé sous le capot du véhicule de façon à mettre en marche les moyens (30) de ventilation lorsque la température de Tair situé sous le capot est supérieure à un seui l déterminé.
PCT/FR2001/000238 2000-03-17 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile WO2001069056A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01907697A EP1264086B1 (fr) 2000-03-17 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile
DE60123587T DE60123587T2 (de) 2000-03-17 2001-01-25 Verfahren und einrichtung zur kühlung einer brennkraftmaschine eines kraftfahrzeugs
JP2001567912A JP4606683B2 (ja) 2000-03-17 2001-01-25 車両用エンジンの冷却方法と装置
US10/221,153 US6880495B2 (en) 2000-03-17 2001-01-25 Method and device for cooling a motor vehicle engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0003436A FR2806444B1 (fr) 2000-03-17 2000-03-17 Dispositif de refroidissement d'un moteur de vehicule automobile
FR00/03436 2000-03-17

Publications (1)

Publication Number Publication Date
WO2001069056A1 true WO2001069056A1 (fr) 2001-09-20

Family

ID=8848203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000238 WO2001069056A1 (fr) 2000-03-17 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile

Country Status (7)

Country Link
US (1) US6880495B2 (fr)
EP (1) EP1264086B1 (fr)
JP (1) JP4606683B2 (fr)
DE (1) DE60123587T2 (fr)
ES (1) ES2273806T3 (fr)
FR (1) FR2806444B1 (fr)
WO (1) WO2001069056A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306871A1 (en) * 2016-04-26 2017-10-26 Honeywell International Inc. Condition-based powertrain control system
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10309287B2 (en) 2016-11-29 2019-06-04 Garrett Transportation I Inc. Inferential sensor
US10423131B2 (en) 2015-07-31 2019-09-24 Garrett Transportation I Inc. Quadratic program solver for MPC using variable ordering
US10621291B2 (en) 2015-02-16 2020-04-14 Garrett Transportation I Inc. Approach for aftertreatment system modeling and model identification
US10728249B2 (en) 2016-04-26 2020-07-28 Garrett Transporation I Inc. Approach for securing a vehicle access port
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
WO2022156267A1 (fr) * 2021-01-20 2022-07-28 中车株洲电力机车有限公司 Train de rails, système de dissipation de chaleur de train de rails et procédé de dissipation de chaleur associé

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867395B2 (en) * 2002-10-22 2005-03-15 General Motors Corporation Variable flow thermostat and method for variably controlling engine temperature
JP2004353602A (ja) * 2003-05-30 2004-12-16 Nippon Thermostat Co Ltd 電子制御サーモスタットの制御方法
CA2474415A1 (fr) * 2004-07-15 2006-01-15 Gerald Hayes Refroidisseur auxiliere pour un moteur situe dans un building
US7725238B2 (en) * 2004-11-19 2010-05-25 Perkins Michael T System and method for smart system control for flowing fluid conditioners
FR2896271B1 (fr) * 2006-01-19 2012-08-17 Renault Sas Procede et dispositif de regulation de la temperature d'un moteur a combustion interne
DE102009012534A1 (de) * 2009-03-10 2010-09-16 Audi Ag Selbstregelndes Thermostatventil sowie Kühlsystem für ein Brennkraftmaschine
US8215283B2 (en) * 2009-04-06 2012-07-10 Honda Motor Co., Ltd. Cooling system for variable cylinder engines
US8303465B2 (en) * 2009-10-30 2012-11-06 Ford Global Technologies, Llc Method for controlling engine temperature of an engine
US8948946B2 (en) * 2012-11-29 2015-02-03 GM Global Technology Operations LLC Hybrid thermal system with device-specific control logic
US10040335B2 (en) * 2016-03-24 2018-08-07 GM Global Technology Operations LLC Thermal management system for a vehicle, and a method of controlling the same
KR102371255B1 (ko) * 2017-10-17 2022-03-04 현대자동차 주식회사 냉각수 제어 밸브유닛의 제어방법
CN115962040A (zh) * 2023-02-02 2023-04-14 重庆赛力斯新能源汽车设计院有限公司 一种发动机冷却控制方法、系统、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033261A1 (de) * 1990-10-19 1992-04-23 Freudenberg Carl Fa Verbrennungskraftmaschine
EP0499071A1 (fr) * 1991-02-11 1992-08-19 Behr GmbH & Co. Système de refroidissement pour un moteur à combustion interne d'un véhicule
DE4109498A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Vorrichtung und verfahren zur regelung der temperatur einer brennkraftmaschine
EP0557113A2 (fr) 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Système de refroidissement pour moteur
US5529025A (en) * 1993-07-19 1996-06-25 Bayerische Motoren Werke Ag Cooling system for an internal-combustion engine of a motor vehicle comprising a thermostatic valve which contains an electrically heatable expansion element
EP0893581A2 (fr) * 1997-07-23 1999-01-27 UNITECH Aktiengesellschsft Vanne à voies multiples

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2456838A1 (fr) * 1979-05-18 1980-12-12 Sev Marchal Vanne a action thermostatique destinee a un circuit de refroidissement de moteur a combustion interne
JPS58124017A (ja) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd エンジンの冷却系制御装置
US4489680A (en) * 1984-01-23 1984-12-25 Borg-Warner Corporation Engine temperature control system
US4930455A (en) 1986-07-07 1990-06-05 Eaton Corporation Controlling engine coolant flow and valve assembly therefor
DE3716555A1 (de) 1987-05-18 1988-12-08 Bayerische Motoren Werke Ag Befuell-, entlueftungs- und drucksteuer-vorrichtung fuer den fluessigkeits-kuehlkreis von kraft- und arbeitsmaschinen, insbesondere brennkraftmaschinen
US5241926A (en) 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
JPH0821241A (ja) * 1994-07-01 1996-01-23 Yamaha Motor Co Ltd エンジン駆動式ヒートポンプ装置
FR2722244B1 (fr) 1994-07-07 1996-08-23 Valeo Thermique Moteur Sa Dispositif de thermoregulation d'un moteur thermique
US5582138A (en) * 1995-03-17 1996-12-10 Standard-Thomson Corporation Electronically controlled engine cooling apparatus
DE19519377A1 (de) 1995-05-26 1996-11-28 Bayerische Motoren Werke Ag Kühlanlage mit elektrisch regelbarem Stellglied
DE19607638C1 (de) 1996-02-29 1997-06-19 Porsche Ag Kühlkreislauf einer Brennkraftmaschine
JP3675108B2 (ja) * 1996-06-24 2005-07-27 トヨタ自動車株式会社 水温センサの故障診断装置
US6182617B1 (en) * 1996-06-17 2001-02-06 Donald Bigcharles Apparatus for internal combustion engine
IT1291190B1 (it) * 1997-03-13 1998-12-29 Gate Spa Sistema di raffreddamento per un motore a combustione interna, particolarmente per autoveicoli
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
IT1293664B1 (it) * 1997-08-01 1999-03-08 C R F Societa Conosrtile Per A Sistema di raffreddamento per motore a combustione interna di autoveicolo
FR2776707B1 (fr) 1998-03-31 2000-10-06 Peugeot Systeme de gestion des echanges thermiques dans un vehicule automobile
US5950576A (en) 1998-06-30 1999-09-14 Siemens Canada Limited Proportional coolant valve
JP3552543B2 (ja) * 1998-07-29 2004-08-11 株式会社デンソー 液冷式内燃機関の冷却装置
US6055947A (en) * 1999-01-14 2000-05-02 Tosok Corporation Engine cooling water control system
DE19948160B4 (de) 1999-10-07 2010-07-15 Wilhelm Kuhn Kühlvorrichtung für eine flüssigkeitsgekühlte Brennkraftmaschine eines Kraftfahrzeuges
DE19960190A1 (de) * 1999-12-14 2001-07-05 Bosch Gmbh Robert Regelventil
US6739290B2 (en) * 2001-03-06 2004-05-25 Calsonic Kansei Corporation Cooling system for water-cooled internal combustion engine and control method applicable to cooling system therefor
JP2003003846A (ja) * 2001-06-21 2003-01-08 Aisan Ind Co Ltd エンジン冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033261A1 (de) * 1990-10-19 1992-04-23 Freudenberg Carl Fa Verbrennungskraftmaschine
EP0499071A1 (fr) * 1991-02-11 1992-08-19 Behr GmbH & Co. Système de refroidissement pour un moteur à combustion interne d'un véhicule
DE4109498A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Vorrichtung und verfahren zur regelung der temperatur einer brennkraftmaschine
EP0557113A2 (fr) 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Système de refroidissement pour moteur
US5529025A (en) * 1993-07-19 1996-06-25 Bayerische Motoren Werke Ag Cooling system for an internal-combustion engine of a motor vehicle comprising a thermostatic valve which contains an electrically heatable expansion element
EP0893581A2 (fr) * 1997-07-23 1999-01-27 UNITECH Aktiengesellschsft Vanne à voies multiples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BANZHAF M: "DER,,INTELLIGENTE KUEHLKREISLAUF: EIN NEUES KONZEPT FUER DIE MOTORKUEHLUNG", ATZ AUTOMOBILTECHNISCHE ZEITSCHRIFT,DE,FRANCKH'SCHE VERLAGSHANDLUNG. STUTTGART, vol. 95, no. 9, 1 September 1993 (1993-09-01), pages 4 - 6, XP000390503, ISSN: 0001-2785 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621291B2 (en) 2015-02-16 2020-04-14 Garrett Transportation I Inc. Approach for aftertreatment system modeling and model identification
US11687688B2 (en) 2015-02-16 2023-06-27 Garrett Transportation I Inc. Approach for aftertreatment system modeling and model identification
US11144017B2 (en) 2015-07-31 2021-10-12 Garrett Transportation I, Inc. Quadratic program solver for MPC using variable ordering
US10423131B2 (en) 2015-07-31 2019-09-24 Garrett Transportation I Inc. Quadratic program solver for MPC using variable ordering
US11687047B2 (en) 2015-07-31 2023-06-27 Garrett Transportation I Inc. Quadratic program solver for MPC using variable ordering
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US11180024B2 (en) 2015-08-05 2021-11-23 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10728249B2 (en) 2016-04-26 2020-07-28 Garrett Transporation I Inc. Approach for securing a vehicle access port
US20170306871A1 (en) * 2016-04-26 2017-10-26 Honeywell International Inc. Condition-based powertrain control system
US10036338B2 (en) * 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US10309287B2 (en) 2016-11-29 2019-06-04 Garrett Transportation I Inc. Inferential sensor
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
WO2022156267A1 (fr) * 2021-01-20 2022-07-28 中车株洲电力机车有限公司 Train de rails, système de dissipation de chaleur de train de rails et procédé de dissipation de chaleur associé

Also Published As

Publication number Publication date
EP1264086A1 (fr) 2002-12-11
JP4606683B2 (ja) 2011-01-05
FR2806444A1 (fr) 2001-09-21
US6880495B2 (en) 2005-04-19
EP1264086B1 (fr) 2006-10-04
ES2273806T3 (es) 2007-05-16
FR2806444B1 (fr) 2002-06-07
DE60123587D1 (de) 2006-11-16
DE60123587T2 (de) 2007-08-09
JP2003528241A (ja) 2003-09-24
US20030196612A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
EP1264086B1 (fr) Procede et dispositif de refroidissement d'un moteur de vehicule automobile
FR2843168A1 (fr) Procede de commande d'un circuit de refroidissement et de chauffage d'un vehicule automobile
EP1409856B1 (fr) Procede et dispositif de refroidissement d'un moteur de vehicule automobile
FR2806038A1 (fr) Dispositif de chauffage et/ou climatisation de l'habitacle d'un vehicule a moteur
FR2745033A1 (fr) Systeme de refroidissement pour un moteur a combustion interne
FR2531489A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne
FR2900197A1 (fr) Systeme et procede de controle de la temperature d'un moteur suralimente et comportant un circuit de recyclage de gaz d'echappement
EP1276976B1 (fr) Procede et dispositif de refroidissement d'un moteur de vehicule automobile
FR2796987A1 (fr) Dispositif de regulation du refroidissement d'un moteur thermique de vehicule automobile
FR2956158A1 (fr) Systeme multivoies de controle d'un circuit de refroidissement d'un moteur a combustion interne
EP0886724A1 (fr) Procede et installation de recuperation de chaleur dans de l'air de suralimentation d'un moteur
EP1268992B1 (fr) Procede et dispositif de refroidissement d'un moteur de vehicule automobile
EP2126308A1 (fr) Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile
EP1233157B1 (fr) Procédé et dispositif de refroidissement d'un moteur de véhicle automobile
WO2006070079A1 (fr) Systeme de gestion de l'energie thermique d'un moteur de véhicule automobile par la regulation des actionneurs des fluides de ce systeme
WO2008116992A1 (fr) Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile
EP3423690B1 (fr) Système de commande d'un moyen de régulation thermique d'un circuit de refroidissement d'un moteur d'un véhicule automobile et procédé de commande dudit système de commande
FR2804721A1 (fr) Dispositif de refroidissement d'un moteur de vehicule automobile
FR2799505A1 (fr) Systeme de refroidissement d'un moteur de vehicule automobile
FR3040739B1 (fr) Systeme de refroidissement pour un moteur a combustion interne, notamment de vehicule automobile
FR2910537A1 (fr) Dispositif et procede de regulation du debit de l'air envoye au travers d'un echangeur de chaleur pour moteur a combustion interne de vehicule automobile
FR2752016A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne
FR3084914A1 (fr) Circuit de refroidissement d'un groupe motopropulseur thermique ou hybride et procede de commande d'un tel circuit
FR3066537A1 (fr) Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie
FR2920825A3 (fr) Dispositif de refroidissement pour moteur a combustion interne regule a partir d'un circuit de recirculation controle par une vanne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567912

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001907697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001907697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10221153

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001907697

Country of ref document: EP