WO2001067590A1 - Pwm cycloconverter and power fault detector - Google Patents

Pwm cycloconverter and power fault detector Download PDF

Info

Publication number
WO2001067590A1
WO2001067590A1 PCT/JP2001/001667 JP0101667W WO0167590A1 WO 2001067590 A1 WO2001067590 A1 WO 2001067590A1 JP 0101667 W JP0101667 W JP 0101667W WO 0167590 A1 WO0167590 A1 WO 0167590A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power supply
voltage
input
output
Prior art date
Application number
PCT/JP2001/001667
Other languages
English (en)
French (fr)
Inventor
Eiji Yamamoto
Sadao Ishii
Hidenori Hara
Eiji Watanabe
Tetsuya Yamasaki
Koji Tanaka
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000063716A external-priority patent/JP2001258151A/ja
Priority claimed from JP2000064854A external-priority patent/JP4374605B2/ja
Priority claimed from JP2000064853A external-priority patent/JP4553079B2/ja
Priority claimed from JP2000108154A external-priority patent/JP4171862B2/ja
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to EP20010908290 priority Critical patent/EP1286455A1/en
Priority to CA 2402426 priority patent/CA2402426A1/en
Priority to KR1020027011704A priority patent/KR20020079987A/ko
Publication of WO2001067590A1 publication Critical patent/WO2001067590A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/271Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency from a three phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/273Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Definitions

  • the present invention relates to a cycloconverter, which is a power converter that directly generates an AC output of an arbitrary frequency from an AC power supply having a constant frequency, and more particularly to a PWM cycle port converter using a pulse width modulation (PWM) control method.
  • PWM pulse width modulation
  • a cycloconverter which is a power converter that directly generates an AC output at an arbitrary frequency from a constant-frequency AC power supply without passing DC power, especially a PWM cycloconverter using a pulse width modulation (PWM) control method.
  • PWM pulse width modulation
  • Fig. 1 shows a conventional PWM converter that stops operation when a power failure occurs.
  • This conventional PWM cycloconverter comprises a three-phase AC power supply 1, an input filter '2, a power supply abnormality detection circuit 30, an input power supply phase detection circuit 40, an input power supply level detection circuit 50, It comprises a controller 160, a gate driver 70, and a bidirectional switch module 80.
  • the three-phase AC power supply 1 is connected to a bidirectional switch module 80 via an input filter 2.
  • the bidirectional switch module 80 is connected between the three-phase voltages (R, S, T) of the three-phase AC power supply 1 input through the input filter 2 and the three-phase output voltages (U, V, W). It consists of nine bidirectional switches, Sur to Swt, that connect all combinations of.
  • the output of the bidirectional switch module 80 is the load R! It is connected to R 3.
  • the controller 160 outputs a gate signal to the gate driver 70 based on information input from the input power supply level detection circuit 50 and the input power supply phase detection circuit 40.
  • the gate driver 70 drives each of the bidirectional switches of the bidirectional switch module 80 based on the gate signal.
  • the input power supply level detection circuit detects the voltage value of the three-phase AC power supply 1.
  • the input power supply phase detection circuit 40 receives two phases of the three-phase AC power supply 1 and detects the phase of the three-phase AC power supply 1. As shown in FIG. 2, the input power supply phase detection circuit 40 includes a transformer 100, a comparator 101, a phase frequency comparator (PFD) 102, a filter 103, and a voltage control circuit. It is composed of an oscillator (VCO) 104 and a counter 105.
  • VCO oscillator
  • phase information is obtained by being input to the counter 105.
  • MSB most significant bit
  • the means for detecting the phase of the input voltage can be constituted not only by the circuit shown in Fig. 2, but also by a circuit that measures the edges of the square wave of the output of the comparator 101 from edge to edge using a timer. it can.
  • the power failure detection circuit 30 When a power failure is detected in the three-phase AC power supply 1, the power failure detection circuit 30 outputs a power failure detection signal 120 to the controller 160. Upon input of the power failure detection signal 120, the controller 160 outputs a stop gate signal to the gate driver 70 in order to stop the bidirectional switch module 80.
  • operation is automatically stopped even when a power failure occurs.
  • an emergency power supply such as a DC power supply or uninterruptible power supply is generally provided, and if a power failure occurs, the normal power supply is switched to the emergency power supply. It is conceivable to continue the operation.
  • this PWM inverter has an AC power supply 111, a diode module 111, a DC power supply 113 as an emergency power supply, a transistor module 111, and a diode It consists of 115, 116, controller 117, and smoothing capacitor 118.
  • the diode module 1 1 2 rectifies the output voltage of the AC power supply 1 and converts it to a DC voltage.
  • the diodes 115 and 116 the higher of the output voltage from the diode module 112 and the output voltage from the DC current 113 is selected.
  • the controller 1 1 7 by outputting respectively control signals for each transistor constituting the transistor module 1 1 4, to the load R ⁇ to R 3 converts the DC voltage into a three-phase AC voltage Output.
  • the DC power supply 113 automatically supplies power to the transistor module 114 when the voltage of the AC power supply 111 decreases and the voltage of the smoothing capacitor 118 decreases. Therefore, even if an abnormality occurs in the AC power supply 1 11 and its output voltage drops, it is possible to switch to the DC power supply 1 13 as an emergency power supply without interrupting the operation of the motor as the load. it can.
  • the PWM cycloconverter does not have a DC section because the AC power is directly converted to an AC power of an arbitrary frequency. For this reason, it is impossible for the PWM cycloconverter to switch the power supply using a diode or the like as in the PWM inverter.
  • the operation of the PWM cycloconverter cannot be controlled unless the phase information of the input power supply is known. Therefore, in the conventional PWM converter as shown in Fig. 1, an uninterruptible three-phase AC power supply is provided as an emergency power supply, and the power supply to be used is changed from the three-phase AC power supply 1 to the emergency power supply in the event of a power failure. Simply switching the motors requires that the operation of the motor be temporarily stopped, and the operation cannot be continued.
  • the AC / AC power conversion device such as the PWM cycloconverter described above is used as a control device for controlling various types of frequency control motors.
  • Fig. 4 shows a conventional elevator system using a three-phase AC power supply as an emergency power supply.
  • This conventional elevator system includes a three-phase AC power supply 1, a power supply switch 20, a power supply abnormality detection circuit 30, an emergency three-phase AC power supply device 210, and a PWM inverter. It comprises an elevator drive device 6, a braking unit 7, a braking resistor 8, a motor 3, and an elevator machine 4.
  • the elevator drive unit 6 includes a diode rectifier circuit 240, an IGBT (Insulated Gate Bipolar Transistor) 241, a gate driver 24, a control controller 24, a smoothing capacitor 24 It is composed of an inrush current limiting resistor 245 and a switch 246.
  • IGBT Insulated Gate Bipolar Transistor
  • the three-phase AC power supply 1 is connected to an input side of a diode rectification circuit 240 of the elevator drive device 6 via a power switch 20.
  • the DC voltage rectified by the diode rectifier circuit 240 is smoothed by a smoothing capacitor 244 after passing through an inrush current limiting resistor 245 or a switch 246, and is supplied to the IGBT 241.
  • the IGBT 241 controls the motor 3 by performing switch control on the supplied DC voltage in accordance with the gate signal from the gate driver 242.
  • the rush current limiting resistor 245 is used to limit the rush current to the smoothing capacitor 244, and the switch 246 is used to short-circuit the rush current limiting resistor 245 during normal operation. Things.
  • the power supply abnormality detection circuit 30 receives the three-phase voltage of the three-phase When the AC power supply 1 detects that any power supply abnormality has occurred, it outputs a power supply abnormality detection signal 120.
  • the power switch 20 When the power failure detection signal 120 is not input, the power switch 20 outputs the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 to the diode rectifier circuit 240 as it is.
  • the voltage of the emergency three-phase AC power supply 210 set as the emergency power is output to the diode rectifier circuit 240.
  • a power failure detection signal 120 is output from the power failure detection circuit 30, and the voltage input to the lift drive device 6 by the power switch 20. Can be switched from the three-phase AC power supply 1 to the emergency three-phase AC power supply apparatus 210.
  • Fig. 5 shows an elevator system in which a single-phase AC power source is used as the emergency power source, and the elevator drive unit 6 composed of PW1V [inverter] is used.
  • the output voltages of the two phases (R ′, S ′) of the emergency single-phase AC power supply device 211 are input to the power switch 20.
  • FIG. 6 shows an elevator system using an elevator drive device 6 composed of a PWM inverter when the emergency power supply is a backup DC power supply that is a storage battery.
  • the storage battery 2 12 is connected to the positive bus and the negative bus of the elevator drive device 6 via a diode 25 2 and a storage battery switch 25 1.
  • the three-phase AC power supply 1 is connected to a diode rectifier circuit 240 via a three-phase AC power supply switch 250.
  • FIG. 7 shows an elevator system in which a lifting drive device 6 constituted by a PWM inverter is used when the emergency power supply is a backup DC power supply having a large capacity capacitor.
  • a large-capacity capacitor 14 is directly connected to the positive bus and the negative bus of the elevator drive device 6, and the switching is performed. Is no longer necessary.
  • the conventional elevator system using the elevator drive device 6 constituted by the PWM inverter shown in FIGS. 4 to 7 requires the braking unit 7 and the braking resistor 8 for regenerative operation. Therefore, it has a problem that it is structurally large and that regenerative energy is wasted.
  • the emergency power supply is a three-phase AC power supply 210, a single-phase AC power supply 211, and a DC power supply such as a storage battery 212 or a large-capacity capacitor 14, respectively.
  • the power switch 20 and the power failure detection circuit 30 must be provided outside the elevator drive unit 6 in order to perform an emergency operation. Had the problem of becoming
  • FIG. 8 shows an elevator system using the elevator drive device 5 configured by the above-described PWM cycloconverter.
  • This elevator system is composed of a three-phase AC power supply 1, an elevator drive device 5, a motor 3, and an elevator machine 4.
  • the elevator drive device 5 includes an input filter 2, a power supply abnormality detection circuit 30, an input power supply phase detection circuit 40, an input power supply level detection circuit 50, a control controller 160, and a gate driver. 70 and a bidirectional switch module 80.
  • the three-phase AC power supply 1 is connected to the bidirectional switch module 80 via the input filter 21.
  • the bidirectional switch module 8 ⁇ connects all combinations between the three-phase voltage (R, S, T) of the three-phase AC power supply 1 input via the input filter 2 and the three-phase output voltage It is composed of nine bidirectional switches.
  • the output of the bidirectional switch module 80 is connected to each phase of the motor 3.
  • the controller 160 outputs a gate signal to the gate driver 70 based on information input from the input power supply level detection circuit 50 and the input power supply phase detection circuit 40. Gate driver 70 is input from control controller 160 Each bidirectional switch of the bidirectional switch module 80 is driven based on the gate signal.
  • the input power supply level detection circuit 50 detects the voltage value of each phase of the three-phase AC power supply 1.
  • the input power supply phase detection circuit 40 receives two phases of the three-phase AC power supply 1 and detects the phase of the three-phase AC power supply 1.
  • the power failure detection circuit 30 outputs a power failure detection signal 120 to the controller 160 when any power failure occurs in the three-phase AC power supply 1.
  • the controller 160 Upon input of the power supply abnormality detection signal 120, the controller 160 outputs a stop gate signal to the gate driver 70 to stop the bidirectional switch module 80.
  • the above-described various types of PWM cycle converters or PWM inverters are provided with a power failure detection circuit 30 for detecting a power failure occurring in the three-phase AC power supply 1.
  • a power failure detection circuit 30 for detecting a power failure occurring in the three-phase AC power supply 1.
  • the power supply abnormality detection circuit 30 is required to detect these various power supply abnormalities.
  • the state where the phase order of the power supply is reversed is, for example, when the three-phase power supply is normal, the phases are shifted by 120 degrees in the order of R phase, S phase, and T phase. In such a case, it indicates that the phase order has changed to R phase, T phase, S phase.
  • the AC-AC direct converter such as the PWM cycloconverter described above
  • the input power supply voltage and the output voltage are directly connected by the bidirectional switch, so the input power supply voltage has an abnormality. In such a case, an abnormality occurs in the output voltage waveform, which makes it difficult to operate the AC motor satisfactorily.
  • Such a power converter requires a power supply abnormality detection circuit that can detect the open phase state of the power supply voltage by some method. Therefore, as shown below, various power supply abnormality detection circuits and methods for performing power supply voltage abnormality detection in a power converter have been proposed.
  • Japanese Unexamined Patent Publication (Kokai) No. 52-232641 discloses that a detection channel including a photobra is connected between each phase of a three-phase power supply and a neutral point, and that a monostable multi-phase is provided by an open phase detection output. It describes an open-phase detection circuit of a three-phase power supply that operates a vibrator and holds an output signal for a certain period of time.
  • Japanese Patent Application Laid-Open No. 5-683227 discloses that a photocoupler for detecting a current between each phase of a three-phase power supply, its output signals are collectively taken out and integrated, and the integrated value and the reference Describes how to determine whether there is an open phase by comparing the value with the value.In addition, insert a resistor in the diode part that converts the three-phase input voltage to DC and a DC part and detect the current flowing through the resistance There is an open phase determination method for determining that an open phase is detected when a current value intermittently flows due to a current detection circuit.
  • the PWM inverter is connected to an AC power supply through a rectifier circuit, so the input DC voltage ⁇ : is the maximum voltage of the AC power supply. Is secured. Therefore, even if the voltage of the AC power supply is unbalanced, the input DC voltage to the PWM inverter can be maintained at a certain value or more, so that the motor can be driven.
  • the PWM cycloconverter when used as an AC / AC direct power converter, the PWM cycloconverter has a three-phase AC power supply directly connected to a load such as a motor via a bidirectional switch. If the voltage of the three-phase AC power supply becomes unbalanced, it cannot operate normally. Disclosure of the invention
  • An object of the present invention is to provide a PWM cycle port converter capable of realizing continuous operation by switching from a normal power supply to an emergency power supply without interrupting operation even when a power supply abnormality occurs. That is.
  • Another object of the present invention is to provide a power regeneration function, and when a three-phase AC power supply becomes abnormal, a DC power supply such as a three-phase or single-phase AC power supply, a storage battery, or a large-capacity capacitor is used as an emergency power supply.
  • An object of the present invention is to provide a drive device for an elevator that can be operated without changing the system configuration with any of the power supplies.
  • Still another object of the present invention is to provide a drive device for an elevator in which a power switch and a power supply abnormality detection circuit are provided not in the drive device for the elevator but in the drive device for the elevator in order to perform an emergency operation. It is.
  • Still another object of the present invention is to provide a power failure detection circuit capable of detecting a power supply voltage failure in either one of a state where only one phase is lost and a state where the phase sequence is reversed. It is.
  • Still another object of the present invention is to provide an AC / AC power conversion apparatus that can operate normally and continue driving a motor or the like even when an unbalanced state occurs in the voltage of the three-phase AC power supply. It is to provide.
  • a PWM cycloconverter of the present invention includes nine bidirectional switches for connecting a three-phase voltage of a three-phase AC power supply and a three-phase output voltage, respectively.
  • a PWM converter having a bidirectional switch module and an input power supply phase detection circuit that receives two phases of the three-phase AC voltages input to the bidirectional switch module and detects the phase of the three-phase AC voltage is a single unit.
  • Uninterruptible power supply which is a phase AC power supply
  • a power failure detection circuit that outputs a power failure detection signal when a power failure of the three-phase AC power supply is detected
  • the three-phase output voltage from the three-phase AC power supply is output to the bidirectional switch module. If the power supply abnormality detection signal is input, the three-phase AC
  • the bidirectional switch module outputs a single-phase AC voltage from the uninterruptible power supply instead of a two-phase output voltage of the three-phase output voltage from the power supply, wherein the input power supply phase detection circuit detects a phase. Power switch to output to
  • the power supply to be used is switched from the three-phase AC power supply to a single-phase uninterruptible power supply, and the control method of the bidirectional switch module is changed from the three-phase operation to the single-phase operation. Since the power supply is switched almost without interrupting the operation, continuous operation can be realized by switching the power supply.
  • An uninterruptible power supply phase detection circuit for detecting the phase of the uninterruptible power supply, When an output signal is input, the phase information output from the uninterruptible power supply phase detection circuit is selected and output.When the power supply abnormality detection signal is not input, the input power supply phase detection circuit is selected.
  • a phase detection circuit switching device for selecting and outputting phase information output from the phase detection circuit, and the control unit controls the bidirectional switch module based on the phase information output from the phase detection circuit switching device. I'm trying to do it.
  • the phase of the uninterruptible power supply is detected by the uninterruptible power supply phase detection circuit before the occurrence of the power supply abnormality, so that the phase information output from the phase detection circuit switching device is switched even immediately after switching. Since accurate phase information of the power failure is output, operation stoppage at the time of power supply switching can be almost eliminated, and continuous operation can be realized.
  • a bidirectional switch composed of nine bidirectional switches for respectively connecting a three-phase voltage of a three-phase AC power supply and a three-phase output voltage.
  • a PWM converter having a module and an input power supply phase detection circuit that receives two phases of the three-phase AC voltage input to the bidirectional switch module and detects the phase.
  • a power failure detection circuit that outputs a power failure detection signal when a power failure of the three-phase AC power supply is detected
  • the three-phase output voltage from the three-phase AC power supply is output to the bidirectional switch module. If the power supply abnormality detection signal is input, the three-phase AC A DC voltage from the DC power supply is output to the bidirectional switch module instead of a two-phase output voltage of the three-phase output voltage from the power supply, the phase of which is detected by the input power supply phase detection circuit.
  • the fixed phase information output from the fixed phase information generation circuit is selected and output, and when the power supply abnormality detection signal is not input, the input power supply is selected.
  • a phase detection circuit switch that selects and outputs phase information output from the phase detection circuit; If the bidirectional switch module is controlled based on the phase information output from the phase detection circuit switch, and the power supply abnormality detection signal is not input, the bidirectional switch module is controlled.
  • a bidirectional switch composed of nine bidirectional switches that respectively connect a three-phase voltage of a three-phase AC power supply and a three-phase output voltage is provided.
  • a switch module
  • An input power phase detection circuit that receives two phases of the three-phase AC voltage input to the bidirectional switch module and detects the phase
  • a PWM controller that controls the bidirectional switch module based on the phase information detected by the input power supply phase detection circuit.
  • a power supply abnormality detection signal and a switching control signal are output. If the power supply abnormality is recovered, the output of the power supply abnormality detection signal is stopped.
  • a power failure detection circuit that stops outputting the switching control signal after a lapse of time;
  • An uninterruptible power supply module that outputs a three-phase voltage based on the phase information immediately before input at regular intervals
  • the switching control signal has not been input, the three-phase output voltage from the three-phase AC power supply is output to the bidirectional switch module. If the switching control signal has been input, the three-phase switch module outputs the three-phase output voltage from the uninterruptible power supply module. And a power switch for outputting the three-phase output voltage to the bidirectional switch module.
  • the main-phase AC voltage synchronized with the three-phase AC power supply is always generated by the uninterruptible power supply module. Operation can be continued without interruption.
  • a drive device for an elevator includes a nine-way switch configured to connect a three-phase voltage of a three-phase AC power supply and a three-phase output voltage, respectively.
  • a power failure detection circuit that outputs a power failure detection signal when a power failure of the three-phase AC power supply is detected;
  • the three-phase output voltage from the three-phase AC power supply is output to the bidirectional switch module. If the power supply abnormality detection signal is input, the power supply is used as an emergency power supply.
  • An emergency power supply phase detection circuit that detects the phase of the emergency power supply, a fixed phase information generation circuit that generates and outputs fixed phase information,
  • a phase detection circuit switching setting unit that selects and outputs any of the phase information from the emergency power supply phase detection circuit or the fixed phase information from the fixed phase information generation circuit according to a previously set setting;
  • phase information output from the phase detection circuit switching setting device is selected and output.
  • the input power supply phase detection is performed.
  • a phase detection circuit switch that selects and outputs phase information output from the circuit;
  • the bidirectional switch module When the bidirectional switch module is controlled based on the phase information output from the phase detection circuit switch, and when the power failure detection signal is not input, the bidirectional switch module is controlled.
  • Three-phase input operation said When the power supply abnormality detection signal is input, the control unit that switches the control method of the bidirectional switch module from a three-phase input operation to an operation of a control method according to the phase information output from the phase detection circuit switch is provided. It is characterized by having.
  • the lift drive device is constituted by the PWM cycloconverter
  • the power regeneration operation can be performed without connecting the braking unit and the braking resistor outside the lift drive device.
  • an emergency power supply phase detection circuit is provided separately from the input power supply phase detection circuit, a fixed phase information generation circuit is provided, and phase information to be used is selected by a phase detection circuit switch.
  • the emergency operation can be performed without changing the system configuration even when the power supply, single-phase AC power supply or DC power supply is set as the emergency power supply.
  • the power supply switch and the power supply abnormality detection device are provided in the drive device for the elevator, the system configuration is simplified.
  • a power supply abnormality detection circuit is a power supply abnormality detection circuit for detecting an abnormality in a power supply voltage of a three-phase AC power supply
  • a power supply voltage information generation circuit that detects information according to the magnitude relationship between the voltage values of each phase of the three-phase AC power supply, and outputs the information as a power supply voltage information signal;
  • An abnormality detection signal generation circuit An abnormality detection signal generation circuit
  • a determination circuit that compares the power supply voltage information signal and the abnormality detection signal at regular intervals, and outputs a power supply voltage abnormality signal when these signals are different.
  • a power supply voltage information generating circuit detects information according to the magnitude relationship between the voltage values of each phase of a three-phase AC power supply and generates a power supply voltage information signal.
  • a comparison is made with the abnormality detection signal, which is information based on the magnitude relationship between the voltage values of each phase when the power supply is normal. Then, when any power supply voltage abnormality occurs in the three-phase AC power supply, some difference occurs between the signal pattern of the power supply voltage information signal and the signal pattern of the abnormality detection signal. Therefore, according to the present invention, either the state where only one phase is lost or the state where the phase order is reversed Even power supply voltage abnormalities can be detected.
  • an AC / AC direct power converter of the present invention comprises: an input filter for shaping a three-phase output waveform of a three-phase AC power supply;
  • a plurality of bidirectional switches connected to a three-phase signal whose waveform has been shaped by an input filter and for converting power by turning on and off;
  • a PWM control circuit that controls on / off of the bidirectional switch based on the commanded voltage and the commanded frequency
  • a commutation control circuit for controlling commutation of the bidirectional switch
  • a voltage detection circuit that detects and outputs three line voltages of a three-phase AC power supply, a maximum voltage generation circuit that generates a maximum line voltage from the line voltage,
  • It has a control circuit that instructs a voltage to the PWM control circuit so that the output always stays below the line maximum voltage.
  • the PWM control is performed to the maximum voltage possible as a three-phase output in that state, whereby the AC / AC The direct power converter can continue to operate.
  • the maximum voltage generating circuit includes a rectifying circuit for rectifying a line voltage, and a multiplier for multiplying the output of the rectifying circuit by a predetermined number, and the control circuit is configured to generate a desired voltage. It may be composed of a voltage commander for commanding, and a comparator for comparing the output of the multiplier with the command of the voltage commander and outputting the smaller one.
  • Another AC // AC direct-type power converter of the present invention includes an input filter for shaping a three-phase output waveform of a three-phase AC power supply,
  • a plurality of bidirectional switches connected to a three-phase signal whose waveform has been shaped by an input filter and for converting power by turning on and off;
  • a PWM control circuit that controls on / off of the bidirectional switch based on the commanded voltage and the commanded frequency
  • a commutation control circuit for controlling commutation of the bidirectional switch
  • a voltage detection circuit for detecting three line voltages of the three-phase AC power supply
  • a maximum voltage generation circuit that generates a maximum line voltage from the line voltage
  • the voltage and frequency are controlled by the PWM control circuit so that the output is always below the maximum line voltage. Is provided.
  • the PWM control is performed to the maximum frequency possible as a three-phase output in that state, so that the AC The AC / direct power converter can continue to operate.
  • the maximum voltage generating circuit includes a rectifying circuit for rectifying a line voltage, and a multiplier for multiplying an output of the rectifying circuit by a predetermined number.
  • the control circuit includes a voltage commander for commanding a desired voltage, a first comparator for comparing the output voltage of the multiplier with the command of the voltage commander and outputting a smaller one, and a frequency for commanding a desired frequency.
  • a command generator a function generator that calculates the maximum frequency that can be obtained as a three-phase output from the output of the multiplier, and a function generator that compares the calculated frequency with the command of the frequency commander and outputs the smaller one Consists of a second comparator.
  • Another AC / AC direct power converter includes: an input filter for shaping a three-phase output waveform of a three-phase AC power supply;
  • a plurality of bidirectional switches connected to a three-phase signal whose waveform has been shaped by an input filter and for converting power by turning on and off;
  • a PWM control circuit for controlling on-off of the bidirectional switch based on a commanded voltage and a commanded frequency
  • a commutation control circuit for controlling commutation of the bidirectional switch
  • a voltage detection circuit for detecting three line voltages of the three-phase AC power supply
  • a maximum voltage generation circuit that generates a maximum line voltage from a line voltage
  • a control circuit is provided for instructing the PWM control circuit on the speed and the magnetic flux so that the terminal voltage of the motor connected to the output is always equal to or lower than the maximum line voltage.
  • PWM control is performed to the maximum speed that the three-phase output can provide to the motor in that state, so that AC Z AC direct power conversion can be performed.
  • the device can continue to operate.
  • the maximum voltage generating circuit is provided with a rectifying circuit for rectifying a line voltage. Path, and a multiplier that multiplies the output of the rectifier circuit by a predetermined amount.
  • the control circuit controls the speed commander that commands the desired speed, and the maximum speed that can be obtained as a three-phase output from the output of the multiplier.
  • a first function generator that calculates the maximum speed and a command from the speed commander and outputs the smaller one, a magnetic flux commander that commands the desired magnetic flux, and a A second function generator that calculates the maximum magnetic flux that the three-phase output can give to the motor from the output; and It may be constituted by a comparator.
  • the first function generator instructs a speed of a predetermined lower limit when the maximum line voltage falls below a predetermined value
  • the second function generator may instruct a magnetic flux having a predetermined lower limit when the line-to-line maximum voltage falls below a predetermined value.
  • the PWM control is performed so that the three-phase AC power supply rotates at a speed and a magnetic flux of a predetermined lower limit value.
  • rotation by inertia can be continued until the three-phase AC power supply recovers without stopping the motor.
  • FIG. 1 is a block diagram showing a configuration of a conventional PWM cycle port converter.
  • FIG. 2 is a block diagram showing a configuration of the input power phase detection circuit 40 in the PWM cycloconverter of FIG.
  • FIG. 3 is a block diagram showing the configuration of the PWM inverter.
  • FIG. 4 is a block diagram showing a configuration of a conventional elevator system to which a PWM inverter is applied and an emergency power supply is a three-phase AC power supply.
  • FIG. 5 is a block diagram showing a configuration of a conventional elevator system to which a PWM inverter is applied and an emergency power supply is a single-phase AC power supply.
  • FIG. 6 is a block diagram showing a configuration of a conventional elevator system to which a PWM inverter is applied and an emergency power supply is a storage battery.
  • FIG. 7 is a block diagram showing a configuration of a conventional elevator system to which a PWM inverter is applied and an emergency power supply is a large-capacity capacitor.
  • FIG. 8 is a pictorial diagram showing a configuration of an elevator system to which the PWM cycloconverter is applied.
  • FIG. 9 is a block diagram showing a configuration of the PWM cycloconverter according to the first embodiment of the present invention.
  • FIG. 10 is a block diagram showing the configuration of the PWM cycloconverter according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a PWM cycloconverter according to a third embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a PWM cycloconverter according to a fourth embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of the uninterruptible power supply module 90 in the PWM cycloconverter of FIG.
  • FIG. 14 is a timing chart showing the operation of the PWM cycle port converter of FIG.
  • FIG. 15 is a block diagram showing a configuration of an elevator system according to a fifth embodiment of the present invention to which a PWM cycloconverter is applied.
  • FIG. 16 is a block diagram showing a configuration of the power supply abnormality detection circuit 340 according to the sixth embodiment of the present invention.
  • FIG. 17 is a circuit diagram showing a configuration of the power supply voltage information generation circuit 41 in FIG.
  • FIG. 18 is a timing chart for explaining the operation of the power supply voltage information generation circuit 41.
  • FIG. 19 is a timing chart showing the relationship between the power supply voltage information signal groups Rmax to Tmin and the abnormality detection signal groups Rmax * to Tmin *.
  • FIG. 20 is a circuit diagram showing a configuration of the determination circuit in FIG.
  • FIG. 21 is a timing chart showing the relationship between the power supply voltage information signal group Rmax to Tmin and the abnormality detection signal group Rmax * to Tmin * when a power supply abnormality occurs.
  • FIG. 22 is a block diagram showing a configuration of the PWM cycloconverter according to the seventh embodiment of the present invention.
  • FIG. 23 shows a configuration of a PWM cycloconverter according to an eighth embodiment of the present invention. It is a block diagram.
  • FIG. 24 is a block diagram showing the configuration of the PWM cycloconverter according to the ninth embodiment of the present invention.
  • FIG. 25 is a graph showing an example of the function of the function generator 430.
  • FIG. 26 is a graph showing an example of the function of the function generator 44. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 9 is a block diagram showing the configuration of the PWM cycloconverter according to the first embodiment of the present invention. 9, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the PWM cycle port converter of the present embodiment is different from the conventional PWM cycle port converter shown in the figure in that a power switch 20 and an uninterruptible power supply 10 that is a single-phase AC power source are newly provided. 16 is replaced with a controller 60.
  • the power switch 20 outputs the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 to the input filter 2 as it is when the power failure detection signal 120 is not input.
  • the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 is replaced with the single-phase from the uninterruptible power supply 10 instead of the R and S phases. Outputs AC voltage to input filter 2.
  • the controller 60 In a normal state where the power supply abnormality detection signal 120 is not input, the controller 60 performs the same operation as the controller 160 and controls the operation of the bidirectional switch module 8 °. Is output to the gate driver 70. Then, when the power supply abnormality detection signal 120 is input, the controller 60 switches the control method from the three-phase input operation to the single-phase input operation.
  • the input power phase detection circuit 40 receives the R and S phases of the three-phase output voltage output from the power switch 20 and input to the input filter 2 as an input to detect the phase. Detection is being performed.
  • the operation of the PWM cycle port converter of the present embodiment will be described in detail with reference to FIG.
  • the power supply abnormality detection circuit 30 detects whether an abnormality occurs in the three-phase AC power supply 1 is abnormality in the three-phase AC power supply 1 is detected by the power supply abnormality detection circuit 30 and the power supply abnormality detection signal 1 20 is output. Is done. Then, when the power supply abnormality detection signal 120 is output, the power supply switch 20 outputs the R, S phase of the three-phase output voltage (R, S, T) from the three-phase AC power supply 1. Instead, the single-phase AC output voltage from the uninterruptible power supply 10 is output to the input filter 2.
  • the input power supply phase detection circuit 40 detects the phase of the uninterruptible power supply 10. Then, the control controller 60 switches the control method from the three-phase input operation to the single-phase input operation when the power supply abnormality detection signal 120 is input, and the controller controller 60 detects the power supply abnormality detected by the input power supply phase detection circuit 40.
  • the bidirectional switch module 80 is controlled via the gate driver 70 using the phase information of the power failure power supply 10.
  • the power supply to be used is switched from the three-phase AC power supply 1 to the single-phase uninterruptible power supply 10,
  • the control method By switching the control method from three-phase operation to single-phase operation, continuous operation can be realized by switching the power supply without substantially interrupting the operation.
  • a power failure detection signal 120 is output and an input power phase is output.
  • the PLL configuring the input power supply phase detection circuit 40 locks and the uninterruptible power supply 10 It takes a certain amount of time before the phase is detected and the phase information is output. This time becomes longer, as in the case of a general PLL circuit, by setting a wide range in which the frequency fluctuations follow the input signal. Therefore, according to the PWM cycloconverter of the first embodiment, when switching to the uninterruptible power supply 10, which is an emergency power supply, the operation is interrupted for a moment. There is a possibility that it will.
  • the PWM cyclo-converter of the present embodiment is intended to improve such a point and to switch the power supply without interrupting the operation even in the event of a power failure, thereby realizing continuous operation. .
  • FIG. 10 is a block diagram showing the configuration of the PWM cycloconverter of the present embodiment. 10, the same components as those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted.
  • the PWM cycloconverter of the present embodiment is different from the PWM cycloconverter of the first embodiment shown in FIG. 9 in that an uninterruptible power supply phase detection circuit 41 for detecting the phase of the uninterruptible power supply 10 is provided.
  • a phase detection circuit switch 43 is newly provided.
  • the uninterruptible power supply phase detection circuit 41 has the same configuration as the input power supply phase detection circuit 40 as shown in FIG. Then, the uninterruptible power supply phase detection circuit 41 always detects the phase of the uninterruptible power supply 10.
  • the phase detection circuit switch 43 selects and outputs the phase information output from the uninterruptible power supply phase detection circuit 41, and outputs the power failure detection signal 1 2
  • the phase information output from the input power supply phase detection circuit 40 is selected and output.
  • the power supply abnormality detection circuit 30 when an abnormality occurs in the three-phase AC power supply 1 and the power supply abnormality detection circuit 30 outputs the power supply abnormality detection signal 120, The following operations are performed in addition to the operations in the PWM cycloconverter.
  • the phase detection circuit switch 43 switches the output phase information from the phase information output from the input power supply phase detection circuit 40 to the phase information output from the uninterruptible power supply phase detection circuit 41. Since the uninterruptible power supply phase detection circuit 41 detects the phase of the uninterruptible power supply 10 before the power failure occurs, immediately after switching the phase information output by the phase detection circuit switch 43, However, accurate phase information of the uninterruptible power supply 10 can be output. Therefore, according to the PWM cycloconverter of the present embodiment, it is possible to substantially eliminate the stoppage of the operation at the time of power supply switching, as compared with the case of using the PWM cycloconverter of the first embodiment. Continuous operation can be realized.
  • FIG. 11 is a block diagram showing the configuration of the PWM cycloconverter of the present embodiment.
  • the same components as those in FIG. 10 are denoted by the same reference numerals, and description thereof will be omitted.
  • the PWM cycloconverter of the present embodiment is different from the PWM cycloconverter of the second embodiment shown in FIG. 11 in that a battery 11 is provided instead of the uninterruptible power supply 10 and an uninterruptible power supply phase detection circuit is provided.
  • a fixed phase information generation circuit 42 is provided in place of 41. The fixed phase information generation circuit 42 generates and outputs fixed phase information.
  • the power switch 20 and the phase detection circuit switch 43 in the present embodiment operate in the same manner as in the second embodiment shown in FIG.
  • the power supply abnormality detection circuit 30 outputs the power supply abnormality detection signal 120
  • the fixed phase information generated by the fixed phase information generation circuit 42 switches the phase detection circuit. Output to the selected controller 60 by the circuit 43.
  • the battery 11 is a DC power supply, its phase is always constant. Therefore, in the present embodiment, if the controller 60 performs the single-phase operation using the fixed phase information generated by the fixed phase information generation circuit 42, the controller 60 does not stop the operation when switching the power supply. Continuous operation can be realized.
  • FIG. 12 is a block diagram showing the configuration of the PWM cycle port converter according to the present embodiment.
  • the PWM cycloconverter of this embodiment is different from the PWM cycloconverter of the first embodiment shown in FIG. 9 in that the uninterruptible power supply 10 is replaced by an uninterruptible power supply module 90, and the power switch 20 is replaced by a power switch. 21 and the power supply abnormality detection circuit 30 is replaced by the power supply abnormality detection circuit 31.
  • the power failure detection circuit 31 outputs a power failure detection signal 120 and a switching control signal 122 when a power failure such as phase loss, power failure, or imbalance is detected in the three-phase AC power supply 1, and the power failure is recovered.
  • a power failure such as phase loss, power failure, or imbalance is detected in the three-phase AC power supply 1, and the power failure is recovered.
  • the output of the power supply abnormality detection signal 120 is stopped, and after a certain time has elapsed, the output of the switching control signal 121 is stopped.
  • the uninterruptible power supply module 90 generates a three-phase voltage synchronized with the output voltage of the three-phase AC power supply 1 by constantly detecting the phase of the three-phase AC power supply 1, and inputs the power failure detection signal 120. Then, a three-phase voltage based on the phase information immediately before the power failure detection signal 120 is input is output at a constant cycle.
  • the power switch 21 When the switching control signal 121 is not input, the power switch 21 outputs the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 to the input filter 2, and outputs the switching control signal 121 , The three-phase AC output voltage (R ', S', T ') from the uninterruptible power supply 10 is output to the input filter 2.
  • the power supply abnormality detection signal 120 is not input to the control controller 60 in the present embodiment, and normal three-phase operation is performed even when a power supply abnormality occurs.
  • FIG. 13 is a block diagram illustrating the configuration of the uninterruptible power supply module 90. 13, the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
  • the uninterruptible power supply module 90 includes an uninterruptible power supply (UPS) 91, a diode module 112, a capacitor 118, a transistor module 114, a controller 92, And a power supply phase detection circuit 93.
  • UPS uninterruptible power supply
  • the power supply phase detection circuit 93 always detects the phase of the three-phase AC power supply 1 by inputting the three-phase output voltage of the three-phase AC power supply 1, and outputs the detected phase to the controller 92 as phase information. Output.
  • the controller 92 uses the phase information of the three-phase AC power supply 1 detected by the power supply phase detection circuit 93 to control each of the transistor modules 114. Control is performed to control the transistor and synchronize the phase of the three-phase output voltage output from the transistor module 114 with the three-phase AC power supply 1.
  • the controller 92 controls each transistor of the transistor module 114 based on the phase information immediately before the power failure detection signal 120 is input. Thus, control is performed such that the three-phase output voltages output from the transistor modules 114 become a constant cycle.
  • FIG. 14 is a timing chart for explaining the operation of the PWM cycloconverter of the present embodiment.
  • Figure 14 shows the output voltage waveform of the three-phase AC power supply 1, the output voltage waveform of the uninterruptible power supply 90, the R-phase waveform of the input voltage of the bidirectional switch module 80, and the power supply abnormality detection signal 1 2 This shows how the switching control signal 1 2 1 changes to 0.
  • FIG. 14 shows a case where a power failure that causes a power failure in the three-phase AC power supply 1 occurs at time and the three-phase AC power supply 1 recovers from the power failure at time 2 .
  • the uninterruptible power supply module 90 generates and outputs output voltages (R, 'S', T,) synchronized with the output voltage of the three-phase AC power supply 1.
  • the power supply abnormality detection circuit 31 detects the abnormality and outputs a power supply abnormality detection signal 120 and a switching control signal 122. Therefore, the power supply switch 21 selects and outputs the output voltage of the uninterruptible power supply module 90. Then, in the uninterruptible power supply module 90, when the power supply abnormality detection signal 120 is input, the uninterruptible power supply module 90 performs an operation of outputting the output voltage output immediately before it at a constant cycle. Therefore, even after the time, the voltage input to the bidirectional switch module 80 has a voltage waveform substantially similar to that when no power failure occurs.
  • the power failure detection circuit 3 1 first stops the output of the power supply abnormality detection signal 1 2 0. Therefore, in the uninterruptible power supply module 90, control is performed such that the output voltage of the transistor module 114 is synchronized with the output voltage of the AC power supply 1. Then, at time t 3 when the predetermined time during has elapsed from time 1 2, power supply abnormality detection circuit 3 1 stops outputting the switching control signals 1 2 1. Therefore, the power supply switch 21 selects the output voltage of the three-phase AC power supply 1 and outputs it to the input filter 2.
  • the power failure detection circuit 31 stops the output of the power failure detection signal 1 20 when the power failure is recovered, and then stops the output of the switching control signal 1 2 1 after a certain period of time has elapsed. This is to secure time for the phase of the output voltage of the uninterruptible power supply module 90 and the phase of the output voltage of the three-phase AC power supply 1 to be synchronized.
  • the three-phase AC voltage synchronized with the three-phase AC power supply 1 is always generated by the uninterruptible power supply module 90, Even if an abnormality occurs in the three-phase AC power supply 1, the three-phase AC operation can be continued without interruption.
  • FIG. 15 is a block diagram showing the configuration of the elevator system of the present embodiment.
  • the same components as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the elevator drive unit 12 of the present embodiment is different from the elevator drive unit 5 shown in FIG. 8 in that a power switch 20, an emergency power phase detection circuit 2 28, and a fixed phase information generation circuit are provided. 42, a phase detection circuit switching setting device 230, and a phase detection circuit switching device 231 are newly provided, and instead of the control controller 160, the control controller 60 has changed the internal software. And, in the elevator system of the present embodiment, the emergency three-phase AC power supply 2 10, the emergency single-phase AC power supply 2 1 1, the storage battery 2 1 2, the large-capacity capacitor 1 3 One of the power sources selected from the above is selected in advance as an emergency power source.
  • the power switch 20 outputs the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 to the input filter 2 as it is when the power supply abnormality detection signal 120 is not input.
  • the voltage from the power supply set as the emergency power supply is output to the input filter 2.
  • the emergency power supply phase detection circuit 228 inputs two phases (R, S) of the three-phase output voltage, If the emergency power supply is the emergency single-phase AC power supply unit 211, the phase of the single-phase voltage (R ', S') is detected, and the detected phase information is converted to the phase. Output to the detection circuit switching setting unit 230.
  • the fixed phase information generation circuit 42 generates and outputs fixed phase information.
  • the phase detection circuit switching setting unit 230 outputs either the phase information from the emergency power supply phase detection circuit 228 or the fixed phase information from the fixed phase information generation circuit 422 according to the setting made in advance. Select and output to phase detection circuit switch 2 3 1.
  • the phase detection circuit switching setting unit 2 30 selects and outputs the fixed phase information from the fixed phase information generation circuit 4 2 To be set.
  • the phase detection circuit switch setting unit 230 is set to the emergency power supply phase. It is set so that the phase information from the detection circuit 228 is selected and output.
  • the phase detection circuit switch 2 31 selects the phase information from the input power supply phase detection circuit 40 and sends it to the control controller 60.
  • the phase information of each emergency power supply output from the phase detection circuit switching setting unit 230 is selected and sent to the control controller 60. Output.
  • the controller 60 controls the bidirectional switch module 80 based on the phase information output from the phase detection circuit switch 231, and when the power failure detection signal 120 is not input.
  • the three-phase input operation is performed on the bidirectional switch module 80, and when the power failure detection signal 120 is input, the control method of the bidirectional switch module 80 is changed to the phase detection from the three-phase input operation.
  • Circuit switcher 2 3 Switch to operation of the control method according to the phase information output from 1.
  • the controller 60 changes the control method of the bidirectional switch module 80.
  • the control method of the bidirectional switch module 80 is set to the single-phase input operation.
  • the control method of the bidirectional switch module 80 is set to single-phase input operation.
  • the power failure detection circuit 130 does not output the power failure detection signal 120. Therefore, the power switch 20 outputs the three-phase output voltage (R, S, T) from the three-phase AC power supply 1 to the input filter 2 as it is, and the phase detection circuit switch 23 1 detects the input power phase.
  • the phase information from the circuit 40 is selected and output to the control controller 60. As a result, the control controller 60 controls the three-phase input operation based on the phase information output from the input power supply phase detection circuit 40.
  • the power failure detection circuit 30 When a power failure occurs, the power failure detection circuit 30 outputs a power failure detection signal 120. Therefore, the power supply switch 20 outputs the output voltage of the power supply set as the emergency power supply to the input filter 2, and the phase detection circuit switch 2 31 outputs the voltage from the phase detection circuit switch setting circuit 230. The phase information is selected and output to the controller 60. Then, the controller 60 performs control such that the operation according to the set emergency power supply mode is performed based on the input phase information.
  • any of the DC power supplies such as emergency three-phase AC power supply 210, emergency single-phase AC power supply 211, storage battery 212, and large-capacity capacitor 13 can be used as emergency power. Even if is set, the motor 3 can be operated. In other words, a three-phase or single-phase AC power supply and a DC power supply such as a storage battery
  • emergency operation can be performed by using the existing security power supply without newly installing an emergency power supply. Become.
  • the present invention is not limited to this.
  • the present invention can be similarly applied even when 20 is provided outside the elevator drive device 12.
  • the power failure detection signal 120, the three-phase voltage of the three-phase AC power supply 1 (R, S, D), and the two-phase voltage of the emergency power supply (R ', S') are separately used for the elevator drive. This will be input to device 12.
  • the emergency power supply phase detection circuit 2 28 and the phase detection circuit switching setting device 230 are deleted.
  • the fixed phase information output from the fixed phase information generation circuit 42 may be input to the phase detection circuit switch 231.
  • the emergency power supply is only the emergency three-phase AC power supply 210 or the emergency single-phase AC power supply 211
  • the fixed phase information generation circuit 42 and the phase detection circuit switching setting device 2 30 may be deleted so that the phase information output from the emergency power supply phase detection circuit 2 28 is input to the phase detection circuit switch 2 3 1.
  • the PWM cycloconverter of the present embodiment includes a power failure detection circuit 340 shown in FIG. 16 instead of the power failure detection circuit 30 provided in the first to fifth embodiments. It is prepared for. '
  • the power supply abnormality detection circuit 340 of the present embodiment includes a power supply voltage information generation circuit 341, an abnormality detection signal generation circuit 342, and a determination circuit 343. Has been established.
  • the power supply voltage information generation circuit 341 detects information corresponding to the magnitude relationship between the voltage values of the R, S, and T phases of the three-phase AC power supply 1 and uses the information as power supply voltage information signals Rmax to Tmin. Output.
  • the abnormality detection signal generation circuit 342 stores information based on the magnitude relation between the voltage values of the R, S, and T phases when the three-phase AC power supply 1 is normal in a table or the like in advance, and The information is synchronized with the output voltage of the three-phase AC power supply 1 and output as an abnormality detection signal Rmax * to Tmin *.
  • Judging circuit 3 4 3, the power supply voltage information signal Rmax ⁇ Tmin and the abnormality detection signal Rma X * ⁇ Tmin * compared at regular intervals, the power supply voltage anomaly signal 1 2 0 if these signals are different Is output.
  • the power supply voltage information generation circuit 34 1 is composed of six current detection circuits 22 i to 22 6 and a resistor 34.
  • Current detecting circuit 2 2 i to 2 2 6, since all have the same configuration, will be described as a representative current detection circuit 2 2 I 2 2 4.
  • the current detection circuit 22 includes diodes 28 and 29, a photocoupler 330, a resistor 331, and an inversion circuit 32.
  • the current detection circuit 22i does not operate, and the photocoupler 330 is turned off. Since the input of the inverting circuit 32 is connected to the DC power supply Vcc by the resistor 331 and thus becomes high level (hereinafter, referred to as H), the output Rmin of the inverting circuit 32 becomes low level (hereinafter, referred to as H). L).
  • the current detection circuit 22 i When the voltage of the R phase becomes lower than the voltage of either the S or T phase, the current detection circuit 22 i operates, and the voltage via the resistor 34 and the voltage of the R phase The diode 29 and the photocoupler 330 are turned on by the potential difference of Then, e photocoupler 3 3 Output of 0 becomes L, Rmin is the output of the inverting circuit 3 2 becomes H
  • the current detection circuit 2 2 4 includes a diode 35, 3 6, and Hotokabura 3 7, resistors 3 and an inverting circuit 39.
  • FIG. Fig. 19 shows the power supply voltage information signal group Rmin to Tmin obtained by the power supply voltage information generation circuit 341, and the abnormality detection signal group Rmin * to Tmin * generated by the abnormality detection signal generation circuit 342.
  • 5 is a timing chart showing the relationship of FIG.
  • the information corresponding to the power supply voltage information signal group Rmax to Tmin when the three-phase AC power supply 1 is normal is transmitted every time t t to t 6 as shown in FIG. 19.
  • Is stored in FIG. 19 shows the power supply voltage information signal group Rmax to Tmin when the three-phase AC power supply 1 is normal, so that the power supply voltage information signal group Rmax to Tmin
  • the signal patterns of the abnormality detection signal groups Rmax * to Dmin * stored in the abnormality detection signal generation circuit 3422 match.
  • the determination circuit 343 is a D flip-flop circuit 13, a clock signal generation circuit 14 including a counter or the like, an OR circuit 15, and six exclusive OR circuits. 1 6 1 6 6
  • OR circuit 1 5 performs six logical OR operation of each output each other of the exclusive-OR circuit 1 6 i-l 6 6, and outputs the operation result.
  • the OR circuit 15 outputs H when at least one of the outputs of the six exclusive OR circuits 16 to 16 is also H.
  • the D flip-flop circuit 13 holds the output value of the OR circuit 15 input to the timing at which the clock signal generated by the clock signal generation circuit 14 changes, and outputs the power supply voltage abnormality detection signal 1 Output as 20.
  • the decision circuit 3 43 shown in FIG. 20 has the above-described configuration, so that any one of the power supply voltage information signals Rmax to Tmin and the abnormality detection signals Rmax * to Dmin * can be used. If at least one set is different, the power supply voltage error signal 120 is output. Next, an operation when the power supply abnormality detection circuit 340 of the present embodiment detects an abnormality in the power supply voltage will be described with reference to FIG.
  • S-phase at time t 5 indicates the case in which phase failure.
  • the signal 120 remains at L. Since the S-phase at time t 5 is abnormal power voltage phase loss has occurred, Rmin and S min of the power supply voltage information signal group Rmax ⁇ Tmin is, the abnormality detection signal Rmin *, different signals from the S min * It will be. Thus, the power supply voltage anomaly signal 1 2 0 at time t 6 becomes the H level, the power supply voltage S phase is open-phase abnormality is detected.
  • the power supply abnormality detection circuit 3 40 of the present embodiment a power supply voltage information signal group Rm aX ⁇ Tmin, since the abnormality detection signal group R max * ⁇ Tmin * comparison is always performed at regular time intervals, Even in the case of a power failure when the phase sequence is reversed, it can be detected in the same way as the open phase.
  • the power supply abnormality detection circuit 340 of the present embodiment can detect the power supply abnormality in either the state of the supply voltage in which only one phase is lost or the state in which the phase order is reversed. it can.
  • the power supply abnormality detection circuit of the present embodiment has been described using the case where the power supply abnormality detection circuit 340 is provided in the PWM cycloconverter.
  • the present invention is not limited to this.
  • the present invention can be similarly applied to any equipment used.
  • the PWM cycloconverter according to the present embodiment is intended to operate normally and to continue driving the motor and the like even when an imbalance occurs in the voltage of the three-phase AC power supply.
  • the PWM cycloconverter of the present embodiment includes a three-phase AC power supply 1, an input filter 2, a bidirectional switch S UR, U S ⁇ ⁇ UT ⁇ VR ⁇ V S ⁇
  • S VT, S WR, S ws , and S WT, and the load R have R 2, R 3, a current detector CT had CT 2, CT 3, a voltage detection circuit 400, a rectifier circuit 40 1, the multiplier 4 0, a comparator 403, a voltage commander 410, a PWM control circuit 411, a commutation control circuit 450, and a gate drive circuit 60.
  • the three-phase AC power supply 1 outputs R-phase, S-phase, and T-phase AC power.
  • Input filter 2 the three-phase AC power source 1 of each phase R, S, and reactance Torr L have L 2, L 3 which are connected in series to the T, each phase R, S, one end respectively connected to T, The other end consists of capacitors C 2 and C 3 connected in common, and shapes the output waveform of the three-phase AC power supply 1 to output a three-phase signal.
  • Bidirectional Suit suchi ⁇ Sus, SUT, S V R, S V s, S VT, S W R, S ws, S WT are all also consists of two I GBT (insulated gate bipolar transistor), By the commutation control, bidirectional signals can be turned on / off.
  • Bidirectional switch S UR to one end of the S VR, S WR, the output of the R-phase of the input filter 2 is input.
  • the S-phase output of the input filter 2 is input to one end of the bidirectional switches S us , S vs , and Sws .
  • the other ends of the bidirectional switches S UR , S us , and SUT are commonly connected as a U-phase output, and are connected to one end of a load.
  • bidirectional switches S VR , S vs , and S VT are commonly connected as a V-phase output, and are connected to one end of a load R 2 .
  • Bidirectional switch S WR, S WS, the other end of the S WT are commonly connected as W-phase output is connected to one terminal of the load R 3.
  • the other ends of the loads I ⁇ , R 2 and R 3 are commonly connected.
  • Current detector CT had CT 2, CT 3, respectively U-phase, V-phase, by detecting the current of the W-phase to notify the commutation control circuit 45 0.
  • the voltage detection circuit 400 detects and outputs line voltages between the R and S phases, between the S and T phases, and between the T and R phases.
  • Rectifier circuit 401 rectifies the three line voltage of the voltage detection circuit 400 outputs, outputs its maximum value of these as line-to-line maximum voltage V MAX.
  • the multiplier 402 multiplies the line-to-line maximum voltage V MAX by a factor of two.
  • Voltage commander 410 commands voltage V REF , which is the desired effective value of the three-phase output, regardless of the output of three-phase AC power supply 1.
  • Comparator 403 compares voltage V MAX Z "2 with voltage V REF and outputs the smaller voltage as the voltage.
  • the PWM control circuit 411 operates the bidirectional switches S UR , S US , s so that the three-phase output is a voltage V: and generates a U-phase, V-phase, and W-phase signal of a commanded frequency f REF.
  • the PWM signal is output to a bus composed of a plurality of signal lines.
  • Commutation control circuit 450 two-way based on the polarity of the current is converted into a signal corresponding the PWM signal to a bi ⁇ direction Suitsuchi, obtained by the current detector CT, CT 2, CT 3 Suitsu
  • the gate driver circuit 60 forms a bidirectional switcher US U VR VS WR WS WT based on the output of the commutation control circuit 450
  • the output of the three-phase AC power supply 1 is shaped by the filter 2.
  • the voltage V MAX /% T 2 which is the effective value of the maximum three-phase output obtained from the three-phase AC power supply 1 is obtained by the voltage detection circuit 400, the rectifier circuit 401, and the multiplier 402 based on the waveform-shaped signal. Generated.
  • the comparator 403 the voltage V MAX V "2 is compared with the voltage V REF commanded by the voltage commander 410, and the smaller voltage is input to the PWM control circuit 411 as the voltage V t .
  • the voltage V MAX _ 2 does not fall below the command V REF of the voltage commander 4 110 , but the voltage V MAX / ⁇ 2 there is a voltage V MAX ZT2 when drops may fall below the command V RE F of the voltage command 410.
  • PWM control circuit 41 commanded frequency f REF and bidirectional z Germany based on voltages V 1 Outputs a PWM signal that indicates the timing to turn off the switch. Further, in the commutation control circuit 45 0, the signal timing of the commutation is given on the basis of the polarity of the current the current detector CT ⁇ CT 2 CT 3 were detected, via the gate drive circuit 60, the bidirectional sweep rate ⁇ ⁇ " UR ⁇ us ⁇ VR VS VT J WR ws ⁇ WT * ⁇ ' 1 :
  • the output of the three-phase AC power supply 1 becomes unbalanced, the voltage V MAX Z7 ⁇ 2 below voltage V REF for commanding the voltage command unit 410, PWM cycloconverter in voltage V REF to a command voltage command unit 4 1 0 It cannot operate normally.
  • PWM control based on the maximum voltage V MAX / "vT2 that can be output normally at that time, the PWM cycle port converter can continue to operate.
  • the rectifier circuit 401 that outputs the maximum line-to-line voltage V MAX consists of an absolute value circuit and a maximum value. It can be configured by a priority circuit.
  • the PWM cyclo-converter of the present embodiment operates normally and can continue to drive the motor and the like even when the voltage of the three-phase AC power supply becomes unbalanced. belongs to.
  • the PWM cycloconverter of the eighth embodiment of the present invention is configured by adding a function generator 420, a frequency commander 421, and a comparator 404 to the PWM cycloconverter of FIG. ing.
  • the function generator 420 receives the output voltage V MAX / 2 of the multiplier 402, calculates the maximum frequency f MAX obtained in the state of one output of the three-phase AC power supply at that time, and outputs the result.
  • the maximum frequency ⁇ ⁇ ⁇ ⁇ when the output of the three-phase AC power supply 1 is normal, the maximum frequency f MA > becomes maximum, and linearly decreases in proportion to the decrease of the voltage VMAXZ “2. .
  • the frequency commander 421 commands the frequency f REF , which is a desired value of the three-phase output, regardless of the output of the three-phase AC power supply 1.
  • the comparator 404 compares the maximum frequency f MAX with the frequency f REF commanded by the frequency commander 421, and outputs the smaller frequency as the frequency ⁇ .
  • the frequency is input to the PWM control circuit 411.
  • the maximum frequency f MAX does not fall below the command f REF of the frequency commander 421, but the maximum frequency F MAX due to unbalanced condition etc. May decrease below the command f REF of the frequency command unit 421.
  • the PWM cycloconverter When the output of the three-phase AC power supply 1 becomes unbalanced and the maximum frequency f MAX falls below the frequency ⁇ REF commanded by the frequency commander 421, the PWM cycloconverter operates normally at the frequency f REF commanded by the frequency commander 421. It cannot operate. By performing PWM control based on the maximum frequency f MAX of the three-phase output that can be output normally at that time, the PWM cycloconverter can continue to operate.
  • the PWM cycloconverter according to the ninth embodiment of the present invention can operate normally and continue driving the motor and the like even if the voltage of the three-phase AC power source becomes unbalanced, as in the embodiments of FIGS. 7 and 8. It is intended to be.
  • the PWM cycloconverter according to the ninth embodiment of the present invention includes a three-phase AC power supply 1, an input filter 2, a bidirectional switch S UR S us , S UT VR * ⁇ VS ° VT ⁇ WI ⁇ ws WT ⁇ /) ⁇ 1 ⁇ C ⁇ CI 3
  • Voltage detection circuit 400 Voltage detection circuit 400, rectifier circuit 401, multiplier 402, commutation control circuit 450, gate drive circuit 60, speed detector 461, function generators 430 and 440, and speed commander 43 1, a comparator 405, a speed controller 432, a magnetic flux commander 441, a comparator 406, a frequency commander 421, a voltage commander 410, and a PWM control circuit 411. Drive the motor 460.
  • the circuit 401, the multiplier 402, the commutation control circuit 450, and the gate drive circuit 60 are the same as those of the PWM cycloconverter of FIG.
  • the motor 460 is an AC motor driven by U-phase, V-phase, and W-phase voltages.
  • Speed detector 461 detects the speed at which motor 460 rotates.
  • the function generator 430 receives the voltage V MAX "2 as an input, and outputs the maximum speed N MAX of the motor 460 obtained in the state of the three-phase AC power supply 1 output at that time.
  • the function it is possible to set the lower limit of the maximum speed N MAX, the maximum speed N MAX when the voltage V MAX Z 2 falls below a predetermined value is a preset lower limit value.
  • speed command 43 irrespective of the output of the three-phase AC power source 1 and directs Dosu should speed N REF driving the motor 460.
  • Comparator 405 compares the maximum speed N MAX with the output N REF of speed commander 431 and outputs the smaller speed as speed N.
  • the maximum speed N MAX does not fall below the command N REF of the speed commander 43 1, but the maximum speed N MA due to unbalanced conditions etc.
  • x decreases, it may fall below the command N REF of the speed commander 431.
  • the speed controller 432 inputs the speed and the rotation speed of the motor 460 detected by the speed detector 461, and controls the rotation speed of the motor 46 ° to be.
  • the function generator 440 receives the voltage VMAXZ 2 and outputs the maximum magnetic flux ⁇ ⁇ of the motor 460 obtained from the state of the three-phase AC power supply 1 output at that time. Note that it is possible to set a lower limit value of the maximum magnetic flux ⁇ ⁇ ⁇ in the function indicating the relationship between the input and output, and the maximum magnetic flux ⁇ ⁇ ⁇ is set in advance when the voltage V MAX is less than a predetermined value. An example of this function is shown in Fig. 26.
  • the magnetic flux commander 441 commands a magnetic flux corresponding to the torque to be given to the motor 460 irrespective of the output of the three-phase AC power supply 1.
  • Comparator 406 compares the maximum magnetic flux ⁇ ⁇ with the output of magnetic flux commander 441 and outputs the smaller magnetic flux as magnetic flux 0 ⁇ .
  • the maximum magnetic flux ⁇ ⁇ does not fall below the command ⁇ D REF of the magnetic flux commander 441.
  • ⁇ ⁇ decreases, the command of the magnetic flux commander 441 may fall below the command ⁇ P REF .
  • the vector control circuit 442 receives the speed and the magnetic flux as inputs, and calculates and instructs a current flowing through the motor 460 so as to rotate at a torque based on the speed ⁇ ⁇ and the magnetic flux ⁇ i. Since the sum of the balanced three-phase currents becomes zero, the current command indicates two of the three phases U, V, and W.
  • the current control circuit 443 includes a current command outputted from the base-vector control circuit 442, a current detector CT ⁇ , CT 2, the deviation between the current value detected by ⁇ Ding 3, voltage applied to the PWM control circuit 4 1 1 Outputs command v REF and frequency command f REF .
  • the PWM cyclo-converter can continue to operate. Further, when the voltage V MAX 2 falls below a predetermined value, the PWM control is performed so that the motor 460 rotates at a speed of a predetermined lower limit. Thereby, the rotation by inertia can be continued until the three-phase AC power supply 1 recovers without stopping the motor 460 by the PWM control when the three-phase AC power supply 1 is momentarily interrupted.
  • the three-phase output changes the maximum magnetic flux ⁇ ⁇ ⁇ corresponding to the maximum torque that can be given to the motor 460 in that state.
  • the PWM cycloconverter can continue to operate.
  • the PWM control is performed so that the motor rotates with a magnetic flux having a predetermined lower limit value. Without stopping motor 460, rotation by inertia can be continued until three-phase AC power supply 1 recovers.

Description

明細書
P WMサイクロコンバータおよび電源異常検出回路 技術分野
本発明は、 一定周波数の交流電源から任意の周波数の交流出力を直接生成する 電力変換装置であるサイクロコンバータに関し、 特にパルス幅変調 (P WM) 制 御方式を用いた P WMサイク口コンバータに関する。 背景技術
一定周波数の交流電源から任意の周波数の交流出力を直流を介さずに直接生成 する電力変換装置であるサイクロコンバータ、 特にパルス幅変調 (P WM) 制御 方式を用いた P WMサイクロコンバータを用いて、 電動機等を制御するための研 究、 開発が近年行われている。 また、 P WMサイクロコンバータはマトリクスコ ンバ一タとも呼ばれている。
この、 P WMサイクロコンバータでは、 入力電源と出力とが直接双方向に電流 が流れることができる双方向スィツチを介して直接接続されている。 そのため、 、 欠相、 停電、 電源不平衡等の入力電源の異常が発生し通常の運転を維持するこ とができなくなった場合には、 P WMサイク口コンバータの運転を停止しなけれ ばならない。 電源の異常が発生した場合に運転を停止する従来の P WMサイクロ コンバータを図 1に示す。
この従来の P WMサイクロコンバータは、 三相交流電源 1と、 入力フィルタ' 2 と、 電源異常検出回路 3 0と、 入力電源位相検出回路 4 0と、 入力電源レベル検 出回路 5 0と、 制御コントローラ 1 6 0と、 ゲートドライバ 7 0と、 双方向スィ ツチモジュール 8 0とから構成されている。
三相交流電源 1は、 入力フィルタ 2を介して双方向スィツチモジュール 8 0に 接続されている。 双方向スィッチモジュール 8 0は、 入力フィルタ 2を介して入 力された三相交流電源 1の三相電圧 (R、 S、 T) と三相の出力電圧 (U、 V、 W) との間の全ての組合わせを接続する 9つの双方向スィツチ S ur〜S wtにより 構成されている。 そして、 双方向スィッチモジュール 8 0の出力は、 負荷 R!〜 R3に接続される。
制御コントローラ 1 6 0は、 入力電源レベル検出回路 5 0、 入力電源位相検出 回路 4 0から入力される情報に基いて、 ゲートドライバ 7 0へゲート信号を出力 している。 ゲートドライバ 7 0は、 ゲート信号に基いて双方向スィッチモジユー ル 8 0の各双方向スィツチ ^〜 町を駆動している。 入力電源レベル検出回路 は、 三相交流電源 1の電圧値を検出している。
入力電源位相検出回路 4 0は、 三相交流電源 1のうちの 2相を入力とし、 三相 交流電源 1の位相を検出している。 また、 入力電源位相検出回路 4 0は、 図 2に 示すように、 トランス 1 0 0と、 コンパレータ 1 0 1と、 位相周波数比較器 (P F D) 1 0 2と、 フィルタ 1 0 3と、 電圧制御発振器 (V C O) 1 0 4と、 カウ ンタ 1 0 5とから構成されている。
三相交流電源 1からの入力電圧のうちの 2相分はトランス 1 0 0を介してコン ノヽ0レータ 1 0 1に入力され、 P F D 1 0 2、 フィルタ 1 0 3 、 V C O 1 0 4、 力 ゥンタ 1 0 5に入力されることにより位相情報となる。 カウンタ 1 0 5の最上位 ビット (M S B ) は、 P F D 1 0 2にフィードバックされることにより P L L回 路が構成されている。 入力電圧の位相を検出する手段は、 図 2に示されるような 回路でなく、 コンパレータ 1 0 1の出力の矩形波のエッジからエッジまでをタイ マによって計測するような回路によっても構成することができる。
電源異常検出回路 3 0は、 三相交流電源 1に電源異常が検出された場合、 電源 異常検出信号 1 2 0を制御コントローラ 1 6 0に出力する。 制御コントローラ 1 6 0は、 電源異常検出信号 1 2 0を入力すると、 双方向スィッチモジュール 8 0 を停止させるために、 ゲ一トドライバ 7 0に停止用ゲ一ト信号を出力する。 上記で説明した従来の P WMサイク口コンバータによれば、 電源異常が発生し た場合でも、 運転の停止が自動的に行われる。 しかし、 電動機が使用される用途 によっては、 電源異常が発生した場合でも運転の継続が必要となる場合がある。 このような課題を達成するためには、 一般的に直流電源や無停電電源等の非常用 電源を備えるようにし、 電源異常が発生した場合には通常の電源を非常用の電源 に切替えることにより運転の継続を行うようにすることが考えられる。
このような考え方により、 電源異常の場合でも電動機の運転の継続を実現した 方法を、 P WMインバータの場合を用いて説明する。
この P WMインバータは、 図 3に示十ように、 交流電源 1 1 1と、 ダイオード モジュール 1 1 2と、 非常用電源である直流電源 1 1 3と、 トランジスタモジュ ール 1 1 4と、 ダイォード 1 1 5、 1 1 6と、 コントローラ 1 1 7と、 平滑コン デンサ 1 1 8とから構成されている。
ダイォードモジュール 1 1 2は、 交流電源 1の出力電圧を整流し直流電圧に変 換している。 ダイオード 1 1 5、 1 1 6は、 ダイオードモジュール 1 1 2からの 出力電圧と、 直流電流 1 1 3からの出力電圧のうちの電圧値が高い方を選択して いる。 コントローラ 1 1 7は、 トランジスタモジュール 1 1 4を構成している各 トランジスタに対して制御信号をそれぞれ出力することにより、 直流電圧を三相 交流電圧に変換して負荷 R^〜R3に対して出力している。
この P WMインバータでは、 交流電源 1 1 1の電圧が低下し、 平滑コンデンサ 1 1 8の電圧が低下すると自動的に直流電源 1 1 3はトランジスタモジュール 1 1 4への電力の供給を行う。 そのため、 交流電源 1 1 1に異常が発生しその出力 電圧が低下した場合でも、 負荷である電動機の運転を中断することなく非常用電 源である直流電源 1 1 3への切り替えを行うことができる。
このように、 P WMインバータでは直流電源 1 1 3とダイオード 1 1 5、 1 1 6を設けるとレ、う簡易な方法により電源異常の場合でも運転の継続を行うことが できるのは、 直流部を有しているからである。
し力 し、 P WMサイクロコンバータでは、 交流電源を直接任意の周波数の交流 電源に変換しているため直流部を有していない。 そのため、 P WMサイクロコン バータでは、 P WMインバ一タのようにダイォ一ド等を用いて供給電源を切替え ることは不可能である。
また、 P WMサイクロコンバータでは、 入力電源の位相情報を知ることができ なければその動作を制御することができない。 従って、 図 1に示したような従来 の P WMサイクロコンバータでは、 無停電の三相交流電源を非常用電源として備 えておき、 電源異常時には使用する電源を三相交流電源 1から非常用電源に単純 に切替えただけでは、 電動機の運転を一旦停止することが必要となり運転を継続 させることはできない。 上述したような P WMサイクロコンバータ等の交流 Z交流電力変換装置は、 各 種の周波数制御モータを制御するための制御装置として用いられている。 その具 体的な一例として、 交流 z交流電力変換装置を用いて、 昇降機システムの運転を 制御するための昇降機用ドライブ装置を構成した場合について以下に説明する。 従来の昇降機システムでは、 交流 交流電力変換装置として P WMインバータ を用いた昇降機用ドライブ装置により電動機の制御が行われていた。 このような 昇降機システムでは、 電源異常が発生した場合でも昇降機の運転を継続するため に非常用電源が設けられている。
非常用電源として三相交流電源を用いた場合の従来の昇降機システムを図 4に 示す。 この従来の昇降機システムは、 三相交流電源 1と、 電源切り替え器 2 0と 、 電源異常検出回路 3 0と、 非常用三相交流電源装置 2 1 0と、 P WMインバー タにより構成されている昇降機用ドライブ装置 6と、 制動ユニット 7と、 制動抵 抗器 8と、 モータ 3と、 昇降機マシン 4とから構成されている。
また、 昇降機用ドライブ装置 6は、 ダイォード整流回路 2 4 0と、 I G B T ( Insulated Gate Bipolar Transistor) 2 4 1と、 ゲートドライバ 2 4 2と、 制 御コントローラ 2 4 3と、 平滑コンデンサ 2 4 4と、 突入電流制限用抵抗 2 4 5 と、 スィッチ 2 4 6とから構成されている。
三相交流電源 1は、 電源切り替え器 2 0を介して昇降機用ドライブ装置 6のダ ィォ一ド整流回路 2 4 0の入力側に接続されている。 ダイォード整流回路 2 4 0 で整流された直流電圧は、 突入電流制限用抵抗 2 4 5またはスィツチ 2 4 6を介 した後に平滑コンデンサ 2 4 4により平滑され I G B T 2 4 1に供給されている 。 I G B T 2 4 1は、 ゲートドライバ 2 4 2からのゲート信号に従い、 供給され た直流電圧をスィツチ制御しモータ 3の制御を行っている。
突入電流制限用抵抗 2 4 5は、 平滑コンデンサ 2 4 4への突入電流を制限する ためのものであり、 スィツチ 2 4 6は、 通常運転時に突入電流制限用抵抗 2 4 5 を短絡するためのものである。
また、 回生運転時に、 回生エネルギを消費するために昇降機用ドライブ装置 6 の正母線と負母線との間に制動ュ-ット 7と制動抵抗器 8が接続されている。 また、 電源異常検出回路 3 0は、 三相交流電源 1の三相電圧を入力とし、 三相 交流電源 1に何らかの電源異常が発生したことを検出すると、 電源異常検出信号 1 2 0を出力する。
電源切り替え器 2 0は、 電源異常検出信号 1 2 0が入力されていない場合、 三 相交流電源 1からの三相出力電圧 (R、 S、 T) をそのままダイオード整流回路 2 4 0に出力し、 電源異常検出信号 1 2 0が入力された場合、 非常用電源として 設定されている非常用三相交流電源装置 2 1 0の電圧をダイオード整流回路 2 4 0へ出力する。
この従来の昇降機用ドライブ装置では、 電源異常が発生すると電源異常検出回 路 3 0から電源異常検出信号 1 2 0が出力され、 電源切り替え器 2 0により昇降 機用ドライブ装置 6に入力される電圧が三相交流電源 1から非常用三相交流電源 装置 2 1 0に切り替えられるようになつている。
同様に、 非常用電源として単相交流電源を用いた場合の、 P W1V [インバ一タに より構成された昇降機用ドライブ装置 6が使用された昇降機システムを図 5に示 す。 図 5では、 非常用単相交流電源装置 2 1 1の 2相 (R ' 、 S ' ) の出力電圧 が電源切り替え器 2 0に入力されている。
同様に、 非常用電源が蓄電池であるバックアップ直流電源の場合の、 PWMィ ンバ一タにより構成された昇降機用ドライブ装置 6が使用された昇降機システム を図 6に示す。
蓄電池 2 1 2は、 昇降機用ドライブ装置 6の正母線および負母線にダイオード 2 5 2及び蓄電池用スィッチ 2 5 1を介して接続される。 また、 三相交流電源 1 は三相交流電源用スィツチ 2 5 0を介してダイォード整流回路 2 4 0に接続され ている。
この従来の昇降機システムでは、 電源異常検出回路 3 0により三相交流電源 1 の異常が検出されて電源異常検出信号 1 2 0が出力されると、 三相交流電源用ス ィツチ 2 5 0が遮断され、 蓄電池用スィツチ 2 5 1が投入される。
同様に、 非常用電源が大容量コンデンサであるバックアツプ直流電源の場合に 、 P WMィンバータにより構成された昇降 用ドラィブ装置 6が使用された昇降 機システムを図 7に示す。 この従来の昇降機システムでは、 大容量コンデンサ 1 4が昇降機用ドライブ装置 6の正母線及び負母線に直接接続されていて、 切り替 えは不要となる。
図 4から図 7に示した P WMィンバータにより構成された昇降機用ドライブ装 置 6を用いた従来の昇降機システムは、 回生運転のために制動ュニット 7や制動 抵抗器 8を必要とした。 そのため、 構造的にも大きく、 また回生エネルギを無駄 に生じるといった問題を有していた。
また、 非常用電源が三相交流電源 2 1 0である場合と、 単相交流電源 2 1 1で ある場合と、 蓄電池 2 1 2又は大容量コンデンサ 1 4等の直流電源である場合で 、 それぞれシステム構成の形態を変更しなければならないという問題を有してい た。
さらに、 従来の昇降機用ドライブ装置 6では、 非常運転を行うためには、 電源 切り替え器 2 0および電源異常検出回路 3 0を昇降機用ドライブ装置 6の外部に 設けなければならないためシステム構成が複雑となってしまうという問題点を有 していた。
次に、 上述した P WMサイクロコンバータにより構成されている昇降機用ドラ ィブ装置 5を用いた昇降機システムを図 8に示す。
この昇降機システムは、 三相交流電源 1と、 昇降機用ドライブ装置 5と、 モ一 タ 3と、 昇降機マシン 4とから構成されている。
また、 昇降機用ドライブ装置 5は、 入力フィルタ 2と、 電源異常検出回路 3 0 と、 入力電源位相検出回路 4 0と、 入力電源レベル検出回路 5 0と、 制御コント ローラ 1 6 0と、 ゲートドライバ 7 0と、 双方向スィツチモジュール 8 0とから 構成されている。
三相交流電源 1は、 入力フィルタ 2 1を介して双方向スィツチモジュール 8 0 に接続されている。 双方向スィッチモジュール 8◦は、 入力フィルタ 2を介して 入力された三相交流電源 1の三相電圧 (R、 S、 T ) . と三相の出力電圧との間の 全ての組合わせを接続する 9つの双方向スィツチにより構成されている。 そして 、 双方向スィッチモジュール 8 0の出力は、 モータ 3の各相に接続されている。 制御コントローラ 1 6 0は、 入力電源レベル検出回路 5 0および入力電源位相 検出回路 4 0から入力される情報に基いて、 ゲートドライバ 7 0へゲ一ト信号を 出力している。 ゲートドライバ 7 0は、 制御コントローラ 1 6 0から入力された ゲート信号に基いて双方向スィツチモジュール 8 0の各双方向スィツチを駆動し ている。
入力電源レベル検出回路 5 0は、 三相交流電源 1の各相の電圧値をそれぞれ検 出している。 入力電源位相検出回路 4 0は、 三相交流電源 1のうちの 2相を入力 とし、 三相交流電源 1の位相を検出している。 電源異常検出回路 3 0は、 三相交 流電源 1に何らかの電源異常が発生した場合に、 電源異常検出信号 1 2 0を制御 コントローラ 1 6 0に出力する。
制御コントローラ 1 6 0は、 電源異常検出信号 1 2 0を入力すると、 双方向ス ィツチモジュール 8 0を停止させるために、 ゲートドライバ 7 0に停止用ゲート 信号を出力する。
これまで、 上記で説明したような P WMサイクロコンバータにより構成された 昇降機システムは存在しなかったが、 このような昇降機システムを実現すること ができれば、 電源異常が発生した場合、 運転の停止が自動的に行われ、 また、 電 源回生運転が可能なため、 制動ユニッ トや制動抵抗器が不要となる。 しかし、 図 8に示した、 P WMサイクロコンバータにより構成された従来の昇降機用ドライ ブ装置では、 入力電源位相検出回路 4 0が 1つしか備えられていない。 そのため 、 入力電源の位相情報を知ることができなければ制御を行うことができない P W Mサイクロコンバータでは、 非常用電源を用いた非常運転ができないという問題 点を有していた。
また、 上述した各種の P WMサイク口コンバータ又は P WMィンバータには、 三相交流電源 1に発生する電源異常を検出するための電源異常検出回路 3 0が設 けられている。 しかし、 三相交流電源 1に電源異常が発生した状態には、 3相の うちの 1相だけの配線が断線した状態である欠相状態や、 電源の相順が逆相とな つた状態や、 各相の電圧値が異なつた値となる不平衡状態等の様々な状態がある 。 そのため、 電源異常検出回路 3 0には、 これらの様々な電源異常を検出するこ とが要求される。
ここで、 電源の相順が逆相となった状態とは、 例えば、 三相電源が正常な状態 では、 R相、 S相、 T相の順序でそれぞれ 1 2 0度づっ位相がずれているような 場合、 相順が R相、 T相、 S相のようになってしまった状態のことを示している 特に、 上記で説明したような P WMサイクロコンバータ等の A C— A C直接変 換機では、 入力電源電圧と出力電圧とが双方向スィツチにより直接接続されてい るため、 入力電源電圧に異常が発生した場合には、 出力電圧波形にも異常が発生 してしまい交流電動機の良好な運転が困難となる。
また、 PWMサイクロコンバ一タ以外の三相交流電源を入力とする電力変換装 置でも、 欠相状態で運転を続けると、 トランジスタインバータ等においては主回 路のコンデンサのリップル電流の増大等により装置の信頼性に悪影響をおよぼす こととなる。
そのため、 このような電力変換装置では、 電源電圧の欠相状態を何らかの方法 で検出することができる電源異常検出回路が必要となる。 そのため、 下記に示す ように、 電力変換装置において電源電圧の異常検出を行うための様々な電源異常 検出回路および方法が提案されている。
特開昭 5 2 - 2 3 6 4 1号公報には、 三相電源の各相と中性点との間に、 ホト 力ブラを含む検出チャネルを接続し、 欠相検出出力で単安定マルチバイブレータ を動作させ、 一定時間だけ出力信号を保持する三相電源の欠相検出回路が記載さ れている。
また、 特開平 5— 6 8 3 2 7号公報には、 三相電源の各相間の電流を検出する ためのホトカブラと、 その出力信号を 1つにまとめて取り出して積分し、 積分値 と基準値との比較を行うことにより欠相が否かを判定する方法が記載されている また、 三相入力電圧を直流に変換するダイオードプリッジと直流部分に抵抗を 挿入し、 抵抗に流れる電流を検出する電流検出回路により、 電流値が断続して流 れる場合には欠相であると判定する欠相判定方法等がある。
し力 し、 上記の特開昭 5 2 - 2 3 6 4 1号公報ゃ特開平 5— 6 8 3 2 7号公報 に記載されている方法では、 三相電源のうちの 1相のみが欠相した状態の電源電 圧異常を検出することがができない。 また、'前述したいずれの電源異常検出回路 および方法を用いても、 瞬時に電源の相順が逆相になった状態の電源電圧異常を 検出することがができないため、 P WMサイク口コンパ一タ等の A C— A C直接 変換機においては、 その区間のみ出力電圧の波形が歪んでしまう。 そのため、 新 たに逆相順であるかどうかを検出することができる回路を併用しなくてはならな い。
また、 P WMインバータを用いた従来の交流 Z交流電力変換装置では、 P WM インバータは整流回路を介して交流電源に接続されるため、 入力の直流電圧^:と しては交流電源の最大電圧が確保される。 したがって、 交流電源の電圧が不平衡 状態になっても、 PWMインバ一タへの入力直流電圧は一定値以上が確保される ので、 モータ等の駆動が可能である。
しかし、 P WMサイクロコンバータを交流ノ交流直接形電力変換装置として使 用した場合、 P WMサイクロコンバータは、 三相交流電源が双方向スィッチを介 してモータ等の負荷と直接接続されているため、 三相交流電源の電圧が不平衡に なると正常に動作することができない。 発明の開示
本発明の目的は、 電源異常が発生した場合でも、 運転を中断することなく通常 電源から非常用電源への切り替えを行うことにより継続した運転を実現すること ができる P WMサイク口コンバータを提供することである。
また、 本発明の他の目的は、 電源回生機能を有し、 三相交流電源が異常となつ た時に、 非常用電源として、 三相又は単相交流電源、 蓄電池又は大容量コンデン サ等の直流電源のいずれでもシステム構成を変更せずに運転可能とする昇降機用 ドライブ装置を提供することである。
さらに、 本発明の他の目的は、 非常運転を行うために、 電源切り替え器、 電源 異常検出回路を昇降機用ドライブ装置の外部ではなく昇降機用ドライブ装置内に 設けた昇降機用ドライブ装置を提供することである。
さらに、 本発明の他の目的は、 1相のみ欠相した状態、 相順が逆相となった状 態のどちらの状態の電源電圧異常でも検出することができる電源異常検出回路を 提供することである。
さらに、 本発明の他の目的は、 三相交流電源の電圧に不平衡状態が起きても、 正常に動作し、 モータ等の駆動を継続することが可能な交流 Z交流電力変換装置 を提供することである。
上記目的を達成するために、 本発明の P WMサイクロコンバータは、 三相交流 電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続する 9つの双方向スィ ツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモ ジュールに入力される三相交流電圧のうちの 2相を入力とし、 その位相の検出を 行っている入力電源位相検出回路とを有する P WMサイクロコンバータにおいて 単相交流電源である無停電電源と、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には前記三相交流電源からの三相出力電圧のうちの、 前記入力電 源位相検出回路が位相の検出を行っている 2相の出力電圧の替わりに前記無停電 電源からの単相交流電圧を前記双方向スィツチモジュールへ出力する電源切り替 え器と、
前記入力電源位相検出回路により検出された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィツチモジュールに対して三相入力運転するよう な制御を行ない、 前記電源異常検出信号が入力されると、 前記双方向スィッチモ ジュールの制御方式を三相入力運転から単相入力運転に切替える制御部とを有す ることを特徴とする。
本発明は、 三相交流電源に異常が発生した場合には、 使用する電源を三相交流 電源から単相の無停電電源へ切り替え、 双方向スィツチモジュールの制御方式を 三相運転から単相運転に切り替えるようにしているので、 運転をほぼ中断させる ことなく電源の切り替えを行うことにより継続した運転を実現することができる また、 本発明の他の P WMサイクロコンバータによれば、 上記発明に加えて無 停電電源の位相の検出を行っている無停電電源位相検出回路と、 前記電源異常検 出信号が入力された場合には前記無停電電源位相検出回路から出力される位相情 報を選択して出力し、 前記電源異常検出信号が入力されていない場合には前記入 力電源位相検出回路から出力される位相情報を選択して出力している位相検出回 路切り替え器とを有し、 制御部は位相検出回路切り替え器から出力された位相情 報に基いて双方向スィツチモジュールに対する制御を行うようにしている。 本発明は、 電源異常が発生する前から、 無停電電源位相検出回路により無停電 電源の位相の検出を行うことにより、 位相検出回路切り替え器が出力する位相情 報の切り替えを行った直後でも無停電電源の正確な位相情報が出力されるように しているので、 電源切り替えの際の運転の停止をほぼ無くすことができ、 継続し た運転を実現することができる。
また、 本発明の他の P WMサイクロコンバータによれば、 三相交流電源の三相 電圧と、 三相の出力電圧との間をそれぞれ接続する 9つの双方向スィツチにより 構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに 入力される三相交流電圧のうちの 2相を入力とし、 その位相の検出を行っている 入力電源位相検出回路とを有する P WMサイクロコンバータにおいて、
直流電源と、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には前記三相交流電源からの三相出力電圧のうちの、 前記入力電 源位相検出回路が位相の検出を行っている 2相の出力電圧の替わりに前記直流電 源からの直流電圧を前記双方向スィツチモジュールへ出力する電源切り替え器と 固定位相情報生成回路と、
前記電源異常検出信号が入力された場合には前記固定位相情報生成回路から出 力される固定位相情報を選択して出力し、 俞記電源異常検出信号が入力されてい ない場合には前記入力電源位相検出回路から出力される位相情報を選択して出力 している位相検出回路切り替え器と、 前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィツチモジュールに対して三相入力運転するよう な制御を行ない、 前記電源異常検出信号が入力されると、 前記双方向スィッチモ ジュールの制御方式を三相入力運転から単相入力運転に切替える制御部とを有す ることを特徴とする。
さらに、 本発明の他の PWMサイクロコンバータによれば、 三相交流電源の三 相電圧と、 三相の出力電圧との間をそれぞれ接続する 9つの双方向スィツチによ り構成されている双方向スィツチモジュールと、
前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路と、
前記入力電源位相検出回路により検出された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っている制御部とを有する P WMサイクロコン バータにおいて、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号および切り替 え制御信号を出力し、 電源異常が復帰した場合には、 前記電源異常検出信号の出 力を停止し、 その後一定時間経過してから前記切り替え制御信号の出力を停止す る電源異常検出回路と、
前記三相交流電源の位相を常に検出することにより前記三相交流電源の出力電 圧と同期した三相電圧を生成していて、 前記電源異常検出信号を入力すると、 前 記電源異常検出信号が入力される直前の位相情報に基いた三相電圧を一定周期で 出力する無停電電源モジュールと、
前記切り替え制御信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記切り替え制御信号が 入力された場合には前記無停電電源モジュールからの三相出力電圧を前記双方向 スィツチモジュールへ出力する電源切り替え器とを有することを特徴とする。 本発明は、 三相交流電源に同期している主相交流電圧を無停電電源モジュール により常に生成しておくようにしているので、 三相交流電源に異常が発生した場 合でも、 三相交流運転を中断することなく継続することができる。 また、 電源異 常が復帰した場合には、 切り替え制御信号の出力を停止するのを電源異常検出信 号の出力を停止してから一定時間後に行うようにしているので、 無停電電源から 出力される三相交流電圧と、 三相交流電源から出力される三相交流電圧とが同期 してから電源切り替え器による切り替えが行われる。 そのため、 電源異常が復帰 した場合でも運転を中断することなく電源の切り替えを行うことができる。 上記目的を達成するために、 本発明の昇降機用ドライブ装置は、 三相交流電源 の三相電圧と、 三相の出力電圧との間をそれぞれ接続する 9つの双方向スィツチ により構成されている双方向スィツチモジュールと、
前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する、 P WMサ イク口コンバータにより構成されている昇降機用ドライブ装置において、 前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には非常用電源として設定されている電源の出力電圧を前記双方 向スィツチモジュールへ出力する電源切り替え器と、
前記非常用電源の位相の検出を行っている非常用電源位相検出回路と、 固定位相情報を生成して出力している固定位相情報生成回路と、
予め行われた設定に従い、 前記非常用電源位相検出回路からの位相情報または 前記固定位相情報生成回路からの固定位相情報のいずれかを選択して出力する位 相検出回路切り替え設定器と、
前記電源異常検出信号が入力された場合には前記位相検出回路切り替え設定器 から出力される位相情報を選択して出力し、 前記電源異常検出信号が入力されて いない場合には前記入力電源位相検出回路から出力される位相情報を選択して出 力している位相検出回路切り替え器と、
前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ッチモジュールに対する制御を行つていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィッチモジュールに対して三相入力運転し、 前記 電源異常検出信号が入力されると、 前記双方向スィツチモジュールの制御方式を 、 三相入力運転から前記位相検出回路切り替え器から出力される位相情報に応じ た制御方式の運転に切替える制御部とを有することを特徴とする。
本発明は、 昇降機用ドライブ装置を P WMサイクロコンバータにより構成して いるので、 昇降機用ドライブ装置の外部に制動ュニットゃ制動抵抗器を接続せず に電源回生運転ができる。 また、 入力電源位相検出回路とは別に非常用電源位相 検出回路を設けるとともに固定位相情報生成回路を設け、 位相検出回路切り替え 器によりにより使用する位相情報を選択するようにしたことにより、 三相交流電 源、 単相交流電源または直流電源のいずれかの電源が非常用電源として設定され た場合でもシステム構成を変更することなく非常運転を行うことができる。 さら に、 本発明では、 電源切り替え器、 電源異常検出装置が昇降機用ドライブ装置内 に設けられているためシステム構成が簡単となる。
上記目的を達成するために、 本発明の電源異常検出回路は、 三相交流電源の電 源電圧の異常を検出するための電源異常検出回路であって、
前記三相交流電源の各相の電圧値の大小関係に応じた情報を検出し、 該情報を 電源電圧情報信号として出力している電源電圧情報生成回路と、
前記三相交流電源が正常である場合の各相の電圧値の大小関係に基づく情報を 予め保持しておき、 該情報を前記三相交流電源の出力電圧に同期させて異常検出 用信号として出力している異常検出用信号生成回路と、
前記電源電圧情報信号と前記異常検出用信号とを一定間隔で比較し、 これらの 信号が異なっている場合には電源電圧異常信号を出力する判定回路とを備えてい る。
本発明は、 電源電圧情報生成回路により三相交流電源の各相の電圧値の大小関 係に応じた情報を検出し電源電圧情報信号とし、 判定回路においてその電源電圧 情報信号と、 三相交流電源が正常である場合の各相の電圧値の大小関係に基づく 情報である異常検出用信号との比較を行っている。 そして、 三相交流電源に何ら かの電源電圧異常が発生した場合には電源電圧情報信号の信号パターンと、 異常 検出用信号の信号パターンとの間には何らかの差が発生する。 したがって、 本発 明によれば、 1相のみ欠相した状態、 相順が逆相となった状態のどちらの状態の 電源電圧異常でも検出することができる。
上記目的を達成するために、 本発明の交流 交流直接形電力変換装置は、 三相 交流電源の三相の出力波形を整形する入力フィルタと、
入力フィルタで波形整形された三相の信号に接続され、 オン オフによって電 力変換するための複数の双方向スィツチと、
指令された電圧と指令された周波数に基づいて双方向スィツチのオン オフを 制御する P WM制御回路と、
双方向スィツチの転流を制御する転流制御回路と、
三相交流電源の 3つの線間電圧を検出し、 出力する電圧検出回路と、 線間電圧から線間最大電圧を生成する最大電圧生成回路と、
三相.出力が常に線間最大電圧以下となるように P WM制御回路に電圧を指令す る制御回路を有している。
本発明によれば、 三相交流電源が不平衡となり、 所望の出力電圧で正常に動作 できないときに、 その状態で三相出力として可能な最大の電圧に P WM制御する ことで、 交流/交流直接形電力変換装置は動作を継続することができる。
本発明の実施態様によれば、 最大電圧生成回路を、 線間電圧を整流する整流回 路と、 整流回路の出力を所定倍する倍率器とから構成し、 制御回路を、 所望の電 圧を指令する電圧指令器と、 倍率器の出力と電圧指令器の指令を比較して小さい 方を出力する比較器とから構成するようにしてもよレ、。
本発明の他のの交流 //交流直接形電力変換装置は、 三相交流電源の三相の出力 波形を整形する入力フィルタと、
入力フィルタで波形整形された三相の信号に接続され、 オン オフによって電 力変換するための複数の双方向スィツチと、
指令された電圧と指令された周波数に基づいて双方向スィツチのオン オフを 制御する P WM制御回路と、
双方向スィツチの転流を制御する転流制御回路と、
三相交流電源の 3つの線間電圧を検出する電圧検出回路と、
線問電圧から線問最大電圧を生成する最大電圧生成回路と、
出力が常に線間最大電圧以下となるように P WM制御回路に電圧および周波数 を指令する制御回路を有している。
本発明によれば、 三相交流電源の出力が不平衡になり、 所望の周波数で正常に 動作できないときに、 その状態で三相出力として可能な最大周波数に P WM制御 を行うことで、 交流/交流直接形電力変換装置は動作を継続することができる。 本発明の実施態様によれば、 最大電圧生成回路は、 線間電圧を整流する整流回 路と、 整流回路の出力を所定倍する倍率器からなり、
制御回路は、 所望の電圧を指令する電圧指令器と、 倍率器の出力電圧と電圧指 令器の指令を比較して小さい方を出力する第 1の比較器と、 所望の周波数を指令 する周波数指令器と、 倍率器の出力から、 三相出力として得うる最大の周波数を 算出する関数発生器と、 関数発生器が算出した周波数と周波数指令器の指令を比 較して小さい方を出力する第 2の比較器からなる。
本発明のもう一つ別の交流交流直接形電力変換装置は、 三相交流電源の三相の 出力波形を整形する入力フィルタと、
入力フィルタで波形整形された三相の信号に接続され、 オン オフによって電 力変換するための複数の双方向スィツチと、
指令された電圧と指令された周波数に基づいて前記双方向スィツチのオンノォ フを制御する P WM制御回路と、
双方向スィツチの転流を制御する転流制御回路と、
三相交流電源の 3つの線間電圧を検出する電圧検出回路と、
線間電圧から線間最大電圧を生成する最大電圧生成回路と、
出力に接続されたモータの端子電圧が常に線間最大電圧以下となるように P W M制御回路に速度および磁束を指令する制御回路を有している。
三相交流電源が不平衡になり、 所望の速度で正常に動作できないときに、 その 状態で三相出力がモータに与えうる最大速度に P WM制御を行うことで、 交流 Z 交流直接形電力変換装置は動作を継続することができる。
また、 所望の磁束によるトルクをモータに与えることができないときに、 その 状態で三相出力がモータに与えうる最大トルクに対応する最大磁束に P WM制御 を行うことで、 交流 交流直接形電力変換装置は動作を継続することができる。 本発明の実施態様によれば、 最大電圧生成回路を、 線間電圧を整流する整流回 路と、 整流回路の出力を所定倍する倍率器とから構成し、 制御回路を、 所望の速 度を指令する速度指令器と、 倍率器の出力から、 三相出力として得うる最大の速 度を算出する第 1の関数発生器と、 最大の速度と速度指令器の指令を比較し小さ い方を出力する第 1の比較器と、 所望の磁束を指令する磁束指令器と、 倍率器の 出力から、 三相出力が前記モータに与えうる最大の磁束を算出する第 2の関数発 生器と、 最大の磁束と前記磁束指令器の指令を比較し小さレ、方を出力する第 2の 比較器とから構成するようにしてもよい。
さらに、 本発明の実施態様によれば、 第 1の関数発生器は、 線間最大電圧が所 定値を下回ったとき、 予め定められた下限値の速度を指令し、
第 2の関数発生器は、 線間最大電圧が所定の値を下回ったとき、 予め定められ た下限値の磁束を指令するようにしてもよレ、。
本発明によれば、 三相交流電源が瞬断して所定の値を下回ったときに、 予め定 めた下限値の速度および磁束で回転するように P WM制御することで、 P WM制 御によってモータを停止させることなく、 三相交流電源が回復するまで惰性によ る回転を継続させることができる。 図面の簡単な説明
図 1は、 従来の P WMサイク口コンバータの構成を示すプロック図である。 図 2は、 図 1の P WMサイクロコンバータ中の入力電源位相検出回路 4 0の構 成を示すブロック図である。
図 3は、 P WMィンバ一タの構成を示すブロック図である。
図 4は、 P WMインバータを適用し、 非常用電源が三相交流電源である従来の 昇降機システムの構成を示すプロック図である。
図 5は、 P WMィンバータを適用し、 非常用電源が単相交流電源である従来の 昇降機システムの構成を示すプロック図である。
図 6は、 P WMインバ一タを適用し、 非常用電源が蓄電池である従来の昇降機 システムの構成を示すブロック図である。
図 7は、 P WMインバータを適用し、 非常用電源が大容量コンデンサである従 来の昇降機システムの構成を示すプロック図である。 図 8は、 P WMサイクロコンバータを適用した昇降機システムの構成を示すプ 口ック図である。
図 9は、 本発明の第 1の実施形態の P WMサイクロコンバータの構成を示すブ 口ック図である。
図 1 0は、 本発明の第 2の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 1 1は、 本発明の第 3の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 1 2は、 本発明の第 4の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 1 3は、 図 1 2の P WMサイクロコンバータ中の無停電電源モジュール 9 0 の構成を示すブロック図である。
図 1 4は、 図 1 2の P WMサイク口コンバータの動作を示すタイミングチヤ一 トである。
図 1 5は、 P WMサイクロコンバ一タを適用した本発明の第 5の実施形態の昇 降機システムの構成を示すプロック図である。
図 1 6は、 本発明の第 6の実施形態における電源異常検出回路 3 4 0の構成を 示すブロック図である。
図 1 7は、 図 1 6中の電源電圧情報生成回路 4 1の構成を示す回路図である。 図 1 8は、 電源電圧情報生成回路 4 1の動作を説明するためのタイミングチヤ 一トである。
図 1 9は、 電源電圧情報信号群 Rmax〜Tminと異常検出用信号群 Rmax*〜Tmi n*の関係を示すタイミングチャートである。
図 2 0は、 図 1 6中の判定回路の構成を示す回路図である。
図 2 1は、 電源異常が発生した場合の電源電圧情報信号群 Rmax〜Tminと異常 検出用信号群 Rmax*〜Tmin*の関係を示すタイミングチヤ一トである。
図 2 2は、 本発明の第 7の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 2 3は、 本発明の第 8の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 2 4は、 本発明の第 9の実施形態の P WMサイクロコンバータの構成を示す ブロック図である。
図 2 5は、 関数発生器 4 3 0の関数の一例を示すグラフである。
図 2 6は、 関数発生器 4 4 0の関数の一例を示すグラフである。 発明を実施するための最良な形態
次に、 本発明の実施の形態について図面を参照して詳細に説明する。
(第 1の実施形態)
図 9は本発明の第 1の実施形態の P WMサイクロコンバータの構成を示すブロ ック図である。 図 9において、 図 1中の構成要素と同一の構成要素には同一の符 号を付し、 説明を省略するものとする。
本実施形態の P WMサイク口コンバータは、 図に示した従来の P WMサイク口 コンバータに対して、 電源切り替え器 2 0、 単相交流電源である無停電電源 1 0 を新たに設け、 制御コントローラ 1 6 0を制御コントローラ 6 0に置き換えたも のである。
電源切り替え器 2 0は、 電源異常検出信号 1 2 0が入力されていない場合には 三相交流電源 1からの三相出力電圧 (R、 S、 T) をそのまま入力フィルタ 2へ 出力し、 電源異常検出信号 1 2 0が入力された場合には三相交流電源 1からの三 相出力電圧 (R、 S、 T) のうちの R、 S相の替わりに無停電電源 1 0からの単 相交流電圧を入力フィルタ 2へ出力する。
制御コントローラ 6 0は、 電源異常検出信号 1 2 0が入力されていない通常の 状態では、 制御コントローラ 1 6 0と同様な動作を行ない双方向スィツチモジュ ール 8◦の動作を制御するためのゲート信号をゲートドライバ 7 0へ対して出力 している。 そして、 制御コントローラ 6 0は、 電源異常検出信号 1 2 0が入力さ れると、 制御方式を三相入力運転から単相入力運転に切替える。
また、 本実施形態では、 入力電源位相検出回路 4 0は、 電源切り替え器 2 0か ら出力され入力フィルタ 2へ入力される三相出力電圧のうちの R、 S相を入力と して位相の検出を行っている。 次に、 本実施形態の P WMサイク口コンバータの動作について図 9を参照して 詳細に説明する。
本実施形態の P WMサイクロコンバークでは、 三相交流電源 1に異常が発生す ると電源異常検出回路 3 0によりその三相交流電源 1の異常が検出され電源異常 検出信号 1 2 0が出力される。 そして、 電源異常検出信号 1 2 0が出力されたこ とにより、 電源切り替え器 2 0は、 三相交流電源 1からのからの三相出力電圧 ( R、 S 、 T) のうちの R、 S相の替わりに無停電電源 1 0からの単相交流出力電 圧を入力フィルタ 2へ出力するようになる。
そのため、 入力電源位相検出回路 4 0は、 無停電電源 1 0の位相の検出を行う ようになる。 そして、 制御コントローラ 6 0は、 電源異常検出信号 1 2 0が入力 されたことにより、 制御方式を三相入力運転から単相入力運転に切替え、 入力電 源位相検出回路 4 0により検出された無停電電源 1 0の位相情報を用いてゲ一ト ドライバ 7 0を介して双方向スィツチモジュール 8 0の制御を行う。
本実施形態の P WMサイクロコンバータによれば、 三相交流電源 1に異常が発 生した場合には、 使用する電源を三相交流電源 1から単相の無停電電源 1 0 へ切 り替え、 制御方式を三相運転から単相運転に切り替えるようにすることにより、 運転をほぼ中断させることなく電源の切り替えを行うことにより継続した運転を 実現することができる。
(第 2の実施形態)
次に、 本発明の第 2の実施形態の P WMサイクロコンバータについて説明する 上記で説明した第 1の実施形態の P WMサイク口コンバータでは、 電源異常検 出信号 1 2 0が出力され入力電源位相検出回路 4 0に入力される電源が三相交流 電源 1から無停電電源 1 0に切り替わった場合、 入力電源位相検出回路 4 0を構 成している P L Lがロックして、 無停電電源 1 0の位相が検出され位相情報が出 力されるまでにはある程度の時間を必要とする。 この時間は、 入力される信号へ の周波数変動の追従範囲を広く設定すれば、'一般的な P L L回路の性質と同様に 長くなる。 従って、 上記第 1の実施形態の P WMサイクロ ンバ一タによれば、 非常用電源である無停電電源 1 0への切り替えの際には、 一瞬だけ運転が中断し てしまう可能性が有る。
本実施形態の P WMサイクロコンバータは、 このような点を改善し、 電源異常 が発生した場合でも、 運転を中断することなく電源の切り替えを行ない、 継続し た運転を実現するためのものである。
本実施形態の P WMサイクロコンバータの構成を示したプロック図を図 1 0に 示す。 図 1 0において、 図 9中の構成要素と同一の構成要素には同一の符号を付 し、 説明を省略するものとする。 本実施形態の P WMサイクロコンバータでは、 図 9に示した第 1の実施形態の P WMサイクロコンバータに対して、 無停電電源 1 0の位相を検出するための無停電電源位相検出回路 4 1と、 位相検出回路切り 替え器 4 3が新たに設けられている。
無停電電源位相検出回路 4 1は、 図 2に示したような入力電源位相検出回路 4 0と同様な構成となっている。 そして、 無停電電源位相検出回路 4 1は、 常に無 停電電源 1 0の位相の検出を行っている。
位相検出回路切り替え器 4 3は、 電源異常検出信号 1 2 0が入力された場合に は無停電電源位相検出回路 4 1から出力される位相情報を選択して出力し、 電源 異常検出信号 1 2 0が入力されていない場合には入力電源位相検出回路 4 0から 出力される位相情報を選択して出力している。
次に、 本実施形態の P WMサイクロコンバータの動作について図 1 0を参照し て詳細に説明する。
本実施形態の P WMサイクロコンバータでは、 三相交流電源 1に異常が発生し て、 電源異常検出回路 3 0により電源異常検出信号 1 2 0が出力された場合、 上 記第 1の実施形態の P WMサイクロコンバータにおける動作に加えて以下のよう な動作が行われる。
位相検出回路切り替え器 4 3は、 出力する位相情報を、 入力電源位相検出回路 4 0から出力される位相情報から、 無停電電源位相検出回路 4 1から出力される 位相情報に切り替える。 無停電電源位相検出回路 4 1では、 電源異常が発生する 前から無停電電源 1 0の位相の検出を行っているので、 位相検出回路切り替え器 4 3が出力する位相情報の切り替えを行った直後でも無停電電源 1 0の正確な位 相情報を出力することができる。 従って、 本実施形態の P WMサイクロコンバータによれば、 上記第 1の実施形 態の P WMサイクロコンバ一タによる場合と比較して、 電源切り替えの際の運転 の停止をほぼ無くすことができ、 継続した運転を実現することができる。
(第 3の実施形態)
次に、 本発明の第 3の実施形態の P WMサイクロコンバータにつレ、て説明する 。 本実施形態の P WMサイクロコンバータの構成を示したブロック図を図 1 1に 示す。 図 1 1において、 図 1 0中の構成要素と同一の構成要素には同一の符号を 付し、 説明を省略するものとする。
本実施形態の P WMサイクロコンバータは、 図 1 1に示した第 2の実施形態の P WMサイクロコンバータに対して、 無停電電源 1 0のかわりにバッテリ 1 1を 備え、 無停電電源位相検出回路 4 1のかわりに固定位相情報生成回路 4 2を備え るようにしたものである。 固定位相情報生成回路 4 2は、 固定位相情報を生成し て出力している。
次に、 本実施形態の P WMサイクロコンバータの動作について図 1 1を参照し て詳細に説明する。
本実施形態における電源切り替え器 2 0および位相検出回路切り替え器 4 3は 、 図 1 0に示した第 2の実施形態の場合と同様に動作を行う。 三相交流電源 1に 異常が発生し、 電源異常検出回路 3 0から電源異常検出信号 1 2 0が出力された 場合、 固定位相情報生成回路 4 2により生成された固定位相情報が位相検出回路 切り替え回路 4 3によれ選択された制御コントローラ 6 0に出力される。
バッテリ 1 1は直流電源であるため、 その位相は常に一定である。 そのため、 本実施形態では、 制御コントローラ 6 0は固定位相情報生成回路 4 2により生成 された固定位相情報を用いて単相運転を行うようにすれば、 電源切り替えの際に 運転を停止することなく継続した運転を実現することができる。
(第 4の実施形態)
次に、 本発明の第 4の実施形態の P WMサイク口コンバータについて説明する 本実施形態の P WMサイク口コンバータの構成を示したブロック図を図 1 2に 示す。 図 1 2において、 図 9中の構成要素と同一の構成要素には同一の符号を付 し、 説明を省略するものとする。 本実施形態の PWMサイクロコンバータは、 図 9に示した第 1の実施形態の P WMサイクロコンバータに対して、 無停電電源 1 0を無停電電源モジュール 90に置き換え、 電源切り替え器 20を電源切り替え 器 21に置き換え、 電源異常検出回路 30を電源異常検出回路 3 1に置き換えた ものである。
電源異常検出回路 31は、 三相交流電源 1に欠相、 停電、 不平衡といった電源 異常が検出された場合、 電源異常検出信号 1 20および切り替え制御信号 1 21 を出力し、 電源異常が復帰した場合には、 電源異常検出信号 1 20の出力を停止 し、 その後一定時間経過してから切り替え制御信号 1 21の出力を停止する。 無停電電源モジュール 90は、 三相交流電源 1の位相を常に検出することによ り三相交流電源 1の出力電圧と同期した三相電圧を生成していて、 電源異常検出 信号 1 20を入力すると、 電源異常検出信号 1 20が入力される直前の位相情報 に基いた三相電圧を一定周期で出力する。
電源切り替え器 21は、 切り替え制御信号 1 21が入力されていない場合には 三相交流電源 1からの三相出力電圧 (R、 S、 T) を入力フィルタ 2へ出力し、 切り替え制御信号 1 21が入力された場合には無停電電源 10からの三相交流出 力電圧 (R' 、 S' 、 T' ) を入力フィルタ 2へ出力する。
本実施形態における制御コントローラ 60には、 電源異常検出信号 1 20は入 力されておらず、 電源異常が発生した場合でも通常の三相運転を行う。
無停電電源モジュール 90の構成を説明するためのブロック図を図 1 3に示す 。 図 1 3において、 図 3中の構成要素と同一の構成要素には同一の符号を付し、 説明を省略するものとする。
無停電電源モジュール 90は、 無停電電源 (UPS : Un i n t e r r u p t i b l e P owe r S u p p l y) 91と、 ダイォードモジユーノレ 1 1 2と 、 コンデンサ 1 1 8と、 トランジスタモジュール 1 14と、 コントローラ 92と 、 電源位相検出回路 93とから構成されている。
電源位相検出回路 93は、 三相交流電源 1の三相の出力電圧を入力することに より、 三相交流電源 1の位相を常に検出し、 検出した位相を位相情報としてコン トローラ 92に対して出力している。 コントローラ 9 2は、 電源異常検出信号 1 2 0が入力されていない通常状態で は、 電源位相検出回路 9 3により検出された三相交流電源 1の位相情報に基いて トランジスタモジュール 1 1 4の各トランジスタを制御しトランジスタモジユー ル 1 1 4から出力される三相の出力電圧の位相を三相交流電源 1に同期させるよ うな制御を行っている。 そして、 コントローラ 9 2は、 電源異常検出信号 1 2 0 が入力されると、 電源異常検出信号 1 2 0が入力される直前の位相情報に基いて トランジスタモジュール 1 1 4の各トランジスタの制御を行うことにより、 トラ ンジスタモジュール 1 1 4から出力される三相の出力電圧が一定周期となるよう な制御を行っている。
次に、 本実施形態の P WMサイクロコンバータの動作を図 1 2、 図 1 3、 図 1 4を参照して詳細に説明する。 図 1 4は、 本実施形態の P WMサイクロコンバ一 タの動作を説明するためのタイミングチャートである。 この図 1 4は、 三相交流 電源 1の出力電圧波形、 無停電電源 9 0の出力電圧波形、 双方向スィツチモジュ ール 8 0の入力電圧のうちの R相の波形および電源異常検出信号 1 2 0の切り替 え制御信号 1 2 1の変化の様子を示したものである。
この図 1 4では、 時刻 で三相交流電源 1において停電となる電源異常が発 生し、 時刻 2で三相交流電源 1が停電から復帰した場合を示している。
時刻 までは、 三相交流電源 1の出力電圧がそのまま双方スィツチモジユー ル 8 0に入力されている。 そして、 その間も無停電電源モジュール 9 0では、 三 相交流電源 1の出力電圧に同期した出力電圧 (R、 ' S ' 、 T, ) が生成されて レヽる。
そして、 時刻 において三相交流電源 1が停電となると、 電源異常検出回路 3 1がその異常を検出し、 電源異常検出信号 1 2 0および切り替え制御信号 1 2 1を出力する。 そのため、 電源切り替え器 2 1は、 無停電電源モジュール 9 0の 出力電圧を選択して出力するようになる。 そして、 無停電電源モジュール 9 0で は、 電源異常検出信号 1 2 0が入力されると、 その直前に出力していた出力電圧 をそのまま一定周期で出力するような動作を行っている。 そのため時刻 以降 においても、 双方向スィッチモジュール 8 0に入力される電圧は、 電源異常が発 生しなかつた場合とほぼ同様な電圧波形となる。 そして、 時刻 t 2おいて、 三相交流電源 1が停電から復帰すると、 電源異常検 出回路 3 1は、 先ず電源異常検出信号 1 2 0の出力を停止する。 そのため、 無停 電電源モジュール 9 0では、 トランジスタモジュール 1 1 4の出力電圧が交流電 源 1の出力電圧と同期するような制御が行われる。 そして、 時刻 1 2から一定時 間が経過した時刻 t 3において、 電源異常検出回路 3 1は切り替え制御信号 1 2 1の出力を停止する。 そのため、 電源切り替え器 2 1は、 三相交流電源 1の出力 電圧を選択して入力フィルタ 2に出力するようになる。
電源異常検出回路 3 1が、 電源異常が復帰した際に、 電源異常検出信号 1 2 0 の出力を停止してから一定時間経過後に切り替え制御信号 1 2 1の出力を停止す るようにしているのは、 無停電電源モジュール 9 0の出力電圧と三相交流電源 1 の出力電圧の位相が同期するために時間を確保するためである。
上記で説明したように、 本実施形態の P WMサイクロコンバータによれば、 三 相交流電源 1に同期している三相交流電圧を無停電電源モジュール 9 0により常 に生成しておくことにより、 三相交流電源 1に異常が発生した場合でも、 三相交 流運転を中断することなく継続することができる。
(第 5の実施形態)
次に、 本発明の第 5の実施形態の P WMサイクロコンバータを用いた昇降機シ ステムについて説明する。 図 1 5は、 本実施形態の昇降機システムの構成を示す ブロック図である。 図 1 5において、 図 8中の構成要素と同一の構成要素には同 一の符号を付し、 説明を省略するものとする。
本実施形態の昇降機用ドライブ装置 1 2は、 図 8に示した昇降機用ドライブ装 匱 5に対して、 電源切り替え器 2 0と、 非常用電源位相検出回路 2 2 8と、 固定 位相情報生成回路 4 2と、 位相検出回路切り替え設定器 2 3 0と、 位相検出回路 切り替え器 2 3 1を新たに設け、 制御コントローラ 1 6 0の代わりに、 内部のソ フトウエアに変更を加えた制御コントローラ 6 0を備えるようにしたものである そして、 本実施形態の昇降機システムでは、 非常用三相交流電源装置 2 1 0、 非常用単相交流電源装置 2 1 1、 蓄電池 2 1 2、 大容量コンデンサ 1 3のうちか ら選択した 1つの電源を非常用電源として予め選択しておく。 電源切り替え器 2 0は、 電源異常検出信号 1 2 0が入力されていない場合、 三 相交流電源 1からの三相出力電圧 (R、 S、 T) をそのまま入力フィルタ 2に出 力し、 電源異常検出信号 1 2 0が入力された場合、 非常用電源として設定されて いる電源からの電圧を入力フィルタ 2へ出力する。
非常用電源位相検出回路 2 2 8は、 非常用電源が非常用三相交流電源装置 2 1 0である場合には、 三相出力電圧のうちの 2相 (R、 S ) を入力とし、 その位相 の検出を行い、 非常用電源が非常用単相交流電源装置 2 1 1である場合には、 そ の単相電圧 (R ' 、 S ' ) の位相を検出し、 検出した位相情報を位相検出回路切 り替え設定器 2 3 0に出力する。
固定位相情報生成回路 4 2は、 固定位相情報を生成して出力している。 位相検 出回路切り替え設定器 2 3 0は、 予め行われた設定に従い、 非常用電源位相検出 回路 2 2 8からの位相情報または固定位相情報生成回路 4 2'からの固定位相情報 のいずれかを選択して位相検出回路切り替え器 2 3 1に出力する。
非常用電源として蓄電池 2 1 2または大容量コンデンサ 1 3が選択された場合 には、 位相検出回路切り替え設定器 2 3 0を、 固定位相情報生成回路 4 2からの 固定位相情報を選択して出力するように設定しておく。 また、 非常用電源として 非常用三相交流電源装置 2 1 0または非常用単相交流電源装置 2 1 1が選択され た場合には、 位相検出回路切り替え設定器 2 3 0を、 非常用電源位相検出回路 2 2 8からの位相情報を選択して出力するように設定しておく。
位相検出回路切り替え器 2 3 1は、 電源異常検出信号 1 2 0が入力されていな い場合には、 入力電源位相検出回路 4 0からの位相情報を選択して制御コント口 ーラ 6 0に出力し、 電源異常検出信号 1 2 0が入力された場合には、 位相検出回 路切り替え設定器 2 3 0からの出力である各非常用電源の位相情報を選択して制 御コントローラ 6 0に出力する。
制御コントローラ 6 0は、 位相検出回路切り替え器 2 3 1から出力された位相 情報に基いて双方向スィツチモジュール 8 0に対する制御を行っていて、 電源異 常検出信号 1 2 0が入力されていない場合には、 双方向スィッチモジュール 8 0 に対して三相入力運転し、 電源異常検出信号 1 2 0が入力されると、 双方向スィ ツチモジュール 8 0の制御方式を、 三相入力運転から位相検出回路切り替え器 2 3 1から出力される位相情報に応じた制御方式の運転に切替える。
具体的には、 制御コントローラ 6 0は、 位相検出回路切り替え器 2 3 1から出 力される位相情報が三相交流電源の位相情報の場合には、 双方向スィツチモジュ —ル 8 0の制御方式を三相入力運転とし、 位相検出回路切り替え器 2 3 1から出 力される位相情報が単相交流電源の位相情報の場合には、 双方向スィツチモジュ ール 8 0の制御方式を単相入力運転とし、 位相検出回路切り替え器 2 3 1から出 力される位相情報が固定位相情報の場合には、 双方向スィツチモジュール 8 0の 制御方式を単相入力運転とする。
次に、 本実施形態の昇降機用ドライブ装置 1 2の動作について図 1 5を参照し て詳細に説明する。
先ず、 電源異常が発生していない場合の動作について説明する。 電源異常が発 生していない場合には、 電源異常検出回路 3 0から電源異常検出信号 1 2 0が出 力されない。 そのため、 電源切り替え器 2 0では三相交流電源 1からの三相出力 電圧 (R、 S、 T) がそのまま入力フィルタ 2に出力され、 位相検出回路切り替 え器 2 3 1では、 入力電源位相検出回路 4 0からの位相情報が選択されて制御コ ントローラ 6 0に出力される。 このことにより、 入力電源位相検出回路 4 0から 出力される位相情報に基づいて三相入力運転する制御が制御コントローラ 6 0に よって ί亍ゎれる。
次に、 電源異常が発生した場合の動作について説明する。 電源異常が発生した 場合には、 電源異常検出回路 3 0から電源異常検出信号 1 2 0が出力される。 そ のため、 電源切り替え器 2 0では非常用電源として設定された電源の出力電圧が 入力フィルタ 2に出力され、 位相検出回路切り替え器 2 3 1では、 位相検出回路 切り替え設定器 2 3 0からの位相情報が選択されて制御コントローラ 6 0に出力 される。 そして、 制御コントローラ 6 0は、 入力された位相情報に基づいて、 設 定されている非常用電源の形態に応じた運転を行うような制御を行う。
このことにより、 電源異常時には、 非常用電源として非常用三相交流電源装置 2 1 0、 非常用単相交流電源装置 2 1 1、 蓄電池 2 1 2、 大容量コンデンサ 1 3 等の直流電源のいずれが設定されている場合でもモータ 3の運転が可能となる。 つまり、 保安電源として三相又は単相の交流電源、 蓄電池等の直流電源が既に 設置されている設備の場合には、 本実施形態の昇降機用ドライブ装置を用いるこ とにより、 新たに非常用電源を設けることなく、 既設の保安電源を利用すること により、 非常時運転を可能となる。
本実施形態の昇降機システムでは、 電源切り替え器 2 0が昇降機用ドライブ装 置 1 2中に設けられている場合を用いて説明したが、 本発明はこれに限定される ものではなく、 電源切り替え器 2 0が昇降機用ドライブ装置 1 2の外側に設けら れた場合でも同様に本発明を適用することができるものである。 この場合には、 電源異常検出信号 1 2 0、 三相交流電源 1の三相電圧 (R、 S、 丁) 、 非常用電 源の 2相電圧 (R ' 、 S ' ) を別途昇降機用ドライブ装置 1 2に入力することに なる。
また、 本実施形態では、 4つの非常用電源 2 1 0、 2 1 1、 2 1 2、 1 3が備 えられている場合について説明したが、 最低 1つの非常用電源が備えられていれ ば本発明を適用することができることは自明である。
さらに、 非常用電源が蓄電池 2 1 2または大容量コンデンサ 1 3等の直流電源 のみの場合には、 非常用電源位相検出回路 2 2 8および位相検出回路切り替え設 定器 2 3 0を削除し、 固定位相情報生成回路 4 2から出力された固定位相情報が 位相検出回路切り替え器 2 3 1に入力されるようにしてもよレ、。 同様にして、 非 常用電源が非常用三相交流電源装置 2 1 0または非常用単相交流電源装置 2 1 1 のみの場合には、 固定位相情報生成回路 4 2および位相検出回路切り替え設定器 2 3 0を削除し、 非常用電源位相検出回路 2 2 8から出力された位相情報が位相 検出回路切り替え器 2 3 1に入力されるようにしてもよレ、。
(第 6の実施形態)
次に、 本発明の第 6の実施形態の P WMサイク口コンバータに用いられる電源 異常検出回路について図 1 6を参照して説明する。
本実施形態の P WMサイクロコンバ一タは、 上記第 1〜第 5の実施形態におい て備えられていた電源異常検出回路 3 0の替わりに図 1 6に示す電源異常検出回 路 3 4 0を備えるようにしたものである。 '
本実施形態の電源異常検出回路 3 4 0は、 図 1 6に示すように、 電源電圧情報 生成回路 3 4 1と、 異常検出用信号生成回路 3 4 2と、 判定回路 3 4 3とから構 成されている。
電源電圧情報生成回路 3 4 1は、 三相交流電源 1の R、 S、 Tの各相の電圧値 の大小関係に応じた情報を検出し、 その情報を電源電圧情報信号 Rmax〜Tminと して出力している。 異常検出用信号生成回路 3 4 2は、 三相交流電源 1が正常で ある場合の R、 S、 Tの各相の電圧値の大小関係に基づく情報を予めテーブル等 に保持しておき、 この情報を三相交流電源 1の出力電圧に同期させて異常検出用 . 信号 Rmax*〜Tmin*として出力している。 判定回路 3 4 3は、 電源電圧情報信号 Rmax〜Tminと異常検出用信号 RmaX*〜Tmin*を一定間隔で比較し、 これらの信 号が異なっている場合には電源電圧異常信号 1 2 0を出力する。
次に、 電源電圧情報生成回路 3 4 1の、 具体的な回路構成例を図 1 7を参照し て説明する。 電源電圧情報生成回路 3 4 1は、 6つの電流検出回路 2 2 i〜2 26 と抵抗 3 4とから構成されている。 電流検出回路 2 2 i〜 2 26は、 全て同一の構 成となっているため、 電流検出回路 2 2ぃ 2 24を代表して説明する。
電流検出回路 2 2 ,は、 ダイオード 2 8、 2 9と、 ホトカプラ 3 3 0と、 抵抗 3 3 1と、 反転回路 3 2とから構成されている。
R相の電圧が S、 丁相の電圧のいずれかよりも高い場合には、 電流検出回路 2 2 iは動作しないため、 ホトカプラ 3 3 0はオフとなる。 そして、 反転回路 3 2 の入力は抵抗 3 3 1により直流電源 V c cに接続されているためハイレベル (以 下 Hとする) となるので、 反転回路 3 2の出力である Rminはロウレベル (以下 Lとする) となる。
そして、 R相の電圧が S、 T相のどちらの電圧よりも低くなつた場合には、 電 流検出回路 2 2 iが動作することとなり、 抵抗 3 4を介した電圧と R相の電圧と の電位差によりダイオード 2 9およびホトカプラ 3 3 0がオンする。 すると、 ホ トカプラ 3 3 0の出力は Lとなり、 反転回路 3 2の出力である Rminは Hとなる また、 電流検出回路 2 24は、 ダイオード 3 5、 3 6と、 ホトカブラ 3 7と、 抵抗 3 8と、 反転回路 3 9とから構成されている。
R相の電圧が S、 T相の電圧のいずれかよりも低い場合には、 電流検出回路 2 24は動作しないため、 ホトカプラ 3 7はオフとなる。 そして、 反転回路 3 9の 入力は抵抗 3 8により直流電源 V c cに接続されているため Hとなるので、 反転 回路 3 9の出力である Rmaxは Lとなる。
そして、 R相の電圧が S、 T相のどちらの電圧よりも高くなつた場合には、 電 流検出回路 2 24が動作することとなり、 抵抗 3 4を介した電圧と R相の電圧と の電位差によりダイオード 3 5およびホトカプラ 3 7がオンする。 すると、 ホト 力ブラ 3 7の出力は Lとなり、 反転回路 3 9の出力である Rmaxは Hとなる。 つまり、 R相の電圧が S相、 T相のいずれの相の電圧よりも高い場合、 電流検 出回路 2 24が動作し Rmaxは Hとなり、 R相の電圧が S相、 T相のいずれの相の 電圧よりも低い場合、 電流検出回路 2 2 iが動作し Rminは Hとなる。
この電流検出回路 2 2ぃ 2 24の動作をより具体的に示すために、 R相電圧と 電源電圧情報信号 Rmax、 Rminとの関係を図 1 8に示す。 図 1 8では、 時刻 。 〜時刻 t 2。までの期間では、 R相電圧が S相、 T相の電圧よりも高くなつている ため Rmaxが Hとなっている。 そして、 時刻 1 30〜時刻 1 40までの期間では、 R相 電圧が S相、 T相の電圧よりも低くなつているため Rminが Hとなっている。 そ して、 時刻 t 5。では、 再度 R相電圧が最も電圧が高くなつているため、 Rmaxが Hとなっている。
S相、 T相についても同様な動作が行われることにより、 電流検出回路 2 2 , 〜2 2 3のうちのいずれか 1つ、 および電流検出回路 2 24〜2 26のうちのいずれ か 1つのみが動作状態となり、 電源電圧情報生成信号 Rmin〜Tminのうちの 1つ の信号、 および電源電圧情報生成信号 Rmax〜Tmaxのうちの 1つの信号のみが H となる。
次に、 異常検出用信号生成回路 3 4 2の動作を、 図 1 9を参照してより詳細に 説明する。 図 1 9は、 電源電圧情報生成回路 3 4 1により得られる電源電圧情報 信号群 Rmin〜Tminと、 異常検出用信号生成回路 3 4 2により生成される異常検 出用信号群 Rmin*〜Tmin*の関係を示すタイミングチヤ一トである。
異常検出用信号生成回路 3 4 2では、 三相交流電源 1が正常である場合の電源 電圧情報信号群 Rmax〜Tminに対応した情報を、 図 1 9に示すように時刻 t t~ t 6毎に格納している。 図 1 9では、 三相交流電源 1が正常である場合の電源電 圧情報信号群 Rmax〜Tminを示しているため、 電源電圧情報信号群 Rmax〜T mi n の信号パターンと、 異常検出用信号生成回路 3 4 2に格納されている異常検出用 信号群 Rmax*〜丁 min*の信号パターンは一致している。
次に、 判定回路 3 4 3のより具体的な回路構成を図 2 0に示す。 図 2 0では、 判定回路 3 4 3は、 Dフリ ップフロップ回路 1 3と、 カウンタ等により構成され ているクロック信号生成回路 1 4と、 論理和回路 1 5と、 6つの排他的論理和回 路 1 6 1 6 6とから構成されている。
6つの排他的論理和回路 1 6 ,〜1 66は、 異常検出用信号群 RmaX*〜Tmin*と 、 電源電圧情報信号群 RmaX〜Tminとの間の排他的論理和演算をそれぞれ行い、 その演算結果を出力している。 論理和回路 1 5は、 6つの排他的論理和回路 1 6 i〜l 6 6の各出力どうしの論理和演算を行い、 その演算結果を出力している。 つ まり、 論理和回路 1 5は、 6つの排他的論理和回路 1 6 ,〜1 66の出力のうちの 1つでも Hとなっている場合には Hを出力する。 Dフリップフ口ップ回路 1 3は 、 クロック信号生成回路 1 4により生成されたクロック信号が変化したタイミン グに入力されている論理和回路 1 5の出力値を保持して電源電圧異常検出信号 1 2 0として出力している。
図 2 0に示された判定回路 3 4 3は、 上記の構成となっていることにより、 電 源電圧情報信号 Rmax〜Tminと、 異常検出用信号 Rmax*〜丁 min*の信号のうちの いずれか 1組でも異なっている場合には電源電圧異常信号 1 2 0を出力する。 次に、 本実施形態の電源異常検出回路 3 4 0により電源電圧の異常を検出する 際の動作を図 2 1を参照して説明する。
図 2 1では、 時刻 t 5において S相が欠相している場合を示している。 時刻 〜 t 5までの期間では、 三相交流電源 1に異常は発生していないため電源電圧情 報信号 Rmax〜Tminと、 異常検出用信号 Rmax*〜Tmin*は全て一致しており電源 電圧異常信号 1 2 0は Lのままとなつている。 そして、 時刻 t 5において S相が 欠相する電源電圧異常が発生したため、 電源電圧情報信号群 Rmax〜Tminのうち の Rminと S minが、 異常検出用信号 Rmin*、 S min*とは異なる信号となってしま う。 このことにより、 時刻 t 6において電源電圧異常信号 1 2 0は Hとなり、 S 相が欠相した電源電圧異常が検出されることとなる。
また、 図 2 1では 3相のうちの 1相のみが欠相した場合を用いて説明したが、 相順が逆相になった状態の電源異常が発生した場合でも、 電源電圧情報生成回路 34 1により生成される電源電圧情報信号群 Rmax〜Tmiriの信号パターンは、 正 常な場合の信号パターンとは異なるものとなる。 そして、 本実施形態の電源異常 検出回路 3 40では、 電源電圧情報信号群 RmaX〜Tminと、 異常検出用信号群 R max*〜Tmin*の比較が一定時間間隔で常時行われているので、 相順が逆相になつ た場合の電源異常でも欠相と同様にして検出することができる。
従って、 本実施形態の電源異常検出回路 340は、 1つの相のみが欠相した電 源電圧の状態や、 相順が逆相になった状態のどちらの状態の電源異常でも検出す ることができる。
さらに、 本実施形態の電源異常検出回路では、 PWMサイクロコンバータに電 源異常検出回路 340を設けた場合を用いて説明したが、 本発明はこれに限定さ れるものではなく、 三相交流電源を用いる機器であれば同様に本発明を適用する ことができるものである。
(第 7の実施形態)
次に、 本発明の第 7の実施形態の PWMサイクロコンバータに用いられる電源 異常検出回路について説明する。 本実施形態の PWMサイクロコンバータは、 三 相交流電源の電圧に不平衡が発生しても、 正常に動作しモータ等の駆動を継続す ることを可能とするためのものである。
図 2 2を参照すると、 本実施形態の PWMサイクロコンバータは、 三相交流電 源 1と、 入力フィルタ 2と、 双方向スィツチ S UR、 U Sゝ ^ UTゝ VRゝ V Sゝ
SVT、 SWR、 Sws、 SWTと、 負荷 Rい R2、 R3と、 電流検出器 CTい CT2 、 CT3と、 電圧検出回路 400と、 整流回路 40 1と、 倍率器 4 0 2と、 比較 器 4 0 3と、 電圧指令器 4 1 0と、 PWM制御回路 4 1 1と、 転流制御回路 4 5 0と、 ゲートドライブ回路 60を有している。
三相交流電源 1は、 R相、 S相、 T相の交流電源を出力する。 入力フィルタ 2 は、 三相交流電源 1の各相 R、 S、 Tにそれぞれ直列に接続されたリアク トル L い L2、 L3と、 各相 R、 S、 Tにそれぞれ一端が接続され、 他端が共通接続さ れたコンデンサ Cい C2、 C3からなり、 三相交流電源 1の出力の波形を整形し て三相の信号を出力する。 双方向スィツチ ゝ Sus、 SUT、 SVR、 SVs、 SVT、 SWR、 Sws、 S WT は、 いずれも 2つの I GBT (絶縁ゲート型バイポーラトランジスタ) で構成さ れており、 転流制御によって双方向の信号をオン/オフ制御することができる。 双方向スィッチ SUR、 SVR、 SWRの一端には、 入力フィルタ 2の R相の出力が 入力されている。 双方向スィッチ Sus、 Svs、 Swsの一端には、 入力フィルタ 2の S相の出力が入力されている。 双方向スィッチ SUT、 SVT、 SWTの一端に は、 入力フィルタ 2の T相の出力が入力されている。 そして、 双方向スィッチ S UR、 Sus、 SUTの他端は U相出力として共通接続され、 負荷 の一端に接続 されている。 双方向スィッチ SVR、 Svs、 SVTの他端は V相出力として共通接 続され、 負荷 R2の一端に接続されている。 双方向スィッチ SWR、 SWS、 SWT の他端は W相出力として共通接続され、 負荷 R3の一端に接続されている。
また、 負荷 I^、 R2、 R3の他端は共通接続されている。 電流検出器 CTい CT2、 CT3はそれぞれ U相、 V相、 W相の電流を検出して転流制御回路 45 0に通知する。 電圧検出回路 400は、 R相と S相の間、 S相と T相の間、 T相 と R相の間のそれぞれの線間電圧を検出して出力する。
整流回路 401は、 電圧検出回路 400出力の 3つの線間電圧を整流して、 そ れらの最大値を線間最大電圧 VMAXとして出力する。 倍率器 402は、 線間最大 電圧 VMAXを、 1/ 2倍する。
電圧指令器 410は、 三相交流電源 1の出力に関わりなく、 三相出力の所望の 実効値である電圧 VREFを指令する。 比較器 403は、 電圧 VMAXZ "2と電圧 VRE Fを比較し、 小さい方の電圧を電圧 として出力する。
PWM制御回路 41 1は、 三相出力が電圧 V:で、 かつ、 指令された周波数 f REFの U相、 V相、 W相の信号を生成するように双方向スィッチ SUR、 SUS、 sUT sVR、 svs、 sVT、 sWR、 Sws、 SWTをオン オフ制御するための P WM信号を出力する。 本実施形態では、 PWM信号は複数の信号線で構成された バスに出力されている。
転流制御回路 450は、 PWM信号を双^向スィツチに対応する信号に変換し 、 電流検出器 CT 、 CT2、 CT3で得られた電流の極性に基づき双方向スイツ
^~0URゝ ^USゝ UTゝ VRゝ VSゝ VTゝ ^WRゝ 》°WSヽ W丁 ノ廿ノ 「0J I ^ B Tの転流制御をその信号に与えて、 各 I GBTをオン オフ制御を行うための信 号を出力する。
ゲートドライバ回路 60は、 転流制御回路 450の出力に基づき、 双方向スィ ッラ US U VR VS WR WS WTを構成
8個の I GBTをオン Zオフする。
本実施形態の PWMサイクロコンバータの動作としては、 まず、 三相交流電源 1の出力がフィルタ 2で波形整形される。 波形整形された信号を元に電圧検出回 路 400と整流回路 401と倍率器 402によって、 三相交流電源 1から得られ る最大の三相出力の実効値である電圧 VMAX/%T 2が生成される。 比較器 403 において、 電圧 VMAX V"2と電圧指令器 410の指令する電圧 VREFが比較さ れ、 小さい方の電圧が電圧 Vtとして PWM制御回路 41 1に入力される。 なお 、 三相交流電源 1が正常に三相電源を出力しているときには、 電圧 VMAX_ 2 は電圧指令器 4 1 0の指令 VREFを下回ることはないが、 不平衡状態などにより 電圧 VMAX/^2が低下すると電圧 VMAXZT2は電圧指令器 410の指令 VRE Fを下回ることがある。
PWM制御回路 41 1は、 指令された周波数 f REFと電圧 V1に基づき双方向 zイツ
Figure imgf000036_0001
を ノ オフさせるタイミングを示す PWM信号を出力する。 さらに、 転流制御回路 45 0で、 電流検出器 CT^ CT2 CT3が検出した電流の極性に基づいて転流の タイミングが与えられた信号が、 ゲートドライブ回路 60を介して、 双方向スィ ツ^" UR ^us υ VR VS VT JWR ws ^WT*^'1:尊
GBTをオン Zオフさせる。 三相出力として得られた信号が負荷 R2 R3 に与えられる。
三相交流電源 1の出力が不平衡となり、 電圧 VMAXZ7~2が電圧指令器 410 の指令する電圧 VREFを下回ると、 PWMサイクロコンバータは電圧指令器 4 1 0の指令する電圧 VREFでは正常に動作できなくなる。 そのときに正常に出力で きる最大の電圧 VMAX/"vT2に基づいて PWM制御を行うことで、 PWMサイク 口コンバータは動作を継続することができる。
なお、 線間最大電圧 VMAXを出力する整流回路 40 1は、 絶対値回路と最大値 優先回路によって構成することができる。
(第 8の実施形態)
次に、 本発明の第 8の実施形態の PWMサイクロコンバータに用いられる電源 異常検出回路について説明する。 本実施形態の PWMサイクロコンバータは、 図 7の実施形態と同様に、 三相交流電源の電圧に不平衡が発生しても、 正常に動作 しモータ等の駆動を継続することを可能とするためのものである。
図 23を参照すると、 本発明の第 8の実施形態の PWMサイクロコンバータは 、 図 22の PWMサイクロコンバータに、 関数発生器 420と、 周波数指令器 4 21と、 比較器 404が付加されて構成されている。
関数発生器 420は、 倍率器 402の出力電圧 VMAX/ 2を入力し、 そのと きの三相交流電源 1出力の状態で得られる最大周波数 f MAXを演算し、 出力する 。 最大周波数 ίΜΑΧの一例としては、 三相交流電源 1出力が正常なときに最大周 波数 f MA>;は最大となり、 電圧 VMAXZ " 2の低下に比例して直線的に低下する ものが考えられる。
周波数指令器 421は、 三相交流電源 1の出力に関わりなく、 三相出力の所望 値である周波数 f REFを指令する。
比較器 404は、 最大周波数 fMAXと周波数指令器 421の指令する周波数 f REFを比較し、 小さい方の周波数を周波数 ί を出力する。 周波数 は PWM制 御回路 4 1 1に入力される。 なお、 三相交流電源 1が正常に三相電源を出力して いるときには、 最大周波数 fMAXは周波数指令器 421の指令 f REFを下回るこ とはないが、 不平衡状態などにより最大周波数 FMAXが低下すると周波数指令器 421の指令 f REFを下回ることがある。
三相交流電源 1の出力が不平衡状態になり、 最大周波数 f MAXが周波数指令器 421の指令する周波数 ί REFを下回ると、 PWMサイクロコンバータが周波数 指令器 421の指令する周波数 f REFでは正常に動作できない状態となる。 その ときに正常に出力できる三相出力の最大周波数 f MAXに基づいて PWM制御を行 うことで、 P WMサイクロコンバータは動作を継続することができる。
(第 9の実施形態)
次に、 本発明の第 9の実施形態の PWMサイクロコンバータに用いられる電源 異常検出回路について説明する。 本実施形態の PWMサイクロコンバータは、 図 7および図 8の実施形態と同様に、 三相交流電源の電圧に不平衡が発生しても、 正常に動作しモータ等の駆動を継続することを可能とするためのものである。 図 24を参照すると、 本発明の第 9の実施形態の PWMサイクロコンバータは 、 三相交流電源 1と、 入力フィルタ 2と、 双方向スィッチ SUR Sus, SUT VR *^ VS ° VT ^ WI^ ws WT ΐ/)ΙΜ矣出 1^ C Γ C I 3
、 電圧検出回路 400と、 整流回路 401と、 倍率器 402と、 転流制御回路 4 50と、 ゲートドライブ回路 60と、 速度検出器 461と、 関数発生器 430お よび 440と、 速度指令器 43 1と、 比較器 405と、 速度制御器 432と、 磁 束指令器 441と、 比較器 406と、 周波数指令器 421と、 電圧指令器 4 1 0 と、 PWM制御回路 41 1を有しており、 モータ 460を駆動する。
三相交流電源 1、 入力フィルタ 2、 双方向スィッチ SUR Sus SUT SVR Svs VT SWR Sws w ί)ι検出益し T i、 し 2 c Γ3 ϋ検 出回路 400、 整流回路 401、 倍率器 402、 転流制御回路 450と、 ゲート ドライブ回路 60は、 図 22の PWMサイクロコンバータのものと同じである。 モータ 460は、 U相、 V相、 W相の電圧で駆動される ACモータである。 速 度検出器 461は、 モータ 460が回転する速度を検出する。
関数発生器 430は、 電圧 VMAX "2を入力として、 そのときの三相交流電 源 1出力の状態で得られるモータ 460の最大速度 NMAXを出力する。 また、 こ の入出力の関係を示す関数には最大速度 NMAXの下限値を設定することが可能で あり、 電圧 VMAXZ 2が所定値を下回ったときの最大速度 NMAXは予め設定さ れた下限値になる。 この関数の一例としては図 25に示すものが考えられる。 速度指令器 43 1は、 三相交流電源 1の出力に関わりなく、 モータ 460を駆 動すべき速度 NREFを指令する。
比較器 405は、 最大速度 NMAXと速度指令器 43 1の出力 NREFを比較し、 小さい方の速度を速度 N として出力する。 なお、 三相交流電源 1が正常に三相 電源を出力しているときには、 最大速度 NMAXは速度指令器 43 1の指令 NREF を下回ることはないが、 不平衡状態などにより最大速度 NM A xが低下すると速度 指令器 431の指令 NREFを下回ることがある。 速度制御器 432は、 速度 と速度検出器 46 1が検出したモータ 460の 回転速度を入力し、 モータ 46◦の回転速度が となるように制御する。
関数発生器 440は、 電圧 VMAXZ 2を入力し、 そのときの三相交流電源 1 出力の状態から得られるモータ 460の最大磁束 ΦΜΑΧを出力する。 なお、 この 入出力の関係を示す関数には最大磁束 ΦΜΑΧの下限値を設定することが可能であ り、 電圧 VMAXノ " 2が所定値を下回ったとき最大磁束 ΦΜΑΧは予め設定された 下限値となる。 この関数の一例としては図 26に示すものが考えられる。
磁束指令器 44 1は、 三相交流電源 1の出力に関わりなく、 モータ 460に与 えるべきトルクに対応する磁束を指令する。
比較器 406は、 最大磁束 ΦΜΑΧと磁束指令器 44 1の出力を比較し、 小さい 方の磁束を磁束 0^として出力する。 なお、 三相交流電源 1が正常に三相電源を 出力しているときには、 最大磁束 ΦΜΑΧが磁束指令器 441の指令 <DREFを下回 ることはないが、 不平衡状態などにより最大磁束 ΦΜΑΧが低下すると磁束指令器 44 1の指令 <PREFを下回ることがある。
ベク トル制御回路 442は、 速度 と磁束 を入力とし、 速度 ί^、 磁束 Φ iに基づく トルクで回転するようにモータ 460に流す電流を算出して指令する 。 平衡な三相の電流の和はゼロになることから、 電流指令は U、 V、 Wの三相の 中の 2相を通知している。
電流制御回路 443は、 べク トル制御回路 442の出力する電流指令と、 電流 検出器 CT\、 CT2、 〇丁3で検出した電流値との偏差から、 PWM制御回路 4 1 1に与える電圧指令 vREFと周波数指令 f REFを出力する。
三相交流電源 1の出力が不平衡状態になり、 PWMサイクロコンバ一タが速度 指令器 43 1の指令では正常に動作できなくなったときに、 その状態で三相出力 がモータ 460に与えうる最大速度 NMAXに基づいて PWM制御を行うことで、 PWMサイクロコンバータは動作を継続することができる。 さらに、 電圧 VMAX 2が所定の値を下回ったときに、 モータ 460が予め定めた下限値の速度で 回転するように PWM制御する。 それにより、 三相交流電源 1の瞬断時に PWM 制御によってモータ 460を停止させることなく、 三相交流電源 1が回復するま で惰性による回転を継続させることができる。 また、 磁束指令器 441の指令する磁束 <PREFによるトルクをモータ 460に 与えることができなくなったときに、 その状態で三相出力がモータ 460に与え うる最大トルクに対応する最大磁束 ΦΜΑΧに基づいて PWM制御を行うことで、 PWMサイクロコンバータは動作を継続することができる。 さらに、 電圧 VMAX V" 2が所定の値を下回ったときに、 予め定めた下限値の磁束で回転するように PWM制御する。 それにより、 三相交流電源 1の瞬断時に PWM制御によってモ ータ 460を停止させることなく、 三相交流電源 1が回復するまで惰性による回 転を継続させることができる。

Claims

請求の範囲
1 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する P WMサイ ク口コンバータにおいて、
単相交流電源である無停電電源と、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には前記三相交流電源からの三相出力電圧のうちの、 前記入力電 源位相検出回路が位相の検出を行つている 2相の出力電圧の替わりに前記無停電 電源からの単相交流電圧を前記双方向スイッチモジュ一ルへ出力する電源切り替 え器と、
前記入力電源位相検出回路により検出された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィツチモジュールに対して三相入力運転するよう な制御を行ない、 前記電源異常検出信号が入力されると、 前記双方向スィッチモ ジュールの制御方式を三相入力運転から単相入力運転に切替える制御部とを有す ることを特徴とする P WMサイクロコンバータ。
2 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する P WMサイ クロコンバ一タにおいて、
単相交流電源である無停電電源と、 前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には前記三相交流電源からの三相出力電圧のうちの、 前記入力電 源位相検出回路が位相の検出を行っている 2相の出力電圧の替わりに前記無停電 電源からの単相交流電圧を前記双方向スィツチモジュールへ出力する電源切り替 え器と、
前記無停電電源の位相の検出を行っている無停電電源位相検出回路と、 前記電源異常検出信号が入力された場合には前記無停電電源位相検出回路から 出力される位相情報を選択して出力し、 前記電源異常検出信号が入力されていな い場合には前記入力電源位相検出回路から出力される位相情報を選択して出力し ている位相検出回路切り替え器と、
前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジユールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィツチモジュールに対して三相入力運転するよう な制御を行ない、 前記電源異常検出信号が入力されると、 前記双方向スィッチモ ジュールの制御方式を三相入力運転から単相入力運転に切替える制御部とを有す ることを特徵とする P WMサイク口コンバータ。
3 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィッチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する P WMサイ ク口コンバータにおいて、
直流電源と、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には前記三相交流電源からの三相出力電圧のうちの、 前記入力電 源位相検出回路が位相の検出を行っている 2相の出力電圧の替わりに前記直流電 源からの直流電圧を前記双方向スィツチモジュールへ出力する電源切り替え器と 固定位相情報生成回路と、
前記電源異常検出信号が入力された場合には前記固定位相情報生成回路から出 力される固定位相情報を選択して出力し、 前記電源異常検出信号が入力されてい ない場合には前記入力電源位相検出回路から出力される位相情報を選択して出力 している位相検出回路切り替え器と、
前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィツチモジュールに対して三相入力運転するよう な制御を行ない、 前記電源異常検出信号が入力されると、 前記双方向スィッチモ ジュ一ルの制御方式を三相入力運転から単相入力運転に切替える制御部とを有す ることを特徴とする P WMサイクロコンバータ。
4 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路と、
前記入力電源位相検出回路により検出された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っている制御部とを有する P WMサイクロコン バータにおいて、
前記三相交流電源の電源異常を検出した場合に電源異常検出信号および切り替 え制御信号を出力し、 電源異常が復帰した場合には、 前記電源異常検出信号の出 力を停止し、 その後一定時間経過してから 記切り替え制御信号の出力を停止す る電源異常検出回路と、
前記三相交流電源の位相を常に検出することにより前記三相交流電源の出力電
4.1 圧と同期した三相電圧を生成していて、 前記電源異常検出信号を入力すると、 前 記電源異常検出信号が入力される直前の位相情報に基いた三相電圧を一定周期で 出力する無停電電源モジュールと、
前記切り替え制御信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記切り替え制御信号が 入力された場合には前記無停電電源モジュールからの三相出力電圧を前記双方向 スィツチモジュールへ出力する電源切り替え器とを有することを特徴とする PW Mサイクロコンバ一タ。
5 . 前記無停電電源モジュールは、 P WMインバータにより構成されてい る請求項 4記載の P WMサイクロコンバ一タ。
6 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する、 P WMサ イク口コンバータにより構成されている昇降機用ドライブ装置において、 前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には非常用電源として設定されている電源の出力電圧を前記双方 向スィツチモジュールへ出力する電源切り替え器と、
前記非常用電源の位相の検出を行っている非常用電源位相検出回路と、 固定位相情報を生成して出力している固定位相情報生成回路と、
予め行われた設定に従い、 前記非常用電源位相検出回路からの位相情報または 前記固定位相情報生成回路からの固定位相情報のいずれかを選択して出力する位 相検出回路切り替え設定器と、
前記電源異常検出信号が入力された場合には前記位相検出回路切り替え設定器 から出力される位相情報を選択して出力し、 前記電源異常検出信号が入力されて いない場合には前記入力電源位相検出回路から出力される位相情報を選択して出 力している位相検出回路切り替え器と、
前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィッチモジュールに対して三相入力運転し、 前記 電源異常検出信号が入力されると、 前記双方向スィツチモジュールの制御方式を 、 三相入力運転から前記位相検出回路切り替え器から出力される位相情報に応じ た制御方式の運転に切替える制御部とを有することを特徴とする昇降機用ドライ
7 . 外部に接続された電源切り替え器により選択された、 三相交流電源の 三相電圧または非常用電源からの出力電圧と、 三相の出力電圧との間をそれぞれ 接続する 9つの双方向スィツチにより構成されている双方向スィツチモジュール と、
前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する、 P WMサ ィク口コンバータにより構成されている昇降機用ドライブ装置において、 前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記非常用電源の位相の検出を行っている非常用電源位相検出回路と、 固定位相情報を生成して出力している固定 相情報生成回路と、
予め行われた設定に従い、 前記非常用電源位相検出回路からの位相情報または 前記固定位相情報生成回路からの固定位相情報のいずれかを選択して出力する位 相検出回路切り替え設定器と、
前記電源異常検出信号が入力された場合には前記位相検出回路切り替え設定器 から出力される位相情報を選択して出力し、'前記電源異常検出信号が入力されて いない場合には前記入力電源位相検出回路から出力される位相情報を選択して出 力している位相検出回路切り替え器と、 前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジュールに対する制御を行っていて、 前記電源異常検出信号が入力されて いない場合には、 前記双方向スィッチモジュールに対して三相入力運転し、 前記 電源異常検出信号が入力されると、 前記双方向スィツチモジュールの制御方式を 、 三相入力運転から前記位相検出回路切り替え器から出力される位相情報に応じ た制御方式の運転に切替える制御部とを有することを特徴とする昇降機用ドライ ブ装置。
8 . 前記非常用電源が、 三相交流電源、 単相交流電源または直流電源のう ちから選択されたいずれか 1つの電源である請求項 6または 7記載の昇降機用ド ライブ装置。
9 . 三相交流電源の三相電圧と、 三相の出力電圧との間をそれぞれ接続す る 9つの双方向スィツチにより構成されている双方向スィツチモジュールと、 前記双方向スィツチモジュールに入力される三相交流電圧のうちの 2相を入力 とし、 その位相の検出を行っている入力電源位相検出回路とを有する、 PWMサ イク口コンバータにより構成されている昇降機用ドライブ装置において、 前記三相交流電源の電源異常を検出した場合に電源異常検出信号を出力する電 源異常検出回路と、
前記電源異常検出信号が入力されていない場合には前記三相交流電源からの三 相出力電圧を前記双方向スィツチモジュールへ出力し、 前記電源異常検出信号が 入力された場合には非常用電源として設定されている非常用三相交流電源の出力 電圧を前記双方向スィツチモジュールへ出力する電源切り替え器と、
前記非常用三相交流電源の位相の検出を行っている非常用電源位相検出回路と 前記電源異常検出信号が入力された場合には前記非常用電源位相検出回路から 出力される位相情報を選択して出力し、 前記電源異常検出信号が入力されていな い場合には前記入力電源位相検出回路から出力される位相情報を選択して出力し ている位相検出回路切り替え器と、 前記位相検出回路切り替え器から出力された位相情報に基いて前記双方向スィ ツチモジュールに対して三相入力運転する制御部とを有することを特徴とする昇 降機用ドライブ装置。
1 0 . 三相交流電源の電源電圧の異常を検出するための電源異常検出回路 であって、
前記三相交流電源の各相の電圧値の大小関係に応じた情報を検出し、 該情報を 電源電圧情報信号として出力している電源電圧情報生成回路と、
前記三相交流電源が正常である場合の各相の電圧値の大小関係に基づく情報を 予め保持しておき、 該情報を前記三相交流電源の出力電圧に同期させて異常検出 用信号として出力している異常検出用信号生成回路と、
前記電源電圧情報信号と前記異常検出用信号とを一定間隔で比較し、 これらの 信号が異なっている場合には電源電圧異常信号を出力する判定回路とを備えてい る電源異常検出回路。
1 1 . 前記判定回路が、
前記異常検出用信号と前記電源電圧情報信号との間の排他的論理和演算をそれ ぞれ行い、 該演算結果を出力してレ、る複数の排他的論理和回路と、
前記複数の排他的論理和回路の各出力どうしの論理和演算を行い、 該演算結果 を出力する論理和回路と、
前記論理和回路の出力値を一定時間間隔で保持して前記電源電圧異常検出信号 として出力するフリップフ口ップ回路とから構成されている請求項 1 0記載の電 源異常検出回路。
1 2 . 前記電源電圧情報信号により示される情報が、 各相の電圧のうちの どの相の電圧値が最も高いかを示す情報と、 各相の電圧のうちのどの相の電圧値 が最も低いかを示す情報である請求項 1 0または 1 1記載の電源異常検出回路。
1 3 . 三相交流電源の電源電圧の異常を検出するための電源電圧異常検出 方法であって、
前記三相交流電源が正常である場合の各相の電圧値の大小関係に基づく情報を 異常検出用情報として予め保持しておき、
前記三相交流電源の各相の電圧値の大小関係に応じた情報を電源電圧情報とし て検出し、
前記電源電圧情報と、 前記異常検出用信号のうちの当該電源電圧情報が得られ たタイミングに応じた異常検出用情報とを一定間隔で比較し、 これらの情報が異 なっている場合には電源電圧異常が発生したと判定する電源電圧異常検出方法。
1 4 . 三相交流電源の三相の出力波形を整形する入力フィルタと、 前記入力フィルタで波形整形された三相の信号に接続され、 ォン Zォフによつ て電力変換するための複数の双方向スィツチと、
指令された電圧と指令された周波数に基づいて前記双方向スィッチのオンノォ フを制御する P WM制御回路と、
前記双方向スィッチの転流を制御する転流制御回路と、
前記三相交流電源の 3つの線間電圧を検出し、 出力する電圧検出回路と、 前記線間電圧から線間最大電圧を生成する最大電圧生成回路と、
三相出力が常に前記線間最大電圧以下となるように前記 P WM制御回路に電圧 を指令する制御回路を有する交流 Z交流直接形電力変換装置。
1 5 . 前記最大電圧生成回路は、 前記線間電圧を整流する整流回路と、 前 記整流回路の出力を所定倍する倍率器からなり、
前記制御回路は、 所望の電圧を指令する電圧指令器と、 前記倍率器の出力と前 記電圧指令器の指令を比較して小さい方を出力する比較器からなる、 請求項 1 4 記載の交流 交流直接形電力変換装置。
1 6 . 三相交流電源の三相の出力波形を整形する入力フィルタと、 前記入力フィルタで波形整形された三相の信号に接続され、 オン //オフによつ て電力変換するための複数の双方向スィツチと、 指令された電圧と指令された周波数に基づいて前記双方向スィツチのオン Zォ フを制御する P WM制御回路と、
前記双方向スィツチの転流を制御する転流制御回路と、
前記三相交流電源の 3つの線間電圧を検出する電圧検出回路と、
前記線間電圧から線間最大電圧を生成する最大電圧生成回路と、
出力が常に前記線間最大電圧以下となるように前記 P WM制御回路に電圧およ び周波数を指令する制御回路を有する交流/交流直接形電力変換装置。
1 7 . 前記最大電圧生成回路は、 前記線間電圧を整流する整流回路と、 前 記整流回路の出力を所定倍する倍率器からなり、
前記制御回路は、 所望の電圧を指令する電圧指令器と、 前記倍率器の出力電圧 と前記電圧指令器の指令を比較して小さい方を出力する第 1の比較器と、 所望の 周波数を指令する周波数指令器と、 前記倍率器の出力から、 三相出力として得う る最大の周波数を算出する関数発生器と、 前記関数発生器が算出した周波数と周 波数指令器の指令を比較して小さい方を出力する第 2の比較器からなる、 請求項 1 6記載の交流/交流直接形電力変換装置。
1 8 . 三相交流電源の三相の出力波形を整形する入力フィルタと、 前記入力フィルタで波形整形された三相の信号に接続され、 オン/オフによつ て電力変換するための複数の双方向スィツチと、
指令された電圧と指令された周波数に基づいて前記双方向スィツチのオン Zォ フを制御する P WM制御回路と、
前記双方向スィツチの転流を制御する転流制御回路と、
三相交流電源の 3つの線間電圧を検出する電圧検出回路と、
前記線間電圧から線問最大電圧を生成する最大電圧生成回路と、
出力に接続されたモータの端子電圧が常に前記線間最大電圧以下となるように 前記 P WM制御回路に速度および磁束を指令する制御回路を有する交流 交流直 接形電力変換装置。
1 9 . 前記最大電圧生成回路は、 前記線間電圧を整流する整流回路と、 前 記整流回路の出力を所定倍する倍率器からなり、
前記制御回路は、 所望の速度を指令する速度指令器と、 前記倍率器の出力から 、 三相出力として得うる最大の速度を算出する第 1の関数発生器と、 前記最大の 速度と前記速度指令器の指令を比較し小さレ、方を出力する第 1の比較器と、 所望 の磁束を指令する磁束指令器と、 前記倍率器の出力から、 三相出力が前記モータ に与えうる最大の磁束を算出する第 2の関数発生器と、 前記最大の磁束と前記磁 束指令器の指令を比較し小さい方を出力する第 2の比較器からなる、 請求項 1 8 記載の交流 Z交流直接形電力変換装置。
2 0 . 前記第 1の関数発生器は、 前記線間最大電圧が所定値を下回ったと き、 予め定められた下限値の速度を指令し、
前記第 2の関数発生器は、 前記線間最大電圧が所定の値を下回ったとき、 予め 定められた下限値の磁束を指令する、 請求項 1 9記載の交流ノ交流直接形電力変
PCT/JP2001/001667 2000-03-08 2001-03-05 Pwm cycloconverter and power fault detector WO2001067590A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20010908290 EP1286455A1 (en) 2000-03-08 2001-03-05 Pwm cycloconverter and power fault detector
CA 2402426 CA2402426A1 (en) 2000-03-08 2001-03-05 Pwm cycloconverter and power supply abnormality detection circuit
KR1020027011704A KR20020079987A (ko) 2000-03-08 2001-03-05 Pwm 사이클로컨버터 및 전원이상 검출회로

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000063716A JP2001258151A (ja) 2000-03-08 2000-03-08 電源電圧異常検出回路および方法
JP2000-63716 2000-03-08
JP2000-64853 2000-03-09
JP2000064854A JP4374605B2 (ja) 2000-03-09 2000-03-09 Pwmサイクロコンバータ
JP2000064853A JP4553079B2 (ja) 2000-03-09 2000-03-09 交流/交流直接形電力変換装置
JP2000-64854 2000-03-09
JP2000108154A JP4171862B2 (ja) 2000-04-10 2000-04-10 昇降機用ドライブ装置
JP2000-108154 2000-04-10

Publications (1)

Publication Number Publication Date
WO2001067590A1 true WO2001067590A1 (en) 2001-09-13

Family

ID=27481106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001667 WO2001067590A1 (en) 2000-03-08 2001-03-05 Pwm cycloconverter and power fault detector

Country Status (7)

Country Link
US (1) US20030052544A1 (ja)
EP (1) EP1286455A1 (ja)
KR (1) KR20020079987A (ja)
CN (1) CN1416614A (ja)
CA (1) CA2402426A1 (ja)
TW (1) TW513848B (ja)
WO (1) WO2001067590A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060080A1 (ja) * 2003-12-19 2005-06-30 Kabushiki Kaisha Yaskawa Denki Pwmサイクロコンバータの入力電圧検出方法および装置
US7456522B2 (en) * 2002-06-03 2008-11-25 Adc Dsl Systems, Inc. Line powering of auxiliary equipment

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135337A1 (de) * 2001-07-19 2003-02-06 Siemens Ag Verfahren und Vorrichtung zum Stillsetzen eines Antriebs mit einem matrixumrichter bei Netzausfall
DE10252234A1 (de) * 2002-11-11 2004-06-03 Alstom Technology Ltd Verfahren zum Betrieb eines Matrixkonverters sowie Matrixkonverter zur Durchführung dieses Verfahrens
US7259477B2 (en) * 2003-08-15 2007-08-21 American Power Conversion Corporation Uninterruptible power supply
JP4471076B2 (ja) * 2003-09-19 2010-06-02 株式会社安川電機 Pwmサイクロコンバータ
WO2005085113A1 (ja) * 2004-03-02 2005-09-15 Mitsubishi Denki Kabushiki Kaisha エレベータ制御装置
DE102004018502B3 (de) * 2004-04-14 2006-01-12 Phoenix Contact Gmbh & Co. Kg Vorrichtung zur unterbrechungsfreien Stromversorgung
KR100675651B1 (ko) * 2004-12-08 2007-02-02 엘에스산전 주식회사 인버터 제어장치 및 방법
US7775328B2 (en) 2005-01-13 2010-08-17 Otis Elevator Company Operation device for an elevator system
US8495890B2 (en) * 2007-01-22 2013-07-30 Johnson Controls Technology Company Cooling member
US7764041B2 (en) 2007-01-22 2010-07-27 Johnson Controls Technology Company System and method to extend synchronous operation of an active converter in a variable speed drive
US8149579B2 (en) * 2008-03-28 2012-04-03 Johnson Controls Technology Company Cooling member
US8004803B2 (en) 2007-05-08 2011-08-23 Johnson Controls Technology Company Variable speed drive
KR100911916B1 (ko) * 2007-08-07 2009-08-13 오티스 엘리베이터 컴파니 엘리베이터 시스템에 대한 작동 디바이스
US8174853B2 (en) * 2007-10-30 2012-05-08 Johnson Controls Technology Company Variable speed drive
US7957166B2 (en) * 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
KR101394974B1 (ko) * 2007-10-31 2014-05-14 존슨 컨트롤스 테크놀러지 컴퍼니 가변속 드라이브에서 능동 컨버터의 동기 작동을 확장하기 위한 장치
JP5433214B2 (ja) * 2007-12-07 2014-03-05 パナソニック株式会社 モータ駆動回路
US8258664B2 (en) 2008-10-03 2012-09-04 Johnson Controls Technology Company Permanent magnet synchronous motor and drive system
KR101475547B1 (ko) * 2009-09-29 2014-12-22 가부시키가이샤 야스카와덴키 Pwm 사이클로 컨버터 장치
CN102762406B (zh) * 2010-02-25 2015-03-11 三菱电机株式会社 功率转换装置
JP5418304B2 (ja) * 2010-02-26 2014-02-19 富士電機株式会社 電力変換器
CN102243522A (zh) * 2010-05-14 2011-11-16 鸿富锦精密工业(深圳)有限公司 Pwm智能管理方法及系统
CN102085986B (zh) * 2011-01-14 2013-04-17 开封市中南电器技术有限公司 提升机交流双控高压矩阵变频电控系统
CN102723910A (zh) * 2011-03-30 2012-10-10 上海军远通信设备有限公司 变频拖动系统掉电处理电路
KR101104559B1 (ko) * 2011-06-20 2012-01-11 황수명 소손 방지용 모터 기동 회로
KR101260611B1 (ko) 2011-07-20 2013-05-03 엘에스산전 주식회사 고압 인버터의 제어장치 및 방법
CN102331563B (zh) * 2011-08-04 2013-10-16 江苏茶花电气有限公司 超高频多路开关电源的测试方法
JP5724903B2 (ja) * 2012-02-20 2015-05-27 株式会社安川電機 電源回生装置および電力変換装置
JP5344063B2 (ja) * 2012-04-02 2013-11-20 富士電機株式会社 電力変換装置
EP2728729A2 (en) * 2012-10-30 2014-05-07 Kabushiki Kaisha Yaskawa Denki Matrix converter
KR20140074849A (ko) * 2012-12-10 2014-06-18 가부시키가이샤 야스카와덴키 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법
CN103401486B (zh) * 2013-07-26 2016-01-20 浙江盛迈电气技术有限公司 带ups断电信息保护的双电机交流伺服驱动器
CN103434907B (zh) * 2013-08-22 2015-12-23 宁波赛福特电子有限公司 一种电梯控制柜供电缺相保护装置
DE102013014427A1 (de) * 2013-08-30 2015-03-05 Liebherr-Elektronik Gmbh Antriebsschaltung für Luftlagermotor
JP6566294B2 (ja) * 2014-01-29 2019-08-28 パナソニックIpマネジメント株式会社 マトリックスコンバータ
CN105210286B (zh) * 2014-02-18 2018-04-03 三菱电机株式会社 电动机控制装置及电动机控制方法
DE102014104216B3 (de) * 2014-03-26 2015-06-11 Sma Solar Technology Ag Einphasiger Notbetrieb eines dreiphasigen Wechselrichters und entsprechender Wechselrichter
CN104037725B (zh) * 2014-06-25 2018-01-19 江南嘉捷电梯股份有限公司 电梯安全保护检测装置
JP2016046958A (ja) * 2014-08-25 2016-04-04 株式会社安川電機 マトリクスコンバータ、マトリクスコンバータの制御装置およびマトリクスコンバータの制御方法
JP6247189B2 (ja) * 2014-10-02 2017-12-13 ファナック株式会社 直流リンク残留エネルギーの放電機能を有するモータ制御装置
BR112016016384B1 (pt) * 2015-01-19 2022-04-19 Mitsubishi Electric Corporation Conversor regenerativo
US11292691B2 (en) * 2015-11-12 2022-04-05 Inventio Ag Monitoring unit for an elevator system, and method
JP6348140B2 (ja) * 2016-04-25 2018-06-27 ファナック株式会社 複数の停電検出感度を有するモータ制御装置
CN106125012B (zh) * 2016-06-28 2019-03-19 南京航空航天大学 一种间接式矩阵变换器故障诊断方法
DK3290375T3 (da) 2016-08-29 2019-09-30 Kone Corp Elevator
WO2018080614A1 (en) * 2016-10-28 2018-05-03 Mark Telefus Load identifying ac power supply with control and methods
CN108233738B (zh) * 2016-12-22 2020-11-17 赤多尼科两合股份有限公司 电压转换装置
NL2020760B1 (en) * 2018-04-12 2019-10-23 Dutch Infinity Energy D I E B V A method for splitting power, a power splitting unit and a computer program product
CN108750844B (zh) * 2018-05-21 2020-06-26 日立楼宇技术(广州)有限公司 召梯类型识别方法和系统、识别设备、可读存储介质
US11671029B2 (en) 2018-07-07 2023-06-06 Intelesol, Llc AC to DC converters
US11056981B2 (en) 2018-07-07 2021-07-06 Intelesol, Llc Method and apparatus for signal extraction with sample and hold and release
US11581725B2 (en) 2018-07-07 2023-02-14 Intelesol, Llc Solid-state power interrupters
EP3617110B1 (en) * 2018-08-30 2022-02-23 KONE Corporation Elevator motor drive including safety control of elevator in case of power failure
US11334388B2 (en) 2018-09-27 2022-05-17 Amber Solutions, Inc. Infrastructure support to enhance resource-constrained device capabilities
US11205011B2 (en) 2018-09-27 2021-12-21 Amber Solutions, Inc. Privacy and the management of permissions
US11349296B2 (en) 2018-10-01 2022-05-31 Intelesol, Llc Solid-state circuit interrupters
US10985548B2 (en) 2018-10-01 2021-04-20 Intelesol, Llc Circuit interrupter with optical connection
CN113455105A (zh) 2018-12-17 2021-09-28 因特莱索有限责任公司 Ac驱动的发光二极管系统
US11170964B2 (en) 2019-05-18 2021-11-09 Amber Solutions, Inc. Intelligent circuit breakers with detection circuitry configured to detect fault conditions
TWI693780B (zh) * 2019-06-03 2020-05-11 緯穎科技服務股份有限公司 用於電源供應系統之控制方法及電源供應系統
JP6871480B1 (ja) * 2019-07-04 2021-05-12 東芝三菱電機産業システム株式会社 同期制御回路およびそれを備えた無停電電源装置
EP4088125A4 (en) 2020-01-21 2024-03-06 Amber Semiconductor Inc SMART CIRCUIT INTERRUPTION
CN111521865A (zh) * 2020-05-28 2020-08-11 深圳市通用互联科技有限责任公司 电压监测系统
US11670946B2 (en) 2020-08-11 2023-06-06 Amber Semiconductor, Inc. Intelligent energy source monitoring and selection control system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538448B1 (ja) * 1967-06-05 1970-12-04
JPS5610021A (en) * 1979-06-30 1981-02-02 Omron Tateisi Electronics Co Failure phase detector
JPS6071477A (ja) * 1983-09-21 1985-04-23 三菱電機株式会社 交流エレベ−タの制御装置
JPS6356170A (ja) * 1986-08-22 1988-03-10 Hitachi Ltd サイクロコンバ−タの制御方法
JPH03243139A (ja) * 1990-02-20 1991-10-30 Toshiba Corp 電源装置
JPH03243115A (ja) * 1990-02-19 1991-10-30 Toshiba Corp 欠相検出装置
US5198970A (en) * 1988-04-27 1993-03-30 Mitsubishi Denki Kabushiki Kaisha A.C. power supply apparatus
JPH05184058A (ja) * 1991-12-26 1993-07-23 Furukawa Battery Co Ltd:The 三相交流電源の不平衡検出回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673825A (en) * 1985-02-15 1987-06-16 Exide Electronics Corporation Uninterruptible power supply with isolated bypass winding
US5465011A (en) * 1992-12-14 1995-11-07 Square D Company Uninterruptible power supply with improved output regulation
US5790391A (en) * 1996-11-29 1998-08-04 General Signal Corporation Standby power system
US6191500B1 (en) * 1998-11-06 2001-02-20 Kling Lindquist Partnership, Inc. System and method for providing an uninterruptible power supply to a critical load

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538448B1 (ja) * 1967-06-05 1970-12-04
JPS5610021A (en) * 1979-06-30 1981-02-02 Omron Tateisi Electronics Co Failure phase detector
JPS6071477A (ja) * 1983-09-21 1985-04-23 三菱電機株式会社 交流エレベ−タの制御装置
JPS6356170A (ja) * 1986-08-22 1988-03-10 Hitachi Ltd サイクロコンバ−タの制御方法
US5198970A (en) * 1988-04-27 1993-03-30 Mitsubishi Denki Kabushiki Kaisha A.C. power supply apparatus
JPH03243115A (ja) * 1990-02-19 1991-10-30 Toshiba Corp 欠相検出装置
JPH03243139A (ja) * 1990-02-20 1991-10-30 Toshiba Corp 電源装置
JPH05184058A (ja) * 1991-12-26 1993-07-23 Furukawa Battery Co Ltd:The 三相交流電源の不平衡検出回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456522B2 (en) * 2002-06-03 2008-11-25 Adc Dsl Systems, Inc. Line powering of auxiliary equipment
WO2005060080A1 (ja) * 2003-12-19 2005-06-30 Kabushiki Kaisha Yaskawa Denki Pwmサイクロコンバータの入力電圧検出方法および装置
GB2426357A (en) * 2003-12-19 2006-11-22 Yaskawa Denki Seisakusho Kk Pwm cycloconverter input voltage detection method and device
GB2426357B (en) * 2003-12-19 2007-05-23 Yaskawa Denki Seisakusho Kk Method and apparatus for detecting input voltage of PWM cycloconverter
KR100844753B1 (ko) * 2003-12-19 2008-07-07 가부시키가이샤 야스카와덴키 Pwm 사이클로 컨버터의 입력 전압 검출 방법 및 장치

Also Published As

Publication number Publication date
CN1416614A (zh) 2003-05-07
EP1286455A1 (en) 2003-02-26
US20030052544A1 (en) 2003-03-20
CA2402426A1 (en) 2001-09-13
TW513848B (en) 2002-12-11
KR20020079987A (ko) 2002-10-21

Similar Documents

Publication Publication Date Title
WO2001067590A1 (en) Pwm cycloconverter and power fault detector
US6847531B2 (en) System and method for regenerative PWM AC power conversion
CA2436163C (en) Inverter drive system
JP2760666B2 (ja) Pwmコンバ―タの制御方法及び装置
US6542390B2 (en) System and method for regenerative PWM AC power conversion
JP2000139076A (ja) Pwmサイクロコンバータの保護装置およびその保護方法
JPH082154B2 (ja) 非同期多相スイツチング回路
KR20160050546A (ko) 인버터 제어장치
JP3267130B2 (ja) Pwm制御自励式整流装置
JP6494028B2 (ja) マトリクスコンバータ、発電システム、制御装置および制御方法
Klumpner et al. Short term ride through capabilities for direct frequency converters
JP2006230027A (ja) 直列多重インバータ装置
JP4374605B2 (ja) Pwmサイクロコンバータ
JP4487155B2 (ja) Pwmサイクロコンバータの保護装置
JP2003230275A (ja) Pwmサイクロコンバータの保護方法
KR100322256B1 (ko) 공간전압벡터방식을이용한정지형여자시스템
JP2000217371A (ja) 電力回生装置
JP2009177901A (ja) 無停電電源装置
JPH04289798A (ja) 変換器故障時の交流電動機の駆動方法及び交流電動機の駆動装置
JP4553079B2 (ja) 交流/交流直接形電力変換装置
JP3873203B2 (ja) 巻線型誘導機の速度制御装置及び方法
JPS609384A (ja) インバ−タの電力回生制御回路
JP2004088861A (ja) 電力変換装置
JP3425360B2 (ja) 自励式変換器の試験方法
JP2006254624A (ja) 交流交流変換器の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001908290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10221246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2402426

Country of ref document: CA

Ref document number: 1020027011704

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018062539

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027011704

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001908290

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001908290

Country of ref document: EP