WO2001058215A1 - Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung - Google Patents

Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung Download PDF

Info

Publication number
WO2001058215A1
WO2001058215A1 PCT/DE2001/000259 DE0100259W WO0158215A1 WO 2001058215 A1 WO2001058215 A1 WO 2001058215A1 DE 0100259 W DE0100259 W DE 0100259W WO 0158215 A1 WO0158215 A1 WO 0158215A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
applicator
coupling
microwave
coupling pins
Prior art date
Application number
PCT/DE2001/000259
Other languages
English (en)
French (fr)
Inventor
Thorsten Gerdes
Monika Willert-Porada
Klaus RÖDIGER
Original Assignee
Widia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Widia Gmbh filed Critical Widia Gmbh
Priority to US10/168,786 priority Critical patent/US6630653B2/en
Priority to EP01911377A priority patent/EP1252802B1/de
Priority to JP2001557337A priority patent/JP2003522392A/ja
Priority to DE50112190T priority patent/DE50112190D1/de
Publication of WO2001058215A1 publication Critical patent/WO2001058215A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides

Definitions

  • the invention relates to a device for setting a microwave energy density distribution in an applicator forming a resonator chamber, in which the radiation generated by microwave generators is guided via waveguides to the applicator wall, and the use of this device.
  • the microwave generator which can be a magnetron, for example, is arranged with its power supply separate from the applicator in which the microwave energy is to be effective.
  • waveguides possibly along with other components, are used, via which the microwave energy is fed into the applicator cavity.
  • the applicator In order to generate several modes with different phase positions in one applicator, with which a homogeneous field distribution is to be achieved, the applicator often has dimensions that are a multiple of the wavelength of the microwave that is fed in.
  • the waveguide can be flanged to one side of a cuboid applicator.
  • this has the disadvantage that, depending on the spatial extent of the sample groups located in the applicator, a sufficiently homogeneous field distribution can only be achieved in individual areas due to the field distribution. This is remedied by slotted graphite plates, via which microwaves are guided from a waveguide into the interior of the furnace; the waveguides are then located at the corners of the applicator space, the slots being arranged at different angles.
  • the device according to claim 1 which is characterized in accordance with the invention in that a plurality of electrically conductive coupling pins are provided, each of which preferably protrudes vertically both into the waveguide space and into the applicator space.
  • Such pin-shaped antennas allow a greater field homogeneity to be created in the resonator space, which is also still separated from the waveguide, so that gases generated in the resonator space cannot penetrate into the waveguide.
  • This is particularly advantageous for the heat treatment of pre-pressed green compacts, which have been produced by powder metallurgy, for their dewaxing (debinding). The same applies to sintering processes that take place in a carburizing atmosphere.
  • the coupling pins are arranged to be displaceable along their longitudinal axis, so that the desired field distribution can be set in the applicator loaded with the material to be heated.
  • the desired field distribution can be set in the applicator loaded with the material to be heated.
  • Field dependencies result both from the length of the coupling pin and here in particular the respective length fractions of the coupling pin that protrude into the waveguide and into the resonator space.
  • the coupling pins can be inserted in the waveguide from both the wide and the narrow side.
  • the waveguide and the coupling surface of the resonator chamber are preferably arranged with their longitudinal axes parallel to one another, so that a plurality of coupling pins arranged at equidistant distances from one another protrude with one end into the waveguide and with the other end into the resonator chamber.
  • a dielectric is arranged around the wall bushing for the coupling pins.
  • each of the coupling pins can be displaceably guided in a sleeve made of dielectric material and projecting through the wall of the waveguide and / or the applicator.
  • the electrically conductive coupling pin is formed from a coupling rod and a sleeve surrounding it, in which the coupling rod is arranged so as to be longitudinally axially displaceable.
  • the coupling pin at its end projecting into the waveguide can have a piece of a dielectric which extends this pin and which preferably projects through the waveguide diameter and is guided to the outside at a waveguide opening located at the opposite end.
  • Graphite metal such as copper, aluminum, tungsten or molybdenum, metal alloys such as brass or steel or other alloys are suitable as the material for the coupling pin but must be correspondingly temperature-resistant, or an insulator with an electrical coating, which preferably consists of TiN.
  • Boron nitride or a ceramic such as aluminum oxide, silicon nitride or quartz are selected as the material for the dielectric.
  • the coupling pins each protrude in the area of the maxima of the microwave fed in there.
  • the microwave can be coupled in capacitively or inductively.
  • the geometry of the pin is cylindrical, the edges and corners of the pin preferably being rounded.
  • the ratio of the opening diameter D in the waveguide through which the coupling pin is guided to the coupling pin diameter d is chosen so that the characteristic impedance is adapted.
  • the piece goods to be treated by the microwave are arranged in the applicator resonance room on gratings which consist of rounded grating bars which are preferably oriented perpendicular to the electrical field of the microwave.
  • the walls of the waveguide and the applicator which are adjacent or adjacent to one another are thermally insulated from one another.
  • the device described can be used for the debinding of green compacts from a binder and one of the substances mentioned below and / or for the sintering of hard metals, cermets, steels produced by powder metallurgy or metallic or ceramic magnetic materials, in particular ferrites.
  • Special application examples both with regard to the selection of the composite materials that can be produced by sintering in a microwave field and also procedural measures are given in WO 96/33830 and WO 97/26383.
  • the device mentioned can also be used to generate a plasma, as is required, for example, in CVD coatings.
  • FIG. 1 to 4 each show schematically differently arranged coupling pins and dielectrics and
  • FIG. 5 shows a schematic view of the device according to the invention.
  • a waveguide 10 with an upper wall 11 and a lower wall 12 are shown in cross section.
  • the wall 21 of the applicator resonance chamber On the wall 12 of the waveguide 10 is the wall 21 of the applicator resonance chamber, of which the section shown is designated 20.
  • the two walls 12 and 21 are each broken through at equidistant intervals a, the distances a corresponding to approximately half to a quarter of the wavelength of the microwave in the waveguide 10.
  • a first variant (FIG. 1), the opening in the walls 12 and 21 is surrounded by a circular dielectric 30.
  • the middle opening of the dielectric D, through which the electrically conductive coupling pin made of graphite 31 is passed, is selected relative to the diameter d of the cylindrical coupling pin so that the characteristic impedance is adapted.
  • the coupling pin 31 protrudes with its two ends, on the one hand, into the resonator chamber 20 of the applicator and, on the other hand, into the waveguide interior 10.
  • the coupling pin can be displaced axially in the direction of the double arrow 32.
  • the coupling pin 33 can be displaced in the direction of the double arrow 34 in a sleeve 40 made of a dielectric.
  • the sleeve 40 projects exclusively into the resonator chamber 20 of the applicator.
  • the coupling pin 35 consists of a coupling rod 36 which can be displaced longitudinally and axially in the direction of the double arrow 37 in a sleeve 38 of electrically conductive material surrounding it in the direction of the double arrow 37.
  • the coupling pin 39 is provided with an extension 41 made of a dielectric material at its end projecting into the waveguide 10.
  • the one rod formed from parts 39 and 41 is axially displaceable along the donoel arrow 42.
  • Graphite rods with a diameter d of 3 mm are arranged at a distance of 10 mm as electrically conductive coupling pins 31, 33, 36 and 39.
  • FIG. 5 shows a schematic view of the structure of the device according to the invention, the essential parts of a short-circuit slide 49, a microwave generator 44, a waveguide 10 which is guided through an opening in the furnace wall 45 and the arrangement of the coupling pins 31 already described.
  • the interior of the furnace, in which hard metal parts 48 are arranged on gratings, is shielded from the outside by thermal insulation 46.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Powder Metallurgy (AREA)
  • Radiation-Therapy Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem einen Resonatorraum bildenden Applikator, in dem die von Mikrowellengeneratoren erzeugte Strahlung über Hohlleiter bis zur Applikatorwand geführt wird und eine Verwendung dieser Vorrichtung. Um eine möglichst verlustarme Mikrowelleneinspeisung durchführen zu können und eine Änderung der Feldverteilung im Resonatorraum zu ermöglichen, werden mehrere elektrisch leitfähige Koppelstifte (31) verwendet, die jeweils sowohl in den Hohlleiterraum als auch den Applikator-Resonatorraum vorzugsweise senkrecht hineinragen. Diese Vorrichtung eignet sich insbesondere zur Erzeugung eines Plasmas.

Description

Beschreibung
Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem Applikator und Verwendung dieser Vorrichtung
Die Erfindung betrifft eine Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem einen Resonatorraum bildenden Applikator, in dem die von Mikrowellengeneratoren erzeugte Strahlung über Hohlleiter bis zur Applikatorwand geführt wird und eine Verwendung dieser Vorrichtung.
In einer typischen industriellen Fertigung, in der Mikrowellen eingesetzt werden, ist der Mikrowellengenerator, der beispielsweise ein Magnetron sein kann, mit seiner Stromversorgung getrennt von dem Applikator, in dem die Mikrowellenenergie wirksam werden soll, angeordnet. Hierzu werden Hohlleiter, ggf. neben weiteren Komponenten, verwendet, über die die Mikrowellenenergie in den Applikator-Resonatorraum eingespeist wird.
Um in einem Applikator mehrere Moden mit unterschiedlichen Phasenlagen zu erzeugen, womit eine homogene Feldverteilung erreicht werden soll, besitzt der Applikator häufig Abmessungen, die ein Vielfaches der Wellenlänge der eingespeisten Mikrowelle betragen. Hierzu kann der Hohlleiter an einer Seite eines quaderförmigen Applikators angeflanscht werden. Dies hat allerdings den Nachteil, daß sich je nach räumlicher Ausdehnung der im Applikator befindlichen Probengruppen aufgrund der Feldverteilung nur in einzelnen Bereichen eine ausreichend homogene Feldverteilung erzielen läßt. Abhilfe schaffen geschlitzte Graphitplatten, über die Mikrowellen aus einem Hohlleiter ins Ofeninnere geführt werden; die Hohlleiter befinden sich dann an den Ecken des Applikatorraumes, wobei die Schlitze unter verschiedenen Winkeln angeordnet sind. Bei stark absorbierenden Materialien in der Resonatorkammer ergeben sich jedoch bei großer Beladung dieser Kammer mit zu erwärmendem Gut große Änderungen der Mikrowellen-Verteilung. Wegen der fest vorgegebenen Anordnung der schlitzförmigen Antennen ist es auch nicht möglich, die Feldverteilung im Resonator-Innenraum in gewünschten Grenzen zu verändern.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung der eingangs genannten Art zu schaffen, bei der die Mikrowelleneinspeisung möglichst verlustarm durchführbar ist und mit der eine Änderung der Feldverteilung im Resonatorraum möglich ist.
Diese Aufgabe wird durch die Vorrichtung nach Anspruch 1 gelöst, die erfindungsgemäß dadurch gekennzeichnet ist, daß mehrere elektrisch leitfähige Koppelstifte vorgesehen sind, die jeweils sowohl in den Hohlleiterraum als auch in den Applika- torraum vorzugsweise senkrecht hineinragen. Solche stiftförmi- gen Antennen lassen eine größere Feldhomogenität im Resonatorraum erzeugen, der zudem noch von dem Hohlleiter getrennt ist, so daß etwa im Resonatorraum entstehende Gase nicht in den Hohlleiter eindringen können. Dies ist insbesondere bei der Wärmebehandlung von vorgepreßten Grünlingen, die auf pulvermetallurgischem Weg hergestellt worden sind, zu deren Entwachsen (Entbindern) vorteilhaft. Entsprechendes gilt für Sinterprozesse, die in einer carburierenden Atmosphäre ablaufen.
Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
So sind die Koppelstifte entlang ihrer Längsachse verschiebbar angeordnet, so daß in dem mit zu erwärmendem Gut beladenen Applikator die gewünschte Feldverteilung einstellbar ist. Ggf. lassen sich durch entsprechende Koppelstiftanordnungen graduierte Felder schaffen, beispielsweise mit einem im Raum ansteigenden Feld, das vorzugsweise im sogenannten Durchlaufprinzip benötigt wird, d.h. beim translatorischen Bewegen des zu behandelnden Gutes durch den Resonatorraum. Feldabhängigkeiten ergeben sich sowohl durch die Länge des Koppelstiftes und hier insbesondere die jeweiligen Längenanteile des Koppelstiftes, die in den Hohlleiter und in den Resonatorraum hineinragen. Die Koppelstifte können soweit von der Breit- als auch von der Schmalseite im Hohlleiter eingeführt werden.
Bevorzugt werden der Hohlleiter und die Einkoppelfläche des Resonatorraums mit ihren Längsachsen parallel zueinander angeordnet, so daß mehrere in äquidistantem Abstand voneinander angeordnete Koppelstifte mit ihrem einen Ende in den Hohlleiter und mit ihrem anderen Ende in den Resonatorraum hineinragen. Um die Wanddurchführung für die Koppelstifte ist ein Dielektrikum angeordnet. Hierfür bieten sich verschiedene Ausführungsformen an. So kann in einer ersten Variante jeder der Koppelstifte in einer durch die Wand des Hohlleiters und/oder des Applikators ragenden Hülse aus dielektrischem Material verschiebbar geführt werden. In einer zweiten Variante wird der elektrisch leitfähige Koppelstift aus einem Koppelstab und einer diesen umgebenden Hülse gebildet, in der der Koppelstab längsaxial verschiebbar angeordnet ist. Schließlich kann der Koppelstift an seinem in den Hohlleiter ragenden Ende ein diesen Stift verlängerndes Stück aus einem Dielektrikum aufweisen, das vorzugsweise den Hohlleiterdurchmesser durchragt und an einer am gegenüberliegenden Ende befindlichen Hohlleiteröffnung nach außen geführt ist .
Als Material für den Koppelstift bieten sich Graphit, Metall wie z.B. Kupfer, Aluminium, Wolfram oder Molybdän, Metallegierungen wie Messing oder Stahl oder andere Legierungen, die jedoch entsprechend temperaturbeständig sein müssen, oder ein Isolator mit einer elektrischen Beschichtung an, die vorzugsweise aus TiN besteht. Als Material für das Dielektrikum werden Bornitrid oder eine Keramik wie Aluminiumoxid, Siliciumnitrid oder Quarz gewählt.
In längsaxialer Richtung des Hohlleiters gesehen ragen die Koppelstifte jeweils im Bereich der Maxima der dort eingespeisten Mikrowelle heraus.
Die Einkoppelung der Mikrowelle kann kapazitiv oder induktiv erfolgen.
Die Geometrie des Stiftes ist nach einer weiteren Ausgestaltung der Erfindung zylindrisch, wobei vorzugsweise die Kanten und Ecken des Stiftes abgerundet sind. In praktischen Anwendungsfällen ist der Durchmesser der Koppelstifte zwischen 1 mm bis 30 mm, vorzugsweise 5 mm bis 15 mm, gewählt worden; die Stiftlänge 1, mit der die Koppelstifte in den Resonatorraum hineinragen, beträgt 1 = x " λ (mit 0 < x < 1 und λ = Wellenlänge der Mikrowelle im Hohlleiter), vorzugsweise ist 1 = λ/4 bis λ/2.
Das Verhältnis des Öffnungsdurchmessers D im Hohlleiter, durch den der Koppelstift geführt wird, zum Koppelstiftdurchmesser d wird so gewählt, daß der Wellenwiderstand angepaßt ist. Die Abstände der Koppelstifte betragen λ/4 bis λ/2 (mit λ = Wellenlänge der Mikrowelle im Hohlleiter) .
Das durch die Mikrowelle zu behandelnde Stückgut wird im Appli- kator-Resonanzraum auf Gitterrosten angeordnet, die aus rundlichen Gitterstäben bestehen, die vorzugsweise senkrecht zum elektrischen Feld der Mikrowelle ausgerichtet sind. Nach einer weiteren Ausgestaltung der Erfindung sind die neben- oder aneinanderliegenden Wände des Hohlleiters und des Applika- tors thermisch gegeneinander isoliert.
Die beschriebene Vorrichtung kann zur Entbinderung von Grünlingen aus einem Binder und einem der nachfolgend genannten Stoffe und/oder zur Sinterung von Hartmetallen, Cermets, pulvermetallurgisch hergestellten Stählen oder metallischen oder keramischen Magnetwerkstoffen, insbesondere Ferriten verwendet werden. Spezielle Anwendungsbeispiele sowohl im Hinblick auf die Auswahl der durch Sinterung in einem Mikrowellenfeld herstellbaren Verbundwerkstoffe als auch verfahrenstechnische Maßnahmen werden in der WO 96/33830 und der WO 97/26383 benannt.
Die genannte Vorrichtung läßt sich jedoch ebenso für die Erzeugung eines Plasma, wie es beispielsweise bei CVD-Beschichtungen benötigt wird, verwenden.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt. Es zeigen Fig. 1 bis 4 jeweils in schematischer Weise verschieden angeordnete Koppelstifte und Dielektrika und Fig. 5 eine schematische Ansicht der erfindungsgemäßen Vorrichtung.
In den Fig. 1 bis 4 sind ein Hohlleiter 10 mit einer oberen Wand 11 und einer unteren Wand 12 im Querschnitt dargestellt. An der Wand 12 des Hohlleiters 10 liegt die Wand 21 des Appli- kator-Resonanzraumes, von dem der dargestellte Ausschnitt mit 20 bezeichnet ist. Die beiden Wände 12 und 21 sind jeweils in äquidistanten Abständen a durchbrochen, wobei die Abstände a etwa der halben bis der viertel Wellenlänge der Mikrowelle im Hohlleiter 10 entsprechen. In der Praxis wird nur eine der Varianten mit jeweils angeordneten Koppelstiften verwendet. In einer ersten Variante (Fig. 1) ist die Durchbrechung der Wände 12 und 21 von einem kreisrunden Dielektrikum 30 umgeben. Die mittlere Öffnung des Dielektrikums D, durch die der elektrisch leitfähige Koppelstift aus Graphit 31 hindurchgeführt ist, ist relativ zu dem Durchmesser d des zylindrischen Koppelstiftes so gewählt, daß der Wellenwiderstand angepaßt ist. Der Koppelstift 31 ragt mit seinen beiden Enden zum einen in den Resonatorraum 20 des Applikators und zum anderen in den Hohlleiterinnenraum 10. Der Koppelstift ist in Richtung des Doppelpfeiles 32 längsaxial verschiebbar.
In einer weiteren Ausführungsvariante gemäß Fig. 2 ist der Koppelstift 33 in Richtung des Doppelpfeiles 34 in einer Hülse 40 aus einem Dielektrikum verschiebbar. Die Hülse 40 ragt ausschließlich in den Resonatorraum 20 des Applikators hinein.
Nach einer weiteren Variante gemäß Fig. 3 besteht der Koppelstift 35 aus einem Koppelstab 36, der in Richtung des Doppelpfeiles 37 in einer diesen umgebenden Hülse 38 aus elektrisch leitfähigem Material längsaxial in Richtung des Doppelpfeiles 37 verschiebbar ist.
In einer letzten Variante gemäß Fig. 4 ist der Koppelstift 39 an seinem in den Hohlleiter 10 ragenden Ende mit einer Verlängerung 41 aus einem dielektrischen Material versehen. Der einen gemeinsamen aus Teilen 39 und 41 gebildete Stab ist entlang des Donoelpfeiles 42 längsaxial verschiebbar. Als elektrisch leit- fähige Koppelstifte 31, 33, 36 und 39 werden Graphitstäbe mit einem Durchmesser d von 3 mm in einem Abstand von 10 mm angeordnet. Durch Verschieben der jeweilige Antennen bildenden Koppelstifte kann nicht nur die Mikrowelle aus dem Hohlleiter in den Applikator-Innenraum 20 übertragen werden, sondern auch durch Ausrichtung der Koppelstifte eine homogene Feldverteilung im Innenraum 20 erzeugt werden. Fig. 5 zeigt eine schematische Ansicht des Aufbaus der erfindungsgemäßen Vorrichtung, deren wesentlichen Teile ein Kurzschlußschieber 49, ein Mikrowellengenerator 44, ein Hohlleiter 10, der durch eine Öffnung in der Ofenwand 45 geführt ist und die bereits beschriebene Anordnung der Koppelstifte 31 sind. Der Ofeninnenraum, in dem Hartmetallteile 48 auf Gitterrosten angeordnet sind, ist durch eine thermische Isolation 46 nach außen abgeschirmt.

Claims

Patentansprüche
1. Vorrichtung zum Einstellen einer Mikrowellen-Energiedichteverteilung in einem einen Resonatorraum (20) bildenden Applikator, in dem die von Mikrowellengeneratoren erzeugte Strahlung über Hohlleiter (10) bis zur Applikatorwand geführt wird, d a d u r c h g e k e n n z e i c h n e t, daß mehrere elektrisch leitfähige Koppelstifte (31, 33, 36, 38 oder 39) vorgesehen sind, die jeweils sowohl in den Hohlleiterraum als auch den Applikator-Resonatorraum radial hineinragen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Koppelstifte entlang ihrer Längsachse verschiebbar angeordnet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Hohlleiter (10) und die Einkoppelfläche des Resonatorraums (20) mit ihren Längsachsen parallel zueinander angeordnet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß um die Wanddurchführung für die Koppelstifte (31, 33, 38) ein Dielektrikum (30, 40) angeordnet ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Koppelstifte (33) in einer durch die Wand (12) des Hohlleiters und/oder des Applikators (21) ragenden Hülse (40) aus dielektrischem Material verschiebbar geführt werden.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der elektrisch leitfahige Koppelstift (35) aus einem Koppelstab (36) und einer diesen umgebenden Hülse (38), in der der Koppelstab (36) langs- axial verschiebbar angeordnet ist, gebildet wird.
7. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Koppelstift (39) an seinem in den Hohlleiter (10) ragenden Ende ein diesen Stift verlängerndes Stuck (41) aus einem Dielektrikum aufweist, das vorzugsweise den Hohlleiterdurchmesser durchragt und an einer am gegenüberliegenden Ende befindlichen Hohlleiteroffnung nach außen gefuhrt ist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Koppelstift aus Graphit, einem Metall wie Kupfer, Aluminium, Wolfram oder Molybdän, einer Metallegierung wie Messing oder Stahl oder einem Isolator mit einer elektrischen Beschichtung, vorzugsweise TiN, und/oder das Dielektrikum (30, 40) aus Bornitrid oder einer Keramik, vorzugsweise Aluminiumoxid, Siliciumnitrid oder Quarz besteht.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Koppelstifte (31, 33, 38, 39) jeweils im Bereich der Maxima der Mikrowellenstrahlung im Hohlleiter angeordnet sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, gekennzeichnet durch eine kapazitive oder induktive Einkoppelung der Mikrowellenstrahlung durch Koppelstifte.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Koppelstifte zylinderförmig ausgebildet sind, vorzugsweise mit abgerundeten Kanten und Ecken.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß der Durchmesser (d) der Koppelstifte 1 mm bis 30 mm, vorzugsweise 5 mm bis 15 mm, beträgt und/oder die Länge (1), mit der die Koppelstifte (31, 33, 38, 36 und 39) in den Resonatorraum (20) hineinragen, 1 = x ' λ (mit 0 < x < 1 und λ = Wellenlänge der Mikrowelle im Hohlleiter (10), vorzugsweise 1 = λ/4 bis λ/2 beträgt.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Durchmesser des Dielektrikums im Hohlleiter entsprechend dem Wellenwiderstand angepaßt ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Abstände (a) der Koppelstifte λ/4 bis λ/2 (mit λ = Wellenlänge der Mikrowelle im Hohlleiter (10) ) beträgt.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß im Applikator-Resonanzraum (20) Gitterroste aus rundlichen Gitterstäben als Unterlage für das Behandlungsgut vorgesehen sind, wobei vorzugsweise die Gitterstäbe senkrecht zum elektrischen Feld der Mikrowelle ausgerichtet sind.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die neben- oder aneinanderliegenden Wände (12, 21) des Hohlleiters (10) und des Applikators thermisch gegeneinander isoliert sind.
17. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 16, zur Entbinderung von Grünlingen aus einem Binder und nachfolgend genannten Stoffen und/oder zur Sinterung von Hartmetallen, Cermets, pulvermetallurgisch hergestellten Stählen oder metallischen oder keramischen Magnetwerkstoffen, insbesondere Ferriten.
18. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 16 zur Erzeugung eines Plasmas.
PCT/DE2001/000259 2000-02-04 2001-01-19 Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung WO2001058215A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/168,786 US6630653B2 (en) 2000-02-04 2001-01-19 Device for adjusting the distribution of microwave energy density in an applicator and use of this device
EP01911377A EP1252802B1 (de) 2000-02-04 2001-01-19 Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung
JP2001557337A JP2003522392A (ja) 2000-02-04 2001-01-19 アプリケータ内のマイクロ波エネルギー密度分布を調整する装置及びこの装置の使用方法
DE50112190T DE50112190D1 (de) 2000-02-04 2001-01-19 Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005146.4 2000-02-04
DE10005146A DE10005146A1 (de) 2000-02-04 2000-02-04 Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem Applikator und Verwendung dieser Vorrichtung

Publications (1)

Publication Number Publication Date
WO2001058215A1 true WO2001058215A1 (de) 2001-08-09

Family

ID=7629967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000259 WO2001058215A1 (de) 2000-02-04 2001-01-19 Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung

Country Status (6)

Country Link
US (1) US6630653B2 (de)
EP (1) EP1252802B1 (de)
JP (1) JP2003522392A (de)
AT (1) ATE357124T1 (de)
DE (2) DE10005146A1 (de)
WO (1) WO2001058215A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189940B2 (en) * 2002-12-04 2007-03-13 Btu International Inc. Plasma-assisted melting
DE10326964B3 (de) * 2003-06-16 2004-12-09 Nexpress Solutions Llc Mikrowelleneinrichtung für das Befestigen von Toner an einem Bedruckstoff und dafür verwendbares Element
DE102004021016B4 (de) * 2004-04-29 2015-04-23 Neue Materialien Bayreuth Gmbh Vorrichtung zur Einspeisung von Mikrowellenstrahlung in heiße Prozessräume
DE502006001026D1 (de) * 2006-05-04 2008-08-14 Topinox Sarl Mikrowellenantennenkonfiguration, Zubehörteil mit solch einer Mikrowellenantennenkonfiguration und Gerät mit zumindest einem solchen Zubehörteil
DE102006046422B4 (de) * 2006-09-22 2021-01-14 Wiesheu Gmbh Ofen zur Wärmebehandlung von Lebensmitteln
WO2008115226A2 (en) * 2007-03-15 2008-09-25 Capital Technologies, Inc. Processing apparatus with an electromagnetic launch
US7518092B2 (en) * 2007-03-15 2009-04-14 Capital Technologies, Inc. Processing apparatus with an electromagnetic launch
DE102007044764B4 (de) 2007-09-19 2010-04-08 Neue Materialien Bayreuth Gmbh Hybridofen
US8451437B2 (en) 2011-02-17 2013-05-28 Global Oled Technology Llc Electroluminescent light output sensing for variation detection
DE102014211575A1 (de) * 2014-06-17 2015-12-17 Hauni Maschinenbau Ag Mikrowellenmessvorrichtung, Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln oder eines Materialstrangs der Tabak verarbeitenden Industrie sowie Maschine der Tabak verarbeitenden Industrie
US20200281051A1 (en) * 2017-08-15 2020-09-03 Goji Limited Six port power measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689459A (en) * 1985-09-09 1987-08-25 Gerling John E Variable Q microwave applicator and method
US4851630A (en) * 1988-06-23 1989-07-25 Applied Science & Technology, Inc. Microwave reactive gas generator
DE4235410A1 (de) * 1992-10-21 1994-04-28 Troester Maschf Paul Abgleichvorrichtung für die Mikrowellenübertragung in einem Hohlleiter
US5512736A (en) * 1993-09-23 1996-04-30 Goldstar Co., Ltd. Auto-load impedance matching device of a microwave oven

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1615463C3 (de) * 1967-11-16 1975-07-03 Bowmar/Tic, Inc., Newbury Park, Calif. (V.St.A.) Ofen mit Abstrahlung von Mikrowellenenergie und mit einem widerstandsbeheizten Metallelement
JPS523142Y2 (de) * 1972-05-25 1977-01-24
US3993886A (en) * 1974-08-30 1976-11-23 U.S. Philips Corporation Supply wave guide system in microwave ovens
GB1543980A (en) * 1975-05-19 1979-04-11 Matsushita Electric Ind Co Ltd Microwave heating apparatus
JPS5211447A (en) * 1975-07-18 1977-01-28 Matsushita Electric Ind Co Ltd High frequency heating apparatus
JPS5472534A (en) * 1977-11-18 1979-06-11 Matsushita Electric Ind Co Ltd High frequency heating device
DE3641063A1 (de) * 1986-12-01 1988-06-16 Bosch Siemens Hausgeraete Mikrowellenofen zum behandeln von speisen
DE3811063A1 (de) * 1988-03-31 1989-10-19 Berstorff Gmbh Masch Hermann Vorrichtung zum kontinuierlichen erwaermen, pasteurisieren oder sterilisieren von lebensmitteln oder dergleichen
DE4340652C2 (de) * 1993-11-30 2003-10-16 Widia Gmbh Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19601234A1 (de) 1996-01-15 1997-07-17 Widia Gmbh Verbundkörper und Verfahren zu seiner Herstellung
US5816445A (en) * 1996-01-25 1998-10-06 Stainless Steel Coatings, Inc. Method of and apparatus for controlled dispensing of two-part bonding, casting and similar fluids and the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689459A (en) * 1985-09-09 1987-08-25 Gerling John E Variable Q microwave applicator and method
US4851630A (en) * 1988-06-23 1989-07-25 Applied Science & Technology, Inc. Microwave reactive gas generator
DE4235410A1 (de) * 1992-10-21 1994-04-28 Troester Maschf Paul Abgleichvorrichtung für die Mikrowellenübertragung in einem Hohlleiter
US5512736A (en) * 1993-09-23 1996-04-30 Goldstar Co., Ltd. Auto-load impedance matching device of a microwave oven

Also Published As

Publication number Publication date
EP1252802A1 (de) 2002-10-30
US6630653B2 (en) 2003-10-07
US20020190061A1 (en) 2002-12-19
JP2003522392A (ja) 2003-07-22
DE50112190D1 (de) 2007-04-26
ATE357124T1 (de) 2007-04-15
EP1252802B1 (de) 2007-03-14
DE10005146A1 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
EP1252802B1 (de) Vorrichtung zur einstellung einer mikrowellen-energiedichteverteilung in einem applikator und verwendung dieser vorrichtung
DE4340224C2 (de) Einrichtung zum Erzeugen von Plasma mittels Mikrowellenstrahlung
WO1999042778A2 (de) Verfahren und vorrichtung zum mikrowellensintern von kernbrennstoff
DE4136297A1 (de) Vorrichtung zur lokalen erzeugung eines plasmas in einer behandlungskammer mittels mikrowellenanregung
DE19700141A1 (de) Brennofen für die Hochtemperaturbehandlung von Materialien mit niedrigem dielektrischem Verlustfaktor
DE102006048816A1 (de) Vorrichtung und Verfahren zur lokalen Erzeugung von Mikrowellenplasmen
EP2348788B1 (de) Elektrische Heizvorrichtung
DE102010027619B3 (de) Mikrowellenplasmaquelle mit einer Vorrichtung zur Zuführung von Mikrowellenenergie
DE3532361A1 (de) Ofen zur durchfuehrung einer waermebehandlung
EP2120508B1 (de) Induktionsheizeinrichtung und Verfahren zur Herstellung einer Induktionsheizeinrichtung
EP0878020A1 (de) Elektromagnetisches hochfrequenz- oder mikrowellengerät
DE102007044764B4 (de) Hybridofen
DE4230029A1 (de) Becherfoermige endzufuehrungen fuer elektrodenlose hochfrequenzlampen
DE102021111188A1 (de) Hohlleiter-Einkoppeleinheit
DE2839194C3 (de) Schachtofen zur Sinterreduktion eines Eisenpulvers für die Pulvermetallurgie
DE3044379C2 (de)
DE10341239A1 (de) ECR-Plasmaquelle mit linearer Plasmaaustrittsöffnung
DE102017115438A1 (de) Vorrichtung zum erzeugen eines plasmastrahls im mhz- und ghzbereich mit tem- und hohlleitermoden
DE102004021016B4 (de) Vorrichtung zur Einspeisung von Mikrowellenstrahlung in heiße Prozessräume
DE19640898C2 (de) Mikrowellen-Sinterofen
EP0448077B1 (de) Mikrowellen-Plasmatron
DE2928238A1 (de) Hoechstfrequenzgeraet vom magnetrontyp
EP0169472A2 (de) Hohlleiterelement für Mikrowellen
DE10040320C1 (de) Innenleiter eines koaxialen Gyrotrons mit um den Umfang gleichverteilten axialen Korrugationen
DE10358329B4 (de) Vorrichtung zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma und Verfahren zur Erzeugung ionisierter Teilchen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/719/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001911377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10168786

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2001 557337

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2001911377

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001911377

Country of ref document: EP