EP3353405B1 - Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile - Google Patents
Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile Download PDFInfo
- Publication number
- EP3353405B1 EP3353405B1 EP16750932.2A EP16750932A EP3353405B1 EP 3353405 B1 EP3353405 B1 EP 3353405B1 EP 16750932 A EP16750932 A EP 16750932A EP 3353405 B1 EP3353405 B1 EP 3353405B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- engine
- bypass
- cooling
- ref
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 81
- 239000012809 cooling fluid Substances 0.000 claims description 22
- 239000012530 fluid Substances 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 55
- 239000002826 coolant Substances 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/24—Layout, e.g. schematics with two or more coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/33—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
Definitions
- the invention relates to a device for cooling an exhaust gas recirculation loop in a motor vehicle engine, and more particularly to a high pressure exhaust gas recirculation loop.
- An exhaust gas recirculation loop also known under the name EGR, from the English Exhaust Gas Recirculation, has the function of allowing the recirculation of the gases burnt by an internal combustion engine of a motor vehicle and their new combustion. , in order to improve performance and reduce fuel consumption and polluting emissions from the internal combustion engine.
- An exhaust gas recirculation loop generally comprises a recirculation duct, having a first end connected to the engine exhaust duct and a second end connected to the engine intake duct.
- a recirculation valve is mounted on the recirculation duct and makes it possible to control the quantity of exhaust gas returned upstream of the engine and mixed with the fresh air admitted.
- the exchanger generally comprises a bypass, or bypass duct allowing the recirculated exhaust gases to avoid said exchanger. This prevents excessive cooling of the exhaust gases. However, by inhibiting the cooling of the recirculated gases during the engine starting phase, pollutant emissions are increased.
- the document FR2879669 discloses a device for cooling a high pressure exhaust gas recirculation loop.
- the aim of the invention is to optimize the management of the cooling of the gases recirculated in the exhaust gas recirculation circuit, with a view to improving the efficiency of the engine, and to reducing pollutant emissions. and to avoid the deterioration of elements of the recirculation loop.
- actuating the bypass means actuating the corresponding bypass valve to circulate the gases in said bypass or, in other words, to make them avoid the corresponding cooler.
- the reference temperature of the engine coolant is advantageously between 55 ° C and 65 ° C.
- the reference temperature of the fluid of the independent cooling circuit is preferably between 50 ° C and 60 ° C.
- the reference temperature of the outside air is then advantageously between -10 ° C and 5 ° C.
- control module comprises a first engine speed sensor, a second engine load sensor and a computer capable of calculating the operating point of the vehicle engine based on the data respectively measured by. the first detector and by the second detector and to compare said operating point with a reference operating point, said control module being configured to inhibit the actuation of the by-passes of the first heat exchanger and of the second heat exchanger when the point operating point exceeds the reference operating point.
- FIG 1 We have represented on the figure 1 an internal combustion engine 2 of a motor vehicle, comprising a cooling circuit shown in figure 2 and an engine control device shown in figure 3 .
- the engine 2 comprises a casing 4 comprising a plurality of cylinders 6 inside which the combustion of the mixture consisting of air and fuel takes place.
- Each cylinder 6 of the crankcase 4 is connected on one side to an intake duct 8, and on the other side to an exhaust duct 10.
- the engine 2 comprises a turbocharger 12, provided with a turbine 14 mounted on the exhaust duct 10, and a compressor 16 mounted on the intake duct 8.
- the intake duct 8 is thus divided into a low pressure intake duct 18 located upstream of the compressor 16 and a duct d 'high pressure intake 20 located between the compressor 16 and the housing 4.
- the exhaust duct 10 is divided into a high pressure exhaust duct 22 located between the housing 4 and the turbine 14 and an exhaust duct low pressure 24 located downstream of the turbine 14.
- An intake flap 26 is mounted on the high pressure intake duct 22 and makes it possible to control the flow of air admitted into the cylinders 6 of the engine 2.
- a temperature sensor 27 of the exhaust gases is mounted on the high pressure exhaust duct 22.
- the engine 2 further comprises an exhaust gas recirculation circuit, comprising a recirculation duct 28 connected at one of its ends to the exhaust duct 10 and at the other of its ends to the intake duct 8.
- This recirculation circuit is at high pressure, because the recirculation duct 28 is connected to the exhaust and high intake ducts. pressure 22 and 20.
- the recirculation circuit is at low pressure, in which case the recirculation duct 28 would be connected to the low pressure exhaust and intake ducts 24 and 18
- the exhaust gas recirculation circuit further comprises a recirculation valve 30, mounted on the recirculation duct 28.
- a first cooler 32 is mounted on the recirculation duct 28, between the point of connection of the duct 28 to the exhaust duct 10 and the recirculation valve 30.
- a bypass 34, or bypass circuit of the first cooler 32 comprises a duct 36. and a bypass valve 38.
- the bypass valve 38 can be actuated in two different switching modes, a first "bypass 1 active” mode and a second "bypass 1 inactive” mode.
- the bypass valve 38 is actuated according to the "bypass 1 active” mode, the burnt gases flowing in the recirculation duct 28 from the exhaust duct 10 to the intake duct 8 are diverted by the valve 38 and pass through the bypass duct 36. In this mode, the recirculated gases therefore do not pass through the first cooler 32.
- the bypass valve 38 is actuated according to the “bypass 1 inactive” mode, the burnt gases circulating in the recirculation duct 28 pass through the bypass valve. cooler 32 and do not pass through the bypass duct 36.
- a second cooler 40 is mounted on the recirculation duct 28, between the recirculation valve 30 and the point of connection of the duct 28 to the intake duct 8.
- a bypass 42 comprises a duct 44 and a bypass valve 46.
- the valve bypass 46 can be actuated according to a first “bypass 2 active” mode, in which the recirculated gases pass through the conduit 46 and do not pass through the second cooler 40.
- the bypass valve 46 can be actuated according to a second “bypass 2 inactive” mode. » In which the recirculated gases pass through the second cooler 40 and do not pass through the conduit 44.
- the engine 2 comprises a first cooling circuit 48 and a second cooling circuit 50, both intended to contain a cooling fluid.
- Two drain conduits 52 connect the cooling circuits 48 and 50 and each include an "all-or-nothing" valve 54.
- the valves 54 are closed so that no exchange of fluid. cooling takes place between the cooling circuits 48 and 50.
- the cooling circuits 48 and 50 operate independently.
- the first cooling circuit 48 comprises a main pipe 56 in heat exchange relation with the casing 4 of the engine 2.
- a water pump 58 is mounted on the main pipe 56 and generates a flow of cooling fluid passing through the casing 4.
- the cooling fluid circulating in the main pipe 56 takes heat from the casing 4.
- a temperature sensor 60 is placed in the main pipe 56, downstream of the casing 4.
- the cooling circuit 48 comprises a first return pipe 62, on which are mounted a regulator 64 and a radiator 66.
- the regulator 64 lets the cooling fluid circulate which passes through the radiator 66.
- the radiator 66 is preferably mounted in a flow of fresh air, for example under the hood or behind the grille of the motor vehicle. Thus, the cooling fluid passing through the radiator 66 is cooled, before passing again through the pump 58 and then through the casing 4.
- the first cooling circuit 48 comprises a second return pipe 68 in heat exchange relation with the first cooler 32.
- the operation of the first cooler 32 depends on the switching mode of the bypass valve 38.
- the valve 38 When the valve 38 is actuated according to the “bypass 1 inactive” mode, the cooling fluid circulating in the second return pipe 68 draws heat from the recirculated gases passing through the first cooler 32.
- the valve 38 When the valve 38 is actuated according to the mode "Bypass 1 active", the cooling fluid circulating in the second return pipe 68 does not take heat.
- the second cooling circuit 50 comprises a closed loop 70 on which a pump 72 is mounted so as to generate a flow of cooling fluid circulating in the loop 70.
- the loop 70 is in a heat exchange relationship with the second cooler 40.
- the operation of the second cooler 40 depends on the switching mode of the bypass valve 46.
- the valve 46 is actuated according to the “bypass 2 inactive” mode, the cooling fluid circulating in the loop 70 draws off heat to the recirculated gases passing through the second cooler 40. Otherwise, there is no heat transfer.
- a temperature sensor 74 is disposed in the flow of hydraulic fluid circulating in the loop 70, downstream of the second cooler 40.
- a radiator 76 is mounted on the loop 70 between the sensor 74 and the pump 72. In this way. , the cooling fluid which has taken heat from the recirculated gases is then cooled by passing through the radiator 76.
- the first cooling circuit 48 comprises a third return pipe 78 provided with an “all-or-nothing” valve 80 and an additional radiator 82.
- the additional radiator 82 is in a heat exchange relationship with the radiator 76 of the device.
- second cooling circuit 50 The third return pipe 78 and its components have the function of allowing the heating of the cooling fluid circulating in the second cooling circuit 50, when said cooling fluid is too cold to cool the recirculated gases.
- the internal combustion engine 2 is controlled by an engine control device 86.
- the engine control device 86 collects the data sent by the temperature sensors 47, 60 and 74, which respectively provide the information on the temperature of the exhaust gases at the engine outlet, the temperature of the coolant downstream of the casing 4 of the engine and of the temperature of the fluid circulating in the independent cooling circuit, downstream of the second cooler 40.
- the engine control device 86 is connected to an air temperature sensor 87 placed outside the motor vehicle , and comprises the hardware and software means to know the speed of rotation and the load of the engine 2.
- the engine control device 86 controls the intake flap 26, the recirculation valve 30, the bypass valve 38, the bypass valve 46, the regulator 64 and the "all-or-nothing" valve 80.
- the engine control device 86 collects in particular the signals Chg (load of engine 2), Reg (engine speed), T EXT (outside air temperature), T F1 (temperature of the fluid circulating in the cooling circuit 48 of the engine) and T F2 (temperature of the fluid circulating in the cooling circuit 50 independent of the cooling circuit 48 of the engine).
- the engine control device 86 comprises a computer 88 capable of calculating the operating point of the engine 2 from the load Chg and the speed of rotation Reg, and a comparator 90 capable of comparing said operating point with a reference value.
- the control device 86 also comprises one of other comparators 92, 94 and 96, each being capable of respectively comparing a temperature T F1 , T F2 and T EXT with a reference temperature T F1_REF , T F2_REF and T EXT_REF which is therefor. clean.
- the engine control device 86 emits output signals, among which a control signal S 26 of the intake flap 26, a control signal S 30 of the recirculation valve 30, a control signal S 38 of the discharge valve. bypass 38 and a control signal S 46 from bypass valve 46.
- This process can be initiated at any time when the vehicle engine is turned off.
- the method comprises a first step E01 of detecting the contact. During this step, it is detected whether the ignition key of the motor vehicle has been actuated. As long as the ignition key has not been actuated, we remain at step E01. As soon as the vehicle's ignition key is actuated, we go to a second step E02.
- the engine control device 86 starts the internal combustion engine 2 and closes the recirculation valve 30. At the same time, it actuates the bypass valve 38 according to the "bypass 1 active mode”. ”And the bypass valve 46 according to the“ bypass 2 active ”mode. Thus, at the end of step E02, the engine is running and the recirculation of the exhaust gases is inactive.
- step E03 the engine control device 86 detects whether the request for recirculation of the exhaust gases must be requested.
- the recirculation request can be sent by an electronic card (not shown) of the engine control device 86, capable of determining an opening instruction of the recirculation valve 30 as a function of various parameters, such as the operating mode of engine 2. , the temperature of the exhaust gases measured by the temperature sensor 27 or the pressure on the accelerator pedal, the gear ratio chosen.
- step E03 we continue to apply step E03.
- step E04 we go to a fourth step E04, during which the engine control device 86 actuates the recirculation valve 30.
- part of the gas from The exhaust from the engine 2 borrows the recirculation duct 28 to be reinjected upstream of the engine, and is not cooled.
- step E05 it is determined whether the operating point of engine 2 requires cooling of the recirculated gases.
- the engine control device 86 determines the rotational speed Reg and the load Chg of the engine 2.
- the device 86 calculates the operating point of the engine 2 and compares it with a reference operating point. According to the result of the comparison, the device 86 determines whether the point of operation of engine 2 requires or does not require cooling of the exhaust gases. For example, the cooling of the exhaust gases can be imposed if the load of the engine 2 exceeds a reference load value, or if the rotational speed of the engine 2 exceeds a reference speed value. If, at the end of step E05, the device 86 detects that the operating point of the engine 2 imposes cooling, we go to step E10 which will be detailed below. If the operating point does not require cooling, a test step E06 is applied.
- step E06 it is determined whether the temperature of the outside air prohibits the cooling of the recirculated gases.
- the engine control device 86 measures the temperature T EXT of the outside air and compares it with a reference temperature T EXT_REF of outside air.
- the temperature T EXT_REF is between -1 ° C and 1 ° C, and advantageously equal to 0 ° C.
- the temperature T EXT_REF is between -8 ° C and -6 ° C, and preferably equal to -7 ° C.
- step E07 If the comparison shows that the temperature T EXT is lower than the temperature T EXT_REF , the temperature of the outside air is too low to allow the cooling of the recirculated gases and we return to step E05. If, conversely, the comparison shows that the temperature T EXT is greater than the temperature T EXT_REF , a following test step E07 is applied.
- step E07 it is determined whether the temperature T F1 of the cooling fluid circulating in the first cooling circuit 48 prohibits the cooling of the recirculated gases.
- the temperature T F1 is measured by means of the sensor 60 and it is determined whether it is lower than a first temperature T F1_REF of the reference coolant.
- the temperature T F1_REF is between 55 ° C and 65 ° C, and preferably between 58 ° C and 62 ° C. If the comparison shows that the temperature T F1 is lower than the temperature T F1_REF , we return to step E05. If, conversely, the temperature T F1 is greater than the temperature T F1_REF , a following test step E08 is applied.
- step E08 it is determined whether the temperature T F2 of the cooling fluid circulating in the second cooling circuit 50 allows the cooling of the gases recirculated by one or two coolers.
- the temperature T F2 is measured by means of the sensor 74 and it is determined whether it is lower than a second temperature T F2_REF of the reference coolant.
- the temperature T F2_REF is between 45 ° C and 55 ° C, and preferably between 48 ° C and 52 ° C. If the comparison shows that the temperature T F2 is lower than the temperature T F2_REF , a step E09 is applied. If, conversely, the temperature T F2 is greater than the temperature T F2_REF , a step E10 is applied.
- step E09 the engine control device 86 actuates the bypass valve 38 according to the “bypass 1 inactive” mode.
- Bypass valve 46 remains in “bypass 2 active” mode.
- step E10 the engine control device 86 actuates the bypass valve 38 according to the “bypass 1 inactive” mode and the bypass valve 46 according to the “bypass 2 inactive” mode.
- the recirculated exhaust gases are cooled, according to a level intercooler or higher. If the temperature of the cooling fluid circulating in the independent cooling circuit 50 is too low, the recirculated exhaust gases are cooled according to the intermediate level, that is to say by the cooler 32 alone. If the temperature of the fluid cooling circulating in the independent cooling circuit 50 is not too low, the recirculated exhaust gases are cooled according to the upper level, that is to say by the two coolers 32 and 40.
- this control method and this cooling device make it possible to optimize the cooling of the recirculated gases by separate management of the two coolers and their associated bypass.
- the cooling of the recirculated gases can be implemented in three different cooling levels, which are determined based on engine operating data and external data.
- the invention then makes it possible to increase more rapidly the temperature of the gases admitted into the engine 2 during the engine temperature rise phase, then to effectively cool the recirculated gases in order to reduce polluting emissions.
- the cooling of the recirculated gases according to an intermediate cooling level and a higher cooling level allows improved reliability of the exhaust gas recirculation circuit, in particular avoiding damage to the exchanger and / or the recirculation valve.
- the invention limits the stress on other antipollution device, such as the nitrogen oxides trap, the nitrogen oxides post-treatment device or a selective catalytic reduction (SCR) device.
- SCR selective catalytic reduction
- a cooling device according to the invention can be easily manufactured, given that it comprises two identical coolers provided with two identical by-passes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Description
- L'invention concerne un dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement dans un moteur de véhicule automobile, et plus particulièrement d'une boucle de recirculation des gaz d'échappement à haute pression.
- Une boucle de recirculation des gaz d'échappement, également connue sous le nom d'EGR, de l'anglais Exhaust Gas Recirculation, a pour fonction de permettre la recirculation des gaz brûlés par un moteur à combustion interne de véhicule automobile et leur nouvelle combustion, afin d'améliorer les performances et de diminuer la consommation et les émissions polluantes du moteur à combustion interne. Une boucle de recirculation des gaz d'échappement comprend généralement un conduit de recirculation, comportant une première extrémité raccordée au conduit d'échappement du moteur et une seconde extrémité raccordée au conduit d'admission du moteur. Une vanne de recirculation est montée sur le conduit de recirculation et permet de contrôler la quantité de gaz d'échappement renvoyée en amont du moteur et mélangée à l'air frais admis.
- Si l'injection de gaz d'échappement dans l'air frais admis permet de réduire les émissions d'oxydes d'azote, elle entraîne une augmentation des émissions de suie et de particules. Pour limiter cette augmentation, les gaz d'échappement renvoyés en amont du moteur peuvent être refroidis au moyen d'un échangeur thermique implanté sur le circuit de refroidissement du moteur. Une telle solution peut s'avérer problématique, car une température trop faible du liquide de refroidissement, par exemple lors de la phase de démarrage du moteur, entraîne une condensation des gaz d'échappement recirculés. Il en résulte un dépôt de suie dans la vanne et/ou dans l'échangeur, pouvant entraîner une détérioration rapide de l'échangeur et/ou un blocage de la vanne de recirculation.
- Pour pallier cet inconvénient, l'échangeur comprend généralement un bipasse, ou conduit de dérivation permettant aux gaz d'échappement recirculés d'éviter ledit échangeur. On évite ainsi de refroidir les gaz d'échappement de manière excessive. Toutefois, en inhibant le refroidissement des gaz recirculés pendant la phase de démarrage du moteur, on augmente les émissions de polluants
- Le document
FR2879669 - Au vu de ce qui précède, l'invention a pour but d'optimiser la gestion du refroidissement des gaz recirculés dans le circuit de recirculation des gaz d'échappement, en vue d'améliorer le rendement du moteur, de diminuer les émissions de polluants et d'éviter la détérioration d'éléments de la boucle de recirculation.
- À cet effet, un dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement à haute pression d'un moteur de véhicule automobile comprend un premier échangeur de chaleur en relation d'échange thermique avec le circuit de refroidissement du moteur, un bipasse du premier échangeur de chaleur et un module de commande capable d'actionner le bipasse du premier échangeur de chaleur. Ce dispositif comprend un deuxième échangeur de chaleur en relation d'échange thermique avec un circuit de refroidissement indépendant du circuit de refroidissement du moteur, le deuxième échangeur de chaleur étant monté en série dans l'écoulement des gaz recirculés par rapport au premier échangeur de chaleur, le dispositif de refroidissement comprenant un bipasse du deuxième échangeur de chaleur, le module de commande étant capable d'actionner le bipasse du deuxième échangeur de chaleur. Le module de commande étant capable d'actionner le bipasse du deuxième échangeur de chaleur. Le module de commande comprend une vanne de recirculation, montée sur le conduit de recirculation, entre les premier et deuxième échangeurs de chaleur. Le module de commande comprend des capteurs de température aptes à mesurer respectivement la température du fluide circulant dans le circuit de refroidissement du moteur, la température du fluide de refroidissement circulant dans le second circuit de refroidissement, la température d'air extérieur, et des comparateurs destinés respectivement à comparer une température à une température de référence qui lui est propre, le module de commande étant apte à déterminer une consigne d'ouverture de la vanne de recirculation en fonction de divers paramètres, et est paramétré pour réaliser dans cet ordre :
- une mesure la température de l'air extérieur,
- une comparaison de la température de l'air extérieur avec une donnée de référence, de telle sorte que si la température de l'air extérieur est supérieure à la donnée de référence alors
- une mesure la température du fluide circulant dans le circuit de refroidissement du moteur est réalisée, puis
- une comparaison de ladite donnée mesurée avec une donnée de référence, et
- un actionnement du bipasse du premier échangeur de chaleur tant que la température est inférieure à la donnée de référence,
- une mesure la température du fluide de refroidissement circulant dans le second circuit de refroidissement dès lors que la température est supérieure à la donnée de référence,
- un actionnement du bipasse du deuxième échangeur de chaleurtant que la température du fluide de refroidissement est inférieure à une seconde température de fluide de refroidissement de référence.
- L'ajout d'un deuxième échangeur de chaleur en relation d'échange thermique avec un circuit de refroidissement indépendant du circuit de refroidissement du moteur permet une gestion séparée des bipasses et offre ainsi un meilleur contrôle du refroidissement des gaz d'échappement. Dans la présente demande, « actionner le bipasse » signifie actionner la vanne de bipasse correspondante pour faire circuler les gaz dans ledit bipasse ou, en d'autres termes, pour leur faire éviter le refroidisseur correspondant.
- Dans un tel mode de réalisation, la température de référence du fluide de refroidissement du moteur est avantageusement comprise entre 55 °C et 65 °C.
- Dans un tel mode de réalisation, la température de référence du fluide du circuit de refroidissement indépendant est de préférence comprise entre 50 °C et 60 °C.
- La température de référence de l'air extérieur est alors avantageusement comprise entre -10 °C et 5 °C.
- Dans un mode de réalisation, le module de commande comprend un premier détecteur du régime de rotation du moteur, un second détecteur de la charge du moteur et un calculateur capable de calculer le point de fonctionnement du moteur du véhicule en fonction des données respectivement mesurées par le premier détecteur et par le second détecteur et de comparer ledit point de fonctionnement à un point de fonctionnement de référence, ledit module de commande étant paramétré pour inhiber l'actionnement des bipasses du premier échangeur de chaleur et du deuxième échangeur de chaleur lorsque le point de fonctionnement dépasse le point de fonctionnement de référence.
- D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la
figure 1 représente schématiquement le circuit d'air d'un moteur de véhicule automobile comprenant un dispositif de refroidissement selon l'invention, - la
figure 2 représente schématiquement les circuits de refroidissement du dispositif de refroidissement de lafigure 1 , - la
figure 3 représente le système de contrôle du moteur desfigures 1 et 2 , et - la
figure 4 représente un procédé de commande du dispositif de lafigure 1 . - On a représenté sur la
figure 1 un moteur à combustion interne 2 de véhicule automobile, comprenant un circuit de refroidissement représenté enfigure 2 et un dispositif de contrôle moteur représenté enfigure 3 . - En référence à la
figure 1 , le moteur 2 comprend un carter 4 comportant une pluralité de cylindres 6 à l'intérieur desquels a lieu la combustion du mélange constitué d'air et de carburant. Chaque cylindre 6 du carter 4 est relié d'un côté à un conduit d'admission 8, et de l'autre côté à un conduit d'échappement 10. Le moteur 2 comprend un turbocompresseur 12, doté d'une turbine 14 montée sur le conduit d'échappement 10, et d'un compresseur 16 monté sur le conduit d'admission 8. Le conduit d'admission 8 est ainsi divisé en un conduit d'admission basse pression 18 situé en amont du compresseur 16 et un conduit d'admission haute pression 20 situé entre le compresseur 16 et le carter 4. De même, le conduit d'échappement 10 est divisé en un conduit d'échappement haute pression 22 situé entre le carter 4 et la turbine 14 et un conduit d'échappement basse pression 24 situé en aval de la turbine 14. Un volet d'admission 26 est monté sur le conduit d'admission haute pression 22 et permet de contrôler le débit d'air admis dans les cylindres 6 du moteur 2. Un capteur de température 27 des gaz d'échappement est monté sur le conduit d'échappement haute pression 22. - Le moteur 2 comprend en outre un circuit de recirculation des gaz d'échappement, comportant un conduit de recirculation 28 raccordé à l'une de ses extrémités au conduit d'échappement 10 et à l'autre de ses extrémités au conduit d'admission 8. Ce circuit de recirculation est à haute pression, parce que le conduit de recirculation 28 est raccordé aux conduits d'échappement et d'admission haute pression 22 et 20. Sans sortir du cadre de l'invention, on peut envisager que le circuit de recirculation soit à basse pression, auquel cas le conduit de recirculation 28 serait raccordé aux conduits d'échappement et d'admission basse pression 24 et 18. Le circuit de recirculation des gaz d'échappement comprend en outre une vanne de recirculation 30, montée sur le conduit de recirculation 28.
- Un premier refroidisseur 32 est monté sur le conduit de recirculation 28, entre le point de raccordement du conduit 28 au conduit d'échappement 10 et la vanne de recirculation 30. Un bipasse 34, ou circuit de dérivation du premier refroidisseur 32 comporte un conduit 36 et une vanne de bipasse 38. La vanne de bipasse 38 peut être actionnée selon deux modes de commutation différents, un premier mode « bipasse 1 actif » et un second mode « bipasse 1 inactif ». Lorsque la vanne de bipasse 38 est actionnée selon le mode « bipasse 1 actif », les gaz brûlés circulant dans le conduit de recirculation 28 depuis le conduit d'échappement 10 vers le conduit d'admission 8 sont déviés par la vanne 38 et empruntent le conduit de bipasse 36. Dans ce mode, les gaz recirculés ne traversent donc pas le premier refroidisseur 32. Lorsque la vanne de bipasse 38 est actionnée selon le mode « bipasse 1 inactif », les gaz brûlés circulant dans le conduit de recirculation 28 traversent le refroidisseur 32 et ne passent pas par le conduit de bipasse 36.
- Un second refroidisseur 40 est monté sur le conduit de recirculation 28, entre la vanne de recirculation 30 et le point de raccordement du conduit 28 au conduit d'admission 8. Un bipasse 42 comprend un conduit 44 et une vanne de bipasse 46. La vanne de bipasse 46 peut être actionnée selon un premier mode « bipasse 2 actif », dans lequel les gaz recirculés empruntent le conduit 46 et ne traversent pas le second refroidisseur 40. La vanne de bipasse 46 peut être actionnée selon un second mode « bipasse 2 inactif », dans lequel les gaz recirculés traversent le second refroidisseur 40 et ne passent pas par le conduit 44.
- En référence à la
figure 2 , le moteur 2 comprend un premier circuit de refroidissement 48 et un second circuit de refroidissement 50, tous deux destinés à contenir un fluide de refroidissement. Deux conduits de vidange 52 relient les circuits de refroidissement 48 et 50 et comprennent chacun une vanne « tout-ou-rien » 54. Au cours du fonctionnement normal du moteur, les vannes 54 sont fermées de telle sorte qu'aucun échange de fluide de refroidissement n'a lieu entre les circuits de refroidissement 48 et 50. En d'autres termes, au cours du fonctionnement normal du moteur, les circuits de refroidissement 48 et 50 fonctionnent de manière indépendante. - Le premier circuit de refroidissement 48 comprend une tubulure principale 56 en relation d'échange thermique avec le carter 4 du moteur 2. Une pompe à eau 58 est montée sur la tubulure principale 56 et génère un flux de fluide de refroidissement traversant le carter 4. Lorsque le moteur 2 fonctionne, le fluide de refroidissement circulant dans la tubulure principale 56 prélève de la chaleur au carter 4. Un capteur de température 60 est disposé dans la tubulure principale 56, en aval du carter 4.
- Le circuit de refroidissement 48 comprend une première tubulure de retour 62, sur laquelle est monté un régulateur 64 et un radiateur 66. Lorsque la température mesurée par le capteur 60 est supérieure à une valeur prédéterminée, le régulateur 64 laisse circuler le fluide de refroidissement qui traverse le radiateur 66. Le radiateur 66 est de préférence monté dans un écoulement d'air frais, par exemple sous le capot ou derrière la calandre du véhicule automobile. Ainsi, le fluide de refroidissement traversant le radiateur 66 est refroidi, avant de repasser par la pompe 58 puis par le carter 4.
- Le premier circuit de refroidissement 48 comprend une deuxième tubulure de retour 68 en relation d'échange thermique avec le premier refroidisseur 32. Comme cela a été exposé précédemment, le fonctionnement du premier refroidisseur 32 dépend du mode de commutation de la vanne de bipasse 38. Lorsque la vanne 38 est actionnée selon le mode « bipasse 1 inactif », le fluide de refroidissement circulant dans la deuxième tubulure de retour 68 prélève de la chaleur aux gaz recirculés traversant le premier refroidisseur 32. Lorsque la vanne 38 est actionnée selon le mode « bipasse 1 actif », le fluide de refroidissement circulant dans la deuxième tubulure de retour 68 ne prélève pas de chaleur.
- Le second circuit de refroidissement 50 comprend une boucle fermée 70 sur laquelle une pompe 72 est montée de manière à générer un flux de fluide de refroidissement circulant dans la boucle 70. La boucle 70 est en relation d'échange thermique avec le second refroidisseur 40. Comme pour le premier refroidisseur 32, le fonctionnement du second refroidisseur 40 dépend du mode de commutation de la vanne de bipasse 46. Lorsque la vanne 46 est actionnée selon le mode « bipasse 2 inactif », le fluide de refroidissement circulant dans la boucle 70 prélève de la chaleur aux gaz recirculés traversant le second refroidisseur 40. Dans le cas contraire, il n'y a pas de transfert de chaleur. Un capteur de température 74 est disposé dans le flux de fluide hydraulique circulant dans la boucle 70, en aval du second refroidisseur 40. En outre, un radiateur 76 est monté sur la boucle 70 entre le capteur 74 et la pompe 72. De cette manière, le fluide de refroidissement qui a prélevé de la chaleur aux gaz recirculés est ensuite refroidi en traversant le radiateur 76.
- Le premier circuit de refroidissement 48 comprend une troisième tubulure de retour 78 doté d'une vanne « tout-ou-rien » 80 et d'un radiateur additionnel 82. Le radiateur additionnel 82 est en relation d'échange thermique avec le radiateur 76 du second circuit de refroidissement 50. La troisième tubulure de retour 78 et ses composants ont pour fonction de permettre le réchauffage du fluide de refroidissement circulant dans le second circuit de refroidissement 50, lorsque ledit fluide de refroidissement est trop froid pour refroidir les gaz recirculés.
- En référence aux
figures 1, 2 et3 , le moteur à combustion interne 2 est piloté par un dispositif de contrôle moteur 86. Le dispositif de contrôle moteur 86 recueille les données émises par les capteurs de température 47, 60 et 74, qui renseignent respectivement les informations de température des gaz d'échappement en sortie du moteur, de température du fluide de refroidissement en aval du carter 4 du moteur et de température du fluide circulant dans le circuit de refroidissement indépendant, en aval du second refroidisseur 40. Par ailleurs, le dispositif de contrôle moteur 86 est relié à un capteur 87 de température d'air disposé à l'extérieur du véhicule automobile, et comprend les moyens matériels et logiciels pour connaitre le régime de rotation et la charge du moteur 2. En outre, le dispositif de contrôle moteur 86 pilote le volet d'admission 26, la vanne de recirculation 30, la vanne de bipasse 38, la vanne de bipasse 46, le régulateur 64 et la vanne « tout-ou-rien » 80. - Ainsi, en référence à la
figure 3 , le dispositif de contrôle moteur 86 recueille notamment les signaux Chg (charge du moteur 2), Reg (régime de rotation du moteur), TEXT (température d'air extérieur), TF1 (température du fluide circulant dans le circuit de refroidissement 48 du moteur) et TF2 (température du fluide circulant dans le circuit de refroidissement 50 indépendant du circuit de refroidissement 48 du moteur). Le dispositif de contrôle moteur 86 comprend un calculateur 88 capable de calculer le point de fonctionnement du moteur 2 à partir de la charge Chg et du régime de rotation Reg, et un comparateur 90 capable de comparer ledit point de fonctionnement à une valeur de référence. Le dispositif de contrôle 86 comprend également un d'autres comparateurs 92, 94 et 96, chacun étant capable de respectivement comparer une température TF1, TF2 et TEXT à une température de référence TF1_REF, TF2_REF et TEXT_REF qui lui est propre. Le dispositif de contrôle moteur 86 émet des signaux de sortie, parmi lesquels un signal de pilotage S26 du volet d'admission 26, un signal de pilotage S30 de la vanne de recirculation 30, un signal de pilotage S38 de la vanne de bipasse 38 et un signal de pilotage S46 de la vanne de bipasse 46. - On a représenté sur la
figure 4 un mode de mise en œuvre d'un procédé de commande d'un dispositif de refroidissement tel que celui qui a été détaillé en référence auxfigures 1, 2 et3 . - Ce procédé peut être initialisé à tout moment lorsque le moteur du véhicule est éteint.
- Le procédé comprend une première étape E01 de détection du contact. Au cours de cette étape, on détecte si la clé de contact du véhicule automobile a été actionnée. Tant que la clé de contact n'a pas été actionnée, on reste à l'étape E01. Dès que la clé de contact du véhicule est actionnée, on passe à une deuxième étape E02.
- Au cours de la deuxième étape E02, le dispositif de contrôle moteur 86 met en marche le moteur à combustion interne 2 et ferme la vanne de recirculation 30. Dans le même temps, il actionne la vanne de bipasse 38 selon le mode « bipasse 1 actif » et la vanne de bipasse 46 selon le mode « bipasse 2 actif ». Ainsi, à l'issue de l'étape E02, le moteur tourne et la recirculation des gaz d'échappement est inactive.
- Il s'ensuit une troisième étape de test E03 au cours de laquelle le dispositif de contrôle moteur 86 détecte si la requête de recirculation des gaz d'échappement doit être demandée. La requête de recirculation peut être émise par une carte électronique (non représentée) du dispositif de contrôle moteur 86, capable de déterminer une consigne d'ouverture de la vanne de recirculation 30 en fonction de divers paramètres, comme le mode de fonctionnement du moteur 2, la température des gaz d'échappement mesurée par le capteur de température 27 ou encore la pression sur la pédale d'accélérateur, le rapport de vitesses choisi. Tant que la requête n'est pas demandée, on continue d'appliquer l'étape E03. Dès que la requête de recirculation est demandée, on passe à une quatrième étape E04, au cours de laquelle le dispositif de contrôle moteur 86 actionne la vanne de recirculation 30. À l'issue de l'étape E04, une partie des gaz d'échappement issus du moteur 2 emprunte le conduit de recirculation 28 pour être réinjectée en amont du moteur, et n'est pas refroidie.
- Au cours de l'étape E05, on détermine si le point de fonctionnement du moteur 2 impose le refroidissement des gaz recirculés. Pour ce faire, le dispositif de contrôle moteur 86 détermine le régime de rotation Reg et la charge Chg du moteur 2. Le dispositif 86 calcule ensuite le point de fonctionnement du moteur 2 et le compare à un point de fonctionnement de référence. Selon le résultat de la comparaison, le dispositif 86 détermine si le point de fonctionnement du moteur 2 impose ou non le refroidissement des gaz d'échappement. Par exemple, le refroidissement des gaz d'échappement peut être imposé si la charge du moteur 2 dépasse une valeur de charge de référence, ou si le régime de rotation du moteur 2 dépasse une valeur de régime de référence. Si, à l'issue de l'étape E05, le dispositif 86 détecte que le point de fonctionnement du moteur 2 impose le refroidissement, on passe à l'étape E10 qui sera détaillée par la suite. Si le point de fonctionnement n'impose pas le refroidissement, on applique une étape de test E06.
- Au cours de l'étape E06, on détermine si la température de l'air extérieur interdit le refroidissement des gaz recirculés. Pour ce faire, le dispositif de contrôle moteur 86 mesure la température TEXT de l'air extérieur et la compare à une température TEXT_REF d'air extérieur de référence. Par exemple, la température TEXT_REF est comprise entre -1°C et 1°C, et avantageusement égale à 0 °C. Selon un autre exemple, la température TEXT_REF est comprise entre -8°C et -6°C, et de préférence égale à -7 °C. Si la comparaison montre que la température TEXT est inférieure à la température TEXT_REF, la température de l'air extérieur est trop faible pour permettre le refroidissement des gaz recirculés et on retourne à l'étape E05. Si, à l'inverse la comparaison montre que la température TEXT est supérieure à la température TEXT_REF, on applique une étape de test suivante E07.
- Au cours de l'étape E07, on détermine si la température TF1 du fluide de refroidissement circulant dans le premier circuit de refroidissement 48 interdit le refroidissement des gaz recirculés. Pour ce faire, on mesure la température TF1 au moyen du capteur 60 et on détermine si elle est inférieure à une première température TF1_REF de fluide de refroidissement de référence. Par exemple, la température TF1_REF est comprise entre 55 °C et 65 °C, et de préférence entre 58 °C et 62 °C. Si la comparaison montre que la température TF1 est inférieure à la température TF1_REF, on retourne à l'étape E05. Si, à l'inverse, la température TF1 est supérieure à la température TF1_REF, on applique une étape de test suivante E08.
- Au cours de l'étape E08, on détermine si la température TF2 du fluide de refroidissement circulant dans le second circuit de refroidissement 50 permet le refroidissement des gaz recirculés par un ou deux refroidisseurs. Pour ce faire, on mesure la température TF2 au moyen du capteur 74 et on détermine si elle est inférieure à une seconde température TF2_REF de fluide de refroidissement de référence. Par exemple, la température TF2_REF est comprise entre 45 °C et 55 °C, et de préférence entre 48 °C et 52 °C. Si la comparaison montre que la température TF2 est inférieure à la température TF2_REF, on applique une étape E09. Si, à l'inverse, la température TF2 est supérieure à la température TF2_REF, on applique une étape E10.
- Au cours de l'étape E09, le dispositif de contrôle moteur 86 actionne la vanne de bipasse 38 selon le mode « bipasse 1 inactif ». La vanne de bipasse 46 reste selon le mode « bipasse 2 actif ».
- Au cours de l'étape E10, le dispositif de contrôle moteur 86 actionne la vanne de bipasse 38 selon le mode « bipasse 1 inactif » et la vanne de bipasse 46 selon le mode « bipasse 2 inactif ».
- Grâce à ce procédé le fonctionnement du dispositif de refroidissement constitué des deux refroidisseurs 32 et 40 et des deux bipasses 34 et 42 peut être résumé comme suit.
- Lorsque le point de fonctionnement du moteur n'est pas particulièrement élevé, et que la température d'air extérieur est trop faible, ou que la température du fluide de refroidissement du moteur 2 est trop faible, les gaz d'échappement recirculés ne sont pas refroidis.
- Lorsque le point de fonctionnement du moteur n'est pas particulièrement élevé, que ni la température d'air extérieur, ni la température du fluide de refroidissement du moteur 2 ne sont trop faibles, les gaz d'échappement recirculés sont refroidis, selon un niveau de refroidissement intermédiaire ou supérieur. Si la température du fluide de refroidissement circulant dans le circuit de refroidissement indépendant 50 est trop faible, les gaz d'échappement recirculés sont refroidis selon le niveau intermédiaire, c'est-à-dire par le seul refroidisseur 32. Si la température du fluide de refroidissement circulant dans le circuit de refroidissement indépendant 50 n'est pas trop faible, les gaz d'échappement recirculés sont refroidis selon le niveau supérieur, c'est-à-dire par les deux refroidisseurs 32 et 40.
- Quelles que soient les conditions de température, dès lors que le point de fonctionnement du moteur dépasse sa valeur de référence, les gaz d'échappement recirculés sont refroidis par les deux refroidisseurs 32 et 40.
- Ainsi, ce procédé de contrôle et ce dispositif de refroidissement permettent d'optimiser le refroidissement des gaz recirculés par une gestion séparée des deux refroidisseurs et de leur bipasse associé. Le refroidissement des gaz recirculés peut être mis en œuvre selon trois niveaux de refroidissement différent, qui sont déterminés en fonction de données de fonctionnement du moteur et de données extérieures.
- L'invention permet alors d'augmenter plus rapidement la température des gaz admis dans le moteur 2 au cours de la phase de montée en température du moteur, puis de refroidir efficacement les gaz recirculés afin de réduire les émissions polluantes. Le refroidissement des gaz recirculés selon un niveau de refroidissement intermédiaire et un niveau de refroidissement supérieur permet une fiabilité améliorée du circuit de recirculation des gaz d'échappement en évitant notamment la détérioration de l'échangeur et/ou de la vanne de recirculation.
- En outre, l'invention limite la sollicitation d'autre dispositif antipollution, tels que le piège à oxydes d'azote, le dispositif de post-traitement des oxydes d'azote ou un dispositif de réduction catalytique sélectif (SCR). L'invention permet alors d'alléger le dimensionnement de ces organes.
- Par ailleurs, un dispositif de refroidissement selon l'invention peut être aisément fabriqué, étant donné qu'il comprend deux refroidisseurs identiques munis de deux bipasses identiques.
Claims (4)
- Dispositif de refroidissement d'une boucle de recirculation (28) des gaz d'échappement à haute pression d'un moteur (2) de véhicule automobile, comprenant un premier échangeur de chaleur (32) en relation d'échange thermique avec le circuit de refroidissement (48) du moteur (2), un bipasse (34) du premier échangeur de chaleur (32) et un module de commande (86) apte à actionner une vanne de bipasse (38) selon un mode « bipasse 1 actif » ou « bipasse 1 inactif », et à actionner une autre vanne de bipasse (46) selon un mode « bipasse 2 actif » et « bipasse 2 inactif », le module de commande (86) étant capable d'actionner le bipasse (34) du premier échangeur de chaleur (32) par l'intermédiaire de la vanne de bipasse (38) selon le mode « bipasse 1 actif », le dispositif de refroidissement comprenant un deuxième échangeur de chaleur (40) en relation d'échange thermique avec un circuit de refroidissement (50) indépendant du circuit de refroidissement (48) du moteur (2), le deuxième échangeur de chaleur (40) étant monté en série dans l'écoulement des gaz recirculés par rapport au premier échangeur de chaleur (32), le dispositif de refroidissement comprenant un bipasse (42) du deuxième échangeur de chaleur (40), le module de commande (86) étant capable d'actionner le bipasse (42) du deuxième échangeur de chaleur (40) par l'intermédiaire de la vanne de bipasse (46) selon un mode « bipasse 2 actif », le dispositif de refroidissement comprenant une vanne de recirculation (30), caractérisé en ce que la vanne est montée sur le conduit de recirculation (28), entre les premier et deuxième échangeurs de chaleur (32, 40), la vanne de recirculation (30) étant placée entre les bipasses (34, 42) et en ce que le module de commande (86) comprend des capteurs de température (60, 74, 87) aptes à mesurer respectivement la température (TF1) du fluide circulant dans le circuit de refroidissement (48) du moteur (2), la température (TF2) du fluide de refroidissement circulant dans le second circuit de refroidissement (50), la température (TEXT) d'air extérieur, et des comparateurs (92, 94 et 96) destinés respectivement à comparer une température (TF1, TF2, TEXT) à une température de référence (TF1_REF, TF2_REF, TEXT_REF) qui lui est propre, le module de commande (86) étant apte à déterminer une consigne d'ouverture de la vanne de recirculation (30) en fonction de divers paramètres, et est paramétré pour réaliser dans cet ordre :- le module de commande (86) comprend un détecteur du régime de rotation (Reg) du moteur (2), un détecteur de la charge (Chg) du moteur (2) et un calculateur (88) capable de calculer le point de fonctionnement du moteur (2) du véhicule en fonction des données (Reg, Chg) respectivement mesurées par les détecteurs du régime de rotation moteur et de charge (Reg, Chg) et de comparer ledit point de fonctionnement à un point de fonctionnement de référence, ledit module de commande (86) étant paramétré pour inhiber l'actionnement des bipasses (34, 42) du premier échangeur de chaleur (32) et du deuxième échangeur de chaleur (40) lorsque le point de fonctionnement dépasse le point de fonctionnement de référence,- une mesure la température (TEXT) de l'air extérieur,- une comparaison de la température (TEXT) de l'air extérieur avec une donnée de référence (TEXT_REF), de telle sorte que si la température (TEXT) de l'air extérieur est supérieure à la donnée de référence (TEXT_REF) alors- une mesure la température (TF1) du fluide circulant dans le circuit de refroidissement (48) du moteur (2) est réalisée, puis- une comparaison de ladite donnée mesurée (TF1) avec une donnée de référence (TF1_REF), et- un actionnement du bipasse (34) du premier échangeur de chaleur (32) tant que la température (TF1) est inférieure à la donnée de référence (TF1_REF),- une mesure la température (TF2) du fluide de refroidissement circulant dans le second circuit de refroidissement (50) dès lors que la température (TF1) est supérieure à la donnée de référence (TF1_REF),- un actionnement du bipasse (42) du deuxième échangeur de chaleur (40) tant que la température (TF2) du fluide de refroidissement est inférieure à une seconde température (TF2_REF) de fluide de refroidissement de référence, le dispositif de contrôle moteur (86) actionnant la vanne de bipasse (38) selon le mode « bipasse 1 inactif », la vanne de bipasse (46) restant selon le mode « bipasse 2 actif ».
- Dispositif de refroidissement selon la revendication 1, dans lequel la température de référence (TF1_REF) du fluide de refroidissement du moteur est comprise entre 55 °C et 65 °C.
- Dispositif de refroidissement selon la revendication 1 ou 2, dans lequel la température de référence (TF2_REF) du fluide du circuit de refroidissement indépendant (50) est comprise entre 50 °C et 60 °C.
- Dispositif de refroidissement selon l'une quelconque des revendications 1 à 3, dans lequel la température de référence (TEXT_REF) de l'air extérieur est comprise entre -10 °C et 5 °C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1556693A FR3038937B1 (fr) | 2015-07-16 | 2015-07-16 | Dispositif de refroidissement d'une boucle de recirculation des gaz d'echappement d'un moteur de vehicule automobile |
PCT/FR2016/051728 WO2017009549A1 (fr) | 2015-07-16 | 2016-07-07 | Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3353405A1 EP3353405A1 (fr) | 2018-08-01 |
EP3353405B1 true EP3353405B1 (fr) | 2021-05-05 |
Family
ID=54329733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16750932.2A Active EP3353405B1 (fr) | 2015-07-16 | 2016-07-07 | Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3353405B1 (fr) |
FR (1) | FR3038937B1 (fr) |
WO (1) | WO2017009549A1 (fr) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004044484A (ja) * | 2002-07-11 | 2004-02-12 | Toyota Motor Corp | 内燃機関の制御装置 |
FR2879669B1 (fr) * | 2004-12-20 | 2007-03-09 | Renault Sas | Groupe motopropulseur comportant des moyens de commande du debit et de regulation de la temperature des gaz d'echappement en recirculation |
JP2007040141A (ja) * | 2005-08-02 | 2007-02-15 | Toyota Motor Corp | Egrクーラシステム |
DE102006057489B4 (de) * | 2006-12-06 | 2014-07-10 | Audi Ag | Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine |
GB2473821A (en) * | 2009-09-23 | 2011-03-30 | Gm Global Tech Operations Inc | Exhaust gas recirculation system with multiple coolers |
GB2509737A (en) * | 2013-01-11 | 2014-07-16 | Gm Global Tech Operations Inc | Exhaust gas recirculation (EGR) system with active control of EGR coolant temperature |
-
2015
- 2015-07-16 FR FR1556693A patent/FR3038937B1/fr active Active
-
2016
- 2016-07-07 WO PCT/FR2016/051728 patent/WO2017009549A1/fr active Application Filing
- 2016-07-07 EP EP16750932.2A patent/EP3353405B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3353405A1 (fr) | 2018-08-01 |
FR3038937B1 (fr) | 2018-10-12 |
WO2017009549A1 (fr) | 2017-01-19 |
FR3038937A1 (fr) | 2017-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2191125B1 (fr) | Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement | |
EP3084198B1 (fr) | Ensemble comprenant un moteur thermique et un compresseur électrique configuré pour chauffer les gaz d'admission | |
US11346263B2 (en) | DPF regeneration control device and DPF regeneration control method | |
FR2902466A1 (fr) | Systeme de recirculation de gaz d'echappement pour moteur a combustion du type diesel suralimente et procede de commande d'un tel moteur | |
FR2935437A1 (fr) | Procede de determination du chargement en suies d'un filtre a particules | |
EP3353405B1 (fr) | Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile | |
FR2921432A1 (fr) | Procede de diagnostic d'une defaillance d'un organe du dispositif egr d'un moteur a combustion interne | |
WO2007012778A2 (fr) | Procede et dispositif de recirculation controlee des gaz brules dans un circuit a egr basse pression, permettant une admission rapide d'air frais dans un moteur | |
EP3775517B1 (fr) | Circuit de refroidissement pour un moteur à combustion interne équipé d'un circuit de recirculation de gaz d'échappement et son procédé de commande | |
FR3051148A1 (fr) | " systeme de refroidissement pour un vehicule hybride comportant un circuit de transfert de liquide de refroidissement " | |
EP2992193B1 (fr) | Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne | |
FR3109802A1 (fr) | Chauffage de système de dépollution de moteur thermique comportant un e-turbo | |
WO2017042311A1 (fr) | Compresseur electrique avec vanne de contournement | |
WO2001057375A1 (fr) | Procede et dispositif de refroidissement d'un moteur de vehicule automobile | |
JP6769415B2 (ja) | 排気処理装置 | |
FR2923537A1 (fr) | Systeme et procede d'estimation de la pression en aval d'une turbine de turbocompresseur et moteur thermique associe | |
FR3069023A1 (fr) | Procede de commande d'un moteur a combustion interne suralimente comprenant un compresseur additionnel. | |
EP2956656B1 (fr) | Procédé de pilotage d'une vanne de régulation d'un débit de liquide de refroidissement des gaz de recirculation d'un moteur à combustion interne | |
FR3058471A1 (fr) | Procede de commande d'un moteur thermique suralimente comprenant une ligne de recirculation des gaz d'echappement. | |
EP2066892B1 (fr) | Systeme de commande d'un moteur à combustion interne de véhicule automobile comprenant un circuit de recirculation des gaz d'échappement du moteur muni d'une vanne de recirculation commandée | |
WO2017162971A1 (fr) | Procede de deceleration d'un compresseur electrique et compresseur electrique associe | |
FR2921122A3 (fr) | Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe | |
FR3059719B1 (fr) | Procede de commande d'un moteur thermique suralimente comprenant un circuit de recirculation des gaz d'echappement | |
FR3028560A1 (fr) | Architecture de moteur thermique suralimente munie d'un dispositif de stockage de pression | |
FR3137418A1 (fr) | Ensemble moteur suralimenté comprenant des moyens de détection de la formation de glace dans le refroidisseur d’air de suralimentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190708 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1390101 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016057386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1390101 Country of ref document: AT Kind code of ref document: T Effective date: 20210505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210805 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210906 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210806 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016057386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RENAULT S.A.S |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
26N | No opposition filed |
Effective date: 20220208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210905 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210707 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210707 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230608 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20231228 AND 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602016057386 Country of ref document: DE Owner name: NEW H POWERTRAIN HOLDING, S.L.U., ES Free format text: FORMER OWNER: RENAULT S.A.S., BOULOGNE-BILLANCOURT, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210505 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 9 |