EP1268992B1 - Procede et dispositif de refroidissement d'un moteur de vehicule automobile - Google Patents

Procede et dispositif de refroidissement d'un moteur de vehicule automobile Download PDF

Info

Publication number
EP1268992B1
EP1268992B1 EP01907699A EP01907699A EP1268992B1 EP 1268992 B1 EP1268992 B1 EP 1268992B1 EP 01907699 A EP01907699 A EP 01907699A EP 01907699 A EP01907699 A EP 01907699A EP 1268992 B1 EP1268992 B1 EP 1268992B1
Authority
EP
European Patent Office
Prior art keywords
temperature
fluid
oil
branch
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01907699A
Other languages
German (de)
English (en)
Other versions
EP1268992A1 (fr
Inventor
Ludovic Tomasseli
Armel Le Lievre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1268992A1 publication Critical patent/EP1268992A1/fr
Application granted granted Critical
Publication of EP1268992B1 publication Critical patent/EP1268992B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/12Cabin temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/10Fuel manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed

Definitions

  • the invention relates to a method and a cooling device of a motor vehicle engine.
  • the invention more particularly relates to a cooling device comprising a hydraulic coolant coolant circuit, associated with a circulation pump thereof through the vehicle engine and different branches of the circuit.
  • Thermal equipment of the vehicle can be arranged in the different branches of the circuit.
  • the cooling systems are designed to ensure that the motors withstand the thermomechanical stresses resulting from combustion.
  • complementary functions are implemented in addition to the main cooling of the engine, to improve the overall efficiency or to offer and guarantee services to vehicle users, such as, for example, the heating of the passenger compartment.
  • the cooling systems are dimensioned from the operating points at maximum speed and full load of the engine and are therefore oversized in most cases of use of vehicles.
  • the operating parameters of the engine are not optimized, which results in a degradation of the performance of the latter, such as increased consumption, a high level of pollutant emission and a reduction in the thermal and acoustic comfort of the engine. vehicle.
  • the document US Pat. No. 5,215,044 describes a cooling system for an internal combustion engine vehicle comprising a plurality of cooling circuits associated with heat exchangers and comprising temperature probes connected to a switching device.
  • a The microprocessor determines the cooling power requirements of the different circuits according to the signals of the temperature sensors and individually influences the power of the exchangers concerned.
  • the system includes in particular an engine oil cooling circuit comprising a first heat exchanger in heat exchange with the air.
  • the engine cooling circuit can be connected to a second intermediate heat exchanger in the engine oil cooling circuit, by means of pipes with closable valves.
  • this system has a complex structure and uses a large number of measured state variables, without optimizing heat exchanges with the engine oil.
  • An object of the present invention is to provide a method of cooling a motor vehicle engine, overcoming all or part of the disadvantages of the prior art noted above.
  • the method comprises a step of determining the temperature of the cooling liquid, and a step of limiting or stopping the circulation of the fluid in the first branch of the circuit when the temperature of the fluid is lower than a first temperature. threshold determined.
  • Another object of the present invention is to provide a cooling device of a motor vehicle engine, overcoming all or part of the disadvantages of the prior art noted above.
  • FIG. 1 represents a preferred embodiment of a cooling device according to the invention.
  • the cooling device comprises a hydraulic circuit 2 containing a cooling heat transfer fluid.
  • a hydraulic pump 3 is associated with the circuit 2, to ensure the circulation of the fluid through the motor 1 and different branches 4, 5, 6, 7, 8, 44 of the circuit 2.
  • the pump 3 is a pump of the type mechanical, however, the use of an electric pump can also be considered.
  • the branches 4, 5, 6, 7, 8, 44 of the circuit 2 are supplied with cooling liquid from a housing 122, or "water outlet housing” (BSE).
  • BSE water outlet housing
  • the housing 122 which is fixed to the engine 1, and preferably to the cylinder head of the engine 1, collects the coolant having circulated in the engine 1.
  • the coolant circulating in the branches is recovered by a water inlet manifold 23 before its recirculation in the engine 1.
  • the branches 4, 5, 6, 7, 8, 44 of the circuit 2 are provided with respective electronically controlled actuators 14, 15, 16, 17, 18, 29 for regulating the circulation of the fluid in these this.
  • Electronically controlled actuators are, for example, solenoid valves.
  • the device comprises means 22 for acquiring information relating to the operating conditions of the vehicle.
  • the acquisition means 22 are connected to means 19 for controlling the operation of at least a portion of the actuators 14, 15, 16, 17, 18, 29 for regulating the volume and the flow rate of circulating fluid in the hydraulic circuit 2 in order to optimize the operation of the engine.
  • the control means 19 or information processing unit may comprise any appropriate computer 20, such as, for example, an "Intelligent Service Enclosure" (BSI) of known type.
  • the computer 20 is associated with information storage means 21 comprising, for example, a programmable memory and / or a read-only memory.
  • the computer 20 is also connected to means 22 for acquiring information relating to the operating conditions of the vehicle, comprising, for example, various sensors or other computers such as an engine control computer.
  • the information acquisition means 22 are able to determine at least one of the following parameters: the engine speed, the engine torque, the vehicle speed, the temperature of the engine lubricating oil , the engine coolant temperature, the engine exhaust temperature, the outside air temperature of the vehicle and the temperature inside the passenger compartment.
  • the various information relating to the operating conditions of the vehicle are processed and analyzed by the computer 20, to control the operation of the actuators 14, 15, 16, 17, 18, 29 and possibly that of the pump 3.
  • the flow rate or volume of coolant admitted or not to circulate in the different branches 4, 5, 6, 7, 8, 44 of the circuit 2 is a function of the heating state of the engine 1.
  • the thermal state of the engine 1 is characterized as a function of the temperature T of the coolant, preferably at the output of the engine 1.
  • T 1 a first threshold temperature
  • T 2 a second threshold temperature
  • the state of the engine 1 is said to be hot.
  • the state of the engine 1 is said intermediate.
  • the first T 1 and / or the second T 2 threshold temperature may be fixed or variable values determined according to the type of the engine 1.
  • the first T 1 and / or the second T 2 threshold temperature are variables depending of the type of the engine 1 and at least one operating parameter of the engine 1.
  • the first T 1 and / or the second T 2 threshold temperatures are functions of the average power P m supplied by the engine 1. that is, the control means 19 cooperate with the acquisition means 22 to calculate the instantaneous average power Pm supplied by the engine 1.
  • the control means 19 then calculate the first T 1 and / or the second T 2 threshold temperature, as a function of the instantaneous mean power Pm and a determined modeling of the operation of the engine 1.
  • the engine modeling defines the cold states, hot and intermediate (first T 1 and second T 2 threshold temperatures) depending on the average power Pm provided by the latter.
  • the values of the speed N and the torque C can be measured by the data acquisition means 22, that is to say -say by appropriate sensors.
  • the engine speed N is between 0 and 6000 rpm. approximately, while the torque C is between 0 and 350 Nm approximately.
  • the control means 19 then calculate the power P (t) supplied by the engine at time t and the average power Pm (t) supplied by the engine at time t.
  • Pm ( t - 1 ) + k P ( t ) vs + k Pm (t-1) is the mean power at time (t-1)
  • P (t) is the instantaneous power at time t
  • c and k are weighting coefficients.
  • the computer 19 and / or the information storage means 21 may contain the modeling of the operation of the engine 1, defining its cold, hot and intermediate state (first T 1 and second threshold temperatures T 2 ) as a function of the average power Pm. That is to say that for a given type of engine, one establishes empirically and / or by calculation of the tables of correspondence giving the threshold temperatures T 1 and T 2 according to the average power Pm of the engine 1. These tables or modelizations, which depend on the type of motor, are for example polynomial functions.
  • the first threshold temperature T 1 is thus, in general, a decreasing function of the average power.
  • the first threshold temperature T 1 can vary between about 20 and 60 degrees, and preferably between 30 and 50 degrees.
  • the second threshold temperature T 2 may vary for its part between 60 and 100 degrees approximately. However, the second threshold temperature T 2 is generally substantially constant around the value of 80 degrees.
  • control means 19 cooperate with the data acquisition means 22 to compare the temperature T of the coolant with the two threshold temperatures T 1 and T 2 .
  • the value of the first threshold temperature T 1 can be fixed by the control means 19 as soon as the measured temperature T of the coolant reaches the first threshold temperature T 1 .
  • FIG. 3 illustrates, on the same graph, an example of variation over time t: of the temperature T of the coolant, and of the first threshold temperature T 1 (Pm), which is a function of the average power .
  • the circuit 2 comprises a first branch 8 provided with a first electronically controlled actuator 18 and in which is disposed a water / oil exchanger 13.
  • the first actuator 18 is of the " all or nothing".
  • the control means 19 cooperate with the acquisition means 22 to control the opening or closing of the first actuator 18, so as to accelerate the rate of temperature rise of the oil and, on the other hand, on the other hand, to regulate the temperature of the oil around a determined reference temperature Tr.
  • the control means 19 limit, and preferably stop, the circulation of the fluid in the first branch 8 .
  • the control means 19 regulate the temperature of the oil around the reference temperature Tr.
  • the reference temperature Tr of the oil corresponds to the optimum operating temperature of the oil.
  • the reference temperature Tr which depends on the type of oil, is typically between about 120 and 140 degrees, and is preferably about 130 degrees.
  • the acquisition means 22 comprise means for measuring the temperature of the lubricating oil, such as a suitable sensor.
  • FIG. 4 illustrates an example of variation of the temperature of the oil Th as a function of time t.
  • a square signal symbolizing the opening O and closing F of the actuator 18 of the first branch 8.
  • the upper notches of the square signal represent the opening moments O of the actuator 18.
  • the lower notches of the square signal represent the closing moments F of this same actuator 18.
  • the control means 19 ensure the opening of the actuator 18 and thus the circulation of the fluid in the first branch 8.
  • the control means 19 close the actuator 18 and thus stop the circulation of the fluid in the first branch 8.
  • the differentials of temperature ⁇ Ta which trigger the openings O and closures F of the first actuator 18 are of the order, for example, from one to six degrees. As shown in FIG. 4, the temperature differentials ⁇ Ta are preferably equal to two degrees.
  • the temperature Th of the oil can be maintained around the reference temperature Tr with a tolerance of about five degrees.
  • the temperature Th of the oil can be maintained in a larger range or smaller. For this, simply change the differentials or thresholds ⁇ Ta opening and closing of the first actuator 18 around the reference temperature Tr.
  • the control means 19 can open the first actuator 18 only when the temperature of the liquid exceeds the temperature of the oil a second value ⁇ Tb determined.
  • This second value ⁇ Tb may be, for example, between about 10 and 20 degrees and is preferably equal to 15 degrees. In this way, the coolant helps to speed up the temperature rise of the oil.
  • the circuit 2 comprises a second branch 6 called “degassing”, provided with an electronically controlled actuator 16 and in which a degassing box 11 is arranged.
  • the control means 19 regulate the circulation of the cooling fluid so that the quantity of fluid flowing in the second branch 6 is greater when the temperature T of the coolant is greater than the first threshold temperature T 1 , when the temperature T of the fluid is lower than this first threshold temperature T 1 .
  • control means 19 regulate the flow of fluid in the degassing branch 6 so that the quantity of fluid flowing in it is greater when the temperature T of the fluid is greater than the second threshold temperature T 2 , that when the temperature T of the fluid is lower than this second threshold temperature T 2 .
  • control means 19 can regulate the flow of fluid in the branch 6 of degassing as a function of the temperature T of the coolant . More specifically, the means control 19 can control the increase in the amount of coolant circulating in the branch 6 degassing when the temperature T of this liquid increases.
  • the actuator 16 of the degassing branch 6 is preferably of the "all or nothing" type, that is to say with total opening and closing.
  • control means 19 control the opening, preferably the total, of the second actuator 16.
  • the control means 19 can control the opening of the second actuator 16 as a function of the average power Pm supplied by the engine 1. More precisely the control means 19 increase the quantity of liquid admitted to circulate in the degassing branch 6 when the average power Pm supplied by the engine 1 increases.
  • the actuator 16 of the branch 6 is controlled, for example, by a variable square signal as a function of the average power Pm supplied by the motor 1. The upper part of the signal represents the openings O of the actuator 16, while the lower part represents the closures F of the actuator 16.
  • the square control signal of the actuator 16 may be periodic.
  • the opening time To of the actuator 16 may be constant, while the period P of the signal may vary as a function of the average power Pm. That is, the closing times of the valve 16 can decrease, for example linearly, when the average power Pm of the motor increases.
  • the control means 19 controlling the opening of the actuator 16 according to a variable square signal as a function of the temperature T of the coolant.
  • the opening time To of the actuator 16 may be constant, while the period P of the signal may decrease when the temperature T of the coolant increases.
  • the period P of the square signal may be inversely proportional to the temperature T of the liquid.
  • the line representative of the evolution of the period P can have a discontinuity, so that the period P remains constant and equal to the time of opening To. That is, when the temperature T of the liquid reaches, for example, the second threshold temperature T 2 minus five degrees, the decreasing line representing the period P is followed by a horizontal constant portion.
  • the opening time To of the actuator 16 may be of the order of a few seconds and for example five seconds.
  • the period of the control signal of the actuator 16 can vary, for example, between 5 and 50 seconds.
  • any other type of appropriate signal can be used to control the second actuator 16.
  • the circuit 2 comprises a third branch 5 provided with an electronically controlled actuator 15 and associated with means 10 forming a direct return of fluid or bypass.
  • the control means 19 can regulate the circulation of the cooling fluid in the bypass branch 5 as a function of the temperature T of this fluid.
  • the quantity of fluid allowed to circulate in the bypass branch 5 increases as the temperature of the fluid increases from the first T 1 to the second threshold temperature T 2 .
  • the electronically controlled actuator 15 of the bypass branch is of the proportional type.
  • the control means 19 can limit the flow of fluid in the bypass branch 5 to a determined leakage rate. That is, the actuator 15 of the bypass branch 5 is partially open Of. For example, the partial opening Of of the actuator 15 can provide a leakage flow in the bypass branch 5 between 1/50 to about 1/5 maximum flow from the branch 5.
  • the control means 19 at least temporarily control the total opening O of the bypass actuator 15 (FIG. 7).
  • the degree of opening of the actuator 15 may be at least temporarily proportional to the temperature T of the cooling fluid. More specifically, between T 1 and T 2 , the opening of the bypass actuator 15 increases when the temperature T of the fluid increases and decreases when the temperature T of the fluid decreases. The variation of the opening of the actuator 15 may be proportional to the temperature of the fluid T.
  • the curve representative of the opening of the actuator 15 as a function of the temperature T of the fluid can exhibit a hysteresis H. That is to say that the increase in the opening of the actuator 15 begins. after the temperature of the liquid T exceeds the first reference temperature T 1 of a first determined value E. Likewise, the decrease in the opening of the actuator 15 begins after the temperature T of the liquid becomes lower, from a first determined value E, to the second reference temperature T 2 . That is to say that the openings and closures of the actuator 15 are made shifted with respect to the thresholds of temperatures T 1 and T 2.
  • the values E of these offsets are, for example, of the order of 5 degrees.
  • the circuit comprises a fourth branch 4 provided with an electronically controlled actuator 14 and provided with means 9 forming a radiator.
  • the radiator means 9 can be coupled to a fan motor unit 30, which can also be controlled by the control means 19.
  • the actuator 14 of the fourth branch 4 is of the proportional type.
  • control means 19 can control the actuator 15 of the branch 5 by-pass as a function of the opening and closing of the actuator 14 of the branch 4 radiator.
  • FIG. 8 illustrates the percentage of opening% O of the actuators 15, 14 of the third and fourth branches 5, 4 as a function of the temperature T of the coolant.
  • the control means 19 can close the actuator 15 of the bypass branch 5 when the actuator 14 of the radiator branch 4 is open O.
  • the actuator 15 of the branch 5 bypass is open O when the actuator 14 of the radiator branch 4 is closed F.
  • the opening of the actuator 15 of the branch 5 bypass is inversely proportional to the opening of the actuator 14 of the branch 4 radiator.
  • closures and openings of the actuator 15 of the bypass branch 5 can be made with a temperature offset R determined with respect to the openings and closures of the actuator 14 of the radiator branch 4.
  • the temperature offset R may be of the order of a few degrees, for example five degrees.
  • control means 19 can control the ventilation means 30 as a function of the temperature of the coolant. More precisely, the speed of rotation of the ventilation means 30 can increase when the temperature T of the coolant increases.
  • the speed V of rotation of the ventilation means 30 increases in proportion to the speed of variation of the temperature of the coolant. d T d t .
  • FIG. 9 illustrates two examples of straight lines d 1 and d 2 representing the speed of rotation of the fan motor unit as a function of the temperature T of the liquid.
  • the two straight lines d1 and d2 have different slopes each representative of a speed of variation d T d t the temperature T of the coolant.
  • the speed of variation d T d t the temperature T of the coolant can be calculated by the control means 19.
  • the cooling circuit 2 shown in Figure 1 also comprises a fifth branch 7 provided with an electronically controlled actuator 17 and in which are arranged means 12 forming a cabin air heater.
  • the heater means 17 may be shaped to provide heating of the passenger compartment to a first target temperature Tc determined by the user of the vehicle.
  • the control means 20 cooperate with the acquisition means 22 to determine the temperature Te outside the vehicle. When the outside temperature Te is lower than the first setpoint temperature Tc, the control means 20 can open the actuator of the branch 7 air heater. In the same way, when the outside temperature Te is greater than the first setpoint temperature Tc, the control means 20 can close the actuator of the branch 7 air heater.
  • the means 12 unit heater may include an air conditioning function of the passenger compartment to a the second setpoint temperature Tr.
  • the control means 20 can open the actuator of the branch 7 air heater.
  • the control means 20 can close the actuator of the branch 7 heater.
  • This fifth branch 7 may also optionally comprise additional heating means 160 and / or means 150 for recirculating the exhaust gas from the engine 1 to the inlet.
  • the means 150 for recirculating at least a portion of the exhaust gas from the engine 1 to the inlet or "Exaust Gas Recycling (EGR)" make it possible to control the temperature of the combustion gases of the engine for, for example , an anti-pollution treatment.
  • circuit 2 represented in FIG. 1 comprises a sixth branch 44 in which is located means 140 for heating the intake air of the engine 1.
  • This sixth branch 44 is also provided with an electronically controlled actuator 29 controlled by the control means 19.
  • FIG. 2 illustrates an alternative embodiment of the cooling device according to the invention.
  • the device represented in FIG. 2 differs from that of FIG. 1 in that the heater means 12 and the heating means 160 are arranged in a seventh branch 45 which is distinct from the sixth branch 7 associated with the means 150 for recirculating the gases. exhaust (EGR).
  • the seventh branch 45 is devoid of electronically controlled actuator.
  • the invention can not be limited to the embodiments of FIGS. 1 and 2.
  • the cooling device may comprise only part of the thermal equipment 9, 10, 11, 12, 13, 140, 150 , 16 and / or branches 4, 5, 6, 7, 8, 44, 45 described above.
  • one or more branches 4, 5, 6, 7, 8, 44, 45 may be devoid of electronically controlled actuator.
  • the information acquisition means 22 may be shaped to detect a possible failure of at least one of the electronically controlled actuators.
  • the control means 19 can ensure the free circulation of the fluid in at least some of the branches, and preferably in all branches. That is, when a system failure is detected, all valves in circuit 2 are open.
  • the cooling device according to the invention while being of simple structure, makes it possible to manage the heat exchanges in real time and in an optimum manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Motor Or Generator Cooling System (AREA)
  • General Details Of Gearings (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

  • L'invention se rapporte à un procédé et à un dispositif de refroidissement d'un moteur de véhicule automobile.
  • L'invention concerne plus particulièrement un dispositif de refroidissement comportant un circuit hydraulique de fluide caloporteur de refroidissement, associé à une pompe de circulation de celui-ci à travers le moteur du véhicule et différentes branches du circuit. Des équipements thermiques du véhicule peuvent être disposés dans les différentes branches du circuit.
  • Les systèmes de refroidissement sont conçus pour garantir la tenue des moteurs aux contraintes thermomécaniques issues de la combustion. Par ailleurs, des fonctions complémentaires sont mises en oeuvre en plus du refroidissement principal du moteur, pour améliorer le rendement global ou offrir et garantir des prestations aux utilisateurs de véhicules, telles que, par exemple, le chauffage de l'habitacle.
  • Les systèmes de refroidissement sont dimensionnés à partir des seuls points de fonctionnement à régime maximal et à pleine charge du moteur et sont donc surdimensionnés dans la majorité des cas d'utilisation des véhicules.
  • Ainsi, les paramètres de fonctionnement du moteur ne sont pas optimisés, ce qui entraîne une dégradation des performances de ce dernier, tel qu'une consommation accrue, un niveau élevé d'émission de polluants ainsi qu'une réduction du confort thermique et acoustique du véhicule.
  • Le document US 5,215,044 décrit un système de refroidissement pour véhicule à moteur à combustion interne comportant plusieurs circuits de refroidissement associés à des échangeurs de chaleur et comportant des sondes de température reliées à un dispositif de commutation. Un microprocesseur détermine les besoins de puissance de refroidissement des différents circuits en fonction des signaux des sondes de température et influence individuellement la puissance des échangeurs concernés. Le système comprend notamment un circuit de refroidissement de l'huile du moteur comportant un premier échangeur de chaleur en échange thermique avec l'air. Le circuit de refroidissement du moteur peut être relié à un second échangeur intermédiaire situé dans le circuit de refroidissement de l'huile du moteur, au moyen de tuyauteries munies de soupapes aptes à être fermées.
  • Cependant, ce système a une structure complexe et utilise un grand nombre de grandeurs d'état mesurées, sans pour autant optimiser les échanges thermiques avec l'huile du moteur.
  • Par ailleurs, dans un article paru en Septembre 1993, dans ATZ Automobiltechnische Zeitschrift, Supplement, et intitulé « Der Intelligente Kühlkreislauf ein neues Konzept für die Motorkühlung », Matthias Banshaf décrit un système de refroidissement d'un moteur avec une régulation du débit de liquide de refroidissement pour accélerer la vitesse de montée en température de l'huile et le maintien de la température de l'huile autour d'une température de référence.
  • Un but de la présente invention est de proposer un procédé de refroidissement d'un moteur de véhicule automobile, palliant tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
  • Ce but est atteint par les caractéristiques selon la revendication 1.
  • Selon une autre particularité le procédé comporte une étape de détermination de la température du liquide de refroidissement, et une étape de limitation ou d'arrêt de la circulation du fluide dans la première branche du circuit lorsque la température du fluide est inférieure à une première température seuil déterminée.
  • Un autre but de la présente invention est de proposer un dispositif de refroidissement d'un moteur de véhicule automobile, palliant tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
  • Ce but est atteint par les caractéristiques selon la revendication 2.
  • Par ailleurs, l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :
    • les moyens d'acquisition d'informations sont aptes à déterminer la température du liquide de refroidissement, les moyens de pilotage assurant la limitation ou l'arrêt de la circulation du fluide dans la première branche du circuit lorsque la température du fluide est inférieure à une première température seuil déterminée,
    • lorsque la température du liquide de refroidissement est comprise entre les première et seconde températures seuil, les moyens de pilotage assurent la circulation du fluide dans la première branche uniquement lorsque la température de ce dernier excède la température de l'huile d'une seconde valeur déterminée,
    • la seconde température seuil est comprise entre 60 et 100 degrés environ,
    • la première température seuil est comprise entre 20 et 60 degrés environ et définit la température de fluide en dessous de laquelle l'état du moteur est dit "froid",
    • les moyens de pilotage coopèrent avec les moyens d'acquisition, pour calculer d'une part de la puissance moyenne instantanée fournie par le moteur puis, d'autre part, la première température seuil en fonction de la puissance moyenne instantanée et d'une modélisation déterminée du fonctionnement du moteur définissant son état froid (première température seuil en fonction puissance moyenne,
    • la première valeur est de l'ordre de 1 et 6 degrés environ et est égale de préférence à deux degrés,
    • la seconde valeur est de l'ordre de 10 et 20 degrés environ et est égale de préférence à 15 degrés,
    • la température de référence de l'huile est comprise entre 120 et 140 degrés environ, et est égale de préférence à 130 degrés environ,
    • le premier actionneur est du type à ouverture et fermeture totale.
  • D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
    • la figure 1 représente schématiquement la structure et le fonctionnement d'un premier exemple de réalisation du dispositif de refroidissement selon l'invention,
    • la figure 2 représente un second mode de réalisation du dispositif de refroidissement selon l'invention,
    • la figure 3 représente, sur un même graphique, un exemple de variation au court du temps t de la température T du liquide de refroidissement et d'une première température seuil T1,
    • la figure 4 représente un exemple de variation de la température Th de l'huile de lubrification du moteur en fonction du temps t, ainsi que le signal représentant les états d'ouverture O et de fermeture F de l'actionneur piloté électroniquement de la première branche du circuit,
    • la figure 5 représente les états d'ouverture O et de fermeture F de l'actionneur de la branche de dégazage en fonction de la température T du liquide de refroidissement,
    • la figure 6 représente un exemple de variation de la période P du signal de commande de l'actionneur de la branche de dégazage en fonction de la température T du liquide de refroidissement,
    • la figure 7 représente l'état d'ouverture de la vanne de by-pass en fonction de la température T du liquide de refroidissement,
    • la figure 8 représente schématiquement un exemple de couplage de l'ouverture de la vanne de by-pass en fonction de l'ouverture de la vanne d'un radiateur,
    • la figure 9 représente deux exemples de variation de la vitesse de rotation d'un groupe moto ventilateur, en fonction de la variation de la température T du liquide de refroidissement,
  • La figure 1 représente un exemple de réalisation préféré d'un dispositif de refroidissement selon l'invention. Le dispositif de refroidissement comporte un circuit hydraulique 2 contenant un fluide caloporteur de refroidissement.
  • Une pompe 3 hydraulique est associée au circuit 2, pour assurer la circulation du fluide à travers le moteur 1 et différentes branches 4, 5, 6, 7, 8, 44 du circuit 2. De préférence, la pompe 3 est une pompe de type mécanique, cependant, l'emploi d'une pompe électrique peut également être envisagé.
  • Les branches 4, 5, 6, 7, 8, 44 du circuit 2 sont alimentées en liquide de refroidissement à partir d'un boîtier 122, ou "Boîtier de Sortie d'Eau" (BSE). Le boîtier 122, qui est fixé au moteur 1, et de préférence à la culasse du moteur 1, assure la collecte du liquide de refroidissement ayant circulé dans le moteur 1. Le liquide de refroidissement ayant circulé dans les branches est récupéré quant à lui par un collecteur d'entrée d'eau 23 avant sa recirculation dans le moteur 1.
  • Avantageusement, au moins certaines des branches 4, 5, 6, 7, 8, 44 du circuit 2 sont munies d'actionneurs pilotés électroniquement respectifs 14, 15, 16, 17, 18, 29 de régulation de la circulation du fluide dans celles-ci. Les actionneurs pilotés électroniquement sont, par exemple, des électrovannes. Par ailleurs, le dispositif comporte des moyens 22 d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule. Les moyens 22 d'acquisition sont raccordés à des moyens 19 de pilotage du fonctionnement d'au moins une partie des actionneurs 14, 15, 16, 17, 18, 29, pour réguler le volume et le débit de fluide en circulation dans le circuit hydraulique 2 afin d'optimiser le fonctionnement du moteur.
  • Les moyens de pilotage 19 ou unité de traitement d'information peuvent comporter tout calculateur 20 approprié, tel que, par exemple, un "Boîtier de Servitude Intelligent" (BSI) de type connu. Le calculateur 20 est associé à des moyens de stockage d'information 21 comportant, par exemple, une mémoire programmable et/ou une mémoire à lecture seule. Le calculateur 20 est également relié à des moyens 22 d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule, comportant, par exemple, divers capteurs ou d'autres calculateurs tel qu'un calculateur de pilotage du moteur.
  • De préférence, les moyens 22 d'acquisition d'informations sont aptes à déterminer au moins l'un des paramètres suivants : le régime du moteur, le couple du moteur, la vitesse du véhicule, la température de l'huile de lubrification du moteur, la température du liquide de refroidissement du moteur, la température des gaz d'échappement du moteur, la température de l'air extérieur au véhicule et la température à l'intérieur de l'habitacle. Les différentes informations relatives aux conditions de fonctionnement du véhicule sont traitées et analysées par le calculateur 20, pour piloter le fonctionnement des actionneurs 14, 15, 16, 17, 18, 29 et éventuellement celui de la pompe 3.
  • Selon l'invention, le débit ou volume de liquide de refroidissement admis ou non à circuler dans les différentes branches 4, 5, 6, 7, 8, 44 du circuit 2 est fonction de l'état d'échauffement du moteur 1. Par exemple, il est possible de définir trois états du moteur 1, un premier état dans lequel le moteur est dit "froid", un second dans lequel le moteur 1 est dit "chaud", et un troisième état dit "intermédiaire" entre les états chaud et froid.
  • De préférence, l'état thermique du moteur 1 est caractérisé en fonction de la température T du liquide de refroidissement, de préférence à la sortie du moteur 1. Ainsi, lorsque la température du liquide de refroidissement est inférieure à une première température seuil T1 déterminée, l'état du moteur 1 est dit froid. De même, lorsque la température T du liquide de refroidissement est supérieure à une seconde température seuil T2 déterminée, l'état du moteur 1 est dit chaud. Enfin, lorsque la température du liquide de refroidissement est comprise entre les première T1 et seconde T2 températures seuil, l'état du moteur 1 est dit intermédiaire.
  • La première T1 et/ou la seconde T2 température seuil peuvent être des valeurs fixes ou variables déterminées en fonction du type du moteur 1. De préférence, la première T1 et/ou la seconde T2 température seuil sont des variables en fonction du type du moteur 1 et d'au moins un paramètre de fonctionnement du moteur 1. Par exemple, les première T1 et/ou seconde T2 températures seuil sont des fonctions de la puissance moyenne Pm fournie par le moteur 1. C'est-à-dire que les moyens de pilotage 19 coopèrent avec les moyens 22 d'acquisition, pour calculer la puissance moyenne instantanée Pm fournie par le moteur 1.
  • Les moyens de pilotage 19 calculent ensuite la première T1 et/ou la seconde T2 température seuil, en fonction de la puissance moyenne Pm instantanée et d'une modélisation déterminée du fonctionnement du moteur 1. La modélisation du moteur définit les états froid, chaud et intermédiaire (première T1 et seconde T2 températures seuil) en fonction de la puissance moyenne Pm fournie par ce dernier.
  • La puissance instantanée P(t) en kiloWatt (kW) fournie par le moteur à l'instant t est donnée par la relation suivante : P ( t ) = 2. π . N . C 60 × 1000 ;
    Figure imgb0001
    dans laquelle N est le régime instantané du moteur en tour/min, et C le couple instantané du moteur en N.m. Les valeurs du régime N et du couple C peuvent être mesurées par les moyens 22 d'acquisition de données, c'est-à-dire par des capteurs appropriés. Classiquement, le régime N du moteur est compris entre 0 et 6000 tr/min. environ, tandis que le couple C est compris entre 0 et 350 N.m. environ.
  • Les moyens de pilotage 19 calculent ensuite la puissance P(t) fournie par le moteur à l'instant t et la puissance moyenne Pm(t) fournie par le moteur à l'instant t. La puissance moyenne Pm(t) à l'instant t peut être calculée par la relation suivante : P m ( t ) = ( t 1 ) × P m ( t 1 ) + P m ( t ) t ,
    Figure imgb0002
    dans laquelle Pm(t-1) est la puissance moyenne à l'instant (t-1). Bien entendu, la puissance moyenne peut être calculée par tout autre formule équivalente, telle que : P m ( t ) = c . P m ( t 1 ) + k P ( t ) c + k ,
    Figure imgb0003
    dans laquelle Pm(t-1) est la puissance moyenne à l'instant (t-1), P(t) la puissance instantanée à l'instant t, et c et k des coefficients pondérateurs.
  • Le calculateur 19 et/ou les moyens 21 de stockage d'information 21 peuvent contenir la modélisation du fonctionnement du moteur 1, définissant son état froid, chaud et intermédiaire (première T1 et seconde températures seuil T2) en fonction puissance moyenne Pm. C'est-à-dire que pour un type de moteur donné, on établit empiriquement et/ou par calcul des tables de correspondance donnant les températures seuil T1 et T2 en fonction de la puissance moyenne Pm du moteur 1. Ces tables ou modélisations, qui sont fonction du type de moteur, sont par exemple des fonctions polynomiales. La première température seuil T1 est ainsi, en général, une fonction décroissante de la puissance moyenne.
  • La première température seuil T1 peut varier entre 20 et 60 degrés environ, et de préférence entre 30 et 50 degrés. La seconde température seuil T2 peut varier quant à elle entre 60 et 100 degrés environ. Cependant, la seconde température seuil T2 est en général sensiblement constante autour de la valeur de 80 degrés.
  • Ainsi, les moyens de pilotage 19 coopèrent avec les moyens 22 d'acquisition de données, pour comparer la température T du liquide de refroidissement avec les deux températures seuil T1 et T2.
  • Par soucis de simplification, la valeur de la première température seuil T1 peut être figée par les moyens 19 de pilotage dès que la température T mesurée du liquide de refroidissement atteint la première température seuil T1. En effet, la figure 3 illustre, sur un même graphique, un exemple de variation au court du temps t : de la température T du liquide de refroidissement, et de la première température seuil T1(Pm) qui est fonction de la puissance moyenne. En déterminant ces températures T et T1(Pm), on constate que, pour une puissance moyenne donnée, à partir du moment où la température T du fluide atteint la première valeur seuil T1, cette première température seuil T1 varie peu autour d'une constante T1f.
  • En se référant à présent à la figure 1, le circuit 2 comporte une première branche 8 munie d'un premier actionneur piloté électroniquement 18 et dans laquelle est disposé un échangeur eau/huile 13. De préférence, le premier actionneur 18 est du type "tout ou rien". Les moyens 19 de pilotage coopèrent avec les moyens 22 d'acquisition, pour commander l'ouverture ou la fermeture du premier actionneur 18, de façon à d'une part accélérer la vitesse de montée en température de l'huile et, d'autre part, réguler la température de l'huile autour d'une température de référence Tr déterminée.
  • Plus précisément, lorsque la température T du fluide de refroidissement déterminée par les moyens 22 d'acquisition est inférieure à la première température seuil T1, les moyens de pilotage 19 limitent, et de préférence arrêtent, la circulation du fluide dans la première branche 8.
  • Par ailleurs, lorsque la température T du liquide de refroidissement est supérieure à la seconde température seuil T2, les moyens de pilotage 19 régulent la température de l'huile autour de la température de référence Tr. La température de référence Tr de l'huile correspond à la température de fonctionnement optimal de l'huile. La température de référence Tr, qui dépend du type d'huile, est comprise classiquement entre 120 et 140 degrés environ, et est égale de préférence à 130 degrés environ. Pour ce faire, les moyens 22 d'acquisition comportent des moyens de mesure de la température de l'huile de lubrification, tel qu'un capteur approprié.
  • La figure 4 illustre un exemple de variation de la température de l'huile Th en fonction du temps t. Sur le même graphique est représenté un signal carré symbolisant les états d'ouverture O et de fermeture F de l'actionneur 18 de la première branche 8. Les crans supérieurs du signal carré représentent les moments d'ouverture O de l'actionneur 18. Les crans inférieurs du signal carré représentent les moments de fermeture F de ce même actionneur 18.
  • Ainsi, lorsque la température Th de l'huile excède la température de référence Tr d'une valeur déterminée ΔTa, les moyens de pilotage 19 assurent l'ouverture de l'actionneur 18 et donc la circulation du fluide dans la première branche 8. Par ailleurs, lorsque la température Th de l'huile est inférieure d'une valeur ΔTa à la température de référence Tr, les moyens de pilotage 19 ferment l'actionneur 18 et donc arrêtent la circulation du fluide dans la première branche 8. Les différentiels de température ΔTa qui déclenchent les ouvertures O et fermetures F du premier actionneur 18 sont de l'ordre, par exemple, de un à six degrés environ. Comme représenté à la figure 4, les différentiels de température ΔTa sont égaux de préférence à deux degrés.
  • De cette façon, compte tenu de l'inertie thermique du système, la température Th de l'huile peut être maintenue autour de la température de référence Tr avec une tolérance de cinq degrés environ. Bien entendu, la température Th de l'huile peut être maintenue dans un intervalle plus grand ou plus petit. Pour cela, il suffit de changer les différentiels ou seuils ΔTa d'ouverture et de fermeture du premier actionneur 18 autour de la température de référence Tr.
  • Avantageusement, lorsque la température T du liquide de refroidissement est comprise entre les première T1 et seconde T2 température seuil, les moyens de pilotage 19 peuvent n'ouvrir le premier actionneur 18 que lorsque la température du liquide excède la température de l'huile d'une seconde valeur ΔTb déterminée. Cette seconde valeur ΔTb peut être comprise, par exemple, entre 10 et 20 degrés environ et est égale de préférence à 15 degrés. De cette façon, le liquide de refroidissement contribue à accélérer la montée en température de l'huile.
  • En se référant à nouveau à la figure 1, le circuit 2 comporte une seconde branche 6 dite "de dégazage", munie d'un actionneur piloté électroniquement 16 et dans laquelle est disposée une boîte de dégazage 11.
  • Les moyens de pilotage 19 régulent la circulation du fluide de refroidissement de façon que la quantité de fluide circulant dans la seconde branche 6 est plus importante lorsque la température T du fluide de refroidissement est supérieure à la première température seuil T1, que lorsque la température T du fluide est inférieure à cette première température seuil T1.
  • Par ailleurs, les moyens de pilotage 19 régulent la circulation de fluide dans la branche 6 de dégazage pour que la quantité de fluide circulant dans celle-ci soit plus importante lorsque la température T du fluide est supérieure à la seconde température seuil T2, que lorsque la température T du fluide est inférieure à cette seconde température seuil T2.
  • De plus, lorsque la température T du fluide est comprise entre les première T1 et seconde T2 températures seuil, les moyens de pilotage 19 peuvent réguler la circulation de fluide dans la branche 6 de dégazage en fonction de la température T du liquide de refroidissement. Plus précisément, les moyens de pilotage 19 peuvent commander l'augmentation de la quantité de liquide de refroidissement circulant dans la branche 6 de dégazage lorsque la température T de ce liquide augmente. L'actionneur 16 de la branche 6 de dégazage est, de préférence, du type à "tout ou rien", c'est à dire à ouverture et fermeture totales.
  • Comme représenté à la figure 5, lorsque la température T du fluide est supérieure à la seconde température seuil T2, les moyens 19 de pilotage commandent l'ouverture, de préférence totale, du second actionneur 16.
  • Par ailleurs, lorsque la température du liquide de refroidissement T est inférieure à la première température seuil T1, les moyens 19 de pilotage peuvent commander l'ouverture du second actionneur 16 en fonction de la puissance moyenne Pm fournie par le moteur 1. Plus précisément, les moyens de pilotage 19 augmentent la quantité de liquide admise à circuler dans la branche 6 de dégazage lorsque la puissance moyenne Pm fournie par le moteur 1 augmente. L'actionneur 16 de la branche 6 est commandée, par exemple, par un signal carré variable en fonction de la puissance moyenne Pm fournie par le moteur 1. La partie haute du signal représente les ouvertures O de l'actionneur 16, tandis que la partie basse représente les fermetures F de l'actionneur 16.
  • Lorsque le moteur est dans son état froid (T<T1), le signal carré de commande de l'actionneur 16 peut être périodique. En particulier, le temps d'ouverture To de l'actionneur 16 peut être constant, tandis que la période P du signal peut varier en fonction de la puissance moyenne Pm. C'est à dire que les temps de fermeture de la vanne 16 peuvent diminuer, par exemple linéairement, lorsque la puissance moyenne Pm du moteur augmente.
  • Lorsque le moteur 1 est dans son état intermédiaire (température du fluide T comprise entre les première T1 et seconde T2 températures seuil), les moyens 19 de pilotage commandant l'ouverture de l'actionneur 16 selon un signal carré variable en fonction de la température T du liquide de refroidissement. En particulier, le temps d'ouverture To de l'actionneur 16 peut être constant, tandis que la période P du signal peut diminuer lorsque la température T du liquide de refroidissement augmente.
  • Comme représenté à la figure 6, entre T1 et T2, la période P du signal carré peut être inversement proportionnelle à la température T du liquide. De plus, lorsque la température T du liquide s'approche de la seconde température seuil T2, la droite représentative de l'évolution de la période P peut présenter une discontinuité, de façon que la période P reste constante et égale au temps d'ouverture To. C'est-à-dire que, lorsque la température T du liquide atteint, par exemple, la seconde température seuil T2 moins cinq degrés environ, la droite décroissante représentant la période P est suivie d'une portion constante horizontale.
  • Le temps d'ouverture To de l'actionneur 16 peut être de l'ordre de quelques secondes et par exemple cinq secondes. La période du signal de commande de l'actionneur 16 peut quant à elle varier, par exemple, entre 5 et 50 secondes.
  • Bien entendu, tout autre type de signal approprié peut être utilisé pour commander le second actionneur 16. Par exemple, comme précédemment, il est possible de faire varier le temps d'ouverture To de la vanne, en plus ou à la place du temps de fermeture.
  • Comme illustré à la figure 1, le circuit 2 comporte une troisième branche 5 munie d'un actionneur piloté électroniquement 15 et associée à des moyens 10 formant retour direct de fluide ou by-pass. Les moyens 19 de pilotage peuvent réguler la circulation du fluide de refroidissement dans la branche 5 de by-pass en fonction de la température T de ce fluide. En particulier, la quantité de fluide admise à circuler dans la branche 5 by-pass augmente lorsque la température du fluide croît de la première T1 vers la seconde température seuil T2. De préférence, l'actionneur piloté électroniquement 15 de la branche 5 by-pass est du type proportionnel.
  • Comme représenté à la figure 7, lorsque la température du fluide T est inférieure à la première température seuil T1, les moyens de pilotage 19 peuvent limiter à un débit de fuite déterminé la circulation de fluide dans la branche 5 by-pass. C'est à dire que l'actionneur 15 de la branche 5 by-pass est partiellement ouvert Of. Par exemple, l'ouverture partielle Of de l'actionneur 15 peut assurer un débit de fuite dans la branche 5 by-pass compris entre 1/50ème à 1/5ème environ du débit maximal de la branche 5.
  • Lorsque la température du fluide est supérieure à la seconde température seuil T2, les moyens de pilotage 19 commandent au moins temporairement l'ouverture totale O de l'actionneur 15 de by-pass (figure 7). Par ailleurs, lorsque la température du fluide est comprise entre les première T1 et seconde températures seuil T2, le degré d'ouverture de l'actionneur 15 peut être au moins temporairement proportionnel à la température T du fluide de refroidissement. Plus précisément, entre T1 et T2, l'ouverture de l'actionneur 15 de by-pass croît lorsque la température T du fluide croît et, diminue lorsque la température T du fluide diminue. La variation de l'ouverture de l'actionneur 15 peut être proportionnelle à la température du fluide T.
  • Avantageusement, la courbe représentative de l'ouverture de l'actionneur 15 en fonction de la température T du fluide peut présenter une hystérésis H. C'est-à-dire que, l'augmentation de l'ouverture de l'actionneur 15 commence après que la température du liquide T excède la première température de référence T1 d'une première valeur E déterminée. De même, la diminution de l'ouverture de l'actionneur 15 commence après que la température T du liquide devient inférieure, d'une première valeur E déterminée, à la seconde température de référence T2. C'est-à-dire que les ouvertures et fermetures de l'actionneur 15 sont réalisées de façon décalée par rapport respectivement aux seuils de températures T1 et T2. Les valeurs E de ces décalages sont par, exemple, de l'ordre de 5 degrés.
  • En se référant à nouveau à la figure 1; le circuit comprend une quatrième branche 4 munie d'un actionneur piloté électroniquement 14 et pourvue de moyens 9 formant radiateur. Les moyens 9 radiateur peuvent être couplés à un groupe moto ventilateur 30, qui peut lui aussi être commandé par les moyens de pilotage 19. L'actionneur 14 de la quatrième branche 4 est du type proportionnel.
  • Avantageusement, lorsque la température T du fluide est supérieure à la seconde température seuil T2, les moyens de pilotage 19 peuvent commander l'actionneur 15 de la branche 5 by-pass en fonction de l'ouverture et la fermeture de l'actionneur 14 de la branche 4 radiateur.
  • La figure 8 illustre le pourcentage d'ouverture %O des actionneurs 15, 14 des troisième et quatrième branches 5, 4 en fonction de la température T du liquide de refroidissement. Comme représenté à la figure 8, les moyens de pilotage 19 peuvent fermer F l'actionneur 15 de la branche 5 by-pass lorsque l'actionneur 14 de la branche 4 radiateur est ouvert O. De même, l'actionneur 15 de la branche 5 by-pass est ouvert O lorsque l'actionneur 14 de la branche 4 radiateur est fermé F. De préférence, l'ouverture de l'actionneur 15 de la branche 5 by-pass est inversement proportionnelle à l'ouverture de l'actionneur 14 de la branche 4 radiateur.
  • Par ailleurs, les fermetures et ouvertures de l'actionneur 15 de la branche 5 by-pass peuvent être réalisées avec un décalage de température R déterminé par rapport aux ouvertures et fermetures de l'actionneur 14 de la branche 4 radiateur. Le décalage de température R peut être de l'ordre de quelques degrés, par exemple cinq degrés.
  • Comme représenté à la figure 9, les moyens de pilotage 19 peuvent commander les moyens 30 de ventilation en fonction de la température du liquide de refroidissement. Plus précisément, la vitesse de rotation des moyens 30 de ventilation peut augmenter lorsque la température T du liquide de refroidissement croît.
  • De préférence, la vitesse V de rotation des moyens 30 de ventilation augmente proportionnellement à la vitesse de variation de la température du liquide de refroidissement d T d t .
    Figure imgb0004
  • La figure 9 illustre deux exemples de droites d1 et d2 représentant la vitesse de rotation du groupe moto ventilateur en fonction de la température T du liquide. Les deux droites d1 et d2 ont des pentes différentes représentatives chacune d'une vitesse de variation d T d t
    Figure imgb0005
    de la température T du liquide de refroidissement. La vitesse de variation d T d t
    Figure imgb0006
    de la température T du liquide de refroidissement peut être calculée par les moyens 19 de pilotage.
  • Le circuit 2 de refroidissement représenté à la figure 1 comporte également une cinquième branche 7 munie d'un actionneur piloté électroniquement 17 et dans laquelle sont disposés des moyens 12 formant aérotherme d'habitacle. Classiquement, les moyens aérotherme 17 peuvent être conformés pour assurer un chauffage de l'habitacle à une première température consigne Tc déterminée par l'utilisateur du véhicule.
  • Les moyens de pilotage 20 coopèrent avec les moyens 22 d'acquisition, pour déterminer la température Te extérieure au véhicule. Lorsque la température extérieure Te est inférieure à la première température consigne Tc, les moyens de pilotage 20 peuvent ouvrir l'actionneur de la branche 7 aérotherme. De la même façon, lorsque la température extérieure Te est supérieure à la première température consigne Tc, les moyens de pilotage 20 peuvent fermer l'actionneur de la branche 7 aérotherme.
  • De la même façon, les moyens 12 aérotherme peuvent comporter une fonction climatisation de l'habitacle à une seconde température consigne Tr. Ainsi, lorsque la température extérieure Te est inférieure à la seconde température consigne Tr, les moyens de pilotage 20 peuvent ouvrir l'actionneur de la branche 7 aérotherme. De même, lorsque la température extérieure Te est supérieure à la seconde température consigne Tr, les moyens de pilotage 20 peuvent fermer l'actionneur de la branche 7 aérotherme.
  • Cette cinquième branche 7 peut comporter également éventuellement de moyens 160 de chauffage supplémentaires et/ou des moyens 150 de recirculation des gaz d'échappement du moteur 1 à l'admission. Classiquement, les moyens 150 formant recirculation d'au moins une partie des gaz d'échappement du moteur 1 à l'admission ou "Exaust Gaz Recycling (EGR)", permettent de contrôler la température des gaz de combustion du moteur pour, par exemple, un traitement anti-pollution.
  • Enfin, le circuit 2 représenté à la figure 1 comprend une sixième branche 44 dans laquelle est situé des moyens 140 formant réchauffage de l'air d'admission du moteur 1. Cette sixième branche 44 est également munie d'un actionneur piloté électroniquement 29 commandée par les moyens 19 de pilotage.
  • La figure 2 illustre une variante de réalisation du dispositif de refroidissement selon l'invention. Le dispositif représenté à la figure 2 diffère de celui de la figure 1 en ce que les moyens aérotherme 12 et les moyens 160 de chauffage sont disposés dans une septième branche 45 qui est distincte de la sixième branche 7 associée aux moyens 150 de recirculation des gaz d'échappement (EGR). Par ailleurs, la septième branche 45 est dépourvue d'actionneur piloté électroniquement.
  • Bien entendu, l'invention ne saurait se limiter aux exemples de réalisation des figures 1 et 2. En effet, le dispositif de refroidissement peut ne comporter qu'une partie des équipements thermiques 9, 10, 11, 12, 13, 140, 150, 16 et/ou des branches 4, 5, 6, 7, 8, 44, 45 décrits ci-dessus. De plus, une ou plusieurs des branches 4, 5, 6, 7, 8, 44, 45 peuvent être dépourvue d'actionneur piloté électroniquement.
  • Avantageusement, les moyens 22 d'acquisition d'informations peuvent être conformés pour détecter une éventuelle défaillance d'au moins un des actionneurs pilotés électroniquement. De cette façon, lorsqu'au moins une défaillance d'un actionneur est détectée et quelle que soit la température du fluide, les moyens de pilotage 19 peuvent assurer la circulation libre du fluide dans au moins certaines des branches, et de préférence dans toutes les branches. C'est-à-dire que, lorsqu'une défaillance du système est détectée, toutes les vannes du circuit 2 sont ouvertes.
  • On conçoit donc aisément que le dispositif de refroidissement selon l'invention, tout en étant de structure simple, permet de gérer en temps réel et de manière optimum les échanges de chaleur.
  • Enfin, bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, elle comprend tous les équivalents techniques des moyens décrits.

Claims (11)

  1. Procédé de refroidissement d'un moteur de véhicule automobile, consistant à réguler le volume et le débit d'un fluide caloporteur de refroidissement dans un circuit hydraulique (2) pourvu d'une première branche (8) dans laquelle est disposée un échangeur eau/huile (13), le procédé comportant une première étape de régulation du débit du liquide dans la première branche pour accélérer la vitesse de montée en température de l'huile, ce procédé comportant une seconde étape de régulation du débit du liquide dans la première branche pour maintenir la température de l'huile autour d'une température de référence (Tr) et étant caractérisé ce qu'il comporte une étape de détermination de la température (T) du liquide de refroidissement, et une étape de limitation ou d'arrêt de la circulation du fluide dans la première branche (8) du circuit (2) lorsque la température du fluide est inférieure à une première température seuil (T1) déterminée et une étape de détermination de la température (Th) de l'huile de façon que, lorsque la température (T) du liquide de refroidissement est supérieure à une seconde température seuil (T2), la température de l'huile est régulée autour autour de la température de référence (Tr) en assurant d'une part la circulation du fluide dans la première branche (8) lorsque la température de l'huile excède la température (Tr) de référence d'une première valeur (ΔTa) déterminée et, d'autre part, en coupant ou limitant la circulation du fluide dans la première branche (8) lorsque la température de l'huile est inférieure d'une valeur (ΔTa) à la température de référence (Tr).
  2. Dispositif de refroidissement d'un moteur de véhicule automobile, du type comportant un circuit hydraulique (2) de fluide caloporteur de refroidissement, associé à une pompe (3) de circulation de celui-ci à travers le moteur (1) du véhicule et différentes branches (4, 5, 6, 7, 8, 44, 45) du circuit, dans lesquelles sont disposés des équipements thermiques (9, 10, 11, 12, 13, 140, 150, 160) du véhicule, au moins certaines des branches (4, 5, 6, 7, 8, 44) du circuit (2) étant munies d'actionneurs pilotés électroniquement (14, 15, 16, 17, 18, 29) de régulation de la circulation du fluide dans celles-ci, le dispositif comportant des moyens (22) d'acquisition d'informations relatives aux conditions de fonctionnement du véhicule, raccordés à des moyens (19) de pilotage du fonctionnement des actionneurs (14, 15, 16, 17, 18, 29), pour réguler le volume et le débit de fluide en circulation dans le circuit hydraulique (2) afin d'optimiser le fonctionnement moteur, le circuit (2) comportant une première branche (8) munie d'un premier actionneur (18) et dans laquelle est disposée un échangeur eau/huile (13), les moyens (19) de pilotage coopérant avec les moyens (22) d'acquisition, pour commander l'ouverture ou la fermeture du premier actionneur (18), de façon à d'une part accélérer la vitesse de montée en température de l'huile et, d'autre part, réguler la température de l'huile autour d'une température de référence (Tr) caractérisé en ce que les moyens (22) d'acquisition d'informations sont aptes à déterminer la température (T) du liquide de refroidissement et la température (Th) de l'huile, de façon que, lorsque la température (T) du liquide de refroidissement est supérieure à une seconde température seuil (T2) déterminée, les moyens de pilotage (19) régulent la température de l'huile autour de la température de référence (Tr) en assurant d'une part la circulation du fluide dans la première branche (8) lorsque la température de l'huile excède la température (Tr) de référence d'une première valeur (ΔTa) déterminée et, d'autre part, coupe ou limite la circulation du fluide dans la première branche (8) lorsque la température de l'huile est inférieure d'une valeur (ΔTa) à la température de référence (Tr).
  3. Dispositif selon la revendication 2, caractérisé en ce que les moyens (22) d'acquisition d'informations sont aptes à déterminer la température (T) du liquide de refroidissement, les moyens de pilotage (19) assurant la limitation ou l'arrêt de la circulation du fluide dans la première branche (8) du circuit (2) lorsque la température du fluide est inférieure à une première température seuil (T1) déterminée.
  4. Dispositif selon les revendications 2 et 3, caractérisé en ce que, lorsque la température (T) du liquide de refroidissement est comprise entre les première (T1) et seconde (T2) températures seuil, les moyens de pilotage (19) assurent la circulation du fluide dans la première branche (8) uniquement lorsque la température (T) de ce dernier excède la température de l'huile d'une seconde valeur (ΔTb) déterminée
  5. Dispositif selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que la seconde température seuil (T2) est 5 comprise entre 60 et 100 degrés environ.
  6. Dispositif selon l'une quelconque des revendications 4 ou 2, caractérisé en ce que la première température seuil (T1) est comprise entre 20 et 60 degrés environ et définit la température de fluide en dessous de laquelle l'état du moteur(1) est dit "froid".
  7. Dispositif selon l'une quelconque des revendications 2 ou 6, caractérisé en ce que les moyens de pilotage (20) coopèrent avec les moyens (22) d'acquisition, pour calculer d'une part de la puissance moyenne instantanée (Pm) fournie par le moteur (1) puis, d'autre part, la première température seuil (T1) en fonction de la puissance moyenne (Pm) instantanée et d'une modélisation déterminée du fonctionnement du moteur (1) définissant son état froid en fonction puissance moyenne (Pm).
  8. Dispositif selon la revendication 5 ou 6, caractérisé en ce que la première valeur (ΔTa) est de l'ordre de 1 et 6 degrés environ et est égale de préférence à deux degrés.
  9. Dispositif selon la revendication 6, caractérisé en ce que la seconde valeur (ΔTb) est de l'ordre de 10 et 20 degrés 25 environ et est égale de préférence à 15 degrés.
  10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la température de référence (Tr) de l'huile est comprise entre 120 et 140 degrés environ, et est égale de préférence à 130 degrés environ.
  11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier actionneur (18) est du type à ouverture et fermeture totale.
EP01907699A 2000-02-03 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile Expired - Lifetime EP1268992B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0001356 2000-02-03
FR0001356A FR2804719B1 (fr) 2000-02-03 2000-02-03 Dispositif de refroidissement d'un moteur de vehicule automobile
PCT/FR2001/000240 WO2001057375A1 (fr) 2000-02-03 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile

Publications (2)

Publication Number Publication Date
EP1268992A1 EP1268992A1 (fr) 2003-01-02
EP1268992B1 true EP1268992B1 (fr) 2006-09-27

Family

ID=8846612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907699A Expired - Lifetime EP1268992B1 (fr) 2000-02-03 2001-01-25 Procede et dispositif de refroidissement d'un moteur de vehicule automobile

Country Status (8)

Country Link
US (1) US6948456B2 (fr)
EP (1) EP1268992B1 (fr)
JP (1) JP4603225B2 (fr)
AT (1) ATE340922T1 (fr)
DE (1) DE60123402T2 (fr)
ES (1) ES2272445T3 (fr)
FR (1) FR2804719B1 (fr)
WO (1) WO2001057375A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896271B1 (fr) * 2006-01-19 2012-08-17 Renault Sas Procede et dispositif de regulation de la temperature d'un moteur a combustion interne
US20080310112A1 (en) * 2007-06-13 2008-12-18 Johnson Controls Technology Company System and Method for Providing Dewpoint Control in an Electrical Enclosure
JP5470384B2 (ja) * 2008-07-16 2014-04-16 ボーグワーナー インコーポレーテッド エンジンシステムの冷却サブシステムの、そのサブシステム内で検出された動圧に応じた診断
US10040335B2 (en) * 2016-03-24 2018-08-07 GM Global Technology Operations LLC Thermal management system for a vehicle, and a method of controlling the same
JP7000262B2 (ja) * 2018-06-19 2022-01-19 トヨタ自動車株式会社 冷却制御装置
US11078825B2 (en) * 2019-10-01 2021-08-03 GM Global Technology Operations LLC Method and apparatus for control of propulsion system warmup based on engine wall temperature

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124017A (ja) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd エンジンの冷却系制御装置
US4930455A (en) 1986-07-07 1990-06-05 Eaton Corporation Controlling engine coolant flow and valve assembly therefor
DE3716555A1 (de) 1987-05-18 1988-12-08 Bayerische Motoren Werke Ag Befuell-, entlueftungs- und drucksteuer-vorrichtung fuer den fluessigkeits-kuehlkreis von kraft- und arbeitsmaschinen, insbesondere brennkraftmaschinen
DE4033261C2 (de) 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperaturgesteuerter Kühlkreis einer Verbrennungskraftmaschine
DE4104093A1 (de) * 1991-02-11 1992-08-13 Behr Gmbh & Co Kuehlanlage fuer ein fahrzeug mit verbrennungsmotor
JPH0596433U (ja) * 1991-02-25 1993-12-27 稲田 健 水冷式エンジンの冷却装置
DE4109498B4 (de) 1991-03-22 2006-09-14 Robert Bosch Gmbh Vorrichtung und Verfahren zur Regelung der Temperatur einer Brennkraftmaschine
US5241926A (en) 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
EP0557113B1 (fr) 1992-02-19 1999-05-26 Honda Giken Kogyo Kabushiki Kaisha Système de refroidissement pour moteur
DE4324178A1 (de) * 1993-07-19 1995-01-26 Bayerische Motoren Werke Ag Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält
FR2722244B1 (fr) 1994-07-07 1996-08-23 Valeo Thermique Moteur Sa Dispositif de thermoregulation d'un moteur thermique
US5582138A (en) * 1995-03-17 1996-12-10 Standard-Thomson Corporation Electronically controlled engine cooling apparatus
DE19519377A1 (de) 1995-05-26 1996-11-28 Bayerische Motoren Werke Ag Kühlanlage mit elektrisch regelbarem Stellglied
DE19607638C1 (de) 1996-02-29 1997-06-19 Porsche Ag Kühlkreislauf einer Brennkraftmaschine
JP3675108B2 (ja) * 1996-06-24 2005-07-27 トヨタ自動車株式会社 水温センサの故障診断装置
IT1291190B1 (it) * 1997-03-13 1998-12-29 Gate Spa Sistema di raffreddamento per un motore a combustione interna, particolarmente per autoveicoli
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
AT410243B (de) * 1997-07-23 2003-03-25 Tcg Unitech Ag Mehrwegventil
FR2776707B1 (fr) * 1998-03-31 2000-10-06 Peugeot Systeme de gestion des echanges thermiques dans un vehicule automobile
US5950576A (en) 1998-06-30 1999-09-14 Siemens Canada Limited Proportional coolant valve
JP3552543B2 (ja) * 1998-07-29 2004-08-11 株式会社デンソー 液冷式内燃機関の冷却装置
US6055947A (en) * 1999-01-14 2000-05-02 Tosok Corporation Engine cooling water control system
DE19948160B4 (de) 1999-10-07 2010-07-15 Wilhelm Kuhn Kühlvorrichtung für eine flüssigkeitsgekühlte Brennkraftmaschine eines Kraftfahrzeuges

Also Published As

Publication number Publication date
DE60123402D1 (de) 2006-11-09
JP2003529704A (ja) 2003-10-07
ATE340922T1 (de) 2006-10-15
EP1268992A1 (fr) 2003-01-02
FR2804719B1 (fr) 2002-06-21
DE60123402T2 (de) 2007-04-12
ES2272445T3 (es) 2007-05-01
WO2001057375A1 (fr) 2001-08-09
US20030145807A1 (en) 2003-08-07
JP4603225B2 (ja) 2010-12-22
US6948456B2 (en) 2005-09-27
FR2804719A1 (fr) 2001-08-10

Similar Documents

Publication Publication Date Title
EP1264086B1 (fr) Procede et dispositif de refroidissement d&#39;un moteur de vehicule automobile
EP1409856B1 (fr) Procede et dispositif de refroidissement d&#39;un moteur de vehicule automobile
FR2843168A1 (fr) Procede de commande d&#39;un circuit de refroidissement et de chauffage d&#39;un vehicule automobile
EP1276976B1 (fr) Procede et dispositif de refroidissement d&#39;un moteur de vehicule automobile
WO1984000578A1 (fr) Dispositif de refroidissement d&#39;un moteur a combustion interne
FR2900197A1 (fr) Systeme et procede de controle de la temperature d&#39;un moteur suralimente et comportant un circuit de recyclage de gaz d&#39;echappement
EP1268992B1 (fr) Procede et dispositif de refroidissement d&#39;un moteur de vehicule automobile
FR2956158A1 (fr) Systeme multivoies de controle d&#39;un circuit de refroidissement d&#39;un moteur a combustion interne
EP1233157B1 (fr) Procédé et dispositif de refroidissement d&#39;un moteur de véhicle automobile
FR2890697A1 (fr) Moteur de vehicule comprenant un circuit de gaz recircules refroidis a basse temperature
FR2804721A1 (fr) Dispositif de refroidissement d&#39;un moteur de vehicule automobile
FR2910059A1 (fr) Procede d&#39;estimation de la pression des gaz d&#39;echappement en amont d&#39;une turbine de turbocompresseur
FR2799505A1 (fr) Systeme de refroidissement d&#39;un moteur de vehicule automobile
EP3423690B1 (fr) Système de commande d&#39;un moyen de régulation thermique d&#39;un circuit de refroidissement d&#39;un moteur d&#39;un véhicule automobile et procédé de commande dudit système de commande
EP3353405B1 (fr) Dispositif de refroidissement d&#39;une boucle de recirculation des gaz d&#39;échappement d&#39;un moteur de véhicule automobile
FR3066537B1 (fr) Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie
FR3040739B1 (fr) Systeme de refroidissement pour un moteur a combustion interne, notamment de vehicule automobile
FR2997448A1 (fr) Gestion du refroidissement d&#39;un systeme de moteur equipe d&#39;un dispositif de recirculation partielle des gaz d&#39;echappement
FR2864149A1 (fr) Systeme de gestion de l&#39;energie thermique d&#39;un moteur de vehicule automobile par la regulation des actionneurs des fluides de ce systeme
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile
EP1781910A1 (fr) Procédé de régulation thermique par modéle prédictif pour un circuit de refroidissement d&#39;un moteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060927

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60123402

Country of ref document: DE

Date of ref document: 20061109

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2272445

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: PEUGEOT CITROEN AUTOMOBILES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081229

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090117

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161219

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180312

Ref country code: FR

Ref legal event code: CD

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60123402

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191219

Year of fee payment: 20