WO2001066812A2 - Alliages d'aluminium a resistance a la corrosion elevee apres brasage - Google Patents

Alliages d'aluminium a resistance a la corrosion elevee apres brasage Download PDF

Info

Publication number
WO2001066812A2
WO2001066812A2 PCT/CA2001/000276 CA0100276W WO0166812A2 WO 2001066812 A2 WO2001066812 A2 WO 2001066812A2 CA 0100276 W CA0100276 W CA 0100276W WO 0166812 A2 WO0166812 A2 WO 0166812A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
aluminum alloy
copper
nickel
Prior art date
Application number
PCT/CA2001/000276
Other languages
English (en)
Other versions
WO2001066812A3 (fr
Inventor
Pierre Henri Marois
Nicholas Parson
Original Assignee
Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Limited filed Critical Alcan International Limited
Priority to US10/204,428 priority Critical patent/US6939417B2/en
Priority to AU2001239054A priority patent/AU2001239054A1/en
Publication of WO2001066812A2 publication Critical patent/WO2001066812A2/fr
Publication of WO2001066812A3 publication Critical patent/WO2001066812A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • This invention relates to corrosion resistant aluminum alloys and, more particularly, to an AA3000 series type aluminum alloy having low levels of copper and nickel and showing excellent corrosion resistance after brazing.
  • Aluminum alloys are well recognized for their corrosion resistance. In the automotive industry, aluminum alloys are used extensively for tubing because of their extrudability as well as the combination of light weight and high strength. They are used particularly for heat exchanger or air conditioning condenser applications, where excellent strength, corrosion resistance and extrudability are necessary.
  • the AAIOOO series aluminum alloys are often selected where corrosion resistance is needed. Where higher strengths are required, the AA3000 series aluminum alloys are often used.
  • a core alloy e.g. X800 or X900, which protects from corrosion through the formation of a dense precipitate band within the core adjacent to the cladding. This band corrodes preferentially to the rest of the core thereby increasing the life of the tube.
  • This method is only applicable to sheet products due to the need for a clad layer of Al-Si alloy on the tube surface. Alloys currently in use for brazed extruded tubing do not give good corrosion resistance unless the tubing is sprayed with zinc prior to brazing.
  • U.S. Patent 5,286,316 (Wade) describes an alloy consisting essentially of 0.1 - 0.29%o by weight manganese, 0.05 - 0.12% by weight silicon, 0.10 - 0.20% by weight titanium,
  • This alloy contained very low levels of copper not exceeding 0.03% by weight, but again a quite high titanium content.
  • the copper content of the alloy is preferably no greater than 0.006% by weight and the nickel content is preferably no greater than 0 005%o by weight
  • These alloys typically contain up to about 1.5% by weight manganese, up to about 0.70% by weight iron, up to about 0.02%o by weight titanium, up to about 0.30%o by weight silicon, less than about 0.03%o by weight zmc and the minimum copper and nickel contents as stated above.
  • the balance consists of aluminum and incidental impurities
  • the alloy of the extruded product of the invention is an aluminum alloy containing about 0.001 - 0.5% by weight manganese, 0.001 - 0 7% by weight iron, 0.001-0.02%) by weight titanium, 0 001 - 0.3%o by weight silicon, less than 0 006%> by weight copper, less than 0 005%) by weight nickel and 0.001-0.02% by weight zmc, with the balance consisting of aluminum and incidental impurities.
  • the alloy of the extruded product of the invention contains less than 0.03% by weight zinc and has a corrosion resistance sufficient to pass a 20 day SWAAT corrosion test
  • individual aluminum smelters may already exist that produce aluminum containing the above low levels of copper and nickel, the value of having a product with such low levels was not previously recognized Accordingly, no effort has been made to isolate mgots during aluminum production such that a population of commercial aluminum mgots when re-heated for extruding into tubmg will provide a melt containing less than 0.006%> copper and less than 0.005%o nickel.
  • a population of aluminum alloy ingots used for extrusion into tubmg will on average contain less than 0.006%> copper and less than 0.005%> nickel.
  • a population of ingots is selected whereby the aggregate population has the above composition.
  • a typical alloy used in the present invention not only has very low levels of copper and nickel but may also be used without any deliberate additions of titanium or zinc.
  • the extruded product may be devoid of any surface coating of zmc.
  • the low level of titanium present is typically that remaining from gram refiner addition.
  • the extruded products of these inventions having high corrosion resistance are typically produced by the following steps: a) casting an ingot of an aluminum alloy as described above; b) homogenizing the ingot at a temperature between about 400°C and about 650°C; c) cooling the ingot to ambient temperature; d) re-heating the ingot and extruding into tubing.
  • a brazing cycle this is done either in a vacuum or an inert atmosphere.
  • the tubing is typically heated at a rate of about 5 to 30°C/min up to a temperature of about 585 to 615°C followed by rapid cooling.
  • the ingots were homogenized for 4 hrs. at 620°C and cooled at 150°C/hr to room temperature.
  • the metal was extruded into a 0.25 inch diameter round tube having a wall thickness of 0.016 inch using normal extrusion conditions and the product was air cooled to room temperature.
  • the tubing was cut into 8 inch lengths. Five lengths of each alloy were given an inert atmosphere brazing cycle consisting of 20°C/min up to 625°C followed by fast cooling to room temperature, and five were kept in the as-extruded condition.
  • the tubes were then exposed to a corrosive environment in a SWAAT cabinet according to ASTM spec #G85 - Annex A3.
  • a further series of four AA3102 type Al-Mn alloy compositions were D.C. cast as 6" diameter billets.
  • the aluminum used to make up the melts was selected to have a copper content of 0.0012-0.0015 wt%.
  • the nickel content was 0.0015 to 0.0019 wt%.
  • the base level of zinc in the aluminum was 0.0021 - 0.0025 wt%.
  • the four casts were alloyed so as to produce the following variants:
  • compositions are shown in Table 2 below:
  • Silicon levels were maintained at -0.07 wt%> and Mn was maintained at -0.23 wt% for all the casts.
  • the titanium content was due to the addition of Ti/B grain refiner used to control the cast grain size and was not a deliberate alloy addition.
  • the billets were homogenized using the same procedure as in Example 1 and were extruded into a 0.25 inch x 0.016 inch round tube. The tubing was cut into 8 inch lengths and given a simulated vacuum brazing cycle. The cycle consisted of a 25°C/min heat up to 500°C followed by 15°C/min to 600°C then 5°C/min to 615°C. The samples actually received about 2 min soak between 600°C and 607°C then were cooled in the furnace until 500°C (about 5 minutes) before being removed from furnace. A vacuum at about 5 x 10 "5 Torr was used at brazing temperature.
  • Example 1 and also passed 25 days exposure. This supports the conclusion of Example 1 that an alloy with Ni less than 0.005 and Cu less than 0.006 wt% can pass a 20 day SWAAT post brazed. After thirty days exposure, failures were observed in the alloys containing the higher level of zinc. After 40 days exposure some perforations were encountered for all the alloys but the performance of the compositions with the higher zinc level was noticeably inferior. At the lower zinc level there was no measurable effect associated with changing the iron level from 0.07 to 0.44 and both alloys performed in an equivalent manner.
  • the three experimental alloys all had low copper and nickel levels but had a deliberate zinc addition of 0.17 wt%.
  • Alloy MGM also contained an increased Ti addition
  • the production alloy contained low zinc but contained copper >0.006 wt% The results show that for vacuum brazed tubing, an alloy with low copper and nickel along with a deliberate zinc addition does not give 20 day SWAAT life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Of Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

lorsqu'on utilise les alliages d'aluminium des séries AA3000 et AA1000 pour produire des produits extrudés destinés à des applications à échanges thermiques, il est possible d'obtenir une excellente résistance à la corrosion tant avant qu'après le cycle de brasage, par la maîtrise du niveau très bas du cuivre et du nickel utilisé dans cet alliage. Pour obtenir ces résultats, le contenu en cuivre ne pas être supérieur à 0,006 % en masse et celui du nickel ne doit pas dépasser 0,005 % en masse. Un alliage typique de l'invention contient en masse d'environ 0,001 % à 0,5 % de manganèse, 0,001 % à 0,7 % de fer, 0,001 % à 0,02 % de titane, 0,001 % à 0,3 % de silice, moins de 0,006 % de cuivre, moins de 0,005 % de nickel et de 0,001 % à 0,02 % de zinc, le solde étant constitué d'aluminium et d'impuretés incidentes. Aucune adjonction de zinc n'est requise, que ce soit par pulvérisation ou par adjonction.
PCT/CA2001/000276 2000-03-08 2001-03-06 Alliages d'aluminium a resistance a la corrosion elevee apres brasage WO2001066812A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/204,428 US6939417B2 (en) 2000-03-08 2001-03-06 Aluminum alloys having high corrosion resistance after brazing
AU2001239054A AU2001239054A1 (en) 2000-03-08 2001-03-06 Aluminum alloys having high corrosion resistance after brazing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18783500P 2000-03-08 2000-03-08
US60/187,835 2000-03-08

Publications (2)

Publication Number Publication Date
WO2001066812A2 true WO2001066812A2 (fr) 2001-09-13
WO2001066812A3 WO2001066812A3 (fr) 2002-01-03

Family

ID=22690661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2001/000276 WO2001066812A2 (fr) 2000-03-08 2001-03-06 Alliages d'aluminium a resistance a la corrosion elevee apres brasage

Country Status (2)

Country Link
AU (1) AU2001239054A1 (fr)
WO (1) WO2001066812A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1594999A1 (fr) * 2002-12-27 2005-11-16 Showa Denko K.K. Tuyau d'aluminium et son procede de production
US7781071B2 (en) 2002-12-23 2010-08-24 Alcan International Limited Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
EP2330226A1 (fr) * 2009-12-03 2011-06-08 Rio Tinto Alcan International Limited Extrusion d'alliage d'aluminium haute résistance
EP2514555A1 (fr) * 2011-04-21 2012-10-24 Aleris Aluminum Koblenz GmbH Produit de tube d'alliage en aluminium extrudé
WO2023246018A1 (fr) * 2022-06-20 2023-12-28 乳源东阳光优艾希杰精箔有限公司 Matériau de tube collecteur à résistance élevée à la corrosion, son procédé de préparation et son utilisation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014794A1 (fr) * 1990-03-27 1991-10-03 Alcan International Limited Amelioration d'alliage d'aluminium
US5286316A (en) * 1992-04-03 1994-02-15 Reynolds Metals Company High extrudability, high corrosion resistant aluminum-manganese-titanium type aluminum alloy and process for producing same
EP0665298A1 (fr) * 1993-12-17 1995-08-02 Ford Motor Company Alliage d'aluminium extrudable résistant à la corrosion
US5906689A (en) * 1996-06-06 1999-05-25 Reynolds Metals Company Corrosion resistant aluminum alloy
US5976278A (en) * 1997-10-03 1999-11-02 Reynolds Metals Company Corrosion resistant, drawable and bendable aluminum alloy, process of making aluminum alloy article and article
JP2000063970A (ja) * 1998-08-21 2000-02-29 Nippon Light Metal Co Ltd アルミニウム合金製熱交換器用押出管
JP2000119784A (ja) * 1998-10-08 2000-04-25 Sumitomo Light Metal Ind Ltd 高温クリープ特性に優れたアルミニウム合金材およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014794A1 (fr) * 1990-03-27 1991-10-03 Alcan International Limited Amelioration d'alliage d'aluminium
US5286316A (en) * 1992-04-03 1994-02-15 Reynolds Metals Company High extrudability, high corrosion resistant aluminum-manganese-titanium type aluminum alloy and process for producing same
EP0665298A1 (fr) * 1993-12-17 1995-08-02 Ford Motor Company Alliage d'aluminium extrudable résistant à la corrosion
US5906689A (en) * 1996-06-06 1999-05-25 Reynolds Metals Company Corrosion resistant aluminum alloy
US5976278A (en) * 1997-10-03 1999-11-02 Reynolds Metals Company Corrosion resistant, drawable and bendable aluminum alloy, process of making aluminum alloy article and article
JP2000063970A (ja) * 1998-08-21 2000-02-29 Nippon Light Metal Co Ltd アルミニウム合金製熱交換器用押出管
JP2000119784A (ja) * 1998-10-08 2000-04-25 Sumitomo Light Metal Ind Ltd 高温クリープ特性に優れたアルミニウム合金材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUFNAGEL W: "Key to Aluminium Alloys, 4th Edition" 1992 , ALUMINIUM-SCHLUESSEL = KEY TO ALUMINIUM ALLOYS, XX, XX, PAGE(S) 195,197 XP002176784 page 195; examples 1098D,1188,1193,1199 page 197; examples 3203,3010 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781071B2 (en) 2002-12-23 2010-08-24 Alcan International Limited Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
EP1594999A1 (fr) * 2002-12-27 2005-11-16 Showa Denko K.K. Tuyau d'aluminium et son procede de production
EP1594999A4 (fr) * 2002-12-27 2006-05-24 Showa Denko Kk Tuyau d'aluminium et son procede de production
EP2330226A1 (fr) * 2009-12-03 2011-06-08 Rio Tinto Alcan International Limited Extrusion d'alliage d'aluminium haute résistance
US8313590B2 (en) 2009-12-03 2012-11-20 Rio Tinto Alcan International Limited High strength aluminium alloy extrusion
EP2514555A1 (fr) * 2011-04-21 2012-10-24 Aleris Aluminum Koblenz GmbH Produit de tube d'alliage en aluminium extrudé
WO2023246018A1 (fr) * 2022-06-20 2023-12-28 乳源东阳光优艾希杰精箔有限公司 Matériau de tube collecteur à résistance élevée à la corrosion, son procédé de préparation et son utilisation

Also Published As

Publication number Publication date
AU2001239054A1 (en) 2001-09-17
WO2001066812A3 (fr) 2002-01-03

Similar Documents

Publication Publication Date Title
AU738447B2 (en) Aluminium alloy for use in a brazed assembly
WO2003031667A1 (fr) Alliage d'aluminium permettant de fabriquer une matiere de tole a ailettes
EP1721998B1 (fr) Matériau tubulaire extrudé en alliage d'aluminium pour échangeur de chaleur avec réfrigérant naturel
US10669616B2 (en) Aluminum alloy composition and method
JP2002161323A (ja) 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
US6939417B2 (en) Aluminum alloys having high corrosion resistance after brazing
JP3865933B2 (ja) 熱交換器用高強度アルミニウム合金押出材の製造方法
JPWO2019181768A1 (ja) 熱交換器用アルミニウム合金フィン材、その製造方法及び熱交換器
WO2001066812A2 (fr) Alliages d'aluminium a resistance a la corrosion elevee apres brasage
US4828936A (en) Aluminum alloy sheet excellent in high-temperature sagging resistance and sacrificial anode property and having high room-temperature strength
US6660108B2 (en) Method for manufacturing a fin material for brazing
JP3170202B2 (ja) アルミニウム合金クラッドフィン材およびその製造方法
JPH1088265A (ja) ろう付け後の強度および犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材
JP2006045603A (ja) 自然冷媒用熱交換器のアルミニウム合金押出しチューブ材
JPH05305307A (ja) 熱交換器用高強度アルミニウム合金フィン材の製造方法
JPH0250934A (ja) 熱交換器部材用アルミニウム製ブレージングシート
JPH02129333A (ja) 熱交換器用アルミニウムブレージングシート
JP2002256369A (ja) 高強度かつ切削加工性に優れたアルミニウム熱交換器用継手およびその製造方法
JPH11241133A (ja) 高耐食性アルミニウム合金複合材及びその製造方法
JPH01159343A (ja) ろう付け性と耐食性にすぐれた熱交換器用Al合金複合フィン材
JPH06145862A (ja) 高強度フィン材で構成されたAl合金製熱交換器
JP2000096168A (ja) アルミニウム合金ろう材及びアルミニウム合金ブレージングシート
JP2001226730A (ja) アルミニウム合金フィン材
JP2003147465A (ja) 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
JPH05305306A (ja) 熱交換器用高強度アルミニウム合金クラッドフィン材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10204428

Country of ref document: US

122 Ep: pct application non-entry in european phase