WO2017009549A1 - Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile - Google Patents

Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile Download PDF

Info

Publication number
WO2017009549A1
WO2017009549A1 PCT/FR2016/051728 FR2016051728W WO2017009549A1 WO 2017009549 A1 WO2017009549 A1 WO 2017009549A1 FR 2016051728 W FR2016051728 W FR 2016051728W WO 2017009549 A1 WO2017009549 A1 WO 2017009549A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
engine
temperature
cooling
bypass
Prior art date
Application number
PCT/FR2016/051728
Other languages
English (en)
Inventor
Vincent Pierre AVONS
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to EP16750932.2A priority Critical patent/EP3353405B1/fr
Publication of WO2017009549A1 publication Critical patent/WO2017009549A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases

Definitions

  • Cooling device for an exhaust gas recirculation loop of a motor vehicle engine
  • the invention relates to a cooling device for an exhaust gas recirculation loop in a motor vehicle engine, and more particularly to a high pressure exhaust gas recirculation loop.
  • An exhaust gas recirculation loop also known as the EGR, of the English Exhaust Gas Recirculation, has the function of allowing the recirculation of burnt gases by an internal combustion engine of a motor vehicle and their new combustion. , in order to improve the performance and to reduce the consumption and the polluting emissions of the internal combustion engine.
  • An exhaust gas recirculation loop generally includes a recirculation conduit having a first end connected to the engine exhaust duct and a second end connected to the engine intake duct.
  • a recirculation valve is mounted on the recirculation conduit and controls the amount of exhaust gas returned upstream of the engine and mixed with the incoming fresh air.
  • the exhaust gas injected into the incoming fresh air reduces the emissions of nitrogen oxides, it increases the emissions of soot and particulate matter.
  • the exhaust gases returned upstream of the engine can be cooled by means of a heat exchanger located on the engine cooling circuit.
  • a heat exchanger located on the engine cooling circuit.
  • Such a solution may be problematic because too low a temperature of the coolant, for example during the starting phase of the engine, causes condensation of the recirculated exhaust gases. This results in a deposit of soot in the valve and / or in the exchanger, which can lead to rapid deterioration of the exchanger and / or blockage of the recirculation valve.
  • the exchanger generally comprises a bypass, or bypass duct allowing the recirculated exhaust gas to avoid said exchanger. This avoids excessively cool exhaust gases.
  • pollutant emissions are increased.
  • the object of the invention is to optimize the management of the cooling of the recirculated gases in the exhaust gas recirculation circuit, in order to improve the efficiency of the engine, to reduce the emissions of pollutants. and to prevent deterioration of elements of the recirculation loop.
  • a cooling device of a high pressure exhaust gas recirculation loop of a motor vehicle engine comprises a first heat exchanger in heat exchange relation with the engine cooling circuit, a bypass of the first heat exchanger and a control module capable of operating the bypass of the first heat exchanger.
  • This device comprises a second heat exchanger in heat exchange relation with a cooling circuit independent of the engine cooling circuit, the second heat exchanger being connected in series in the recirculated gas flow with respect to the first heat exchanger.
  • the cooling device comprising a bypass of the second heat exchanger, the control module being capable of actuating the bypass of the second heat exchanger.
  • the control module comprises a first temperature sensor able to measure the temperature of the fluid flowing in the engine cooling circuit, a first comparator able to compare the temperature measured by the first sensor with a reference temperature of engine coolant and is set to operate the bypass of the first heat exchanger when said first comparator detects that the measured temperature is lower than the reference temperature.
  • the reference temperature of the engine coolant is advantageously between 55 ° C and 65 ° C.
  • control module comprises a second temperature sensor capable of measuring the temperature of the fluid flowing in the independent cooling circuit, a second comparator able to compare the temperature measured by the second sensor with a reference temperature. of the independent cooling circuit fluid and is set to operate the bypass of the second heat exchanger when said second comparator detects that the measured temperature is lower than the reference temperature.
  • the reference temperature of the fluid of the independent cooling circuit is preferably between 50 ° C and 60 ° C.
  • control module comprises a third temperature sensor capable of measuring the temperature of the outside air, a third comparator able to compare the temperature measured by the third sensor with a reference temperature of the air. outside and is set to operate the bypass of the first heat exchanger and the second heat exchanger when said third comparator detects that the measured temperature is lower than the reference temperature.
  • the control module comprises a first detector of the rotational speed of the engine, a second detector of the engine load and a computer capable of calculating the operating point of the engine of the vehicle according to the respectively measured data. by the first detector and the second detector and comparing said operating point to a reference operating point, said control module being set to inhibit the operation of the bypass of the first heat exchanger and the second heat exchanger when the operating point exceeds the reference operating point.
  • a method for controlling a cooling device of a high-pressure exhaust gas recirculation loop of an engine of a motor vehicle comprising a first heat exchanger in relation to a heat exchange with the engine cooling circuit, a bypass of the first heat exchanger, a second heat exchanger in heat exchange relation with a cooling circuit independent of the engine cooling circuit, and a bypass of the second heat exchanger.
  • bypass of the first heat exchanger and / or the bypass of the second heat exchanger is actuated as a function of the result of said comparison.
  • FIG. 1 schematically represents the air circuit of a motor vehicle engine comprising a cooling device according to the invention
  • FIG. 2 diagrammatically represents the cooling circuits of the cooling device of FIG. 1,
  • FIG. 3 represents the engine control system of FIGS. 1 and 2
  • FIG. 4 represents a control method of the device of FIG. 1.
  • FIG. 1 shows an internal combustion engine 2 of a motor vehicle, comprising a cooling circuit represented in FIG. 2 and an engine control device represented in FIG. 3.
  • the engine 2 comprises a housing 4 having a plurality of cylinders 6 within which takes place the combustion of the mixture of air and fuel.
  • Each cylinder 6 of the casing 4 is connected on one side to an intake duct 8, and on the other side to an exhaust duct 10.
  • the engine 2 comprises a turbocharger 12, equipped with a turbine 14 mounted on the exhaust duct 10, and a compressor 16 mounted on the intake duct 8.
  • the intake duct 8 is thus divided into a low pressure intake duct 1 8 located upstream of the compressor 16 and a duct high pressure inlet 20 located between the compressor 16 and the casing 4.
  • the exhaust duct 10 is divided into a high pressure exhaust duct 22 located between the casing 4 and the turbine 14 and a duct low pressure exhaust 24 located downstream of the turbine 14.
  • An admission valve 26 is mounted on the high pressure inlet duct 22 and controls the flow of air admitted into the cylinders 6 of the engine 2.
  • a sensor temperature 27 of the exhaust gas is mounted on the duct high pressure exhaust system 22.
  • the engine 2 further comprises an exhaust gas recirculation circuit, comprising a recirculation duct 28 connected at one of its ends to the exhaust duct 10 and at the other of its ends to the intake duct 8
  • This recirculation circuit is at high pressure, because the recirculation duct 28 is connected to the high exhaust and intake ducts. Pressure 22 and 20. Without departing from the scope of the invention, it can be envisaged that the recirculation circuit is at low pressure, in which case the recirculation duct 28 would be connected to the exhaust and low pressure inlet ducts 24 and 1.
  • the exhaust gas recirculation circuit further comprises a recirculation valve 30, mounted on the recirculation duct 28.
  • a first cooler 32 is mounted on the recirculation duct 28, between the connection point of the duct 28 to the exhaust duct 10 and the recirculation valve 30.
  • a bypass 34, or bypass circuit of the first cooler 32 comprises a duct 36 and a bypass valve 38.
  • the bypass valve 38 can be operated in two different switching modes, a first "bypass 1 active” mode and a second "bypass 1 inactive” mode.
  • the bypass valve 38 is actuated in the "active bypass 1” mode, the flue gases circulating in the recirculation duct 28 from the exhaust duct 10 to the intake duct 8 are deflected by the valve 38 and take the same direction. 36. In this mode, the recirculated gases do not pass through the first cooler 32.
  • the bypass valve 38 is actuated according to the "bypass 1 inactive” mode, the flue gases circulating in the recirculation duct 28 pass through the cooler 32 and do not pass through the bypass duct 36.
  • a second cooler 40 is mounted on the recirculation duct 28, between the recirculation valve 30 and the connection point of the duct 28 to the intake duct 8.
  • a bypass 42 comprises a duct 44 and a bypass valve 46.
  • the valve bypass 46 can be operated in a first mode "bypass 2 active", in which the recirculated gases take the conduit 46 and do not pass through the second cooler 40.
  • the bypass valve 46 can be operated in a second mode "bypass 2 inactive In which the recirculated gases pass through the second cooler 40 and do not pass through line 44.
  • the engine 2 comprises a first cooling circuit 48 and a second cooling circuit 50, both for containing a cooling fluid.
  • Two drain lines 52 connect the cooling circuits 48 and 50 and each comprise an "all-or-nothing" valve 54.
  • the valves 54 are closed so that no exchange of fluid is required. Cooling does not take place between the cooling circuits 48 and 50. In other words, during normal engine operation, the cooling circuits 48 and 50 operate independently.
  • the first cooling circuit 48 comprises a main pipe 56 in heat exchange relation with the casing 4 of the engine 2.
  • a water pump 58 is mounted on the main pipe 56 and generates a flow of cooling fluid passing through the casing 4.
  • the cooling fluid circulating in the main pipe 56 takes heat from the casing 4.
  • a temperature sensor 60 is disposed in the main pipe 56, downstream of the casing 4.
  • the cooling circuit 48 comprises a first return pipe 62, on which is mounted a regulator 64 and a radiator 66.
  • the regulator 64 circulates the cooling fluid which
  • the radiator 66 is preferably mounted in a flow of fresh air, for example under the hood or behind the radiator grille of the motor vehicle.
  • the cooling fluid passing through the radiator 66 is cooled, before passing through the pump 58 and then through the casing 4.
  • the first cooling circuit 48 comprises a second return pipe 68 in heat exchange relation with the first cooler 32.
  • the operation of the first cooler 32 depends on the switching mode of the bypass valve 38.
  • the valve 38 When the valve 38 is actuated in the "bypass 1 inactive" mode, the cooling fluid circulating in the second return pipe 68 takes heat from the recirculated gases passing through the first cooler 32.
  • the valve 38 When the valve 38 is actuated according to the mode "Active bypass 1", the cooling fluid flowing in the second return pipe 68 does not take heat.
  • the second cooling circuit 50 comprises a closed loop 70 on which a pump 72 is mounted so as to generate a flow of cooling fluid flowing in the loop 70.
  • the loop 70 is in heat exchange relation with the second cooler 40.
  • the operation of the second cooler 40 depends on the switching mode of the bypass valve 46.
  • the valve 46 is actuated in the "bypass 2 inactive" mode, the cooling fluid flowing in the loop 70 draws heat to the recirculated gas passing through the second cooler 40.
  • a temperature sensor 74 is disposed in the flow of hydraulic fluid flowing in the loop 70, downstream of the second cooler 40.
  • a radiator 76 is mounted on the loop 70 between the sensor 74 and the pump 72. In this way , the cooling fluid which has taken heat from the recirculated gases is then cooled by passing through the radiator 76.
  • the first cooling circuit 48 comprises a third return pipe 78 provided with an "all-or-nothing" valve 80 and an additional radiator 82.
  • the additional radiator 82 is in heat exchange relation with the radiator 76 of the radiator 76.
  • second cooling circuit 50 The third return pipe 78 and its components have the function of allowing heating of the cooling fluid flowing in the second cooling circuit 50, when said coolant is too cold to cool the recirculated gases.
  • the internal combustion engine 2 is controlled by an engine control device 86.
  • the engine control device 86 collects the data transmitted by the temperature sensors 47, 60 and 74, which respectively indicate the temperature information of the exhaust gas at the engine outlet, the temperature of the cooling fluid downstream of the casing 4 the engine and the temperature of the fluid flowing in the independent cooling circuit, downstream of the second cooler 40.
  • the engine control device 86 is connected to an air temperature sensor 87 disposed outside the motor vehicle , and comprises the hardware and software means for knowing the rotational speed and the load of the engine 2.
  • the engine control device 86 controls the intake flap 26, the recirculation valve 30, the bypass valve 38, the bypass valve 46, the regulator 64 and the on-off valve 80.
  • the engine control device 86 collects in particular the signals Chg (load of the engine 2), Reg (engine rotation speed), TEXT (outside air temperature), TF I (temperature of the engine), fluid flowing in the cooling circuit 48 of the engine) and TF 2 (temperature of the fluid flowing in the cooling circuit 50 independent of the cooling circuit 48 of the engine).
  • the engine control device 86 comprises a computer 88 capable of calculating the operating point of the engine 2 from the load Chg and the rotational speed Reg, and a comparator 90 capable of comparing said operating point with a reference value.
  • the control device 86 also comprises one of other comparators 92, 94 and 96, each being capable respectively of comparing a temperature TF I, TF 2 and TEXT to a reference temperature TF I REF, TF 2 REF and TEXT REF which is clean .
  • the engine control unit 86 emits output signals, including a control signal S 2 6 vo let inlet 26, a drive signal S 30 of the recirculation valve 30, a control signal S 3 8 the bypass valve 38 and a control signal S 46 of the bypass valve 46.
  • FIG. 4 shows a mode of implementation of a control method of a cooling device such as that detailed with reference to FIGS. 1, 2 and 3.
  • the method comprises a first contact detection step E01. During this step, it is detected whether the ignition key of the motor vehicle has been actuated. As long as the ignition key has not been actuated, it remains in step E01. As soon as the ignition key of the vehicle is actuated, it goes to a second step E02.
  • the engine control device 86 starts the internal combustion engine 2 and closes the recirculation valve 30. At the same time, it actuates the bypass valve 38 in the "active bypass 1" mode. And the bypass valve 46 in the "bypass 2 active” mode. Thus, at the end of the step E02, the engine rotates and the recirculation of the exhaust gas is inactive.
  • step E03 the engine control device 86 detects whether the request for recirculation of the exhaust gas must be requested.
  • the recirculation request may be issued by an electronic card (not shown) of the engine control device 86, capable of determining an opening setpoint of the recirculation valve 30 according to various parameters, such as the operating mode of the engine 2 , the temperature of the exhaust gas measured by the temperature sensor 27 or else the pressure on the accelerator pedal, the selected gear ratio.
  • step E03 is continued.
  • step E04 the engine control device 86 actuates the recirculation valve 30.
  • a part of the gases of exhaust from the engine 2 borrows the recirculation duct 28 to be reinjected upstream of the engine, and is not cooled.
  • step E05 it is determined whether the operating point of the engine 2 requires the cooling of the recirculated gases.
  • the engine control device 86 determines the rotation speed Reg and the load Chg of the engine 2.
  • the device 86 calculates the operating point of the engine 2 and compares it with a reference operating point. According to the result of the comparison, the device 86 determines whether the point of operation of the engine 2 requires or not the cooling of the exhaust gas. For example, the exhaust gas cooling may be imposed if the load of the engine 2 exceeds a reference load value, or if the rotational speed of the engine 2 exceeds a reference speed value. If, at the end of step E05, the device 86 detects that the operating point of the motor 2 imposes the cooling, step E10 is carried out which will be detailed later. If the operating point does not require cooling, a test step E06 is applied.
  • step E06 it is determined whether the temperature of the outside air prohibits the cooling of the recirculated gases.
  • the engine control device 86 measures the TEXT temperature of the outside air and compares it with a TEXT REF reference outdoor air temperature.
  • the temperature TEXT REF is between -1 ° C and 1 ° C, and preferably equal to 0 ° C.
  • the temperature TEXT REF is between -8 ° C and -6 ° C, and preferably equal to -7 ° C. If the comparison shows that the temperature TEXT is lower than the temperature TEXT REF, the outside air temperature is too low to allow cooling of the recirculated gases and return to step E05. If, on the other hand, the comparison shows that the temperature TEXT is greater than the temperature TEXT REF, a next test step E07 is applied.
  • step E07 it is determined whether the temperature TFI of the cooling fluid flowing in the first cooling circuit 48 prevents the cooling of the recirculated gases.
  • the temperature TFI is measured by means of the sensor 60 and it is determined whether it is lower than a first reference refrigerant temperature TFI REF.
  • TFI REF is between 55 ° C and 65 ° C, and preferably between 58 ° C and 62 ° C. If the comparison shows that the temperature TFI is lower than the temperature TFI REF, we return to the step E05. If, on the other hand, the temperature TFI is higher than the temperature TFI REF, a next test step E08 is applied.
  • step E08 it is determined whether the temperature TF 2 of the cooling fluid flowing in the second cooling circuit 50 allows the cooling of the recirculated gases by one or two coolers.
  • the temperature TF 2 is measured by means of the sensor 74 and it is determined whether it is less than a second temperature TF 2 REF of reference cooling fluid.
  • the temperature TF 2 REF is between 45 ° C and 55 ° C, and preferably between 48 ° C and 52 ° C. If the comparison shows that the temperature TF 2 is lower than the temperature TF2 REF, a step E09 is applied. If, on the other hand, the temperature TF2 is greater than the temperature TF2 REF, a step E 10 is applied.
  • step E09 the engine control device 86 actuates the bypass valve 38 in the "bypass 1 inactive” mode.
  • the bypass valve 46 remains in the "bypass 2 active” mode.
  • step E 10 the engine control device 86 actuates the bypass valve 38 in the "bypass 1 inactive” mode and the bypass valve 46 in the "bypass 2 inactive” mode.
  • the recirculated exhaust gas is cooled, intermediate or higher cooling. If the temperature of the cooling fluid circulating in the independent cooling circuit 50 is too low, the recirculated exhaust gas is cooled to the intermediate level, that is to say by the single cooler 32. If the temperature of the fluid of cooling circulating in the independent cooling circuit 50 is not too low, the recirculated exhaust gas is cooled to the higher level, that is to say by the two coolers 32 and 40.
  • the recirculated exhaust gas is cooled by the two coolers 32 and 40.
  • this control method and this cooling device make it possible to optimize the cooling of the recirculated gases by a separate management of the two coolers and their associated bypass. Cooling of the recirculated gases can be implemented according to three different cooling levels, which are determined according to engine operating data and external data.
  • the invention then makes it possible to increase more rapidly the temperature of the gases admitted to the engine 2 during the engine warm-up phase, and then to effectively cool the recirculated gases in order to reduce the polluting emissions. Cooling the recirculated gases to an intermediate cooling level and a higher cooling level allows improved reliability of the exhaust gas recirculation circuit, in particular avoiding deterioration of the exchanger and / or the recirculation valve.
  • the invention limits the solicitation of other anti-pollution devices, such as the nitrogen oxide trap, the nitrogen oxides aftertreatment device or a selective catalytic reduction (SCR) device.
  • SCR selective catalytic reduction
  • a cooling device according to the invention can be easily manufactured, since it comprises two identical coolers equipped with two identical bypasses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile Ce dispositif de refroidissement d'une boucle de recirculation (28) des gaz d'échappement à haute pression d'un moteur (2) de véhicule automobile comprend un premier échangeur de chaleur (32) en relation d'échange thermique avec le circuit de refroidissement (48) du moteur (2), un bipasse (34) du premier échangeur de chaleur (32) et un module de commande (86) capable d'actionner le bipasse (34) du premier échangeur de chaleur (32). Il comprend un deuxième échangeur de chaleur (40) en relation d'échange thermique avec un circuit de refroidissement (50) indépendant du circuit de refroidissement (48) du moteur (2), le deuxième échangeur de chaleur (40) étant monté en série dans l'écoulement des gaz recirculés par rapport au premier échangeur de chaleur (32). Le module de commande (86) comprend un capteur de température (60), un comparateur (92) et est paramétré pour actionner le bipasse (34) du premier échangeur de chaleur (32).

Description

Dispositif de refroidissement d'une boucle de recirculation des gaz d' échappement d' un moteur de véhicule automobile
L 'invention concerne un dispositif de refroidissement d' une boucle de recirculation des gaz d' échappement dans un moteur de véhicule automobile, et plus particulièrement d'une boucle de recirculation des gaz d ' échappement à haute pression.
Une boucle de recirculation des gaz d' échappement, également connue sous le nom d' EGR, de l ' anglais Exhaust Gas Recirculation, a pour fonction de permettre la recirculation des gaz brûlés par un moteur à combustion interne de véhicule automobile et leur nouvelle combustion, afin d' améliorer les performances et de diminuer la consommation et les émissions polluantes du moteur à combustion interne. Une boucle de recirculation des gaz d' échappement comprend généralement un conduit de recirculation, comportant une première extrémité raccordée au conduit d ' échappement du moteur et une seconde extrémité raccordée au conduit d' admission du moteur. Une vanne de recirculation est montée sur le conduit de recirculation et permet de contrôler la quantité de gaz d' échappement renvoyée en amont du moteur et mélangée à l ' air frais admis .
Si l' inj ection de gaz d' échappement dans l ' air frais admis permet de réduire les émissions d'oxydes d' azote, elle entraîne une augmentation des émissions de suie et de particules . Pour limiter cette augmentation, les gaz d' échappement renvoyés en amont du moteur peuvent être refroidis au moyen d'un échangeur thermique implanté sur le circuit de refroidissement du moteur. Une telle so lution peut s ' avérer problématique, car une température trop faible du liquide de refroidissement, par exemple lors de la phase de démarrage du moteur, entraîne une condensation des gaz d' échappement recirculés. Il en résulte un dépôt de suie dans la vanne et/ou dans l ' échangeur, pouvant entraîner une détérioration rapide de l ' échangeur et/ou un blocage de la vanne de recirculation. Pour pallier cet inconvénient, l ' échangeur comprend généralement un bipasse, ou conduit de dérivation permettant aux gaz d' échappement recirculés d ' éviter ledit échangeur. On évite ainsi de refroidir les gaz d' échappement de manière excessive. Toutefois, en inhibant le refroidissement des gaz recirculés pendant la phase de démarrage du moteur, on augmente les émissions de polluants.
Au vu de ce qui précède, l 'invention a pour but d' optimiser la gestion du refroidissement des gaz recirculés dans le circuit de recirculation des gaz d' échappement, en vue d' améliorer le rendement du moteur, de diminuer les émissions de polluants et d' éviter la détérioration d' éléments de la boucle de recirculation.
À cet effet, un dispositif de refroidissement d'une boucle de recirculation des gaz d' échappement à haute pression d'un moteur de véhicule automobile comprend un premier échangeur de chaleur en relation d' échange thermique avec le circuit de refroidissement du moteur, un bipasse du premier échangeur de chaleur et un module de commande capable d' actionner le bipasse du premier échangeur de chaleur. Ce dispositif comprend un deuxième échangeur de chaleur en relation d' échange thermique avec un circuit de refroidissement indépendant du circuit de refroidissement du moteur, le deuxième échangeur de chaleur étant monté en série dans l ' écoulement des gaz recirculés par rapport au premier échangeur de chaleur, le dispositif de refroidissement comprenant un bipasse du deuxième échangeur de chaleur, le module de commande étant capable d ' actionner le bipasse du deuxième échangeur de chaleur.
L ' ajout d'un deuxième échangeur de chaleur en relation d' échange thermique avec un circuit de refroidissement indépendant du circuit de refroidissement du moteur permet une gestion séparée des bipasses et offre ainsi un meilleur contrôle du refroidissement des gaz d' échappement. Dans la présente demande, « actionner le bipasse » signifie actionner la vanne de bipasse correspondante pour faire circuler les gaz dans ledit bipasse ou, en d' autres termes, pour leur faire éviter le refroidisseur correspondant. Selon l' invention, le module de commande comprend un premier capteur de température apte à mesurer la température du fluide circulant dans le circuit de refroidissement du moteur, un premier comparateur apte à comparer la température mesurée par le premier capteur avec une température de référence du fluide de refroidissement du moteur et est paramétré pour actionner le bipasse du premier échangeur de chaleur lorsque ledit premier comparateur détecte que la température mesurée est inférieure à la température de référence.
Dans un tel mode de réalisation, la température de référence du fluide de refroidissement du moteur est avantageusement comprise entre 55 °C et 65 ° C .
Dans un mo de de réalisation, le module de commande comprend un second capteur de température apte à mesurer la température du fluide circulant dans le circuit de refroidissement indépendant, un second comparateur apte à comparer la température mesurée par le second capteur avec une température de référence du fluide du circuit de refroidissement indépendant et est paramétré pour actionner le bipasse du deuxième échangeur de chaleur lorsque ledit second comparateur détecte que la température mesurée est inférieure à la température de référence.
Dans un tel mode de réalisation, la température de référence du fluide du circuit de refroidissement indépendant est de préférence comprise entre 50 ° C et 60 °C .
Dans un mo de de réalisation, le module de commande comprend un troisième capteur de température apte à mesurer la température de l ' air extérieur, un troisième comparateur apte à comparer la température mesurée par le troisième capteur avec une température de référence de l ' air extérieur et est paramétré pour actionner les bipasses du premier échangeur de chaleur et du deuxième échangeur de chaleur lorsque ledit troisième comparateur détecte que la température mesurée est inférieure à la température de référence.
La température de référence de l ' air extérieur est alors avantageusement comprise entre - 10 °C et 5 ° C . Dans un mo de de réalisation, le module de commande comprend un premier détecteur du régime de rotation du moteur, un second détecteur de la charge du moteur et un calculateur capable de calculer le point de fonctionnement du moteur du véhicule en fonction des données respectivement mesurées par le premier détecteur et par le second détecteur et de comparer ledit point de fonctionnement à un point de fonctionnement de référence, ledit module de commande étant paramétré pour inhiber l ' actionnement des bipasses du premier échangeur de chaleur et du deuxième échangeur de chaleur lorsque le point de fonctionnement dépasse le point de fonctionnement de référence.
Selon un autre aspect, il est proposé un procédé de commande d'un dispositif de refroidissement d'une boucle de recirculation des gaz d' échappement à haute pression d'un moteur d'un véhicule automobile comprenant un premier échangeur de chaleur en relation d' échange thermique avec le circuit de refroidissement du moteur, un bipasse du premier échangeur de chaleur, un second échangeur de chaleur en relation d ' échange thermique avec un circuit de refroidissement indépendant du circuit de refroidissement du moteur, et un bipasse du second échangeur de chaleur, dans lequel :
- on mesure la température du fluide circulant dans le circuit de refroidissement du moteur,
- on effectue une comparaison de ladite donnée mesurée avec une donnée de référence, et
- on actionne le bipasse du premier échangeur de chaleur et/ou le bipasse du deuxième échangeur de chaleur en fonction du résultat de ladite comparaison.
D ' autres buts, caractéristiques et avantages de l 'invention apparaîtront à la lecture de la description détaillée, donnée à titre d' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 représente schématiquement le circuit d' air d 'un moteur de véhicule automobile comprenant un dispositif de refroidissement selon l' invention, - la figure 2 représente schématiquement les circuits de refroidissement du dispositif de refroidissement de la figure 1 ,
- la figure 3 représente le système de contrôle du moteur des figures 1 et 2, et
- la figure 4 représente un procédé de commande du dispositif de la figure 1 .
On a représenté sur la figure 1 un moteur à combustion interne 2 de véhicule automobile, comprenant un circuit de refroidissement représenté en figure 2 et un dispositif de contrôle moteur représenté en figure 3.
En référence à la figure 1 , le moteur 2 comprend un carter 4 comportant une pluralité de cylindres 6 à l' intérieur desquels a lieu la combustion du mélange constitué d' air et de carburant. Chaque cylindre 6 du carter 4 est relié d'un côté à un conduit d ' admission 8 , et de l ' autre côté à un conduit d' échappement 10. Le moteur 2 comprend un turbocompresseur 12, doté d'une turbine 14 montée sur le conduit d' échappement 10, et d'un compresseur 16 monté sur le conduit d' admission 8. Le conduit d ' admission 8 est ainsi divisé en un conduit d' admission basse pression 1 8 situé en amont du compresseur 16 et un conduit d ' admission haute pression 20 situé entre le compresseur 16 et le carter 4. De même, le conduit d' échappement 10 est divisé en un conduit d' échappement haute pression 22 situé entre le carter 4 et la turbine 14 et un conduit d' échappement basse pression 24 situé en aval de la turbine 14. Un vo let d' admission 26 est monté sur le conduit d' admission haute pression 22 et permet de contrôler le débit d ' air admis dans les cylindres 6 du moteur 2. Un capteur de température 27 des gaz d' échappement est monté sur le conduit d' échappement haute pression 22.
Le moteur 2 comprend en outre un circuit de recirculation des gaz d' échappement, comportant un conduit de recirculation 28 raccordé à l 'une de ses extrémités au conduit d' échappement 10 et à l ' autre de ses extrémités au conduit d' admission 8. Ce circuit de recirculation est à haute pression, parce que le conduit de recirculation 28 est raccordé aux conduits d' échappement et d' admission haute pression 22 et 20. Sans sortir du cadre de l 'invention, on peut envisager que le circuit de recirculation soit à basse pression, auquel cas le conduit de recirculation 28 serait raccordé aux conduits d' échappement et d' admission basse pression 24 et 1 8. Le circuit de recirculation des gaz d' échappement comprend en outre une vanne de recirculation 30, montée sur le conduit de recirculation 28.
Un premier refroidisseur 32 est monté sur le conduit de recirculation 28 , entre le point de raccordement du conduit 28 au conduit d' échappement 10 et la vanne de recirculation 30. Un bipasse 34, ou circuit de dérivation du premier refroidisseur 32 comporte un conduit 36 et une vanne de bipasse 38. La vanne de bipasse 38 peut être actionnée selon deux modes de commutation différents, un premier mode « bipasse 1 actif » et un second mode « bipasse 1 inactif » . Lorsque la vanne de bipasse 38 est actionnée selon le mode « bipasse 1 actif », les gaz brûlés circulant dans le conduit de recirculation 28 depuis le conduit d' échappement 10 vers le conduit d' admission 8 sont déviés par la vanne 38 et empruntent le conduit de bipasse 36. Dans ce mode, les gaz recirculés ne traversent donc pas le premier refroidisseur 32. Lorsque la vanne de bipasse 38 est actionnée selon le mode « bipasse 1 inactif », les gaz brûlés circulant dans le conduit de recirculation 28 traversent le refroidisseur 32 et ne passent pas par le conduit de bipasse 36.
Un second refroidisseur 40 est monté sur le conduit de recirculation 28 , entre la vanne de recirculation 30 et le point de raccordement du conduit 28 au conduit d' admission 8. Un bipasse 42 comprend un conduit 44 et une vanne de bipasse 46. La vanne de bipasse 46 peut être actionnée selon un premier mode « bipasse 2 actif », dans lequel les gaz recirculés empruntent le conduit 46 et ne traversent pas le second refroidisseur 40. La vanne de bipasse 46 peut être actionnée selon un second mode « bipasse 2 inactif », dans lequel les gaz recirculés traversent le second refroidisseur 40 et ne passent pas par le conduit 44.
En référence à la figure 2, le moteur 2 comprend un premier circuit de refroidissement 48 et un second circuit de refroidissement 50, tous deux destinés à contenir un fluide de refroidissement. Deux conduits de vidange 52 relient les circuits de refroidissement 48 et 50 et comprennent chacun une vanne « tout-ou-rien » 54. Au cours du fonctionnement normal du moteur, les vannes 54 sont fermées de telle sorte qu' aucun échange de fluide de refroidissement n' a lieu entre les circuits de refroidissement 48 et 50. En d' autres termes, au cours du fonctionnement normal du moteur, les circuits de refroidissement 48 et 50 fonctionnent de manière indépendante.
Le premier circuit de refroidissement 48 comprend une tubulure principale 56 en relation d' échange thermique avec le carter 4 du moteur 2. Une pompe à eau 58 est montée sur la tubulure principale 56 et génère un flux de fluide de refroidissement traversant le carter 4. Lorsque le moteur 2 fonctionne, le fluide de refroidissement circulant dans la tubulure principale 56 prélève de la chaleur au carter 4. Un capteur de température 60 est disposé dans la tubulure principale 56, en aval du carter 4.
Le circuit de refroidissement 48 comprend une première tubulure de retour 62, sur laquelle est monté un régulateur 64 et un radiateur 66. Lorsque la température mesurée par le capteur 60 est supérieure à une valeur prédéterminée, le régulateur 64 laisse circuler le fluide de refroidissement qui traverse le radiateur 66. Le radiateur 66 est de préférence monté dans un écoulement d ' air frais, par exemple sous le capot ou derrière la calandre du véhicule automobile . Ainsi, le fluide de refroidissement traversant le radiateur 66 est refroidi, avant de repasser par la pompe 58 puis par le carter 4.
Le premier circuit de refroidissement 48 comprend une deuxième tubulure de retour 68 en relation d' échange thermique avec le premier refroidisseur 32. Comme cela a été exposé précédemment, le fonctionnement du premier refroidisseur 32 dépend du mode de commutation de la vanne de bipasse 38. Lorsque la vanne 38 est actionnée selon le mode « bipasse 1 inactif », le fluide de refroidissement circulant dans la deuxième tubulure de retour 68 prélève de la chaleur aux gaz recirculés traversant le premier refroidisseur 32. Lorsque la vanne 38 est actionnée selon le mode « bipasse 1 actif », le fluide de refroidissement circulant dans la deuxième tubulure de retour 68 ne prélève pas de chaleur.
Le second circuit de refroidissement 50 comprend une boucle fermée 70 sur laquelle une pompe 72 est montée de manière à générer un flux de fluide de refroidissement circulant dans la boucle 70. La boucle 70 est en relation d' échange thermique avec le second refroidisseur 40. Comme pour le premier refroidisseur 32, le fonctionnement du second refroidisseur 40 dépend du mode de commutation de la vanne de bipasse 46. Lorsque la vanne 46 est actionnée selon le mode « bipasse 2 inactif », le fluide de refroidissement circulant dans la boucle 70 prélève de la chaleur aux gaz recirculés traversant le second refroidisseur 40. Dans le cas contraire, il n'y a pas de transfert de chaleur. Un capteur de température 74 est disposé dans le flux de fluide hydraulique circulant dans la boucle 70, en aval du second refroidisseur 40. En outre, un radiateur 76 est monté sur la boucle 70 entre le capteur 74 et la pompe 72. De cette manière, le fluide de refroidissement qui a prélevé de la chaleur aux gaz recirculés est ensuite refroidi en traversant le radiateur 76.
Le premier circuit de refroidissement 48 comprend une troisième tubulure de retour 78 doté d 'une vanne « tout-ou-rien » 80 et d'un radiateur additionnel 82. Le radiateur additionnel 82 est en relation d' échange thermique avec le radiateur 76 du second circuit de refroidissement 50. La troisième tubulure de retour 78 et ses composants ont pour fonction de permettre le réchauffage du fluide de refroidissement circulant dans le second circuit de refroidissement 50 , lorsque ledit fluide de refroidissement est trop froid pour refroidir les gaz recirculés .
En référence aux figures 1 , 2 et 3 , le moteur à combustion interne 2 est piloté par un dispositif de contrôle moteur 86. Le dispositif de contrôle moteur 86 recueille les données émises par les capteurs de température 47, 60 et 74, qui renseignent respectivement les informations de température des gaz d' échappement en sortie du moteur, de température du fluide de refroidissement en aval du carter 4 du moteur et de température du fluide circulant dans le circuit de refroidissement indépendant, en aval du second refroidisseur 40. Par ailleurs, le dispositif de contrôle moteur 86 est relié à un capteur 87 de température d' air disposé à l ' extérieur du véhicule automobile, et comprend les moyens matériels et logiciels pour connaître le régime de rotation et la charge du moteur 2. En outre, le dispositif de contrôle moteur 86 pilote le volet d' admission 26, la vanne de recirculation 30 , la vanne de bipasse 38 , la vanne de bipasse 46, le régulateur 64 et la vanne « tout-ou-rien » 80.
Ainsi, en référence à la figure 3 , le dispositif de contrôle moteur 86 recueille notamment les signaux Chg (charge du moteur 2) , Reg (régime de rotation du moteur), TEXT (température d ' air extérieur), TF I (température du fluide circulant dans le circuit de refroidissement 48 du moteur) et TF2 (température du fluide circulant dans le circuit de refroidissement 50 indépendant du circuit de refroidissement 48 du moteur) . Le dispositif de contrôle moteur 86 comprend un calculateur 88 capable de calculer le point de fonctionnement du moteur 2 à partir de la charge Chg et du régime de rotation Reg, et un comparateur 90 capable de comparer ledit point de fonctionnement à une valeur de référence. Le dispositif de contrôle 86 comprend également un d' autres comparateurs 92, 94 et 96, chacun étant capable de respectivement comparer une température TF I , TF2 et TEXT à une température de référence TF I REF , TF2 REF et TEXT REF qui lui est propre . Le dispositif de contrôle moteur 86 émet des signaux de sortie, parmi lesquels un signal de pilotage S26 du vo let d' admission 26 , un signal de pilotage S 30 de la vanne de recirculation 30, un signal de pilotage S 3 8 de la vanne de bipasse 38 et un signal de pilotage S46 de la vanne de bipasse 46.
On a représenté sur la figure 4 un mode de mise en œuvre d 'un procédé de commande d'un dispositif de refroidissement tel que celui qui a été détaillé en référence aux figures 1 , 2 et 3.
Ce procédé peut être initialisé à tout moment lorsque le moteur du véhicule est éteint. Le procédé comprend une première étape E01 de détection du contact. Au cours de cette étape, on détecte si la clé de contact du véhicule automobile a été actionnée. Tant que la clé de contact n' a pas été actionnée, on reste à l ' étape E01 . Dès que la clé de contact du véhicule est actionnée, on passe à une deuxième étape E02.
Au cours de la deuxième étape E02, le dispositif de contrôle moteur 86 met en marche le moteur à combustion interne 2 et ferme la vanne de recirculation 30. Dans le même temps, il actionne la vanne de bipasse 38 selon le mode « bipasse 1 actif » et la vanne de bipasse 46 selon le mode « bipasse 2 actif » . Ainsi, à l 'issue de l ' étape E02, le moteur tourne et la recirculation des gaz d' échappement est inactive.
Il s ' ensuit une troisième étape de test E03 au cours de laquelle le dispositif de contrôle moteur 86 détecte si la requête de recirculation des gaz d' échappement doit être demandée. La requête de recirculation peut être émise par une carte électronique (non représentée) du dispositif de contrôle moteur 86, capable de déterminer une consigne d' ouverture de la vanne de recirculation 30 en fonction de divers paramètres, comme le mode de fonctionnement du moteur 2, la température des gaz d' échappement mesurée par le capteur de température 27 ou encore la pression sur la pédale d' accélérateur, le rapport de vitesses choisi. Tant que la requête n' est pas demandée, on continue d' appliquer l' étape E03. Dès que la requête de recirculation est demandée, on passe à une quatrième étape E04, au cours de laquelle le dispositif de contrôle moteur 86 actionne la vanne de recirculation 30. À l' issue de l ' étape E04, une partie des gaz d' échappement issus du moteur 2 emprunte le conduit de recirculation 28 pour être réinj ectée en amont du moteur, et n' est pas refroidie.
Au cours de l ' étape E05 , on détermine si le point de fonctionnement du moteur 2 impose le refroidissement des gaz recirculés . Pour ce faire, le dispositif de contrôle moteur 86 détermine le régime de rotation Reg et la charge Chg du moteur 2. Le dispositif 86 calcule ensuite le point de fonctionnement du moteur 2 et le compare à un point de fonctionnement de référence. Selon le résultat de la comparaison, le dispositif 86 détermine si le point de fonctionnement du moteur 2 impose ou non le refroidissement des gaz d'échappement. Par exemple, le refroidissement des gaz d'échappement peut être imposé si la charge du moteur 2 dépasse une valeur de charge de référence, ou si le régime de rotation du moteur 2 dépasse une valeur de régime de référence. Si, à l'issue de l'étape E05, le dispositif 86 détecte que le point de fonctionnement du moteur 2 impose le refroidissement, on passe à l'étape E10 qui sera détaillée par la suite. Si le point de fonctionnement n'impose pas le refroidissement, on applique une étape de test E06.
Au cours de l'étape E06, on détermine si la température de l'air extérieur interdit le refroidissement des gaz recirculés. Pour ce faire, le dispositif de contrôle moteur 86 mesure la température TEXT de l'air extérieur et la compare à une température TEXT REF d'air extérieur de référence. Par exemple, la température TEXT REF est comprise entre -1°C et 1°C, et avantageusement égale à 0 °C. Selon un autre exemple, la température TEXT REF est comprise entre -8°C et -6°C, et de préférence égale à -7 °C. Si la comparaison montre que la température TEXT est inférieure à la température TEXT REF, la température de l'air extérieur est trop faible pour permettre le refroidissement des gaz recirculés et on retourne à l'étape E05. Si, à l'inverse la comparaison montre que la température TEXT est supérieure à la température TEXT REF, on applique une étape de test suivante E07.
Au cours de l'étape E07, on détermine si la température TFI du fluide de refroidissement circulant dans le premier circuit de refroidissement 48 interdit le refroidissement des gaz recirculés. Pour ce faire, on mesure la température TFI au moyen du capteur 60 et on détermine si elle est inférieure à une première température TFI REF de fluide de refroidissement de référence. Par exemple, la température TFI REF est comprise entre 55 °C et 65 °C, et de préférence entre 58 °C et 62 °C. Si la comparaison montre que la température TFI est inférieure à la température TFI REF, on retourne à l'étape E05. Si, à l'inverse, la température TFI est supérieure à la température TFI REF, on applique une étape de test suivante E08. Au cours de l ' étape E08 , on détermine si la température TF2 du fluide de refroidissement circulant dans le second circuit de refroidissement 50 permet le refroidissement des gaz recirculés par un ou deux refroidisseurs. Pour ce faire, on mesure la température TF2 au moyen du capteur 74 et on détermine si elle est inférieure à une seconde température TF2 REF de fluide de refroidissement de référence. Par exemple, la température TF2 REF est comprise entre 45 ° C et 55 ° C , et de préférence entre 48 ° C et 52 ° C . Si la comparaison montre que la température TF2 est inférieure à la température TF2 REF, on applique une étape E09. Si, à l' inverse, la température TF2 est supérieure à la température TF2 REF, on applique une étape E 10.
Au cours de l ' étape E09, le dispositif de contrôle moteur 86 actionne la vanne de bipasse 38 selon le mode « bipasse 1 inactif » . La vanne de bipasse 46 reste selon le mode « bipasse 2 actif » .
Au cours de l ' étape E 10, le dispositif de contrôle moteur 86 actionne la vanne de bipasse 38 selon le mode « bipasse 1 inactif » et la vanne de bipasse 46 selon le mode « bipasse 2 inactif » .
Grâce à ce procédé le fonctionnement du dispositif de refroidissement constitué des deux refroidisseurs 32 et 40 et des deux bipasses 34 et 42 peut être résumé comme suit.
Lorsque le point de fonctionnement du moteur n' est pas particulièrement élevé, et que la température d' air extérieur est trop faible, ou que la température du fluide de refroidissement du moteur 2 est trop faible, les gaz d ' échappement recirculés ne sont pas refroidis .
Lorsque le point de fonctionnement du moteur n' est pas particulièrement élevé, que ni la température d' air extérieur, ni la température du fluide de refroidissement du moteur 2 ne sont trop faibles, les gaz d' échappement recirculés sont refroidis, selon un niveau de refroidissement intermédiaire ou supérieur. Si la température du fluide de refroidissement circulant dans le circuit de refroidissement indépendant 50 est trop faible, les gaz d' échappement recirculés sont refroidis selon le niveau intermédiaire, c'est-à-dire par le seul refroidisseur 32. Si la température du fluide de refroidissement circulant dans le circuit de refroidissement indépendant 50 n' est pas trop faible, les gaz d' échappement recirculés sont refroidis selon le niveau supérieur, c'est-à-dire par les deux refroidisseurs 32 et 40.
Quelles que soient les conditions de température, dès lors que le point de fonctionnement du moteur dépasse sa valeur de référence, les gaz d' échappement recirculés sont refroidis par les deux refroidisseurs 32 et 40.
Ainsi, ce procédé de contrôle et ce dispositif de refroidissement permettent d' optimiser le refroidissement des gaz recirculés par une gestion séparée des deux refroidisseurs et de leur bipasse associé. Le refroidissement des gaz recirculés peut être mis en œuvre selon trois niveaux de refroidissement différent, qui sont déterminés en fonction de données de fonctionnement du moteur et de données extérieures .
L 'invention permet alors d' augmenter plus rapidement la température des gaz admis dans le moteur 2 au cours de la phase de montée en température du moteur, puis de refroidir efficacement les gaz recirculés afin de réduire les émissions polluantes . Le refroidissement des gaz recirculés selon un niveau de refroidissement intermédiaire et un niveau de refroidissement supérieur permet une fiabilité améliorée du circuit de recirculation des gaz d' échappement en évitant notamment la détérioration de l ' échangeur et/ou de la vanne de recirculation.
En outre, l 'invention limite la so llicitation d' autre dispositif antipo llution, tels que le piège à oxydes d' azote, le dispositif de post- traitement des oxydes d ' azote ou un dispositif de réduction catalytique sélectif (SCR) . L 'invention permet alors d' alléger le dimensionnement de ces organes .
Par ailleurs, un dispositif de refroidissement selon l' invention peut être aisément fabriqué, étant donné qu ' il comprend deux refroidisseurs identiques munis de deux bipasses identiques .

Claims

REVENDICATIONS
1 . Dispositif de refroidissement d'une boucle de recirculation (28) des gaz d' échappement à haute pression d'un moteur (2) de véhicule automobile, comprenant un premier échangeur de chaleur (32) en relation d' échange thermique avec le circuit de refroidissement (48) du moteur (2), un bipasse (34) du premier échangeur de chaleur (32) et un module de commande (86) capable d ' actionner le bipasse (34) du premier échangeur de chaleur (32), caractérisé en ce qu 'il comprend un deuxième échangeur de chaleur (40) en relation d' échange thermique avec un circuit de refroidissement (50) indépendant du circuit de refroidissement (48) du moteur (2), le deuxième échangeur de chaleur (40) étant monté en série dans l ' écoulement des gaz recirculés par rapport au premier échangeur de chaleur (32), le dispositif de refroidissement comprenant un bipasse (42) du deuxième échangeur de chaleur (40), le module de commande (86) étant capable d ' actionner le bipasse (42) du deuxième échangeur de chaleur (40), le mo dule de commande (86) comprend un capteur de température (60) apte à mesurer la température (TF I ) du fluide circulant dans le circuit de refroidissement (48) du moteur (2), un comparateur (92) apte à comparer la température mesurée (T F I ) par le capteur (60) avec une température de référence (TF I REF) du fluide de refroidissement du moteur et est paramétré pour actionner le bipasse (34) du premier échangeur de chaleur (32) lorsque ledit comparateur (92) détecte que la température mesurée (TF I ) est inférieure à la température de référence (TF I REF) .
2. Dispositif de refroidissement selon la revendication 2, dans lequel la température de référence (TF I REF) du fluide de refroidissement du moteur est comprise entre 55 ° C et 65 ° C .
3. Dispositif de refroidissement selon la revendication 1 ou 2, dans lequel le module de commande (86) comprend un capteur de température (74) apte à mesurer la température (TF2) du fluide circulant dans le circuit de refroidissement indépendant (50) , un autre comparateur (94) apte à comparer la température mesurée (TF2) par le capteur (74) avec une température de référence (TF2_REF) du fluide du circuit de refroidissement indépendant et est paramétré pour actionner le bipasse (42) du deuxième échangeur de chaleur (40) lorsque l ' autre comparateur (94) détecte que la température mesurée (T F2) est inférieure à la température de référence (TF2_REF) .
4. Dispositif de refroidissement selon la revendication 3 , dans lequel la température de référence (TF2 REF) du fluide du circuit de refroidissement indépendant (50) est comprise entre 5 0 °C et 60 °C .
5 . Dispositif de refroidissement selon l 'une quelconque des revendications 1 à 4 , dans lequel le module de commande ( 86 ) comprend un capteur (96) de température apte à mesurer la température (TEXT) de l ' air extérieur, un autre comparateur (96) apte à comparer la température mesurée (TEXT) par le troisième capteur ( 87 ) avec une température de référence (TEXT REF) de l' air extérieur et est paramétré pour actionner les bipasses (34 , 42) du premier échangeur de chaleur (32) et du deuxième échangeur de chaleur (40) lorsque l ' autre comparateur (96) détecte que la température mesurée (TEXT) est inférieure à la température de référence (TEXT REF) .
6. Dispositif de refroidissement selon la revendication 5 , dans lequel la température de référence (TEXT REF) de l ' air extérieur est comprise entre - 1 0 °C et 5 °C .
7. Dispositif de refroidissement selon l 'une quelconque des revendications 1 à 6 , dans lequel le module de commande ( 86 ) comprend un détecteur du régime de rotation (Reg) du moteur (2) , un détecteur de la charge (Chg) du moteur (2) et un calculateur ( 88 ) capable de calculer le point de fonctionnement du moteur (2) du véhicule en fonction des données (Reg, Chg) respectivement mesurées par les détecteurs du régime de rotation moteur et de charge (Reg, Chg) et de comparer ledit point de fonctionnement à un point de fonctionnement de référence, ledit mo dule de commande (86) étant paramétré pour inhiber l ' actionnement des bipasses (34, 42) du premier échangeur de chaleur (32) et du deuxième échangeur de chaleur (40) lorsque le point de fonctionnement dépasse le point de fonctionnement de référence.
8. Procédé de commande d'un dispositif de refroidissement d'une boucle de recirculation (28) des gaz d' échappement à haute pression d'un moteur (2) d'un véhicule automobile comprenant un premier échangeur de chaleur (32) en relation d' échange thermique avec le circuit de refroidissement (48) du moteur (2), un bipasse (34) du premier échangeur de chaleur (32), un second échangeur de chaleur (40) en relation d' échange thermique avec un circuit de refroidissement (50) indépendant du circuit de refroidissement (48) du moteur (2), et un bipasse (42) du second échangeur de chaleur (40), dans lequel :
- on mesure la température (TF I ) du fluide circulant dans le circuit de refroidissement (48) du moteur (2),
- on effectue une comparaison de ladite donnée mesurée (TF I ) avec une donnée de référence (TF I REF), et
- on actionne le bipasse (34) du premier échangeur de chaleur (32) et/ou le bipasse (42) du deuxième échangeur de chaleur (40) en fonction du résultat de ladite comparaison.
PCT/FR2016/051728 2015-07-16 2016-07-07 Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile WO2017009549A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16750932.2A EP3353405B1 (fr) 2015-07-16 2016-07-07 Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556693 2015-07-16
FR1556693A FR3038937B1 (fr) 2015-07-16 2015-07-16 Dispositif de refroidissement d'une boucle de recirculation des gaz d'echappement d'un moteur de vehicule automobile

Publications (1)

Publication Number Publication Date
WO2017009549A1 true WO2017009549A1 (fr) 2017-01-19

Family

ID=54329733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051728 WO2017009549A1 (fr) 2015-07-16 2016-07-07 Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile

Country Status (3)

Country Link
EP (1) EP3353405B1 (fr)
FR (1) FR3038937B1 (fr)
WO (1) WO2017009549A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044484A (ja) * 2002-07-11 2004-02-12 Toyota Motor Corp 内燃機関の制御装置
FR2879669A1 (fr) * 2004-12-20 2006-06-23 Renault Sas Groupe motopropulseur comportant des moyens de commande du debit et de regulation de la temperature des gaz d'echappement en recirculation
US20070028902A1 (en) * 2005-08-02 2007-02-08 Toyota Jidosha Kabushiki Kaisha EGR cooler system
DE102006057489A1 (de) * 2006-12-06 2008-06-12 Audi Ag Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
GB2473821A (en) * 2009-09-23 2011-03-30 Gm Global Tech Operations Inc Exhaust gas recirculation system with multiple coolers
GB2509737A (en) * 2013-01-11 2014-07-16 Gm Global Tech Operations Inc Exhaust gas recirculation (EGR) system with active control of EGR coolant temperature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044484A (ja) * 2002-07-11 2004-02-12 Toyota Motor Corp 内燃機関の制御装置
FR2879669A1 (fr) * 2004-12-20 2006-06-23 Renault Sas Groupe motopropulseur comportant des moyens de commande du debit et de regulation de la temperature des gaz d'echappement en recirculation
US20070028902A1 (en) * 2005-08-02 2007-02-08 Toyota Jidosha Kabushiki Kaisha EGR cooler system
DE102006057489A1 (de) * 2006-12-06 2008-06-12 Audi Ag Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
GB2473821A (en) * 2009-09-23 2011-03-30 Gm Global Tech Operations Inc Exhaust gas recirculation system with multiple coolers
GB2509737A (en) * 2013-01-11 2014-07-16 Gm Global Tech Operations Inc Exhaust gas recirculation (EGR) system with active control of EGR coolant temperature

Also Published As

Publication number Publication date
FR3038937A1 (fr) 2017-01-20
EP3353405B1 (fr) 2021-05-05
EP3353405A1 (fr) 2018-08-01
FR3038937B1 (fr) 2018-10-12

Similar Documents

Publication Publication Date Title
EP2191125B1 (fr) Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement
EP3084198B1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configuré pour chauffer les gaz d'admission
FR2902466A1 (fr) Systeme de recirculation de gaz d'echappement pour moteur a combustion du type diesel suralimente et procede de commande d'un tel moteur
US20200224564A1 (en) Engine oil state control device
FR2833653A1 (fr) Systeme de recyclage des gaz d'echappement pour moteur diesel de vehicule automobile
EP3353405B1 (fr) Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile
FR2921432A1 (fr) Procede de diagnostic d'une defaillance d'un organe du dispositif egr d'un moteur a combustion interne
WO2007012778A2 (fr) Procede et dispositif de recirculation controlee des gaz brules dans un circuit a egr basse pression, permettant une admission rapide d'air frais dans un moteur
FR3051148A1 (fr) " systeme de refroidissement pour un vehicule hybride comportant un circuit de transfert de liquide de refroidissement "
EP2262997A1 (fr) Systeme et procede de diagnostic de l'etat de fonctionnement d'un dispositif d'admission en gaz d'echappement pour moteur a combustion interne de vehicule automobile
EP1268992A1 (fr) Procede et dispositif de refroidissement d'un moteur de vehicule automobile
EP2992193A1 (fr) Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne
FR2892770A1 (fr) Dispositif de recirculation controlee des gaz brules d'un circuit egr a haute pression
WO2017042311A1 (fr) Compresseur electrique avec vanne de contournement
JP6769415B2 (ja) 排気処理装置
FR3069023A1 (fr) Procede de commande d'un moteur a combustion interne suralimente comprenant un compresseur additionnel.
FR3079558A1 (fr) Circuit de refroidissement pour un moteur a combustion interne equipe d'un circuit de recirculation de gaz d'echappement et son procede de commande
FR2923537A1 (fr) Systeme et procede d'estimation de la pression en aval d'une turbine de turbocompresseur et moteur thermique associe
FR2921122A3 (fr) Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe
FR3028560A1 (fr) Architecture de moteur thermique suralimente munie d'un dispositif de stockage de pression
FR3067061B1 (fr) Systeme d'alimentation d'un moteur a combustion interne
EP2066892B1 (fr) Systeme de commande d'un moteur à combustion interne de véhicule automobile comprenant un circuit de recirculation des gaz d'échappement du moteur muni d'une vanne de recirculation commandée
EP2956656B1 (fr) Procédé de pilotage d'une vanne de régulation d'un débit de liquide de refroidissement des gaz de recirculation d'un moteur à combustion interne
FR2927369A3 (fr) Dispositif et procede de depollution egr pour vehicule automobile
FR3107084A1 (fr) Système EGR avec préchauffage de dispositif de dépollution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16750932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016750932

Country of ref document: EP