WO2001057493A1 - Methode de test de composition de caoutchouc a l'etat malaxe et procede de production de composition de caoutchouc - Google Patents

Methode de test de composition de caoutchouc a l'etat malaxe et procede de production de composition de caoutchouc Download PDF

Info

Publication number
WO2001057493A1
WO2001057493A1 PCT/JP2001/000634 JP0100634W WO0157493A1 WO 2001057493 A1 WO2001057493 A1 WO 2001057493A1 JP 0100634 W JP0100634 W JP 0100634W WO 0157493 A1 WO0157493 A1 WO 0157493A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
index
kneading
filler
rubber
Prior art date
Application number
PCT/JP2001/000634
Other languages
English (en)
French (fr)
Inventor
Hidenari Nakahama
Masaaki Kawasaki
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP01902682A priority Critical patent/EP1172641A4/en
Priority to JP2001556294A priority patent/JP4443811B2/ja
Priority to KR1020017012497A priority patent/KR20010106532A/ko
Priority to AU30538/01A priority patent/AU3053801A/en
Priority to CA002369125A priority patent/CA2369125A1/en
Publication of WO2001057493A1 publication Critical patent/WO2001057493A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0026Investigating specific flow properties of non-Newtonian fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity

Definitions

  • the present invention relates to a method for testing the kneaded state of a rubber composition and a method for producing the rubber composition, for example, an ethylene / ⁇ -olefin copolymer rubber for crosslinking having good filler dispersibility and a stable kneaded state.
  • a method for producing the composition more specifically, at least an ethylene- ⁇ -olefin copolymer rubber and a reinforcing filler such as carbon black, particularly the ethylene-olefin copolymer rubber 10 30 parts by weight or more of carbon black with respect to 0 parts by weight is kneaded with an internal kneader, and the obtained kneaded material is mixed with a vulcanizing agent or a crosslinking agent and a vulcanization accelerator or a crosslinking aid.
  • the present invention relates to a method for producing a crosslinkable ethylene / ⁇ -olefin copolymer rubber composition having a good filler dispersibility and a stable kneading state by compounding an agent. Background technology
  • ethylene-a-olefin copolymer rubbers such as EPR and EPDM have no mechanical strength by themselves, and therefore require a large number of reinforcing fillers such as carbon black.
  • the ethylene- ⁇ -olefin copolymer Since the viscosity of a rubber such as a polymer rubber is generally higher than that of a resin, it is difficult to finely disperse the filler in an ethylene / ⁇ -olefin copolymer rubber.
  • kneading conditions are determined by selecting conditions that can be kneaded as efficiently as possible while observing product properties and workability.
  • the temperature and humidity due to the weather and the kneading capacity (shearing force, dispersing force) of the kneading machine are often accidentally meshed with each other to cause the above-mentioned problems, so that a certain period of time (period) is caused.
  • a certain period of time (period) is caused.
  • the kneading machine is different even if the mixing ratio is the same, no problem occurs. For example, the cause is difficult to catch.
  • the filler dispersibility there have been known methods of measuring electric resistance, a method using a microscope, and a method of irradiating a rubber compound with light to judge the degree of surface reflection of the rubber compound. It is not enough as an indicator of countermeasures.
  • Mooney viscosity (torque) rises significantly during the measurement time can be easily observed.
  • the state of rotation by a so-called Mooney viscometer is supposed to be in the barrel of an extruder of a rubber processing machine or in the pot of an injection molding machine, and contains a vulcanizing agent and a vulcanization accelerator. It is a phenomenon that occurs even though it has not been done. For this reason, a rubber composition in which carbon black is blended with an ethylene ' ⁇ -olefin copolymer rubber requires an index for grasping the kneading state, in addition to the usual filler dispersion index. there were.
  • the kneading state of the rubber composition which can objectively evaluate the kneading state of the rubber composition containing at least the rubber and the filler, and the method of testing the kneading state of the rubber composition, and the filler dispersibility using the testing method, are improved.
  • the present invention is intended to solve the problems associated with the prior art as described above, and provides a test method capable of objectively evaluating the kneading state of a rubber composition containing at least a rubber and a filler. It is intended to be
  • Another object of the present invention is to provide a method for producing a rubber composition which employs this test method, has good filler dispersibility, and has a stable kneading state. Disclosure of the invention
  • the first test method for the kneaded state of the rubber composition according to the present invention is a test method for the kneaded state of the rubber composition (I) containing at least the rubber (A) and the filler (B).
  • Filler dispersibility index (N) IE * (a) I / IE * (b) Filler dispersity index for calculating the filler dispersity index (N) of the rubber composition (I) according to I, Calculation step, and
  • the filler dispersibility target value (R) is usually set in the above-mentioned complex elastic modulus measurement step (1) and the above-mentioned complex elastic modulus measurement step after the rubber composition having the same composition as the rubber composition (I) is substantially completely dispersed. This is the target filler dispersibility index (NO) obtained by performing the filler dispersibility index calculation step (2).
  • the complete dispersion is desirably performed by kneading with an open roll.
  • this simple test method is a test method for a kneaded state of a rubber composition (I) containing at least a rubber (A) and a filler (B),
  • the filler dispersibility target value (R ′) is usually set in the dynamic elastic modulus measurement step (1 ′) after the rubber composition having the same composition as the rubber composition (I) is substantially completely dispersed. And the target filler dispersibility index ( ⁇ ′) obtained by performing the filler dispersibility index calculation step (2 ′).
  • the complete dispersion is desirably performed by kneading with an open roll.
  • the real part E ' is one order of magnitude larger than the imaginary part E ", so by taking the ratio between the real parts E', it is possible to obtain almost the same result as the ratio of the absolute value of E * Therefore, the test method using the dynamic elastic modulus E 'is excellent in that the calculation in the filler dispersibility index calculating step is simplified and simple. Can be measured by the same measuring device and measuring method as the complex elastic modulus E * described later.
  • the first method for producing the rubber composition according to the present invention includes performing the first test method (including the simple test method described above) for the kneaded state of the rubber composition according to the present invention.
  • This production method usually further comprises (4) or (4 ') the result of the comparison step (3) or (3'), the filler dispersion index (N) and the target value of the zofiller dispersion ( R) or the filler dispersibility index ( ⁇ ') / target filler dispersity value (R') should be adjusted so that the rubber composition (I) is kneaded within a certain range. Adjustment, with feedback process.
  • the numerical range of the filler dispersion target value (R ′) is preferably 0.8 to: 0.0.
  • the second test method for the kneaded state of the rubber composition according to the present invention is a method for testing the kneaded state of a rubber composition (I) containing at least a rubber ( ⁇ ) and a filler ( ⁇ ). And (5) measuring a complex viscosity ⁇ ? * Of the rubber composition (I) at at least two different temperatures,
  • the kneading state target value (P) is usually set in the complex elastic modulus measuring step (5) and the kneading state after the rubber composition having the same composition as the rubber composition (I) is substantially completely dispersed. This is the target kneading state grasping index (M0) obtained by performing the grasping index calculation step (6).
  • the complete dispersion is desirably performed by kneading with an open roll.
  • this simple test method is a test method for a kneaded state of a rubber composition (I) containing at least a rubber (A) and a filler (B), (5 ') a complex viscosity measurement step of measuring the real part 77' of the complex viscosity 7? * Of the rubber composition (I) at least at two different temperatures; (6 ') the complex viscosity From the temperature dependence of the real part ⁇ of the complex viscosity 7? * Obtained in the measurement process (5 '),
  • the kneading state target value ( ⁇ ′) is obtained by setting the rubber composition of the same composition as the rubber composition (I) in a substantially completely dispersed state, and then measuring the complex elastic modulus (5 ′) and grasping the kneading state. This is the target kneading state grasping index ( ⁇ ') obtained by performing the index calculation step (6'). It is desirable that the complete dispersion be performed by kneading with an open roll.
  • the above 7? 'Is the extraction of the real part of the complex viscosity 7 ⁇ *, and the relationship between them can be expressed by the following equation.
  • the real part ⁇ is about an order of magnitude larger than the imaginary part 7? ", So if so-called Arrhenius plotting is performed on the real part 7? ' We can obtain almost the same result, therefore, the real part of this complex viscosity 77 * 7? ' Is superior in that the calculation in the kneading state grasping index calculation step is simplified and simple.
  • the measurement of the real part 7 ′ of the complex viscosity 77 * can be performed by the same measuring device and measuring method as the complex viscosity 77 * described later.
  • the second method for producing the rubber composition according to the present invention includes performing the above-described second test method (including the simple test method) for kneading the rubber composition according to the present invention. It is characterized by.
  • the kneading state grasping index (M) and the kneading state target value (P) are usually further determined based on (8) or (8 ') the results of the comparison step (7) or (7'). ) Or the kneading state grasping index ( ⁇ ')
  • the kneading condition of the rubber composition (I) is adjusted so that the value of the kneading state target value ( ⁇ ') is within a certain numerical range. It has a process.
  • the numerical range of the kneading state grasping index ( ⁇ ) and the kneading state target value ( ⁇ ) or the kneading state grasping index ( ⁇ ') and the kneading state target value ( ⁇ ') range from 0.85 to It is preferably 1.0.
  • the first method for producing a rubber composition according to the present invention further includes the steps ((5) to (7), (8)) of the second method for producing a rubber composition according to the present invention. Is also good.
  • the second method for producing the rubber composition according to the present invention further includes the steps ((1) to (3)) and (4) in the first method for producing the rubber composition according to the present invention. ) May be included.
  • a method for producing an ethylene / ⁇ -olefin copolymer rubber composition for cross-linking includes at least an ethylene / olefin copolymer rubber and a reinforcing filler such as the ethylene / ⁇ -olefin copolymer. -30 parts by weight or more of reinforcing filler per 100 parts by weight of the olefin copolymer rubber is kneaded with an internal kneader, and if necessary, a vulcanizing agent or a cross-linking agent.
  • a vulcanization accelerator or a crosslinking aid In the method for producing a rubber composition for crosslinking containing a vulcanization accelerator or a crosslinking aid,
  • the filler variance index ( ⁇ ) obtained by the following method is the following method.
  • R Filler dispersibility index: at least an ethylene / ⁇ -olefin copolymer rubber, a reinforcing filler, a vulcanizing agent or a crosslinking agent, and if necessary, a vulcanization accelerator or Measure the strain dependence of the dynamic elastic modulus of a cross-linked rubber sheet of uniform thickness, formed from an uncross-linked rubber composition obtained by kneading a cross-linking aid with an 8-inch open roll at 100 or less.
  • the dynamic modulus as a percentage of E * (b) [(E * (b) ZE * (a)) X 100] (more precisely, (IE * (b ) I / IE * (a) Let I) x 100) be the reference filer dispersion index (R).
  • the “reference filler dispersion index (R)” in this specific example corresponds to the “filler dispersion target value (R)” in the first test method of the present invention. This corresponds to the target filer dispersion index (NO) in the first test method.
  • Kneading state grasping index (P) obtained by kneading at least 100 or less of ethylene and olefin copolymer rubber and a reinforcing filler with an 8-inch open roll. Equation showing the relationship between the complex viscosity and the measurement temperature of an uncrosslinked rubber composition containing no vulcanizing agent, crosslinking agent, vulcanization accelerator and crosslinking aid.
  • the kneading state grasping index (P) is used as the reference.
  • the “standard kneading state grasping index (P)” in this specific example is the “kneading state target value (P)” in the second test method of the present invention. This corresponds to the target kneading state grasping index (M0).
  • the dynamic elastic modulus (specifically, the specific elastic strain determined from the changing part) Is the complex elastic modulus) Percentage of E * (b) [(E * (b) ZE * (a)) X100] (More precisely, (IE * (b) IZIE * (a) X10) 0) is the filler dispersion index.
  • Kneading state comprehension index (M) At least ethylene / polyolefin copolymer rubber and reinforcing filler are sheared by a closed kneader, or heat and shear are applied.
  • the complex viscosity of the uncrosslinked rubber composition (same composition as the uncrosslinked rubber composition of (2)) containing no vulcanizing agent, crosslinking agent, vulcanization accelerator and crosslinking aid obtained by kneading. Equation showing the relationship with the measurement temperature
  • Ea obtained from the above is used as the kneading state grasping index (M).
  • carbon black is preferably used as the reinforcing filler.
  • the filler dispersibility is good and the kneading state is stable.
  • the resulting ethylene-crosslinking copolymer rubber composition for crosslinking is obtained.
  • the above-mentioned ethylene / ⁇ -olefin copolymer rubber composition for cross-linking comprises at least an ethylene / ⁇ -olefin copolymer rubber and a reinforcing filler such as the ethylene / ⁇ -olefin copolymer. Kneading a reinforcing filler in an amount of at least 30 parts by weight based on 100 parts by weight of rubber with a closed kneader, and a vulcanizing agent or a crosslinking agent, and a vulcanizing accelerator or a crosslinking agent as required In a rubber composition for crosslinking containing an auxiliary,
  • the ratio (N / R) between the filler dispersibility index ( ⁇ ) and the filler dispersibility index (R) obtained by the above-mentioned method is in the range of 1 to 0.8, and It is characterized in that the ratio ( ⁇ / ⁇ ) between the grasping index ( ⁇ ) and the kneading state grasping index ( ⁇ ) is in the range of 1 to 0.85.
  • carbon black is preferably used as the reinforcing filler.
  • the ethylene / ⁇ -olefin copolymer rubber composition for crosslinking is The filler dispersibility is good, and the kneading state is extremely stable.
  • the ratio of the filler dispersibility index (N /) and the ratio of the kneading state grasping index (MZP) newly found by the present inventors were used as objective evaluation indexes of the filler dispersing property and kneading state, respectively. By doing so, for the first time, it becomes possible to easily set the kneading conditions of the closed kneader according to the temperature, humidity, and shearing conditions that change with the seasons.
  • Fig. 1 is an example of a graph showing the strain dependence of the dynamic elastic modulus for explaining the method of measuring the filler dispersion index.
  • Fig. 2 is a graph showing the relationship between the complex viscosity (7) and the frequency for explaining how to determine the activation energy of the melt viscosity.
  • A) in Fig. 3 shows the activation energy of the melt viscosity.
  • complex viscosity illustrating a method of obtaining a (?? *) is a graph showing a relationship between a frequency and a.
  • invention is
  • (b) is a graph with the shift factor (a T) shows the relationship between the temperature Best mode to implement
  • rubber (A) constituting the rubber composition (I) used in the present invention natural rubber (NR) or synthetic rubber is used.
  • the synthetic rubber examples include isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), black rubber (CR), acrylonitrile butadiene rubber (NBR), and butyl rubber ( IIR), ethylene' ⁇ -olefin copolymer rubber such as ethylene propylene rubber (EPM), ethylene ' ⁇ -olefin' (non) conjugated polyene copolymer rubber such as ethylene 'propylene' gen rubber (EPDM), Fluoro rubber, epichlorohydrin rubber and the like can be mentioned.
  • IR isoprene rubber
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • CR black rubber
  • CR acrylonitrile butadiene rubber
  • IIR butyl rubber
  • ethylene' ⁇ -olefin copolymer rubber such as ethylene propylene rubber (EPM), ethylene ' ⁇ -olefin
  • the filler ( ⁇ ) constituting the rubber composition (I) used in the present invention may be a conventionally known reinforcing filler, or a conventionally known filler having no reinforcing property. There may be.
  • the first test method of kneaded state of the rubber composition according to the present invention is a rubber composition containing at least rubber (A) and filler (B). This is a test method applied to (I) and has the following complex elastic modulus measurement step (1), filler dispersion index calculation step (2), and comparison step (3).
  • At least the complex modulus E * of the rubber composition (I) containing the rubber (A) and the filler (B) changes (decreases) as the strain ⁇ increases. I do.
  • Such a change corresponds to the fact that the aggregate and bond of the filler ( ⁇ ) in the composition (I) are destroyed and the complex elastic modulus ⁇ * decreases as the strain ⁇ increases.
  • the rubber composition (I) having good filler dispersibility is a harm that the change rate of the complex elastic modulus ⁇ * is small because the aggregation and bonding of the filler ( ⁇ ) are broken from the beginning. That is, the rubber composition (I) having a small change rate of the complex modulus ⁇ * with respect to the strain ⁇ is a composition having good filler dispersibility, and a rubber having a large change rate of the complex modulus ⁇ ⁇ ⁇ * with respect to the strain ⁇ .
  • the composition (I) can be said to be a composition having poor filler dispersibility.
  • the rate of change of the complex elastic modulus ⁇ * with respect to this strain ⁇ is expressed as the ratio [E * (E) of the complex elastic moduli (Ea) and E * (b)) measured at two different strain values ( ⁇ a, ⁇ b). b) / E a)]. Also, more simply, the evaluation can be made by the ratio of the real part E ′ (a) of E * (a) to the real part E ′ (b) of E * (b).
  • the measurement of the complex elastic modulus can be performed by various viscoelasticity measuring devices. Examples include, but are not limited to, Rheometrics RDS, RSAII, —Technologies RPA—200,000 measuring devices. In short, any measuring device that can evaluate the complex conductivity at different distortion values with a certain accuracy may be used.
  • the measurement of the complex elastic modulus can be performed on both vulcanized rubber (preferably a rubber sheet) and unvulcanized rubber (preferably a rubber sheet). However, when measuring the complex modulus in the state of unvulcanized rubber, use an unvulcanized rubber compound containing no vulcanizing agent etc. as a sample so that the vulcanization reaction does not proceed during the measurement.
  • the complex elastic modulus not only the complex elastic modulus E * obtained in the measurement in the Young's modulus direction (longitudinal direction) but also the complex elastic modulus G * obtained in the measurement in the torsion direction may be applied to the present invention. Can be.
  • This complex elastic modulus G * can be obtained from the strain dependence of G * by applying a torsional strain to a 2-mm thick vulcanized rubber sheet, and the same can be obtained from G '(dynamic elastic modulus). Can be treated as an indicator.
  • evaluation can be performed on an unvulcanized rubber compound without using a vulcanized rubber sheet, and the complex elastic modulus G * can be measured in the same manner as described above.
  • the measurement of the complex elastic modulus G * in the unvulcanized rubber compound is possible even if a vulcanizing agent and an auxiliary agent are present in the unvulcanized rubber compound.However, in order to prevent the crosslinking reaction from proceeding during the measurement, It is necessary to pay attention to the measurement temperature.
  • the filler dispersibility target value (R) is usually determined by setting the rubber composition having the same composition as the rubber composition (I) to a substantially completely dispersed state, and then measuring the complex elastic modulus measurement step (1) and the filler composition. This is the target filler dispersibility index (NO) obtained by performing the color dispersion index calculation step (2).
  • the filler dispersibility target value (R) may be a theoretically calculated value by a computer simulation or the like, or may be an actually measured value.
  • the above-mentioned “substantially completely dispersed state” means that the filler in the composition sufficiently disperses, and even if the energy for kneading is further applied, the dispersion of the filler is reduced.
  • the above refers to a state where it does not proceed.
  • the energy for kneading can be measured, for example, by the power consumed by the kneading machine.
  • the dispersion of the filler can be indirectly grasped, for example, by measuring various physical properties (hardness, tensile strength, tensile elongation, etc.) of the rubber obtained by vulcanizing the composition.
  • saturation of the change in various physical properties of the vulcanized rubber with respect to the power consumption of the kneader can be regarded as a substantial “perfectly dispersed state”.
  • a fully dispersed state exists for each of the different formulations if the formulation is different.
  • the composition kneaded by the open roll is converted into a composition in a substantially completely dispersed state, and the target filler It can be suitably used for measuring the monodispersity index (NO).
  • the above-described first test method (including a simple test method) of the kneaded state of the rubber composition according to the present invention is performed.
  • the filler dispersibility in the rubber composition (I) can be objectively evaluated.
  • the filler dispersibility index (N) and the filler dispersibility target value (R) are usually set to a constant value in response to the result of the comparison step (3). It has a feedback step of adjusting the kneading conditions of the rubber composition (I) so as to fall within the range.
  • the numerical range of the filler dispersion index (N) and the target value of the filer dispersion (R) (when IE * (a) I ⁇ IE * (b) I) is 0.8 to 1.0. Preferably, there is.
  • the kneading conditions for the rubber composition (I) are as follows: kneading temperature, kneading time, shearing speed, floating weight pressure, number and / or timing of floating weight up / down, kneader filling rate, kneading blade density, kneading blade And the clearance between the housing and the casing, and the clearance between the mouth and the mouth.
  • the second test method of kneaded state of the rubber composition according to the present invention comprises a rubber composition containing at least a rubber (A) and a filler (B).
  • This is a test method applied to the crosslinked rubber composition (I) and has the following complex viscosity measurement step (5), kneading state grasping index calculation step (6), and comparison step (7).
  • M in the equation represents the temperature dependence of the complex viscosity r? *.
  • A is a constant
  • R is a gas constant
  • T is the measured temperature (° K).
  • the temperature dependence of the complex viscosity 7? * Increases, the influence of the formation and disappearance of the pseudogel in the rubber composition (I) increases. In the rubber composition (I) in a well-kneaded state, formation and disappearance of the pseudogel hardly occur.
  • the temperature dependence of 7 * is minimal and M is maximal. That is, the rubber composition (I) having a large M is a composition having a good kneading state, and the rubber composition (I) having a small M is a composition having a poor kneading state.
  • the kneading state of the rubber composition (I) can be objectively evaluated by measuring the complex viscosity * at two or more temperatures and calculating M using an Arrhenius plot.
  • M is given by the following equation ( It can be obtained from each of 1) and equation (2).
  • equation (2) One Ea in these equations corresponds to M.
  • a T is the shift factor
  • Ea is the apparent activation energy
  • T is the measured temperature ⁇ K
  • R is the gas constant
  • A is the exponential term (constant).
  • the complex viscosity * of the rubber composition (I) is measured at least at two different temperatures.
  • the complex viscosity can be measured by various viscoelasticity measuring devices. Examples include, but are not limited to, Rheometrics RDS, RSAII, —Technologies RPA—200,000 measuring devices. In short, any measuring device that can evaluate the complex viscosity with a certain degree of accuracy may be used.
  • the measurement of complex viscosity is performed on unvulcanized rubber compounds.
  • an unvulcanized rubber compound containing no vulcanizing agent is preferably used as a sample so that the vulcanization reaction does not proceed during the measurement.
  • an unvulcanized rubber compound containing a vulcanizing agent or the like it is preferable to control the temperature below the vulcanization temperature so that the vulcanization reaction does not proceed.
  • Complex viscosity can be measured for unvulcanized rubber, but not for vulcanized rubber.
  • the unvulcanized rubber compound may contain vulcanizing agents and auxiliaries, but it is necessary to set the measurement temperature so that the vulcanization reaction does not occur during the measurement. Therefore, the sample is preferably an unvulcanized rubber compound containing no vulcanizing agent or auxiliary agent. Therefore, an unvulcanized rubber compound sampled immediately after kneading from a Banbury mixer or the like is preferable.
  • the complex viscosity can be measured with RDS by Rheometrics or RPA—200 ° by ⁇ -Technologies. Placing an unvulcanized rubber compound on the measuring plates, complex viscosity at the measured temperature by sandwiching 77 *, obtains the shift factor a T, the equation (1), activation energy (E a from (2) ) Is calculated. In principle, two conditions are sufficient for the measurement temperature, but three or more conditions are preferable from the viewpoint of measurement accuracy.
  • a kneading state grasping index (M) of the rubber composition (I) is calculated according to the following equation.
  • the preset kneading state target value (P) is compared with the kneading state grasping index (M) calculated in the kneading state grasping index calculating step (6).
  • the kneading state target value (P) is usually set in the complex modulus measurement step (5) and the kneading state after the rubber composition having the same composition as the rubber composition (I) is substantially completely dispersed. This is the target kneading state grasping index (M0) obtained by performing the grasping index calculation step (6).
  • the kneading state target value (P) may be a theoretically calculated value by computer simulation or the like, or may be an actually measured value.
  • the above-mentioned “substantially completely dispersed state” means that the dispersion of the filler in the composition sufficiently proceeds, and even if the energy for kneading is further applied, the dispersion of the filler is further increased. It does not proceed.
  • the energy for kneading can be measured, for example, by the power consumed by the kneading machine.
  • the dispersion of the filler can be indirectly grasped, for example, by measuring various physical properties (hardness, tensile strength, tensile elongation, etc.) of the rubber obtained by vulcanizing the composition.
  • saturation of the change in various physical properties of the vulcanized rubber with respect to the power consumption of the kneader can be regarded as a substantial “perfectly dispersed state”.
  • the fully dispersed state is the composition Is present for each of the different formulations.
  • the composition kneaded by the open roll can be suitably used as a composition in a substantially completely dispersed state for measuring the target kneading state grasping index (M0).
  • a second method for producing a rubber composition according to the present invention is characterized in that the above-described second test method for a kneaded state of the rubber composition according to the present invention is performed. By performing this, the kneading state of the rubber composition (I) can be objectively evaluated.
  • the method has a feedback step of adjusting the kneading conditions of the rubber composition.
  • the numerical range of the kneading state grasping index (M) and the Z kneading state target value (P) is preferably 0.85 to 1.0.
  • the kneading conditions for the rubber composition (I) are as follows: kneading temperature, kneading time, shearing speed, floating weight pressure, number and / or timing of floating weight up / down, kneader filling rate, kneading blade density, kneading blade And the clearance between the casing and the casing, and the clearance between the mouth and the rotor.
  • the first method for producing the rubber composition according to the present invention further comprises It may include the steps ((5) to (7), and further (8)) in the second method for producing such a rubber composition.
  • the second method for producing the rubber composition according to the present invention further comprises the steps ((1) to (3), (4)) in the first method for producing the rubber composition according to the present invention. May be included. That is, in the method for producing the rubber composition according to the present invention, both the first test method and the second test method for the kneaded state of the rubber composition according to the present invention can be performed.
  • the present invention can be carried out in various embodiments depending on the type, properties, and application of the rubber composition.
  • the following ethylene / ⁇ -olefin copolymer rubber for crosslinking is used.
  • a method for producing the composition can be mentioned.
  • an ethylene-olefin copolymer rubber composition for crosslinking in the method for producing an ethylene-olefin copolymer rubber composition for crosslinking according to the present invention, at least an ethylene- ⁇ -olefin copolymer rubber and a reinforcing filler such as the ethylene- ⁇ - Kneading a reinforcing filler in an amount of 30 parts by weight or more with respect to 100 parts by weight of the olefin copolymer rubber by an internal kneading machine, and vulcanizing with a vulcanizing agent or a crosslinking agent, if necessary.
  • a rubber composition for cross-linking comprising an accelerator or a cross-linking auxiliary and an additive generally used as an additive for an olefin-based rubber such as a softener is produced.
  • the ethylene ' ⁇ -olefin copolymer rubber used in the present invention is not particularly limited, and a conventionally known ethylene' ⁇ -olefin copolymer rubber can be used. Ethylene'-olefin copolymer rubber, ethylene-olefin- (non) conjugated polyethylene copolymer rubber such as EPDM, and the like.
  • a conventionally known reinforcing filer can be used, and specifically, carbon black, anhydrous caic acid, hydrated caic acid, calcium silicate, gay acid Examples include aluminum, clay, talc, calcium carbonate, and the like. Among them, carbon black is preferably used.
  • the amount of the reinforcing filer such as carbon black varies depending on the use of the ethylene / ⁇ -olefin copolymer rubber composition for crosslinking. However, the amount of the ethylene / ⁇ _olefin copolymer rubber is 100%. 30 parts by weight or more, usually 30 to 300 parts by weight, preferably 60 to 300 parts by weight, more preferably 100 to 300 parts by weight with respect to parts by weight. Can be.
  • vulcanizing agent used in the present invention examples include conventionally known vulcanizing agents such as zeolites and zeolites.
  • a vulcanization accelerator is not particularly limited as long as it is a conventionally known vulcanization accelerator.
  • examples of the crosslinking agent used in the present invention include organic peroxides.
  • the organic peroxide is not particularly limited as long as it is an organic peroxide conventionally used for crosslinking EPR and EPDM.
  • crosslinking assistant it is desirable to use a crosslinking assistant together with the organic peroxide.
  • the crosslinking assistant is not particularly limited as long as it is a conventionally known crosslinking assistant.
  • a conventionally known softening agent may be used.
  • Additives such as agents, heat stabilizers, weather stabilizers, antistatic agents, lubricants, processing aids, and pseudogelling inhibitors can be used within a range that does not impair the object of the present invention.
  • closed kneaders include those known as Bambari mixer, Nieder, Intermix, and Erna I.
  • a filter—dispersion index (R) and / or a kneading state grasping index is analyzed in advance by the following method. ( ⁇ ) is required.
  • the dynamic elastic modulus (more precisely, the complex elastic modulus) obtained by specifying a specific strain is E * (a) and the part where the dynamic elastic modulus (more precisely, the complex elastic modulus) changes greatly depending on the strain, the dynamic elastic modulus (more precisely, the complex elastic modulus) obtained by specifying a specific strain Percentage) E * (b) as a percentage [(E * (b) / E * (a)) X100]] (more precisely (IE * ( b) Let I / IE * (a) I) X 100) be the reference filler dispersion index (R).
  • the strain dependency of the dynamic elastic modulus of a crosslinked rubber sheet having a uniform thickness is as follows. It can be measured using a viscoelasticity tester RSA II manufactured by Rheometrics, but is not limited to this measurement method. Details of this measurement method will be described in the section of Examples.
  • portion where the dynamic elastic modulus does not change with respect to strain is the portion of the vulcanized rubber sheet (including the crosslinked rubber sheet) where the dynamic elastic modulus change rate is less than 3%. Point (same below).
  • portion where the dynamic elastic modulus greatly changes due to distortion refers to a portion of the vulcanized rubber sheet where the dynamic elastic modulus change rate is 3% or more (the same applies hereinafter). .
  • Kneading state grasping index ( ⁇ ) A kneading condition obtained by kneading at least 100 ethylene or less with an ethylene- ⁇ -olefin copolymer rubber and a reinforcing filler using an 8-inch open roll. Equation showing the relationship between the complex viscosity and the measurement temperature of an uncrosslinked rubber composition that does not contain a sulfurizing agent, a crosslinking agent, a vulcanization accelerator and a crosslinking aid.
  • the kneading state grasping index (P) is used as a reference.
  • the kneading state grasping index (P) can be measured using a viscoelasticity tester RSA II manufactured by Rheometrics, but is not limited to this measuring method. The details of this measurement method will be described in the section of Examples.
  • a viscoelasticity tester RSA II manufactured by Rheometrics but is not limited to this measuring method. The details of this measurement method will be described in the section of Examples.
  • at least the ethylene-co-olefin copolymer rubber and the reinforcing filler are kneaded with the same composition ratio as described above in a closed kneader, and if necessary, a vulcanizing agent or a crosslinking agent.
  • a cross-linking ethylene or ⁇ -olefin-based In producing the copolymer rubber composition, the filler is analyzed by the following method to determine the filler dispersibility index ( ⁇ ) and the kneading state grasping index ( ⁇ ).
  • the dynamic elastic modulus (more precisely, the complex elastic modulus) obtained by specifying a specific strain, and the dynamic elastic modulus (more precisely, the complex elastic modulus) greatly changes depending on the strain.
  • Dynamic elastic modulus (more precisely Is the complex modulus of elasticity) Percentage of E * (b) [(E * (b) ZE * (a)) X100] (More precisely, (IEb) IZIE * (a) I) X10 0) is the filler dispersion index (N).
  • the filler dispersibility index (N) can be measured using a viscoelasticity tester RSA II manufactured by Rheometrics, but is limited to this measurement method. Not done. The details of this measurement method will be described in the section of Examples.
  • Kneading state comprehension index (M) At least ethylene and polyolefin copolymer rubber and reinforcing filler are sheared by a closed kneader, or heat and shear are applied.
  • Complex viscosity of an uncrosslinked rubber composition (same composition as the uncrosslinked rubber composition of the above (2)) containing no vulcanizing agent, crosslinking agent, vulcanization accelerator and crosslinking aid obtained by kneading while mixing. That shows the relationship between the measurement temperature
  • Ea obtained from the above is used as the kneading state grasping index (M).
  • the kneading state grasping index (M) can be measured using a viscoelasticity tester RSA ⁇ ⁇ manufactured by Rheometrics, but is not limited to this measuring method. The details of this measurement method will be described in the section of Examples.
  • Kneading condition grasping index (M) Kneading condition grasping index (P) 1-0.85 You.
  • Filler dispersibility index (N) If the value of the filler dispersibility index (R) is in the range of 1 to 0.8, the filler dispersion in the rubber composition kneaded by the internal mixer is set. Can be evaluated as good.
  • a pseudo gel may be generated in the rubber composition kneaded by the closed kneader. If a pseudo-gel is generated, the die gap in extrusion molding is reduced, and the vulcanized (crosslinked) rubber properties are degraded. It should be noted that the change cannot be seen in the Mooney viscosity [ML (1 + 4) 100] value, which is usually managed as an index for grasping the kneading state.
  • the inventors of the present invention have found that in a system in which ethylene ' ⁇ -olefin copolymer rubber and carbon black are blended, the one that changes as the amount of kneading changes is determined by the difference between the polymer and filler (carbon black). This is pseudo-gel formation at the interface. To prevent this pseudo-gel from being generated, we found that oxygen (air), which acts as a radical scavenging effect, should be supplied to the gel generation point. Was.
  • Oxygen can be supplied into the internal mixer by raising and lowering the floating weight. However, if this operation is repeated many times, the pressing force of the rubber composition is removed, and the filler cannot be sufficiently dispersed, so that the kneading time becomes longer, and as a result, Cross-linking ethylene ' ⁇ -olefin copolymer The production rate of the system composition will be reduced.
  • the present inventors have found that a filler dispersion newly discovered by the present inventors that can objectively evaluate filler dispersibility.
  • the index of mixing and the index of grasping the state of kneading, which can objectively evaluate the state of kneading, are used.
  • Kneading state grasping index (M) Z Kneading state grasping index (P) 1 to 0.85, so that the kneading condition of the internal mixer is controlled, for example, the floating way installed in the internal mixer.
  • the oxygen is supplied to the internal mixer by moving the mixer up and down, so that pseudo-gel is not generated, the filler dispersibility is good, and the kneading state is stable.
  • the copolymer rubber composition can be produced most economically.
  • the floating weight serves as the weight of the kneading machine's closed section, and its vertical movement is usually the action performed to scrape (clean) the compounded material that has been wiped up on the top. is there.
  • the filler dispersibility index (R) and the kneading state grasping index ( ⁇ ) of the rubber composition set in the present invention are different when the rubber composition to be evaluated is different.
  • the composition of the rubber composition to be evaluated must be the same as the composition of the rubber composition set above, since it cannot be compared with the composition of the rubber composition (ii) and the kneading state grasping index (II). In other words, when changing the set rubber composition to another composition In this case, it is necessary to newly obtain the filler dispersibility index (R) and the kneading state grasping index (P) of the changed rubber composition.
  • the filler dispersion index (R) and the Z or the kneading state grasping index of the rubber composition obtained by an 8-inch open roll, which are considered to be the best in the rubber composition, are considered to be obtained.
  • P a filler dispersibility index (R) and / or a kneading state grasping index (P) and a filler dispersibility index (R) of the rubber composition obtained by the internal kneading machine.
  • the deviation from the ideal state is grasped, and the kneading conditions of the closed kneader are adjusted so that the ideal state is achieved. Specifically, it controls the compounding rate, the rotation speed, and the timing of the vertical movement of the floating weight.
  • the kneading method using an 8-inch open roll can improve the kneading state, but is not suitable for mass production of rubber compositions.
  • the rubber composition kneaded by an 8-inch open roll can be used as a reference rubber composition for understanding the filler dispersibility and kneading state of the rubber composition kneaded by an internal kneader. .
  • the filler dispersibility is good and the kneading state is low.
  • the defined ethylene / ⁇ -olefin copolymer rubber composition for crosslinking can be economically obtained. Specifically, when kneading an ethylene ' ⁇ -olefin copolymer rubber, a reinforcing filler, etc., the ribbon does not crack, and the obtained rubber composition has an extrudability, A molded article having good injection moldability, good mechanical strength properties such as tensile strength, and good compression set can be provided.
  • the ethylene / ⁇ -olefin copolymer rubber composition for crosslinking according to the present invention has a ratio (NZR) of 1 between the filler dispersibility index ( ⁇ ) and the filler dispersibility index (R). Since the ratio ( ⁇ ) of the kneading state grasping index ( ⁇ ) to the kneading state grasping index ( ⁇ ) is within the range of 1 to 0.85, and the filler dispersibility is low. Good and the kneading condition is stable. The invention's effect
  • the kneaded state of a rubber composition containing at least a rubber and a filler can be objectively evaluated.
  • a test method capable of objectively evaluating the kneading state of the rubber composition is adopted, so that the filler has good dispersibility and the kneading state is stable.
  • Rubber composition can be provided.
  • T B The tensile strength (T B ), tensile elongation (EB), and compression set (C s ) in Examples and Comparative Examples were measured in accordance with JISK6253.
  • the filler dispersibility index and the kneading state grasping index in Examples and the like were determined under the following conditions, respectively.
  • Measurement temperature 210T , 190, 170:
  • Ethylene ⁇ -olefin copolymer rubber as ethylene.
  • the mixture was kneaded at 60 to obtain an unvulcanized rubber composition containing no vulcanizing agent and no vulcanization accelerator.
  • the unvulcanized rubber sheet was punched out into a circular shape having a diameter of 25 mm to obtain a test piece for measuring complex viscosity.
  • the complex viscosity (77 *) was measured under the above conditions using a parallel plate with a viscoelasticity tester RDSII manufactured by Rheometrics Co., Ltd.
  • test piece was heated to 210 and held for 6 minutes until the inside of the layer became stable at 210, and then the complex viscosity at 210, 190 ° C and 170 "C was obtained.
  • the ratio (r? *) was measured, and a shift factor of 1 (a ⁇ ) was calculated from the above equation.Specifically, this test piece was heated to 210 ⁇ and the inside of the layer was stabilized at 21O :. Hold for 6 minutes, then 2 1 0 to 1 9O: In measuring the complex viscosity (77 *) continuously to 170, the complex viscosity was measured at 210 and the rate was set to 190 at the rate of 15 ⁇ CZ after the completion of the complex viscosity measurement.
  • the complex viscosity (;? *) At 190 is measured, and under the same conditions as above, the complex viscosity at 170 is calculated as 17 O: was measured for viscosity (eta. the shift factor (a T) and the measured temperature (T) apparent from the relationship between the active Kako Nerugi one (E a) value (kJ / mol) That kneading state grasping index (P) was calculated.
  • the unvulcanized rubber composition was press-vulcanized using a 50-ton press under conditions of 160 and 8 minutes to obtain a vulcanized rubber sheet having a thickness of l mm. Then, a strip sample was prepared from this vulcanized rubber sheet so as to have a width of 10 mm and a length of 30 mm.
  • the strain dependence of the dynamic elastic modulus is plotted in a graph, for example, as shown in Fig. 1.
  • the vulcanized rubber sheet with a strain ( ⁇ ) force of 0.01%
  • the strain ( ⁇ ) was 2 %
  • the dynamic elastic modulus (more precisely, the complex elastic modulus) Eb) was determined, and the filler dispersion index (R) was calculated from the following equation.
  • Example 1 The kneading by the above-mentioned closed kneader in Example 1, Example 2, Example 3 and Example 5 was carried out according to the mixing method specified in JISK 6299.
  • the kneading was performed by a kneading method (A1 method), and the kneading times were 110 seconds, 50 seconds, 240 seconds, and 360 seconds, respectively.
  • kneading with the above-mentioned closed kneader in Example 4 and Example 6 is performed by a kneading method ( ⁇ 2 method) specified in JISK 6299, and during the kneading, cleaning is performed.
  • the floating weight used in the experiment was moved up and down twice.
  • the kneading times were 240 seconds and 360 seconds, respectively.
  • This unvulcanized rubber sheet was punched out into a circular shape having a diameter of 25 mm to obtain a test piece for measuring complex viscosity.
  • the complex viscosity was measured under the above conditions using a parallel plate with a viscoelasticity tester RDS S manufactured by Rheometrics Co., Ltd.
  • test piece was heated to 210 and held for 6 minutes until the inside of the layer became stable at 210, and then the complex at 210,190t:, 170 "
  • the viscosity 71 was measured, and the shift factor (a ⁇ ) was calculated from the above equation, and the apparent activation energy (Ea) value (Ea) was obtained from the relationship between the shift factor (a T ) and the measurement temperature (T).
  • U / mol that is, the kneading state grasping index (M) was calculated.
  • a vulcanizing agent and a vulcanization accelerator not containing 300 g of the vulcanized rubber composition is wound on an 8-inch open roll, and 1.5 phr of sulfur is used as a vulcanizing agent, and Noxeller M is used as a vulcanization accelerator [trade name; manufactured by Ouchi Shinko Chemical Industry Co., Ltd.] 0.5 phr, Noxera I TT [trade name; manufactured by Ouchi Shinko Chemical Industry Co., Ltd.] 1.0 phr was added and kneaded.
  • a 3 mm sheet of an unvulcanized rubber composition was prepared with a roll gap of 3 mm.
  • the unvulcanized rubber composition was press-vulcanized with a 50-ton press under a condition of 160 for 8 minutes to obtain a vulcanized rubber sheet having a thickness of l mm. Then, a strip sample was prepared from this vulcanized rubber sheet so as to have a width of 10 mm and a length of 30 mm.
  • This strain dependence of the dynamic elastic modulus is plotted in a graph.
  • the dynamic elastic modulus (more precisely, the complex elastic modulus) E * does not change with respect to the strain.
  • the dynamic elastic modulus of the vulcanized rubber sheet at 1% (more precisely, the complex elastic modulus) E '(a) and the dynamic elastic modulus (more From the part where the complex elastic modulus has changed significantly, the dynamic elastic modulus at a strain of 2% (more precisely, the complex elastic modulus) E b) is calculated. (N) was calculated.
  • N (%) (E * (b) / E * (a)) X 1 0 0
  • extrusion molding was performed under the following conditions, and the die-to-jewel ratio was determined. The extruded surface of the obtained extruded product was observed. And the following rating.
  • Example 1 is the same as Example 1, except that the same kneading and mixing time (50 seconds) as in Example 1 were used, and the temperature of the internal kneading machine was previously raised to 170 C by steam, and kneading was performed. It went to.
  • This unvulcanized rubber sheet was punched out into a circular shape having a diameter of 25 mm to obtain a test piece for measuring complex viscosity.
  • the complex viscosity (77 *) was measured under the above-mentioned conditions using a parallel plate with a rheometric tester RDSII manufactured by Rheometrics.
  • test piece was heated at 130 and held for 6 minutes until the inside of the layer was stabilized at 130, and then the complex viscosity at 130, 110 and 90 was obtained.
  • (7) *) was measured, and a shift factor of 1 (a T ) was calculated from the above equation. Specifically, this test piece was heated to 130, held for 6 minutes until the inside of the layer became stable at 13 Ot, and then continuously from 130 to 110, and then to 90. After measuring the complex viscosity at 130, the complex viscosity was measured at 110 at a speed of 15 t: Z.
  • the unvulcanized rubber composition was press-vulcanized using a 50-ton press under a condition of 160 * for 8 minutes to obtain a vulcanized rubber sheet having a thickness of l mm. Then, the vulcanized rubber sheet was punched so as to have a width of 10 mm and a length of 30 mm, thereby producing a strip-shaped sample.
  • the strain dependence of the dynamic elastic modulus is taken as a draf (not shown).
  • the dynamic elastic modulus (more precisely, the complex elastic modulus) ( From the part where ⁇ *) does not change, the distortion ( ⁇ ) Is 0.01%, the dynamic elastic modulus (more precisely, the complex elastic modulus) of the vulcanized rubber sheet E a) and the dynamic elasticity (more precisely, the complex elastic modulus)
  • the kneading by the above-mentioned closed kneader in Example 7 was performed by the kneading method (A1 method) specified in JIS K 6299, and the kneading time was 180 seconds.
  • the compound temperature immediately after discharge from the internal mixer was 115.
  • the kneading by the above-mentioned closed kneader in Comparative Examples 2 and 3 is performed by a kneading method (Al method) specified in JISK 6299.
  • the kneading time was 40 seconds and 480 seconds, respectively.
  • the compound temperatures in Comparative Example 2 and Comparative Example 3 immediately after being discharged from the internal mixer were 75 and 155, respectively.
  • This unvulcanized rubber sheet was punched out into a circular shape having a diameter of 25 mm to obtain a test piece for measuring complex viscosity.
  • the complex viscosity was measured under the above conditions using a parallel plate with a viscoelasticity tester RDSII manufactured by Rheometrics.
  • the test piece was heated at 130 and held for 6 minutes until the inside of the layer became stable at 130 ⁇ , and then the complex viscosity at 130 :, 110, and 90 (7) was measured, and the shift factor (a T ) was calculated from the above equation. From the relationship between the shift factor (a T ) and the measured temperature (T), the apparent activation energy (Ea) value (kJ / mol) when the reference temperature is set to 110, that is, the kneading state grasping index ( M) was calculated.
  • Ea apparent activation energy
  • a 3 mm sheet of an unvulcanized rubber composition was prepared with a roll gap of 3 mm.
  • the unvulcanized rubber composition was press-vulcanized using a 50-ton press under conditions of 160 and 8 minutes to obtain a vulcanized rubber sheet having a thickness of l mm. Then, a strip sample was prepared from this vulcanized rubber sheet so as to have a width of 10 mm and a length of 30 mm.
  • the strain dependence of the dynamic elastic modulus (more precisely, the complex elastic modulus) of the strip-shaped sample was measured under the above conditions.
  • the dependence of the dynamic modulus (more precisely, the complex modulus) on the strain is plotted on a graph (not shown). From the part where the complex elastic modulus does not change, the dynamic elastic modulus (more precisely, the complex elastic modulus) E * (a) of the vulcanized rubber sheet when the strain is 0.01%, From the part where the dynamic elastic modulus (more precisely, the complex elastic modulus) greatly changes, the dynamic elastic modulus (more precisely, the complex elastic modulus) E * (b) at a strain of 2% is obtained, and the following equation is obtained.
  • the filler dispersion index (N) was calculated from
  • N (%) (E * (b) / E * (a)) X 1 0 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

糸田 » ゴム組成物の混練状態の試験方法およびゴム組成物の製造方法 技 術 分 野
本発明は、 ゴム組成物の混練状態の試験方法、 およびゴム組成物 の製造方法、 たとえばフィ ラー分散性が良好で混練状態が安定して いる架橋用エチレン · α - ォレフィ ン系共重合体ゴム組成物の製造 方法、 さらに詳しくは、 少なく ともエチレン · α - ォレフィ ン系共 重合体ゴムと、 補強性フイ ラ一、 たとえばカーボンブラック、 特に 該エチレン · ひ - ォレフィ ン系共重合体ゴム 1 0 0重量部に対して 3 0重量部以上の量のカーボンブラックとを密閉式混練機により混 練し、 得られた混練物に加硫剤もしくは架橋剤と、 加硫促進剤もし くは架橋助剤を配合して、 フィラー分散性が良好で、 混練状態が安 定している架橋用エチレン · α - ォレフィ ン系共重合体ゴム組成物 を製造する方法に関する。 背 景 技 術
ゴム製品の品質には、 ゴムのコンパゥンド技術が大きく影響して いる。 特に E P R、 E P D M等のエチレン ' a - ォレフィ ン系共重 合体ゴムは、 それ自体に機械的強度がないため、 力一ボンブラック 等の補強性フイラ一を多く必要とする。
しかしながら、 このフイ ラ一をエチレン · α - ォレフィ ン系共重 合体ゴム中に分散させるに当たり、 エチレン ' ひ - ォレフィ ン系共 重合体ゴムのようなゴムの粘度は、 樹脂に比べて一般に高いため、 エチレン , α - ォレフィ ン系共重合体ゴム中にフィ ラーを微分散さ せることは難しい技術である。
そこで、 従来は、 エチレン ' ひ - ォレフィ ン系共重合体ゴムとフ イ ラ一との混練に際し、 より大きな剪断を加えるか、 あるいは混練 時間を長く してフィ ラーを微分散させる方法を採用し、 設備投資コ ス トや生産性を低下させたくないため、 製品物性を、 加工性を観な がら、 なるべく効率よく混練できる条件を選び出し混練条件を決定 している。
しかしながら、 その混練状態、 フィ ラー分散性に対する明確な指 標がなかったため、 曖昧な条件決めしかできないでいるのが現状で ある。
また、 季節によって気温よび湿度が大きく変化することで、 ェチ レン · ひ - ォレフィ ン系共重合体ゴムとフィ ラーとの混練状態は大 きく変化することは知られている。 従来は、 この変化した混練状態 について簡便に解析する指標がなかったため、 生産現場で、 押出製 品の断面形状 (ダイスゥエル) が変化したり、 製品に原因不明の気 泡が多発するなどの現象が起こっていても対策が打てないことも多 々あった。 このような場合、 天候による温度、 湿度や、 混練機の混 練能力 (剪断力、 分散力) とが、 偶然かみ合わさって上記のような 不具合を生じていることが多く、 一定時間 (期間) が過ぎると、 あ るいは同一配合であっても混練機が異なると不具合が生じないなど 、 その原因が捕らえ難いため十分に解析されてこなかったのが現状 である。 フィ ラー分散性については、 これまで電気抵抗値の測定法や顕微 鏡による方法、 ゴムコンパウンドに光を当てて、 その表面反射の程 度によって判断する方法が知られているが、 上記不具合の原因対策 の指標としては不十分である。 その理由は、 フイ ラ一分散によって 変化する値であることは確かであるが、 逆に水分の影響やポリマー の分子量分布などの影響により変化するため、 はっきり した結果が 得られないのである。 さらに、 E P R、 E P D M等のエチレン ' α - ォレフィン系共重合体ゴムは、 非極性のポリマーであるため、 極性 を示すカーボンブラックと混練する場合、 密閉式混練機で混練すれ ばするほどダイスゥエルが変化したり、 物性が悪化することが知ら れている。 これは、 一般に擬似ゲル化現象として知られており、 Μ L ( 1 + 4 ) 1 0 0 ムーニー粘度では現れることは少ないが、 Μ L ( 1 + 5 9 ) 1 0 0 : 約 1時間回し続けると、 その測定時間の 中で、 ムーニー粘度 (トルク) が大幅に上昇する現象を容易に観察 することができる。 いわゆるム一ニー粘度計で回転した状態は、 す なわち、 ゴム加工機の押出機のバレル中や射出成形機のポッ ト中を 想定したものであり、 加硫剤、 加硫促進剤が入っていないにもかか わらず起こる現象である。 そのため、 エチレン ' α _ ォレフィ ン系 共重合体ゴムにカーボンブラックが配合されているゴム組成物は、 これまでの通常のフィ ラー分散性指標とは別に、 混練状態を把握す る指標も必要であった。
このほかに、 フィ ラー分散指標と混練状態把握指標の両方を評価 可能な精度の高い分析手段として、 広幅 N M Rによる方法 (木内 保太郎 ' 伊藤 眞義 : 日本ゴム協会誌, 72, 1 999 ) が知られている 。 しかしながら、 分析コス トが高いこと、 評価結果のレスポンスが 遅いことから、 工場での品質安定のために用いる分析手段としては 不適である。
したがって、 少なく ともゴムとフィ ラーとを含有するゴム組成物 の混練状態を客観的に評価できる、 ゴム組成物の混練状態の試験方 法、 およびその試験方法を採用した、 フイ ラ一分散性が良好で、 混 練状態が安定しているゴム組成物の製造方法の出現が望まれている 。 具体的には、 たとえば密閉式混練機によって得られる架橋用ェチ レン · ひ - ォレフィ ン系共重合体ゴム組成物中のフイ ラ一分散性と 混練状態を客観的に評価できる、 新たな分析指標を見出し、 ェチレ ン ' α - ォレフィ ン系共重合体ゴムと、 補強性フイ ラ一たとえば力 一ボンブラックとを密閉式混練機により混練し、 得られた混練物と 、 加硫剤もしくは架橋剤と、 加硫促進剤もしくは架橋助剤とを 8ィ ンチロールなどの混練機により混練して、 フィ ラー分散性が良好で 、 混練状態が安定している架橋用エチレン · α - ォレフィ ン系共重 合体ゴム組成物を製造する方法の出現が望まれている。
本発明は、 上記のような従来技術に伴う問題を解決しょうとする ものであって、 少なく ともゴムとフィ ラーとを含有するゴム組成物 の混練状態を客観的に評価できる試験方法を提供することを目的と している。
また、 本発明は、 この試験方法を採用した、 フイ ラ一分散性が良 好で、 混練状態が安定しているゴム組成物の製造方法を提供するこ とを目的としている。 発明の開示
本発明に係るゴム組成物の混練状態の第 1の試験方法は、 少なく ともゴム (A) と、 フイ ラ一 (B) とを含有するゴム組成物 ( I ) の混練状態の試験方法であって、
( 1 ) 該ゴム組成物 ( I ) の、 任意の歪み値 ε a における複素弹性 率 E *(a)、 および該歪み値 ε a とは異なる任意の歪み値 ε b に おける複素弾性率 E* (b)を測定する、 複素弾性率測定工程、
( 2 ) 前記複素弾性率測定工程 ( 1 ) で得られた複素弾性率 E '(a) および E * (b)から、 下式
フィ ラー分散性指標 (N) = I E *(a) I / I E*(b) I に従い、 該ゴム組成物 ( I ) のフイ ラ一分散性指標 (N) を算 出する、 フィラー分散性指標算出工程、 および、
( 3 ) 予め設定されたフイ ラ一分散性目標値 (R) と、 前記フイ ラ 一分散性指標算出工程 ( 2 ) で算出したフイ ラ一分散性指標 ( N) とを比較する比較工程を有することを特徴としている。
前記フィ ラー分散性目標値 (R) は、 通常、 前記ゴム組成物 ( I ) と同一配合のゴム組成物を実質的に完全分散状態としてから、 前 記複素弾性率測定工程 ( 1 ) および前記フィ ラー分散性指標算出ェ 程 ( 2 ) を行なって得られた、 目標フィラー分散性指標 (NO) であ る。
前記完全分散は、 オープンロールによる混練により行われること が望ましい。
本発明に係るゴム組成物の混練状態の第 1の試験方法の簡便な試 験方法として、 次の試験方法を採用することができる。 すなわち、 この簡便な試験方法は、 少なく ともゴム (A) と、 フ イ ラ一 (B) とを含有するゴム組成物 ( I ) の混練状態の試験方法 であって、
( 1 ' ) 該ゴム組成物 ( I ) を架橋して得られる架橋ゴムシートの、 任意の歪み値 ε a における動的弾性率 E ' (a)、 および該歪み値 ε a とは異なる任意の歪み値 ε b における動的弾性率 E ' (b)を 測定する、 動的弾性率測定工程、
( 2 ') 前記動的弾性率測定工程 ( 1 ') で得られた動的弾性率 E ' (a )および E' ( から、 下式
フィ ラー分散性指標 (Ν') = E' (a)ZE' (b)
に従い、 該ゴム組成物 ( I ) のフイ ラ一分散性指標 (Ν' ) を算 出する、 フィラー分散性指標算出工程、 および、
( 3 ' ) 予め設定されたフイ ラ一分散性目標値 (R' ) と、 前記フィ ラー分散性指標算出工程 ( 2 ') で算出したフィ ラー分散性指標 (Ν') とを比較する、 比較工程
を有することを特徴としている。
前記フィラー分散性目標値 (R') は、 通常、 前記ゴム組成物 ( I ) と同一配合のゴム組成物を実質的に完全分散状態としてから、 前 記動的弾性率測定工程 ( 1 ') および前記フィラー分散性指標算出ェ 程 ( 2 ') を行なって得られた目標フィラー分散性指標 (ΝΟ') であ る。 前記完全分散は、 オープンロールによる混練により行われるこ とが望ましい。
上記の動的弾性率 E'は、 複素弾性率 Ε *の実部に当たるもので、 両者の関係は、 下式で表わすことができる。 E * = E ' + i E"
通常のゴムでは、 実部 E 'が虚部 E"よりも 1桁程度大きいので、 実部 E'同士の比を取ることで、 E*の絶対値の比とほぼ同様の結果 を得ることができる。 したがって、 この動的弹性率 E'を採用した試 験方法は、 フィ ラー分散性指標算出工程における計算が簡略化され 、 簡便である点で優れている。 なお、 動的弾性率 E'の測定は、 後述 する複素弾性率 E *と同様の測定装置、 測定法によって実施すること ができる。
本発明に係るゴム組成物の第 1の製造方法は、 上記の、 本発明に 係るゴム組成物の混練状態の第 1の試験方法 (上記の簡便な試験方 法も含む) を実施することを特徴としている。
この製造方法は、 通常、 さらに、 (4) または ( 4 ') 前記比較ェ 程 ( 3 ) または ( 3 ' ) の結果を受けて、 フィ ラー分散性指標 (N) ゾフィ ラー分散性目標値 (R) の値、 またはフィ ラー分散性指標 ( Ν' ) /フィ ラー分散性目標値 (R') の値が一定の数値範囲内にな るように、 ゴム組成物 ( I ) の混練条件を調整する、 フィードバッ ク工程を有する。
前記のフィ ラー分散性指標 (Ν) /フイ ラ一分散性目標値 (R) ( I E *(a) I ≤ I E * (b) I の場合) の数値範囲、 またはフイ ラ一分 散性指標 (Ν' ) Ζフィ ラー分散性目標値 (R' ) の数値範囲は、 0 . 8〜: . 0であることが好ましい。
また、 本発明に係るゴム組成物の混練状態の第 2の試験方法は、 少なく ともゴム (Α) と、 フイ ラ一 (Β) とを含有するゴム組成物 ( I ) の混練状態の試験方法であって、 ( 5 ) 該ゴム組成物 ( I ) の複素粘性率 τ? *を、 少なく とも 2つの異 なる温度において測定する、 複素粘性率測定工程、
( 6 ) 前記複素粘性率測定工程 ( 5 ) で得られた複素粘性率 7? * の 温度依存性から、 下式
I ?7 * (T) I = Aexp ( - M/ R T)
C 7? * : 複素粘性率、 A : 定数、 R : 気体定数、 T : 測定温度 (° K) 〕
に従い、 該ゴム組成物 ( I ) の混練状態把握指標 (M) を算出 する、 混練状態把握指標算出工程、 および、
( 7 ) 予め設定された混練状態目標値 (P) と、 前記混練状態把握 指標算出工程 ( 6 ) で算出した混練状態把握指標 (M) とを比 較する、 比較工程
を有することを特徴としている。
前記混練状態目標値 (P) は、 通常、 前記ゴム組成物 ( I ) と同 一配合のゴム組成物を実質的に完全分散状態としてから、 前記複素 弾性率測定工程 ( 5 ) および前記混練状態把握指標算出工程 ( 6 ) を行なって得られた、 目標混練状態把握指標 (M0) である。
前記完全分散は、 オープンロールによる混練により行われること が望ましい。
本発明に係るゴム組成物の混練状態の第 2の試験方法の簡便な試 験方法として、 次の試験方法を採用することができる。
すなわち、 この簡便な試験方法は、 少なく ともゴム (A) と、 フ イ ラ一 (B) とを含有するゴム組成物 ( I ) の混練状態の試験方法 であって、 ( 5 ' ) 該ゴム組成物 ( I ) の複素粘性率 7? *の実部 77 'を、 少なく と も 2つの異なる温度において測定する、 複素粘性率測定工程、 ( 6 ' ) 前記複素粘性率測定工程 ( 5 ') で得られた複素粘性率 7? *の 実部 τ の温度依存性から、 下式
7] ' (T) = Aexp (-M'/R T)
〔Α : 定数、 R : 気体定数、 T : 測定温度 Γ K) 〕
に従い、 該ゴム組成物 ( I ) の混練状態把握指標 (Μ') を算出 する、 混練状態把握指標算出工程、 および、
( 7 ' ) 予め設定された混練状態目標値 (Ρ ' ) と、 前記混練状態把 握指標算出工程 ( 6 ' ) で算出した混練状態把握指標 (Μ') と を比較する、 比較工程
を有することを特徴としている。
前記混練状態目標値 (Ρ') は、 前記ゴム組成物 ( I ) と同一配合 のゴム組成物を実質的に完全分散状態としてから、 前記複素弾性率 測定工程 ( 5 ' ) および前記混練状態把握指標算出工程 ( 6 ' ) を行 なって得られた目標混練状態把握指標 (ΜΟ' ) である。 前記完全分 散が、 オープンロールによる混練により行われることが望ましい。 上記の 7? 'は、 複素粘性率 7^ *の実部を取り出したもので、 両者の 関係は、 下式で表わすことができる。
Τ] * = Τ] + i 7?
通常のゴムでは、 実部 Τ が虚部 7? "より も 1桁程度大きいので、 実部 7? 'についていわゆるァレニウスプロッ トを行なっても、 7? *の 絶対値についてァレニウスプロッ トを行なった場合とほぽ同様の結 果を得ることができる。 したがって、 この複素粘性率 77 *の実部 7? ' を採用した試験方法は、 混練状態把握指標算出工程における計算が 簡略化され、 簡便である点で優れている。 なお、 複素粘性率 77 *の実 部 7? 'の測定は、 後述する複素粘性率 77 *と同様の測定装置、 測定法 によって実施することができる。
また、 本発明に係るゴム組成物の第 2の製造方法は、 上記の、 本 発明に係るゴム組成物の混練状態の第 2の試験方法 (上記の簡便な 試験方法も含む) を実施することを特徴としている。
この第 2の製造方法は、 通常、 さらに、 ( 8 ) または ( 8 ') 前記 比較工程 ( 7 ) または ( 7 ') の結果を受けて、 混練状態把握指標 ( M) 混練状態目標値 (P) の値、 または混練状態把握指標 (Μ') 混練状態目標値 (Ρ ') の値が一定の数値範囲内になるように、 ゴ ム組成物 ( I ) の混練条件を調整する、 フィー ドバック工程を有す る。
前記の混練状態把握指標 (Μ) Ζ混練状態目標値 ( Ρ) の数値範 囲、 または混練状態把握指標 (Μ' ) 混練状態目標値 (Ρ ' ) の数 値範囲は、 0. 8 5〜 1. 0であることが好ましい。
本発明に係るゴム組成物の第 1の製造方法は、 さらに、 本発明に 係るゴム組成物の第 2の製造方法における工程 ( ( 5 ) 〜 ( 7 ) 、 さらに ( 8 ) ) を含んでいてもよい。 逆に、 本発明に係るゴム組成 物の第 2の製造方法は、 さ らに、 本発明に係るゴム組成物の第 1の 製造方法における工程 ( ( 1 ) 〜 ( 3 ) 、 さらに ( 4 ) ) を含んで いてもよい。
本発明は、 ゴム組成物の種類、 性状、 用途に応じて様々な態様で 実施することができるが、 本発明に係るゴム組成物の製造方法の具 体例を挙げると、 たとえば架橋用エチレン , α- ォレフィ ン系共重 合体ゴム組成物の製造方法は、 少なく ともエチレン · ひ- ォレフィ ン系共重合体ゴムと、 補強性フィ ラーたとえば該エチレン · α - ォ レフイ ン系共重合体ゴム 1 0 0重量部に対して 3 0重量部以上の量 の補強性フイ ラ一とを密閉式混練機により混練し、 加硫剤もしくは 架橋剤と、 必要に応じ加硫促進剤もしくは架橋助剤を含む架橋用ゴ ム組成物の製造方法において、
予め下記の方法により分析してフイ ラ一分散指標 (R) および または混練状態把握指標 (Ρ) を求めておき、
下記の方法により分析して得られたフィ ラー分散指標 (Ν) が、 次式
フィ ラー分散性指標(Ν)Ζフィ ラー分散性指標(R)= 1〜 0. 8 および または下記の方法により分析して得られた混練状態把握指 標 (M) が、 次式
混練状態把握指標(M)ノ混練状態把握指標(P)= 1〜 0. 8 5 を満足するように、 密閉式混練機による混練条件をコントロールす る。
(1) フィラー分散性指標 (R) : 少なく ともエチレン · α - ォレフ イ ン系共重合体ゴムと、 補強性フイ ラ一と、 加硫剤もしくは架橋剤 と、 必要に応じ加硫促進剤もしくは架橋助剤とを 8インチオープン ロールにより、 1 0 0 以下で混練して得られた未架橋ゴム組成物 から成形した、 厚みが均一な架橋ゴムシートの動的弾性率の歪み依 存性を測定し、 歪みに対して動的弾性率 (より正確には複素弹性率 ) が変化しない部分から、 ある特定の歪みを特定して求めた動的弹 性率 (より正確には複素弾性率) E *(a)と、 歪みによって動的弹性 率 (より正確には複素弾性率) が大きく変化する部分から、 ある特 定の歪みを特定して求めた動的弾性率 (より正確には複素弾性率) E *(b)との百分率 [ (E *(b)ZE *(a)) X 1 0 0 ] (より正確には ( I E * (b) I / I E * (a) I ) x 1 0 0 ) を基準となるフイ ラ一分散 性指標 (R) とする。
なお、 本具体例における 「基準となるフィ ラー分散性指標 (R) 」 は、 本発明の第 1の試験方法における 「フイ ラ一分散性目標値 ( R) 」 に相当し、 さらに、 本発明の第 1の試験方法における目標フ イラ一分散性指標 (NO) に相当する。
(2) 混練状態把握指標 (P) : 少なく ともエチレン , ひ- ォレフィ ン系共重合体ゴムと、 補強性フイ ラ一とを 8インチオープンロール により、 1 0 0 以下で混練して得られた、 加硫剤、 架橋剤、 加硫 促進剤および架橋助剤を含まない未架橋ゴム組成物の複素粘性率と 測定温度との関係を示す式
7] *= Aexp ( - E a/ R T)
〔 7) * : 複素粘性率、 Ea : 見かけの活性化エネルギー、 T : 測定温 度 Γ K) 、 R : 気体定数、 A : 前指数項〕 、 または
aT= Aexp (一 EaZR T)
〔aT : シフ トファクター、 Ea : 見かけの活性化エネルギー、 T : 測定温度 (° :) 、 R : 気体定数、 A : 前指数項〕
から求められる Ea を基準となる混練状態把握指標 ( P) とする。 なお、 本具体例における 「基準となる混練状態把握指標 (P) 」 は、 本発明の第 2の試験方法における 「混練状態目標値 (P) 」 に 相当し、 さらには、 目標混練状態把握指標 (M0) に相当する。
(3) フィ ラー分散性指標 (N) : 少なく ともエチレン · α - ォレフ イ ン系共重合体ゴムと、 補強性フイ ラ一とを密閉式混練機により混 練し、 得られた混練物と、 加硫剤もしくは架橋剤と、 必要に応じ加 硫促進剤もしくは架橋助剤とを 8インチオープンロールで混練して 得られた未架橋ゴム組成物 (前記(1) の未架橋ゴム組成物と同じ組 成) から成形した、 厚みが均一な架橋ゴムシートの動的弾性率の歪 み依存性を測定し、 歪みに対して動的弾性率 (より正確には複素弾 性率) が変化しない部分から、 ある特定の歪みを特定して求めた動 的弾性率 (より正確には複素弾性率) E *(a)と、 歪みによって動的 弾性率 (より正確には複素弾性率) が大きく変化する部分から、 あ る特定の歪みを特定して求めた動的弾性率 (より正確には複素弾性 率) E * (b)との百分率 [ ( E * (b)ZE * (a)) X 1 0 0 ] (より正確 には ( I E * (b) I Z I E *(a) X 1 0 0 ) をフィ ラー分散性指標
(N) とする。
(4) 混練状態把握指標 (M) : 少なく ともエチレン · ひ- ォレフィ ン系共重合体ゴムと、 補強性フィ ラーとを密閉式混練機で剪断を加 えながら、 あるいは熱と剪断を加えながら混練して得られた、 加硫 剤、 架橋剤、 加硫促進剤および架橋助剤を含まない未架橋ゴム組成 物 (前記(2) の未架橋ゴム組成物と同じ組成) の複素粘性率と測定 温度との関係を示す式
7? * = Aexp (― Ea/R T)
〔 7? * : 複素粘性率、 Ea : 見かけの活性化エネルギー、 T : 測定温 度 Γ K:) 、 R : 気体定数、 A : 前指数項〕 、 または aT= Aexp (_ Ea/R T)
〔aT : シフ トファクター、 E a : 見かけの活性化エネルギー、 T : 測定温度 Γ K:) 、 R : 気体定数、 A : 前指数項〕
から求められる Ea を混練状態把握指標 (M) とする。
前記補強性フィ ラ一としては、 カーボンブラックが好ましく用い られる。
本発明に係るゴム組成物の製造方法、 たとえば上記の架橋用ェチ レン · α- ォレフィ ン系共重合体ゴム組成物の製造方法によれば、 フィ ラー分散性が良好で、 混練状態が安定している架橋用エチレン • - ォレフィ ン系共重合体ゴム組成物が得られる。
上記の架橋用エチレン · α- ォレフィ ン系共重合体ゴム組成物は 、 少なく ともエチレン , ひ- ォレフィ ン系共重合体ゴムと、 補強性 フィ ラーたとえば該エチレン · α - ォレフィ ン系共重合体ゴム 1 0 0重量部に対して 3 0重量部以上の量の補強性フイ ラ一とを密閉式 混練機により混練し、 加硫剤もしくは架橋剤と、 必要に応じ加硫促 進剤もしくは架橋助剤を含む架橋用ゴム組成物において、
前記の方法により分析して得られたフィ ラー分散性指標 (Ν) と フィ ラー分散性指標 (R) との比 (N/R) が 1〜 0. 8の範囲内 、 および Ζまたは混練状態把握指標 (Μ) と混練状態把握指標 ( Ρ ) との比 (Μ/ Ρ ) が 1〜 0. 8 5の範囲内にあることを特徴とし ている。
前記補強性フイ ラ一としては、 カーボンブラックが好ましく用い られる。
この架橋用エチレン · α - ォレフィ ン系共重合体ゴム組成物は、 フィ ラー分散性が良好で、 混練状態が極めて安定している。
本発明者らが新に見出した、 上記のフィ ラー分散性指標の比 (N / ) および混練状態把握指標の比 (M Z P ) をそれぞれフィ ラー 分散性、 混練状態の客観的な評価指標として採用することにより、 始めて、 季節によって変化する温度、 湿度、 剪断状態に応じた密閉 式混練機の混練条件を容易に設定することが可能となり、 その結果 、 混練機として密閉式混練機を用いても、 フィ ラー分散性に優れ、 良好な押出加工性、 射出成形性を有し、 良好な物性を有する成形体 を成形できる架橋用エチレン · ひ - ォレフィ ン系共重合体ゴム組成 物を安定して製造することが可能になった。 図面の簡単な説明
図 1は、 フィ ラー分散性指標の測定法を説明するための動的弾性 率の歪み依存性を示すグラフの例である。 図 2は、 溶融粘度の活性 化エネルギーの求め方を説明するための複素粘性率 ( 7] と周波数 との関係を示すグラフである。 図 3の ( a ) は、 溶融粘度の活性化 エネルギーの求め方を説明するための複素粘性率 (?? * ) と周波数と の関係を示すグラフであり、 (b ) は、 シフトファクター ( a T) と 温度との関係を示すグラフである。 発明を実施するための最良の形態
以下、 本発明に係るゴム組成物の混練状態の試験方法およびゴム 組成物の製造方法について具体的に説明する。
まず、 本発明に係るゴム組成物の混練状態の試験方法およびゴム 組成物の製造方法の際の用いられるゴム組成物 ( I ) について説明 する。
ゴム組成物 ( I )
本発明で用いられるゴム組成物 ( I ) を構成するゴム (A) とし ては、 天然ゴム (NR) または合成ゴムが用いられる。
合成ゴムとしては、 具体的には、 イソプレンゴム ( I R) 、 スチ レン · ブタジエンゴム ( S B R) 、 ブタジエンゴム (B R) 、 クロ 口プレンゴム ( C R ) 、 アク リ ロニト リルブタジエンゴム ( N B R ) 、 ブチルゴム ( I I R) 、 エチレンプロピレンゴム (E P M) 等 のエチレン ' α - ォレフィ ン共重合体ゴム、 エチレン ' プロピレン ' ジェンゴム (E P DM) 等のエチレン ' α- ォレフイ ン ' (非) 共役ポリェン共重合体ゴム、 フッ素ゴム、 ェピクロルヒ ドリンゴム などが挙げられる。
また、 本発明で用いられるゴム組成物 ( I ) を構成するフイ ラ一 (Β) は、 従来公知の補強性フイ ラ一であってもよいし、 また従来 公知の補強性のないフィ ラーであってもよい。
また、 上記ゴム組成物 ( I ) においては、 必要に応じて、 従来公 知の加硫剤、 架橋剤、 加硫促進剤、 架橋助剤、 軟化剤、 耐熱安定剤 、 耐候安定剤、 帯電防止剤、 滑剤、 加工助剤、 擬似ゲル化防止剤な どの添加剤を、 本発明の目的を損なわない範囲で用いることができ る。 次に、 本発明に係るゴム組成物の混練状態の第 1の試験方法およ びゴム組成物の第 1の製造方法について説明する。 ゴム組成物の混練状態の第 1の試験方法 本発明に係るゴム組成物の混練状態の第 1の試験方法は、 少なく ともゴム (A) と、 フィ ラー (B) とを含有するゴム組成物 ( I ) に適用される試験方法であり、 下記の複素弾性率測定工程 ( 1 ) 、 フィ ラー分散性指標算出工程 ( 2 ) 、 および比較工程 ( 3 ) を有す る。
この試験方法の技術思想を説明すると、 少なく ともゴム (A) と フィ ラー (B) とを含有するゴム組成物 ( I ) の複素弾性率 E *は、 歪み εが増大するにつれて変化 (減少) する。 このような変化は、 歪み ε の増大に伴い、 組成物 ( I ) 中のフィ ラー (Β) の凝集や結 合が破壊され、 複素弾性率 Ε* が低下することに対応している。
したがって、 フィ ラー分散性の良いゴム組成物 ( I ) は、 初めか らフイ ラ一 (Β) の凝集や結合が破壊されているので、 複素弾性率 Ε * の変化率が小さい害である。 すなわち、 歪み ε に対する複素弹 性率 Ε * の変化率が小さいゴム組成物 ( I ) は、 フィ ラー分散性の 良い組成物であり、 歪み ε に対する複素弾性率 Ε * の変化率が大き いゴム組成物 ( I ) は、 フィ ラー分散性の悪い組成物であると云う ことができる。
この歪み ε に対する複素弾性率 Ε * の変化率は、 異なる 2つの歪 み値 ( ε a、 ε b) で測定した複素弾性率 (E a)、 E *(b)) の比 [ E * (b)/E a)] で評価することができる。 また、 より簡便には、 E * (a)の実部 E ' (a)と E * (b)の実部 E ' (b)との比で評価することも できる。
[複素弾性率測定工程 ( 1 ) ] この複素弾性率測定工程 ( 1 ) では、 上記ゴム組成物 ( I ) の、 任意の歪み値 ε a における複素弹性率 E * (a)、 およびこの歪み値 ε a とは異なる任意の歪み値 ε b における複素弾性率 E *(b)を測定す る。
複素弾性率の測定は、 各種の粘弾性測定装置によって行なうこと ができる。 たとえば、 レオメ トリ ックス社の R D S、 R S A II、 —テクノロジーズ社の R P A— 2 0 0 0等の測定装置を挙げること ができるが、 これらに限定されない。 要は、 異なる歪み値における 複素弹性率を一定の精度で評価できる測定装置であればよい。
複素弹性率測定の原理は、 たとえば社団法人日本ゴム協会発行の 「ゴム技術の基礎」 3 9〜 4 2頁に詳述されている。 この原理に従 い、 複素弾性率を測定することが可能ならば、 いかなる測定装置で あっても本発明に適用しうる。
複素弾性率の測定は、 加硫ゴム (好ましくはゴムシート) 、 未加 硫ゴム (好ましくはゴムシート) のいずれについても行なうことが できる。 ただし、 未加硫ゴムの状態で複素弾性率を測定する場合に は、 測定中に加硫反応が進まないよう、 加硫剤等が含まれていない 未加硫ゴムコンパウンドをサンプルとして使用することが好ましい 複素弾性率としては、 ヤング率方向 (縦方向) についての測定で 得られる複素弾性率 E*のみならず、 ネジリ方向についての測定で得 られる複素弾性率 G*も本発明に適用することができる。
それぞれの測定法の具体例を以下に述べる。
( 1 ) ヤング率方向 (縦方向) における複素弾性率 E 'の測定法 l mm厚の加硫ゴムシートを 1 0 mmX 3 O mmに打ち抜き、 サ ンプル固定具に縦方向に取り付ける。 取り付け時に、 加硫ゴムシー 卜のたるみがないようにサンプルを固定具に取り付ける。 レオメ ト リ ックス社製の R S A粘弾性測定装置などで、 歪み率 0. 0 1〜 2 . 2 %変化させたときの複素弹性率 E *を求める。
なお、 同様の指標として、 E' (動的弾性率) の歪み依存性からも 求めることができる。
( 2 ) ネジリ方向における複素弾性率 G*の測定法
この複素弾性率 G*は、 2 mm厚の加硫ゴムシー卜にネジリ方向の 歪みを加え、 G *の歪み依存性からも求めることが可能で、 G' (動 的弾性率) からも同様の指標として扱うことができる。
また、 加硫ゴムシートでなくとも未加硫ゴムコンパウンドでの評 価が可能で、 複素弾性率 G*の測定は上記と同様にして行なうことが できる。
未加硫ゴムコンパゥンドでの複素弾性率 G*の測定は、 未加硫ゴム コンパウンド中に加硫剤、 助剤が存在していても可能であるが、 測 定中に架橋反応が進行しないよう、 測定温度に注意することが必要 である。
[フイラ一分散性指標算出工程 ( 2 ) ] このフィ ラー分散性指標算出工程 ( 2 ) では、 前記複素弾性率測 定工程 ( 1 ) で得られた複素弾性率 E *(a)および E * (b)から下式に 従い、 ゴム組成物 ( I ) のフイラ一分散性指標 (N) を算出する。
フィ ラー分散性指標 (N) = I E*(a) I Z I E *(b) I
[比較工程 ( 3 ) ] この比較工程 ( 3 ) では、 予め設定されたフイ ラ一分散性目標値 ( R ) と、 前記フィ ラー分散性指標算出工程 ( 2 ) で算出したフィ ラー分散性指標 (N ) とを比較する。
このフィ ラー分散性目標値 (R ) は、 通常、 ゴム組成物 ( I ) と 同一配合のゴム組成物を実質的に完全分散状態としてから、 前記複 素弾性率測定工程 ( 1 ) および前記フィ ラー分散性指標算出工程 ( 2 ) を行なって得られた、 目標フィラー分散性指標 (N O) である。 このフイ ラ一分散性目標値 (R ) は、 コンピューターシミュレーシ ヨ ン等による理論計算値であってもよいし、 また実測値であっても よい。
ここに、 上記の、 「実質的に完全分散状態」 とは、 当該組成物中 のフイ ラ一の分散が十分に進み、 更に混練のためのエネルギーを加 えても、 フイ ラ一の分散がそれ以上は進まない状態をいう。 混練の ためのエネルギーは、 たとえば混練機が消費する電力で測定するこ とができる。 フィ ラーの分散は、 たとえば当該組成物を加硫して得 られるゴムの諸物性 (硬度、 引張強度、 引張伸び等) を測定するこ とで間接的に把握することができる。 したがって、 たとえば混練機 の消費電力に対する加硫ゴムの諸物性の変化が飽和したを実質的な 「完全分散状態」 と捉えることができる。 完全分散状態は、 組成物 の配合が異なれば、 その異なる配合組成物毎に存在する。
完全分散は、 オープンロールによる混練により行われることが望 ましい。 オープンロールによる混練を行なうことにより、 ほぼ理想 的な混練状態が得られる。 したがって、 オープンロールで混練され た組成物を実質的に完全分散状態にある組成物として、 目標フイ ラ 一分散性指標 (NO) の測定に好適に用いることができる。
上記の、 本発明に係るゴム組成物の混練状態の第 1の試験方法の 簡便な試験方法については、 既に上述した通りである。 ゴム組成物の第 1の製造方法
本発明に係るゴム組成物の第 1 の製造方法では、 上記の、 本発明 に係るゴム組成物の混練状態の第 1 の試験方法 (簡便な試験方法も 含む) を実施する。 この実施により、 ゴム組成物 ( I ) 中における フィ ラー分散性を客観的に評価することができる。
この製造方法は、 通常、 さ らに、 ( 4 ) 前記比較工程 ( 3 ) の結 果を受けて、 フイ ラ一分散性指標 (N) ノフイ ラ一分散性目標値 ( R) が一定の数値範囲内になるように、 ゴム組成物 ( I ) の混練条 件を調整する、 フィードバック工程を有する。
前記のフィ ラー分散性指標 (N) フイ ラ一分散性目標値 (R) ( I E * (a) I≤ I E * (b) Iの場合) の数値範囲は、 0. 8〜 1. 0 であることが好ましい。
ゴム組成物の ( I ) の混練条件としては、 混練温度、 混練時間、 剪断速度、 フローティ ングウェイ ト圧力、 フローティ ングウェイ ト 上下の回数および またはタイミング、 混練機充填率、 混練羽の密 度、 混練羽とケーシングとのクリアランス、 口一夕一と口一ターと の間のクリァランスなどが挙げられる。 次に、 本発明に係るゴム組成物の混練状態の第 2の試験方法およ びゴム組成物の第 2の製造方法について説明する。 ゴム組成物の混練状態の第 2の試験方法 本発明に係るゴム組成物の混練状態の第 2の試験方法は、 少なく ともゴム (A) と、 フイ ラ一 (B) とを含有する、 未架橋のゴム組 成物 ( I ) に適用される試験方法であり、 下記の複素粘性率測定ェ 程 ( 5 ) 、 混練状態把握指標算出工程 ( 6 ) 、 および比較工程 ( 7 ) を有する。
この試験方法の技術思想を説明すると、 下式から明らかなように 、 式中の Mは、 複素粘性率 r? *の温度依存性を表わしている。
I n * (T) I = Aexp ( -M/R T)
この式において、 Aは定数であり、 Rは気体定数でり、 Tは測定 温度 (° K) である。 Mが大であるほど、 複素粘性率 7? *の温度依存 性は低くくなり、 Mが小であるほど、 複素粘性率 7? *の温度依存性は 高くなる。
この複素粘性率 7? *の温度依存性が高くなるに従って、 ゴム組成物 ( I ) における擬似ゲルの生成、 消滅の影響が大となる。 良好な混 練状態にあるゴム組成物 ( I ) では、 擬似ゲルの生成、 消滅は殆ど 起こらないので、 複素粘性率?7 *の温度依存性は極小となり、 Mは極 大となる。 すなわち、 Mが大であるゴム組成物 ( I ) は、 混練状態 の良い組成物であり、 Mが小であるゴム組成物 ( I ) は、 混練状態 の悪い組成物と云うことができる。
したがって、 2以上の温度で複素粘性率 *を測定し、 ァレニウス プロッ トにより Mを算出することにより、 ゴム組成物 ( I ) の混練 状態を客観的に評価することができる。
なお、 Mの計算方法には 2種類ある。 すなわち、 Mは下記の式 ( 1 ) または式 ( 2 ) のそれぞれから求めることができる。 これらの 式における一 E aが Mに相当する。
I 7? * I = Aexp ( - E / R T) … ( 1 )
この式 ( 1 ) において、 ?7 *は複素粘性率、 E aは見かけの活性化 エネルギー、 Tは測定温度 (° K) 、 Rは気体定数、 Aは前指数項 (定数) である。
aT= Aexp ( - E a/ R T) ··· ( 2 )
この式 ( 2 ) において、 aTはシフ トファクター、 Eaは見かけの活 性化エネルギー、 Tは測定温度 Γ K) 、 Rは気体定数、 Aは前指 数項 (定数) である。
[複素粘性率測定工程 ( 5 ) ]
この複素粘性率測定工程 ( 5 ) では、 ゴム組成物 ( I ) の複素粘 性率 * を、 少なく とも 2つの異なる温度において測定する。
[混練状態把握指標算出工程 ( 6 ) ] 複素粘性率の測定は、 各種の粘弾性測定装置によって行なう こと ができる。 たとえば、 レオメ トリ ックス社の R D S、 R S A II、 —テクノロジーズ社の R P A— 2 0 0 0等の測定装置を挙げること ができるが、 これらに限定されない。 要は、 複素粘性率を一定の精 度で評価できる測定装置であればよい。
複素粘性率測定の原理は、 たとえば社団法人日本ゴム協会発行の 「ゴム技術の基礎」 3 9〜 4 2頁に詳述されている。 この原理に従 い測定することが可能ならば、 いかなる測定装置であっても本発明 に適用しうる。
複素粘性率の測定は、 未加硫ゴムコンパゥンドについて行なう こ とができる。 この場合には、 測定中に加硫反応が進まないよう、 加 硫剤等が含まれていない未加硫ゴムコンパウン ドをサンプルとして 使用することが好ましい。 また、 加硫剤等が含まれている未加硫ゴ ムパウン ドをサンプルとして使用する場合には、 加硫反応が進行し ないよう、 加硫温度未満に温度コン トロールすることが好ましい。 複素粘性率は、 未加硫ゴムの状態で測定することができるが、 加 硫ゴムでは測定できない。 未加硫ゴムパウン ドは、 加硫剤、 助剤を 含んでいてもよいが、 測定中に加硫反応が起こらないように、 測定 温度の設定が必要である。 したがって、 サンプルとしては、 加硫剤 、 助剤が入っていない未加硫ゴムコンパウン ドが好ましい。 よって 、 バンバリ一ミキサー等から混練直後にサンプリ ングした未加硫ゴ ムコンパゥンドが好ましい。
複素粘性率は、 レオメ トリ ックス社の R D Sや α —テクノロジー ズ社 R P A— 2 0 0 ◦で測定することが可能である。 測定用プレー トに未加硫ゴムコンパウンドを載せ、 挟み込むことによって各測定 温度で複素粘性率 77 *、 シフ トファクター a Tを求め、 前記式 ( 1 ) 、 ( 2 ) より活性化エネルギー (E a ) を算出する。 測定温度は、 原理的には 2条件で十分であるが、 測定精度の観点からは 3条件以 上であることが好ましい。
α —テクノロジーズ社の R P A— 2 0 0 0では、 予め未加硫ゴム コンパウンドのシー トを作製する必要はなく、 キヤビティ の容量以 上のコンパウン ドを秤量し試験すれば、 複素粘性率を測定すること ができる。
この混練状態把握指標算出工程 ( 6 ) では、 前記複素粘性率測定 工程 ( 5 ) で得られた複素粘性率 77 *の温度依存性から、 下式に従い 、 該ゴム組成物 ( I ) の混練状態把握指標 (M) を算出する。
I 7? * (T) I = Aexp (-M/R T)
in *: 複素粘性率、 A : 定数、 R : 気体定数、 T : 測定温度 Γ K )
[比較工程 ( 7 ) ]
この比較工程 ( 7 ) では、 予め設定された混練状態目標値 (P) と、 前記混練状態把握指標算出工程 ( 6 ) で算出した混練状態把握 指標 (M) とを比較する。
この混練状態目標値 (P) は、 通常、 前記ゴム組成物 ( I ) と同 一配合のゴム組成物を実質的に完全分散状態としてから、 前記複素 弾性率測定工程 ( 5 ) および前記混練状態把握指標算出工程 ( 6 ) を行なって得られた、 目標混練状態把握指標 (M0) である。 この混 練状態目標値 ( P) は、 コンピューターシミュレーショ ン等による 理論計算値であってもよいし、 また実測値であってもよい。
ここに、 上記の、 「実質的に完全分散状態」 とは、 当該組成物中 のフィ ラーの分散が十分に進み、 更に混練のためのエネルギーを加 えても、 フィ ラーの分散がそれ以上は進まない状態をいう。 混練の ためのエネルギーは、 たとえば混練機が消費する電力で測定するこ とができる。 フィ ラーの分散は、 たとえば当該組成物を加硫して得 られるゴムの諸物性 (硬度、 引張強度、 引張伸び等) を測定するこ とで間接的に把握することができる。 したがって、 たとえば混練機 の消費電力に対する加硫ゴムの諸物性の変化が飽和したを実質的な 「完全分散状態」 と捉えることができる。 完全分散状態は、 組成物 の配合が異なれば、 その異なる配合組成物毎に存在する。
完全分散は、 オープンロールによる混練により行われることが望 ましい。 オープンロールによる混練を行なう ことにより、 ほぼ理想 的な混練状態が得られる。 したがって、 オープンロールで混練され た組成物を実質的に完全分散状態にある組成物として、 目標混練状 態把握指標 (M0) の測定に好適に用いることができる。 ゴム組成物の第 2の製造方法
本発明に係るゴム組成物の第 2の製造方法は、 上記の、 本発明に 係るゴム組成物の混練状態の第 2の試験方法を実施することを特徴 としている。 この実施により、 ゴム組成物 ( I ) の混練状態を客観 的に評価することができる。
この第 2の製造方法は、 通常、 さらに、 ( 8 ) 前記比較工程 ( 7 ) の結果を受けて、 混練状態把握指標 (M) /混練状態目標値 (P ) が一定の数値範囲内になるように、 ゴム組成物の混練条件を調整 する、 フィードバック工程を有する。
前記の混練状態把握指標 (M) Z混練状態目標値 (P ) の数値範 囲は、 0. 8 5〜 1. 0であることが好ましい。
ゴム組成物の ( I ) の混練条件としては、 混練温度、 混練時間、 剪断速度、 フローティ ングウェイ ト圧力、 フローティ ングウェイ ト 上下の回数および またはタイミング、 混練機充填率、 混練羽の密 度、 混練羽とケーシングとのクリアランス、 口一ターとローターと の間のクリアランスなどが挙げられる。
本発明に係るゴム組成物の第 1の製造方法は、 さ らに、 本発明に 係るゴム組成物の第 2の製造方法における工程 ( ( 5 ) 〜 ( 7 ) 、 さらに ( 8 ) ) を含んでいてもよい。 逆に、 本発明に係るゴム組成 物の第 2の製造方法は、 さらに、 本発明に係るゴム組成物の第 1の 製造方法における工程 ( ( 1 ) 〜 ( 3 ) 、 さらに ( 4 ) ) を含んで いてもよい。 すなわち、 本発明に係るゴム組成物の製造方法におい て、 前記の、 本発明に係るゴム組成物の混練状態の第 1の試験方法 と第 2の試験方法の両方を実施することができる。
本発明は、 ゴム組成物の種類、 性状、 用途に応じて、 様々な実施 態様で実施することが可能であるが、 たとえば、 以下のような架橋 用エチレン · α - ォレフィ ン系共重合体ゴム組成物の製造方法が挙 げられる。
本発明に係る架橋用エチレン · ひ- ォレフィ ン系共重合体ゴム組 成物の製造方法では、 少なく ともエチレン · α - ォレフィ ン系共重 合体ゴムと、 補強性フィ ラーたとえば該エチレン · α - ォレフィ ン 系共重合体ゴム 1 0 0重量部に対して 3 0重量部以上の量の補強性 フィ ラーとを密閉式混練機により混練し、 加硫剤もしくは架橋剤と 、 必要に応じ加硫促進剤もしくは架橋助剤と、 軟化剤等のォレフィ ン系ゴムの添加剤として通常使用されている添加剤とを含む架橋用 ゴム組成物を製造する。
本発明で用いられるエチレン ' α _ ォレフィ ン系共重合体ゴムと しては、 特に制限はなく、 従来公知のエチレン ' α - ォレフィ ン系 共重合体ゴムを用いることができ、 たとえば E P R等のエチレン ' - ォレフィ ン共重合体ゴム、 E P DM等のエチレン · ひ- ォレフ イン · (非) 共役ボリェン共重合体ゴムなどが挙げられる。 本発明で用いられる補強性フイ ラ一としては、 従来公知の補強性 フイ ラ一を用いることができ、 具体的には、 カーボンブラック、 無 水ケィ酸、 含水ケィ酸、 ケィ酸カルシウム、 ゲイ酸アルミニウム、 クレー、 タルク、 炭酸カルシウムなどが挙げられる。 中でも、 カー ボンブラックが好ましく用いられる。
カーボンブラック等の補強性フイ ラ一の添加量は、 架橋用ェチレ ン · α - ォレフィ ン系共重合体ゴム組成物の用途によって異なるが 、 エチレン , α _ ォレフィ ン系共重合体ゴム 1 0 0重量部に対して 、 3 0重量部以上、 通常は 3 0 〜 3 0 0重量部、 好ましくは 6 0 〜 3 0 0重量部、 さらに好ましくは 1 0 0〜 3 0 0重量部の割合で用 いられる。
本発明で用いられる加硫剤としては、 加硫剤として従来公知のィ ォゥ、 ィォゥ化合物などが挙げられる。
本発明においては、 これらの加硫剤とともに、 加硫促進剤を併用 することが望ましい。 加硫促進剤としては、 従来公知の加硫促進剤 であれば特に制限はない。
また、 本発明で用いられる架橋剤としては、 有機過酸化物などが 挙げられる。 有機過酸化物は、 従来より E P R、 E P D Mの架橋に 際して使用されている有機過酸化物であれば特に制限はない。
本発明においては、 有機過酸化物とともに、 架橋助剤を併用する ことが望ましい。 架橋助剤としては、 従来公知の架橋助剤であれば 特に制限はない。
また、 本発明に係る架橋用エチレン · α - ォレフィ ン系共重合体 ゴム組成物の製造方法においては、 必要に応じて、 従来公知の軟化 剤、 耐熱安定剤、 耐候安定剤、 帯電防止剤、 滑剤、 加工助剤、 擬似 ゲル化防止剤などの添加剤を、 本発明の目的を損なわない範囲で用 いることができる。
密閉式混練機としては、 具体的には、 バンバリ一ミキサー、 二一 ダー、 インターミックス、 ゥエルナ一と言われているものが挙げら れる。
本発明に係る架橋用エチレン · α- ォレフィ ン系共重合体ゴム組 成物の製造方法では、 先ず、 予め下記の方法により分析してフイ ラ —分散指標 (R) および/または混練状態把握指標 ( Ρ) を求めて おく。
(1) フィラー分散性指標 (R) : 少なく ともエチレン · α - ォレフ イン系共重合体ゴムと、 補強性フイ ラ一と、 加硫剤もしくは架橋剤 と、 必要に応じ加硫促進剤もしくは架橋助剤とを 8インチオープン ロールにより、 1 0 0で以下で混練して得られた未架橋ゴム組成物 から成形した、 厚みが均一な架橋ゴムシートの動的弾性率の歪み依 存性を測定し、 歪みに対して動的弾性率 (より正確には複素弾性率 ) が変化しない部分から、 ある特定の歪みを特定して求めた動的弾 性率 (より正確には複素弾性率) E *(a)と、 歪みによって動的弾性 率 (より正確には複素弾性率) が大きく変化する部分から、 ある特 定の歪みを特定して求めた動的弾性率 (より正確には複素弾性率) E * (b)との百分率 [ (E * (b) / E * (a) ) X 1 0 0 ] (より正確には ( I E * (b) I / I E *(a) I ) X 1 0 0 ) を基準となるフィ ラー分散 性指標 (R) とする。
この厚みが均一な架橋ゴムシー卜の動的弾性率の歪み依存性は、 レオメ トリツクス社製の粘弾性試験器 R S A Πを用いて測定するこ とができるが、 この測定法に限定されない。 この測定方法の詳細は 、 実施例の項で説明する。
上記の 「歪みに対して動的弾性率が変化しない部分」 とは、 上記 加硫ゴムシート (架橋ゴムシートを含む) のうち、 動的弾性率の変 化率が 3 %未満となる部分を指す (以下同じ) 。 また、 上記の 「歪 みによって動的弾性率が大きく変化する部分」 とは、 上記加硫ゴム シー トのうち、 動的弾性率の変化率が 3 %以上となる部分を指す ( 以下同じ) 。
(2) 混練状態把握指標 (Ρ) : 少なくともエチレン · α - ォレフィ ン系共重合体ゴムと、 補強性フィ ラーとを 8インチオープンロール により、 1 0 0 以下で混練して得られた、 加硫剤、 架橋剤、 加硫 促進剤および架橋助剤を含まない未架橋ゴム組成物の複素粘性率と 測定温度との関係を示す式
7? * = Aexp (一 E aZ R T )
〔 7? * : 複素粘性率、 Ea : 見かけの活性化エネルギー、 T : 測定温 度 (° K) 、 R : 気体定数、 A : 前指数項〕 、 または
aT= Aexp (― Ea/R T )
[: aT: シフ トファクタ一、 Ea : 見かけの活性化エネルギー、 T : 測定温度 (° K) 、 R : 気体定数、 A : 前指数項〕
から求められる Ea を基準となる混練状態把握指標 (P ) とする。 上記混練状態把握指標 ( P) は、 レオメ トリ ックス社製の粘弾性 試験器 R S A Πを用いて測定することができるが、 この測定法に限 定されない。 この測定方法の詳細は、 実施例の項で説明する。 次に、 少なく ともエチレン · ひ- ォレフィ ン系共重合体ゴムと、 補強性フイ ラ一とを上記と全く同じ組成割合で密閉式混練機により 混練し、 加硫剤もしくは架橋剤と、 必要に応じ加硫促進剤もしくは 架橋助剤と、 軟化剤等のォレフィ ン系ゴムの添加剤として通常使用 されている添加剤とを上記と全く同じ組成割合で含む架橋用ェチレ ン , α- ォレフィ ン系共重合体ゴム組成物を製造するに際して、 下 記の方法により分析して、 フィ ラー分散性指標 (Ν) および また は混練状態把握指標 (Μ) を求める。
(3) フィ ラー分散性指標 (Ν) : 少なく ともエチレン · α- ォレフ イ ン系共重合体ゴムと、 補強性フィ ラーとを密閉式混練機により混 練し、 得られた混練物と、 加硫剤もしくは架橋剤と、 必要に応じ加 硫促進剤もしくは架橋助剤とを 8インチオープンロールで混練して 得られた未架橋ゴム組成物 (前記(1) の未架橋ゴム組成物と同じ組 成) から成形した、 厚みが均一な架橋ゴムシートの動的弾性率の歪 み依存性を測定し、 歪みに対して動的弾性率 (より正確には複素弾 性率) が変化しない部分から、 ある特定の歪みを特定して求めた動 的弾性率 (より正確には複素弾性率) E *(a)と、 歪みによって動的 弾性率 (より正確には複素弾性率) が大きく変化する部分から、 あ る特定の歪みを特定して求めた動的弾性率 (より正確には複素弾性 率) E *(b)との百分率 [ (E *(b)ZE * (a)) X 1 0 0 ] (より正確 には ( I E b) I Z I E *(a) I ) X 1 0 0 ) をフィ ラー分散性指標 (N) とする。
フイ ラ一分散性指標 (N) は、 レオメ トリ ックス社製の粘弾性試 験器 R S A Πを用いて測定することができるが、 この測定法に限定 されない。 この測定方法の詳細は、 実施例の項で説明する。
(4) 混練状態把握指標 (M) : 少なく ともエチレン , ひ- ォレフィ ン系共重合体ゴムと、 補強性フイ ラ一とを密閉式混練機で剪断を加 えながら、 あるいは熱と剪断を加えながら混練して得られた、 加硫 剤、 架橋剤、 加硫促進剤および架橋助剤を含まない未架橋ゴム組成 物 (前記(2) の未架橋ゴム組成物と同じ組成) の複素粘性率と測定 温度との関係を示す式
7? *= Aexp ( - E a/ R T )
〔 } * : 複素粘性率、 Ea : 見かけの活性化エネルギー、 T : 測定温 度 Γ K) 、 R : 気体定数、 A : 前指数項〕 、 または
aT= Aexp (- Ea/R T)
〔aT : シフ トファクタ一、 E a : 見かけの活性化エネルギー、 T : 測定温度 (° K) 、 R : 気体定数、 A : 前指数項〕
から求められる Ea を混練状態把握指標 (M) とする。
混練状態把握指標 (M) は、 レオメ トリ ックス社製の粘弾性試験 器 R S A Πを用いて測定することができるが、 この測定法に限定さ れない。 この測定方法の詳細は、 実施例の項で説明する。
そして、 上記のようにして得られたフィ ラー分散指標 (N) が、 次式
フィ ラー分散性指標(N)ノフイ ラ一分散性指標(R) = 1〜 0. 8 および または上記のようにして得られた混練状態把握指標 (M) が、 次式
混練状態把握指標(M) 混練状態把握指標(P)= 1〜 0. 8 5 を満足するように、 密閉式混練機による混練条件をコン トロールす る。
フィ ラー分散性指標 (N) フイ ラ一分散性指標 (R) の値が 1 〜 0. 8の範囲内にある場合は、 密閉式混練機で混練されたゴム組 成物中におけるフィ ラー分散性は良好であると評価することができ る。
また、 混練状態把握指標 (M) 混練状態把握指標 (P) の値が 0. 8 5よりも小さい場合は、 密閉式混練機で混練されたゴム組成 物中に、 擬似的ゲルが発生する可能性があることを示しており、 擬 似的ゲルが発生した場合には押出成形においてダイスゥエルが小さ くなり、 その加硫 (架橋) ゴム物性が悪化することとなる。 なお、 混練り状態を把握する指標として通常管理されているムーニー粘度 [ML ( 1 + 4 ) 1 0 0で] 値では、 その変化を見ることはできな い。
本発明者らは、 エチレン ' α- ォレフィ ン系共重合体ゴムとカー ボンブラックとを配合する系において、 混練すればするほど変化す るものは、 ポリマーとフイ ラ一 (カーボンブラック) との界面に生 じる擬似的ゲル生成であり、 この擬似的ゲルを生じさせないように するためには、 そのゲル発生点にラジカル捕捉効果として働く、 酸 素 (空気) を供給すればよいことを見出した。
密閉式混練機中への酸素の供給は、 フローティ ングウェイ トを上 下動させることにより可能である。 ただ、 本操作を何度も繰り返す と、 ゴム組成物を押さえ付ける力を除く ことになり、 フイ ラーを充 分に分散させることができなくなるため、 混練時間が長くなり、 そ の結果、 目的とする架橋用エチレン ' α - ォレフィ ン系共重合体ゴ ム組成物の生産速度が低下することになる。
本発明に係る架橋用エチレン · α - ォレフィ ン系共重合体ゴム組 成物の製造方法においては、 本発明者らが新に見出した、 フイ ラ一 分散性を客観的に評価できるフィ ラー分散性指標と、 混練状態を客 観的に評価できる混練状態把握指標を採用し、 フィ ラー分散指標 ( Ν ) が、 次式
フイ ラ一分散性指標(Ν ) Ζフィ ラー分散性指標(R ) = :!〜 0 . 8 および または混練状態把握指標 (M ) が、 次式
混練状態把握指標(M ) Z混練状態把握指標(P ) = 1〜 0 . 8 5 を満足するように、 密閉式混練機による混練条件をコントロール、 たとえば密閉式混練機に備え付けられているフローティ ングウェイ 卜を上下動させて密閉式混練機に酸素を供給するので、 擬似的ゲル を発生させることなく、 フィ ラー分散性が良好で、 混練状態が安定 している架橋用エチレン · α - ォレフィ ン系共重合体ゴム組成物を 最も経済的に生産することができる。 フローティ ングウェイ トとは 、 混練機密閉部の重しの役目をするものであり、 その上下動は、 通 常は、 その上部にふき上がった配合材をかき落とす (掃除) ために 行われる行為である。
本発明で設定したゴム組成物のフィ ラー分散性指標 (R ) および 混練状態把握指標 (Ρ ) は、 評価するゴム組成物の組成が異なると 、 評価するゴム組成物のフィ ラー分散性指標 (Ν ) および混練状態 把握指標 (Μ ) と比較することはできないので、 評価するゴム組成 物の組成を上記設定したゴム組成物の組成と同一にする必要がある 。 すなわち、 設定するゴム組成物の組成を他の組成に変更する場合 には、 その変更したゴム組成物のフイ ラ一分散性指標 (R ) および 混練状態把握指標 (P ) を新に求めておく必要がある。
本発明では、 ゴム組成物として最も良好な状態を得ることができ ていると考えられる、 8インチオープンロールで得られたゴム組成 物のフィ ラー分散性指標 (R ) および Zまたは混練状態把握指標 ( P ) を求め、 これらの指標を基準として、 フィ ラー分散性指標 (R ) および または混練状態把握指標 (P ) と、 密閉式混練機で得ら れたゴム組成物のフィラー分散性指標 (N ) および または混練状 態把握指標 (M ) との比較を行なうことで、 理想的な状態からのず れを把握し、 その理想的な状態となるように、 密閉式混練機の混練 条件、 具体的には、 配合充填率、 回転速度、 フローティ ングウェイ 卜の上下動のタイミングをコントロールする。
なお 8インチオープンロールによる混練法では、 混練状態を良好 にすることができるが、 ゴム組成物の大量生産には向いていない。
8インチオープンロールでは、 ゴム組成物のうち剪断が加わって いる部分には常に酸素供給されているため、 擬似的ゲルが発生しな いこと、 また、 ロール間間隙が狭く、 せん断力が強いこと、 材料の 流動を手でコントロールしながら混練できるため、 フィ ラー分散性 が極めて良好で、 混練状態が安定している。 8インチオープンロー ルにより混練したゴム組成物は、 密閉式混練機により混練するゴム 組成物のフィ ラー分散性および混練状態を把握する上で、 基準とす るゴム組成物として採用することができる。
本発明に係る架橋用エチレン · α - ォレフィ ン系共重合体ゴム組 成物の製造方法によれば、 フィ ラー分散性が良好で、 混練状態が安 定している架橋用エチレン · α - ォレフィ ン系共重合体ゴム組成物 を経済的に得ることができる。 具体的には、 エチレン ' α - ォレフ イ ン系共重合体ゴム、 補強性フイ ラ一等の混練時に、 リボン割れを 起こすこともなく、 また、 得られたゴム組成物は、 押出加工性、 射 出成形性が良好で、 引張強度等の機械的強度特性、 圧縮永久歪み性 などが良好な成形体を提供することができる。
本発明に係る架橋用エチレン · α - ォレフィ ン系共重合体ゴム組 成物は、 前記のフィ ラー分散性指標 (Ν) とフイ ラ一分散性指標 ( R) との比 (NZR) が 1〜 0. 8の範囲内、 および または混練 状態把握指標 (Μ) と混練状態把握指標 (Ρ) との比 (ΜΖΡ) が 1〜 0. 8 5の範囲内にあるので、 フィ ラー分散性が良好で、 混練 状態が安定している。 発明の効果
本発明に係るゴム組成物の混練状態の試験方法によれば、 少なく ともゴムとフィ ラーとを含有するゴム組成物の混練状態を客観的に 評価できる。
また、 本発明に係るゴム組成物の製造方法によれば、 ゴム組成物 の混練状態を客観的に評価できる試験方法を採用するので、 フィ ラ 一分散性が良好で、 混練状態が安定しているゴム組成物を提供する ことができる。 実施例
以下、 本発明を実施例により説明するが、 本発明は、 これら実施 例により何ら限定されるものではない。
なお、 実施例および比較例における引張強度 (TB ) 、 引張伸び (E B ) 、 および圧縮永久歪み (Cs) は、 J I S K 6 2 5 3に従 つて行なった。
また、 実施例等におけるフィラー分散性指標および混練状態把握 指標は、 それぞれ以下の条件で求めた。
( 1 ) フィ ラー分散性指標
レオメ トリツクス社製の粘弾性試験器 R S A Π ;
周波数範囲 0. 0 0 1 6〜 1 6 H z
振幅範囲 ± 0. 5 mm
歪み分解能 ± 0. 0 5 m
最大加重 9. 8 1 N
位相角分解能 ± 0. 1度
測定感度 1
温度勾配速度 0. 1度から 5 0度ノ分
測定条件 ;
初期加重 5 0 g (取り付けた短冊状試料のたわみ解消のため) 歪み 0. 0 1から 2 %
周波数 1 0 H z
測定温度 2 5 (温度制御により)
測定 動的弾性率 (動的ヤング率) (より正確には複素弹 性率) (E*) の歪み依存性
上記の粘弾性試験器に動的弾性率測定用の短冊状試料を取り付け 、 取り付けた後、 短冊状試料に撓みがないことを確認して、 動的弹 性率 (より正確には複素弾性率) (E *) の歪み依存性を測定した ( 2 ) 混練状態把握指標
レオメ トリ ックス社製の粘弾性試験器 RD S Π
変換器
トルク範囲 2 0 0 0 m g · c m
ドリフ ト (Drif t) 0 1 % フルスケール時間
測定条件
初期加重 0 g
歪み 1 %
周波数 1 0 H z
測定温度 2 1 0T:、 1 9 0 、 1 7 0 :
(温度制御により)
測定 複素粘性率 ( 7? * ) の温度依存性から求まる
1 9 0 でのシフ トファクター a T の (図 3 ) 温度依存性から Ea((kJ/mol) の活性化エネ ルギ一) を算出
ぐ活性化エネルギー値の求め方 >
( 1 ) 図 2のように、 混練したコンパウン ドの温度に対する複素粘 性率 ( 77 *) と周波数との関係を測定して求める。
( 2 ) WL Fの関係より、 1 9 0ででの複素粘性率 ( 7? *) と周波数 との関係を求めるべく シフ トファクター ( a T ) を下式より求め、 シフ トファクター ( a T ) の温度依存性 ( a T=Aexp [ - E a/ R ( T - T r e f . )] ) から、 活性化エネルギー (kJ/mol ; E a) を算出す る。 WL F式 ;
温度 Tの粘度を η τ、 ある基準温度 Τ。の粘度を 7? τ。とする。
7] τ = 3. τ τ 0
実施例 1〜 6
[混練状態把握指標 (P) ]
エチレン . α - ォレフィ ン系共重合体ゴムとしてエチレン . プロ ピレン · 5-ビニル -2- ノルボルネン共重合体ゴム [エチレン Ζプロ ピレンのモル比 = 7 0 Ζ 3 0、 ヨウ素価 = 2 0 ] 1 0 0重量部と、 カーボンブラック [商品名 旭 6 0 H G、 旭カーボン (株) 製] 1 6 5重量部と、 軟化剤として [商品名 PW— 3 8 0 ] 7 0重量部 とを、 8イ ンチオープンロールを用い、 6 0 で混練し、 加硫剤お よび加硫促進剤を含まない未加硫ゴム組成物を得た。
次に、 この未加硫ゴム組成物を約 2 0 gサンプリ ングし、 5 0 ト ンプレス機を用い、 1 6 0 T:で 6分、 余熱で 2分加圧し、 水で 5分 間冷却し、 厚み 2 mmの 1 0 c m角の未加硫ゴムシートを得た。
この未加硫ゴムシートを、 直径 2 5 m mの円状に打ち抜いて、 複 素粘性率測定用試験片とした。 この試験片について、 上記レオメ ト リ ックス社製の粘弾性試験器 R D S IIでパラレルプレートを用いて 複素粘性率 ( 77 *) を前記条件で測定した。
すなわち、 この試験片を 2 1 0 に加熱して層内が 2 1 0 で安 定するまで 6分間保持し、 その後、 2 1 0 、 1 9 0 °C、 1 7 0 "C での複素粘性率 ( r? *) を測定し、 前記式よりシフ トファクタ一 ( a τ) を算出した。 具体的には、 この試験片を 2 1 0 ^に加熱して層内 が 2 1 O :で安定するまで 6分間保持し、 その後、 2 1 0 から 1 9 O :、 1 7 0 と連続的に複素粘性率 ( 77 *) を測定するに当たり 、 2 1 0 での複素粘性率測定終了後、 一 5■CZ分の速度で 1 9 0 とした。 層内が 1 9 O t:で安定するまで 6分間保持したのち、 1 9 0 での複素粘性率 (;? *) を測定し、 同上条件で 1 7 O :として 1 7 0ででの複素粘性率 ( η の測定を行なった。 そして、 シフ ト ファクター ( a T) と測定温度 (T) との関係から見かけの活性化工 ネルギ一 (E a) 値 (kJ/mol) すなわち混練状態把握指標 (P) を算 出した。
[フィラー分散性指標 (R) ]
次に、 上記の加硫剤および加硫促進剤を含まない未加硫ゴム組成 物を 8インチオープンロールに 3 0 0 g巻き付け、 これに、 加硫剤 として硫黄 1. 5 p h r、 加硫促進剤としてノクセラー M [商品名 ; 大内新興化学工業 (株) 製] 0. 5 p h r、 ノクセラー T T [商 品名 ; 大内新興化学工業 (株) 製] 1 . O p h r を投入し、 7 0 で混練し、 未加硫ゴム組成物を得た。
この未加硫ゴム組成物から、 5 0 トンプレス機を用い、 1 6 0 、 8分の条件でプレス加硫し、 厚み l mmの加硫ゴムシートを得た 。 そして、 この加硫ゴムシートから、 幅 1 0 mm、 長さ 3 0 mmと なるように打ち抜き、 短冊状試料を作製した。
この短冊状試料について、 上記レオメ トリ ックス社製の粘弾性試 験器 R S A Πを用い、 前記条件で動的弾性率の歪み依存性を測定し た。
この動的弾性率の歪み依存性をグラフにとり、 たとえば図 1のよ うに、 歪み ( ε ) に対して動的弾性率 (より正確には複素弾性率) (Ε *) が変化しない部分から、 歪み ( ε ) 力 0. 0 1 %のときの加 硫ゴムシートの動的弾性率 (より正確には複素弾性率) E *(a)と、 動的弾性率 (より正確には複素弾性率) (E*) が大きく変化した部 分から、 歪み ( ε ) が 2 %のときの動的弾性率 (より正確には複素 弾性率) E b)を求め、 下記の式よりフィ ラー分散性指標 (R) を 算出した。
R (%) = (E * (b)/ E * (a)) X 1 0 0
(より正確には、 R (%) = ( I E * (b) I / I E * (a) I ) x 1 0 0 )
[混練状態把握指標 (M) ]
エチレン . α - ォレフィ ン系共重合体ゴムとしてエチレン ' プロ ピレン · 5-ビニル -2- ノルボルネン共重合体ゴム [エチレン Ζプロ ピレンのモル比 = 7 0 Ζ 3 0、 ヨウ素価 = 2 0 ] 1 0 0重量部と、 カーボンブラック [商品名 旭 6 0 H G、 旭力一ボン (株) 製] 3 0重量部と、 軟化剤として [商品名 PW— 3 8 0 ] 7 0重量部と を、 密閉式混練機 (バンバリ一ミキサー、 以下同じ) として、 神戸 製鋼所社製の 1. 7 リッ トル B B 2型バンバリ一ミキサーを用い、 混練前温度を 5 0でに合わせて混練した。 5 0、 1 1 0、 2 4 0、 3 6 0秒後のダンプアウ ト時の温度は、 それぞれ 1 3 2 、 1 4 5 、 1 7 5 であった。 この混練り条件によって加硫剤および加硫 促進剤を含まない未加硫ゴム組成物を得た。
実施例 1、 実施例 2、 実施例 3および実施例 5における上記の密 閉式混練機による混練は、 J I S K 6 2 9 9に規定されている混 練法 (A 1法) により行ない、 混練時間はそれぞれ 1 1 0秒、 5 0 秒、 2 4 0秒、 3 6 0秒であった。
また、 実施例 4および実施例 6における上記の密閉式混練機によ る混練は、 J I S K 6 2 9 9に規定されている混練法 (Α 2法) で行ない、 その混練中に、 掃除のために使用されるフローティ ング ウェイ トの上下動を 2回行なった。 混練時間はそれぞれ 2 4 0秒、 3 6 0秒であった。
次に、 上記の加硫剤および加硫促進剤を含まない未加硫ゴム組成 物を約 2 0 gサンプリングし、 5 0 トンプレス機を用い、 1 6 0 "C で 6分、 余熱で 2分加圧し、 水で 5分間冷却し、 厚み 2 mmの 1 0 c m角の未加硫ゴムシートを得た。
この未加硫ゴムシートを、 直径 2 5 mmの円状に打ち抜いて、 複 素粘性率測定用試験片とした。 この試験片について、 上記レオメ ト リックス社製の粘弾性試験器 R D S Πでパラレルプレートを用いて 複素粘性率 を前記条件で測定した。
すなわち、 この試験片を 2 1 0でに加熱して層内が 2 1 0でで安 定するまで 6分間保持し、 その後、 2 1 0 、 1 9 0 t:、 1 7 0 " での複素粘性率 71 を測定し、 前記式よりシフ トファクター ( a τ) を算出した。 そして、 シフ トファクター ( a T) と測定温度 (T ) との関係から見かけの活性化エネルギー (Ea) 値 (U/mol) すな わち混練状態把握指標 (M) を算出した。
[フィラー分散性指標 (N) ]
次に、 密閉式混練機内から加硫剤および加硫促進剤を含まない未 加硫ゴム組成物 3 0 0 gを 8インチオープンロールに巻き付け、 さ らに加硫剤として硫黄 1. 5 p h r、 加硫促進剤としてノクセラー M [商品名 ; 大内新興化学工業 (株) 製] 0. 5 p h r、 ノクセラ 一 T T [商品名 ; 大内新興化学工業 (株) 製] 1. 0 p h rを投入 、 混練した。
この際のロール混練条件は、
①フロントロール温度ノバックロール温度 : 6 0 X:/ 6 0 X:
②ロ一ルガイ ド幅 : 4 0 c m
③ロール間隙 : 1 mm
とした。
練り方法として切り返し左右各 3回丸目通し 8回を行なった後、 ロール間隙を 3 mmとして未加硫ゴム組成物の 3 mmシートを作製 した。
この未加硫ゴム組成物から、 5 0 トンプレス機を用い、 1 6 0で 、 8分の条件でプレス加硫し、 厚み l mmの加硫ゴムシートを得た 。 そして、 この加硫ゴムシートから、 幅 1 0 mm、 長さ 3 0 mmと なるように打ち抜き、 短冊状試料を作製した。
この短冊状試料について、 上記レオメ トリ ックス社製の粘弹性試 験器 R S A IIを用い、 前記条件で動的弾性率の歪み依存性を測定 した。
この動的弾性率の歪み依存性をグラフにとり、 たとえば図 1のよ うに、 歪みに対して動的弾性率 (より正確には複素弾性率) E *が変 化しない部分から、 歪みが 0. 0 1 %のときの加硫ゴムシートの動 的弾性率 (より正確には複素弾性率) E '(a)と、 動的弾性率 (より 正確には複素弾性率) が大きく変化した部分から、 歪みが 2 %のと きの動的弾性率 (より正確には複素弾性率) E b)を求め、 下記の 式よりフィ ラー分散性指標 (N) を算出した。
N (%) = ( E * (b)/ E * (a)) X 1 0 0
(より正確には N (%) = ( I E * (b) I / I E * (a) I ) X 1 0 0 ) 結果を第 1表に示す。
また、 上記の加硫剤および架橋促進剤を含む未加硫ゴム組成物を 用いて、 下記の条件で押出成形し、 ダイスゥエル比を求めるととも に、 得られた押出成形品の押出し肌を観察し、 下記の評点で評価し た。
<押出成形条件〉
5 O mm0押出成形機
ダイス開口部の幅 : Φ 8 mm
さ : 5 mm
押出樹脂温度 : 8 0
樹脂押出速度 : 2 0 mZ分
<押出し肌の評点 >
5 光沢を持った平滑な表面
4 平滑な表面
3 くすみがあるが、 平滑な表面
2 くすみがあり、 部分部分に凸凹がある表面
さらさらとした表面 比較例 実施例 1 において、 実施例 1 と同じ配合、 同じ混練時間 ( 5 0秒 ) で、 密閉式混練機温度を予めスチームによって 1 7 0 Cまで上昇 した状態で混練した以外は、 実施例 1 と同様に行なった。
結果を第 1表に示す。
第 1表
υ
基準材の 実 施 例 比較例 混練状態 1丄 2 3 4 5 6 1 密閉式混 P練機による混練時間 [秒]
混練法 (A1法) ϋリ 110 50 混練法 (A 2法) 一 ?40
混練状態把握指標 (Ρ)
見かけの活性化エネルギー [kJ/mol] 118 一 混練状態把握指標 (M)
見かけの活性化エネルギー [kJ/mol] .„ 105 104 77 104 65 103 45
MZP 1.0 0.89 0.88 0.65 0.88 0.55 0.87 0.38 フィラー分散性指標 (R) 66
フィラー分散性指標 (N) 、o 30 55 59 59 63 63 23
E*(a) X107 [kg/cm2] 5.0 4.3 3.2 3.2 2.8 2.8 6.1
E*(b) X109 [kg/ci2] 一 1.5 2.4 1.9 1.9 1.8 1.8 1.4
NZR 1.0 0.45 0.83 0.90 0.89 0.95 0.96 0.35 ダイスゥエル比 [%] 121 128 121 108 121 102 122 103 押出し肌 5 1 4 4 5 5 5 1
15.1 11.2 13.2 9.4 14.3 8.5 15.1 7.3
EB [%] 620 450 560 450 580 430 610 385
19 39 25 37 22 39 20 45
実施例 7および比較例 2、 3
[混練状態把握指標 (P) ]
天然ゴム (R S S # 1 ) 1 0 0重量部と、 HA F力一ボンブラッ ク [商品名 旭 # 7 0、 旭カーボン (株) 製] 4 8重量部と、 亜鉛 華 1号 5重量部と、 加硫剤として硫黄 2重量部と、 加硫促進剤とし て N-テトラブチル -2- ベンゾチアゾルスルフェンアミ ド [商品名 ノクセラー N S— P、 大内新興化学工業 (株) 製] 1. 3 5重量部 とを、 8インチオープンロールを用い、 6 0 で混練し、 未加硫ゴ ム組成物を得た。
次に、 この未加硫ゴム組成物を約 2 0 gサンプリングし、 5 0 ト ンプレス機を用い、 1 6 0でで 6分、 余熱で 2分加圧し、 水で 5分 間冷却し、 厚み 2 mmの 1 0 c m角の未加硫ゴムシートを得た。
この未加硫ゴムシートを、 直径 2 5 mmの円状に打ち抜いて、 複 素粘性率測定用試験片とした。 この試験片について、 上記レオメ ト リ ックス社製の粘弹性試験器 R D S IIでパラレルプレートを用いて 複素粘性率 ( 77 *) を前記条件で測定した。
すなわち、 この試験片を 1 3 0でに加熱して層内が 1 3 0でで安 定するまで 6分間保持し、 その後、 1 3 0 、 1 1 0で、 9 0でで の複素粘性率 ( 7] *) を測定し、 前記式よりシフ トファクタ一 ( a T ) を算出した。 具体的には、 この試験片を 1 3 0でに加熱して層内 が 1 3 O t で安定するまで 6分間保持し、 その後、 1 3 0 から 1 1 0で、 9 0 と連続的に複素粘性率 を測定するに当たり、 1 3 0 での複素粘性率測定終了後、 一 5 t:Z分の速度で 1 1 0 とした。 層内が 1 1 0でで安定するまで 6分間保持したのち、 1 1 0ででの複素粘性率 ( η を測定し、 同上条件で 9 0 として 9 0 ででの複素粘性率 ( 77 *) の測定を行なった。 そして、 シフ トファク 夕一 ( aT) と測定温度 (T) との関係から、 基準温度を 1 1 0でと したときの見かけの活性化エネルギー (Ea) 値 (kJ/mol) すなわち 混練状態把握指標 (P) を算出した。
[フィ ラー分散性指標 (R) ]
天然ゴム (R S S # 1 ) 1 0 0重量部と、 HA Fカーボンブラッ ク [商品名 旭 # 7 0、 旭カーボン (株) 製] 4 8重量部と、 亜鉛 華 1号 5重量部と、 加硫剤として硫黄 2重量部と、 加硫促進剤とし て N-テトラブチル -2- ベンゾチアゾルスルフェンアミ ド [商品名 ノクセラ一 N S— P、 大内新興化学工業 (株) 製] 1. 3 5重量部 とを、 8イ ンチオープンロールを用い、 7 0 で混練し、 未加硫ゴ ム組成物を得た。
この未加硫ゴム組成物から、 5 0 トンプレス機を用い、 1 6 0 * 、 8分の条件でプレス加硫し、 厚み l mmの加硫ゴムシートを得た 。 そして、 この加硫ゴムシー トから、 幅 1 0 mm、 長さ 3 0 mmと なるように打ち抜き、 短冊状試料を作製した。
この短冊状試料について、 上記レオメ ト リ ックス社製の粘弾性試 験器 R S A IIを用い、 前記条件で動的弾性率 (より正確には複素 弾性率) の歪み依存性を測定した。
この動的弾性率 (より正確には複素弾性率) の歪み依存性をダラ フ (図示せず) にとり、 たとえば歪み ( ε ) に対して動的弾性率 ( より正確には複素弾性率) (Ε *) が変化しない部分から、 歪み ( ε ) が 0. 0 1 %のときの加硫ゴムシートの動的弾性率 (より正確に は複素弾性率) E a)と、 動的弾性率 (より正確には複素弾性率)
(E*) が大きく変化した部分から、 歪み ( ε ) が 2 %のときの動的 弾性率 (より正確には複素弾性率) E *(b)を求め、 下記の式よりフ イラ一分散性指標 (R) を算出した。
R ( ) = ( E * (b) / E * (a)) X 1 0 0
(より正確には R (%) = ( I E*(b) I / I E*(a) I ) X 1 0 0 )
[混練状態把握指標 (M) ]
天然ゴム (R S S # 1 ) 1 0 0重量部と、 HA Fカーボンブラッ ク [商品名 旭 # 7 0、 旭カーボン (株) 製] 4 8重量部と、 亜鉛 華 1号 5重量部と、 硫黄 2重量部と、 加硫促進剤 [N-テトラプチル- 2- ベンゾチアゾルスルフェンアミ ド ; 商品名 ノクセラー N S— P 、 大内新興化学工業 (株) 製] 1. 3 5重量部とを、 密閉式混練機
(バンバリ一ミキサー、 以下同じ) として、 神戸製鋼所社製の 1. 7 リ ッ トル B B 2型バンバリ一ミキサーを用い、 混練前温度を 5 0 に合わせて混練した。 この混練り条件によって未加硫ゴム組成物 を得た。
実施例 7における上記の密閉式混練機による混練は、 J I S K 6 2 9 9に規定されている混練法 (A 1法) により行ない、 混練時 間は 1 8 0秒であった。 また、 密閉式混練機から排出した直後のコ ンパウンド温度は 1 1 5 であった。
また、 比較例 2および比較例 3における上記の密閉式混練機によ る混練は、 J I S K 6 2 9 9に規定されている混練法 (A l法) により行ない、 混練時間はそれぞれ 4 0秒、 4 8 0秒であった。 ま た、 密閉式混練機から排出した直後の比較例 2および比較例 3にお けるコンパウンド温度はそれぞれ 7 5で、 1 5 5でであった。
次に、 上記の未加硫ゴム組成物を約 2 0 gサンプリ ングし、 5 0 トンプレス機を用い、 1 6 0 で 6分、 余熱で 2分加圧し、 水で 5 分間冷却し、 厚み 2 mmの 1 0 c m角の未加硫ゴムシートを得た。
この未加硫ゴムシートを、 直径 2 5 mmの円状に打ち抜いて、 複 素粘性率測定用試験片とした。 この試験片について、 上記レオメ ト リ ックス社製の粘弾性試験器 R D S IIでパラレルプレートを用いて 複素粘性率 を前記条件で測定した。
すなわち、 この試験片を 1 3 0でに加熱して層内が 1 3 0 ^で安 定するまで 6分間保持し、 その後、 1 3 0 :、 1 1 0 、 9 0でで の複素粘性率 ( 7) を測定し、 前記式よりシフ トファクター ( a T ) を算出した。 そして、 シフ トファクター ( a T) と測定温度 (T) との関係から、 基準温度を 1 1 0 としたときの見かけの活性化工 ネルギー (Ea) 値 (kJ/mol) すなわち混練状態把握指標 (M) を算 出した。
[フィ ラー分散性指標 (N) ]
天然ゴム (R S S # 1 ) 1 0 0重量部と、 HA Fカーボンブラッ ク [商品名 旭 # 7 0、 旭カーボン (株) 製] 4 8重量部と、 亜鉛 華 1号 5重量部とを、 密閉式混練機 (バンバリ一ミキサー、 以下同 じ) として、 神戸製鋼所社製の 1. 7 リッ トル B B 2型バンバリ一 ミキサーを用い、 混練前温度を 5 0 に合わせて混練した。 この混 練り条件によって加硫剤および加硫促進剤を含まない未加硫ゴム組 成物を得た。
次いで、 密閉式混練機内から取り出した上記未加硫ゴム組成物 1 5 3重量部を 8インチオープンロールに巻き付け、 さらに加硫剤と して硫黄 2重量部と、 加硫促進剤として N-テトラブチル -2- ベンゾ チアゾルスルフェンアミ ド [商品名 ノクセラー N S— P、 大内新 興化学工業 (株) 製] 1. 3 5重量部を投入、 混練した。
この際のロール混練条件は、
①フロントロール温度/バックロール温度 : 6 0 °CZ 6 0で
②ロールガイ ド幅 : 4 0 c m
③ロール間隙 : 1 mm
とした。
練り方法として切り返し左右各 3回丸目通し 8回を行なった後、 ロール間隙を 3 mmとして未加硫ゴム組成物の 3 mmシートを作製 した。
この未加硫ゴム組成物から、 5 0 トンプレス機を用い、 1 6 0 、 8分の条件でプレス加硫し、 厚み l mmの加硫ゴムシートを得た 。 そして、 この加硫ゴムシートから、 幅 1 0 mm、 長さ 3 0 mmと なるように打ち抜き、 短冊状試料を作製した。
この短冊状試料について、 上記レオメ トリ ックス社製の粘弾性試 験器 R S A IIを用い、 前記条件で動的弾性率 (より正確には複素弹 性率) の歪み依存性を測定した。
この動的弾性率 (より正確には複素弾性率) の歪み依存性をグラ フ (図示せず) にとり、 たとえば歪みに対して動的弾性率 (より正 確には複素弾性率) が変化しない部分から、 歪みが 0. 0 1 %のと きの加硫ゴムシートの動的弾性率 (より正確には複素弾性率) E*(a )と、 動的弾性率 (より正確には複素弾性率) が大きく変化した部分 から、 歪みが 2 %のときの動的弾性率 (より正確には複素弾性率) E * (b)を求め、 下記の式よりフィ ラー分散性指標 (N) を算出した
N {%)= (E*(b)/E*(a)) X 1 0 0
(より正確には N (%) = ( I E*(b) I / I E*(a) I ) X 1 0 0 ) 結果を第 2表に示す。
第 2表
基準材の 実施例 比 較 例 混練状態 7 2 3 ゴム組成物の組成 [重量部]
天然ゴム RSS# 1 100 100 100 100
HAFカーボンブラック 48 48 48 48 亜鉛華 1号 5 5 5 5 加硫促進剤 1.35 1.35 1.35 1.35 硫 2 2 2 2 活性化エネルギー (P) [kJ/mol] 52
活性化エネルギー (M) [kJ/mol] 一 52 52 25
M/P 1.0 1.0 0.48 フイラ一分散性指標 (R) 91
フィラー分散性指標 (N) 89 72 91
E*(a) X107 [kg/cm2] 5.10 4.90 4.8 5.10
E*(b) X107 [kg/cm2] 5.60 5.50 6.70 5.60
N/R 0.98 0.79 1.0
TB [ P a] 26.8 27.8 19.1 15.2
EB [%] 510 520 480 320

Claims

言青求 の 範 囲
1. 少なく ともゴム (A) と、 フイ ラ一 (B) とを含有するゴム組 成物 ( I ) の混練状態の試験方法であって、
( 1 ) 該ゴム組成物 ( I ) の、 任意の歪み値 £ a における複素弹性 率 E *(a)、 および該歪み値 ε a とは異なる任意の歪み値 ε b に おける複素弾性率 E *(b)を測定する、 複素弾性率測定工程、
( 2 ) 前記複素弾性率測定工程 ( 1 ) で得られた複素弾性率 E '(a) および E*(b)から、 下式
フィ ラ一分散性指標 (N) = I E *(a) I / I E*(b) I に従い、 該ゴム組成物 ( I ) のフイ ラ一分散性指標 (N) を算 出する、 フィラー分散性指標算出工程、 および、
( 3 ) 予め設定されたフイ ラ一分散性目標値 (R) と、 前記フイ ラ 一分散性指標算出工程 ( 2 ) で算出したフィラー分散性指標 ( N) とを比較する、 比較工程
を有することを特徵とするゴム組成物の混練状態の試験方法。
2. 前記フィ ラー分散性目標値 (R) が、 前記ゴム組成物 ( I ) と 同一配合のゴム組成物を実質的に完全分散状態としてから、 前記複 素弾性率測定工程 ( 1 ) および前記フィ ラー分散性指標算出工程 ( 2 ) を行なって得られた目標フィラー分散性指標 (NO) であること を特徴とする請求項 1に記載の試験方法。
3. 前記完全分散が、 オープンロールによる混練により行われるこ とを特徴とする請求項 2に記載の試験方法。
4. 少なく ともゴム (A) と、 フィ ラー (B) とを含有するゴム組 成物 ( I ) の混練状態の試験方法であって、
( 1 ' ) 該ゴム組成物 ( I ) を架橋して得られる架橋ゴムシートの、 任意の歪み値 ε a における動的弾性率 E ' (a)、 および該歪み値 ε a とは異なる任意の歪み値 ε b における動的弾性率 E ' (b)を 測定する、 動的弾性率測定工程、
( 2 ' ) 前記動的弾性率測定工程 ( 1 ' ) で得られた動的弾性率 E ' (a )および E ' (b)から、 下式
フィラー分散性指標 (Ν' ) = Ε ' )/ E ' (b)
に従い、 該ゴム組成物 ( I ) のフイラ一分散性指標 (Ν' ) を算 出する、 フイラ一分散性指標算出工程、 および、
( 3 ' ) 予め設定されたフイラ一分散性目標値 (R ' ) と、 前記フィ ラー分散性指標算出工程 ( 2 ' ) で算出したフィ ラー分散性指標 (Ν' ) とを比較する、 比較工程
を有することを特徴とするゴム組成物の混練状態の試験方法。
5. 前記フィ ラー分散性目標値 (R ' ) が、 前記ゴム組成物 ( I ) と 同一配合のゴム組成物を実質的に完全分散状態としてから、 前記動 的弾性率測定工程 ( 1 ' ) および前記フィラー分散性指標算出工程 ( 2 ') を行なって得られた目標フイラ一分散性指標 (ΝΟ' ) であるこ とを特徴とする請求項 4に記載の試験方法。
6 . 前記完全分散が、 オープンロールによる混練により行われるこ とを特徴とする請求項 5に記載の試験方法。
7. 請求項 1〜 6のいずれかに記載の、 ゴム組成物の混練状態の試 験方法を実施することを特徴とするゴム組成物の製造方法。
8 . さらに、 ( 4 ) または ( 4 ' ) 前記比較工程 ( 3 ) または ( 3 ' ) の結果を受けて、 フィ ラー分散性指標 (N) フィ ラー分散性目 標値 (R) の値、 またはフィ ラー分散性指標 (Ν' ) Ζフィ ラー分散 性目標値 (R') の値が一定の数値範囲内になるように、 ゴム組成物 ( I ) の混練条件を調整する、 フィー ドバック工程を有することを 特徴とする請求項 7に記載のゴム組成物の製造方法。
9. 前記のフィ ラー分散性指標 (Ν) フィ ラー分散性目標値 (R ) ( I E*(a) I ≤ I E * (b) I の場合) の数値範囲、 またはフィ ラー 分散性指標 (Ν' ) Ζフィ ラー分散性目標値 (R' ) の数値範囲が 0
. 8〜 1. 0であることを特徴とする請求項 8に記載のゴム組成物 の製造方法。
1 0. 少なく ともゴム (Α) と、 フィ ラー (Β) とを含有するゴム 組成物 ( I ) の混練状態の試験方法であって、
( 5 ) 該ゴム組成物 ( I ) の複素粘性率?7 * を、 少なく とも 2つの 異なる温度において測定する、 複素粘性率測定工程、
( 6 ) 前記複素粘性率測定工程 ( 5 ) で得られた複素粘性率 r? * の 温度依存性から、 下式
I 77 * (Τ) I = Aexp (-M/R T)
C 7? * : 複素粘性率、 A : 定数、 R : 気体定数、 T : 測定温度 ( 0 K) 〕
に従い、 該ゴム組成物 ( I ) の混練状態把握指標 (M) を算出 する、 混練状態把握指標算出工程、 および、
( 7 ) 予め設定された混練状態目標値 (P) と、 前記混練状態把握 指標算出工程 ( 6 ) で算出した混練状態把握指標 (M) とを比 較する、 比較工程 を有することを特徴とするゴム組成物の混練状態の試験方法。
1 1. 前記混練状態目標値 ( P) が、 前記ゴム組成物 ( I ) と同一 配合のゴム組成物を実質的に完全分散状態としてから、 前記複素弹 性率測定工程 ( 5 ) および前記混練状態把握指標算出工程 ( 6 ) を 行なって得られた目標混練状態把握指標 (M0) であることを特徴と する請求項 1 0に記載の試験方法。
1 2. 前記完全分散が、 オープンロールによる混練により行われる ことを特徴とする請求項 1 1に記載の試験方法。
1 3. 少なく ともゴム (A) と、 フイ ラ一 (B) とを含有するゴム 組成物 ( I ) の混練状態の試験方法であって、
( 5 ' ) 該ゴム組成物 ( I ) の複素粘性率 7? *の実部 7? 'を、 少なく と も 2つの異なる温度において測定する、 複素粘性率測定工程、 ( 6 ') 前記複素粘性率測定工程 ( 5 ') で得られた複素粘性率 77 *の 実部 77 'の温度依存性から、 下式
7] ' (T) = Aexp ( - M' / R T)
〔A : 定数、 R : 気体定数、 T : 測定温度 C K) 〕
に従い、 該ゴム組成物 ( I ) の混練状態把握指標 (Μ') を算出 する、 混練状態把握指標算出工程、 および、
( 7 ' ) 予め設定された混練状態目標値 (Ρ ' ) と、 前記混練状態把 握指標算出工程 ( 6 ' ) で算出した混練状態把握指標 (Μ' ) と を比較する、 比較工程
を有することを特徴とするゴム組成物の混練状態の試験方法。
1 4. 前記混練状態目標値 (Ρ') が、 前記ゴム組成物 ( I ) と同一 配合のゴム組成物を実質的に完全分散状態としてから、 前記複素弹 性率測定工程 ( 5 ' ) および前記混練状態把握指標算出工程 ( 6 ') を行なって得られた目標混練状態把握指標 (ΜΟ' ) であることを特 徵とする請求項 1 3に記載の試験方法。
1 5. 前記完全分散が、 オープンロールによる混練により行われる ことを特徴とする請求項 1 4に記載の試験方法。
1 6. 請求項 1 0〜 1 5のいずれかに記載の、 ゴム組成物の混練状 態の試験方法を実施することを特徴とするゴム組成物の製造方法。
1 7. さ らに、 ( 8 ) または ( 8 ' ) 前記比較工程 ( 7 ) または ( 7 ' ) の結果を受けて、 混練状態把握指標 (Μ) 混練状態目標値 (Ρ) の値、 または混練状態把握指標 (Μ' ) /混練状態目標値 ( Ρ ' ) の値が一定の数値範囲内になるように、 ゴム組成物 ( I ) の 混練条件を調整する、 フィー ドバック工程を有することを特徴とす る請求項 1 6に記載のゴム組成物の製造方法。
1 8. 前記の混練状態把握指標 (Μ) 混練状態目標値 (Ρ) の数 値範囲、 または混練状態把握指標 (Μ' ) Ζ混練状態目標値 (Ρ ' ) の数値範囲が、 0. 8 5〜 1. 0であることを特徴とする請求項
1 7に記載のゴム組成物の製造方法。
PCT/JP2001/000634 2000-01-31 2001-01-31 Methode de test de composition de caoutchouc a l'etat malaxe et procede de production de composition de caoutchouc WO2001057493A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01902682A EP1172641A4 (en) 2000-01-31 2001-01-31 METHOD FOR TESTING THE RUBBER MIXTURE FOR THE EXTRUDED CONDITION AND PROCESS FOR PRODUCING THIS RUBBER MIXTURE
JP2001556294A JP4443811B2 (ja) 2000-01-31 2001-01-31 ゴム組成物の混練状態の試験方法およびゴム組成物の製造方法
KR1020017012497A KR20010106532A (ko) 2000-01-31 2001-01-31 고무 조성물의 혼련상태 평가 방법 및 고무 조성물의 제조방법
AU30538/01A AU3053801A (en) 2000-01-31 2001-01-31 Method of testing rubber composition for kneaded state and process for producingrubber composition
CA002369125A CA2369125A1 (en) 2000-01-31 2001-01-31 Kneading status evaluation methods for rubber composition and manufacturing methods for rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000027367 2000-01-31
JP2000-27367 2000-01-31

Publications (1)

Publication Number Publication Date
WO2001057493A1 true WO2001057493A1 (fr) 2001-08-09

Family

ID=18552949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000634 WO2001057493A1 (fr) 2000-01-31 2001-01-31 Methode de test de composition de caoutchouc a l'etat malaxe et procede de production de composition de caoutchouc

Country Status (7)

Country Link
US (1) US20030018113A1 (ja)
EP (1) EP1172641A4 (ja)
JP (1) JP4443811B2 (ja)
KR (1) KR20010106532A (ja)
AU (1) AU3053801A (ja)
CA (1) CA2369125A1 (ja)
WO (1) WO2001057493A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125314A1 (ja) * 2012-02-20 2013-08-29 横浜ゴム株式会社 密閉式ゴム混練機を備えた混練システム
WO2013125313A1 (ja) * 2012-02-20 2013-08-29 横浜ゴム株式会社 密閉式ゴム混練機の混練効率の評価方法
JP2018146490A (ja) * 2017-03-08 2018-09-20 横浜ゴム株式会社 複合材料の解析用モデルの作成方法、複合材料の解析用モデルの作成用コンピュータプログラム、複合材料の解析方法及び複合材料の解析用コンピュータプログラム
JP7133119B1 (ja) 2021-10-29 2022-09-07 住友理工株式会社 ゴムの混練方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136532B2 (ja) 2002-08-19 2008-08-20 鬼怒川ゴム工業株式会社 粘弾性材料の加工性評価方法及びその装置、加工条件設定方法及び加工装置、および加工管理方法
US10188856B1 (en) 2011-12-07 2019-01-29 Cyberonics, Inc. Implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction
US9643008B2 (en) 2012-11-09 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing post-exercise recovery through vagus nerve stimulation
US8923964B2 (en) 2012-11-09 2014-12-30 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing heart failure patient awakening through vagus nerve stimulation
US9452290B2 (en) 2012-11-09 2016-09-27 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmia through vagus nerve stimulation
US9643011B2 (en) 2013-03-14 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmic risk during sleep through vagus nerve stimulation
JP7099060B2 (ja) * 2018-06-13 2022-07-12 住友ゴム工業株式会社 未加硫ゴムの検査方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395243A (ja) * 1986-10-09 1988-04-26 Ube Ind Ltd ビ−ドフイラ−ゴム組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076220A (en) * 1976-02-10 1978-02-28 Bridgestone Tire Company Limited Method of mixing and kneading control of a rubber kneader
US5168012A (en) * 1989-03-13 1992-12-01 Columbian Chemicals Company Carbon black beads with latex additive
US5494955A (en) * 1994-04-08 1996-02-27 Columbian Chemicals Company Use of silane coupling agent with carbon black to enhance the balance of reinforcement properties of rubber compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395243A (ja) * 1986-10-09 1988-04-26 Ube Ind Ltd ビ−ドフイラ−ゴム組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ICHINO, NAKAHAMA, MATSUNAGA, KAMO: "Shin konren shihyou no kentou (1)-(3)", NIPPON RUBBER KYOUKAI KENKYU HAPPYOU KOUKENKAI, May 2000 (2000-05-01), JAPAN, pages 55 - 57, XP002945071 *
See also references of EP1172641A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125314A1 (ja) * 2012-02-20 2013-08-29 横浜ゴム株式会社 密閉式ゴム混練機を備えた混練システム
WO2013125313A1 (ja) * 2012-02-20 2013-08-29 横浜ゴム株式会社 密閉式ゴム混練機の混練効率の評価方法
CN104159717A (zh) * 2012-02-20 2014-11-19 横滨橡胶株式会社 密闭式橡胶混炼机的混炼效率的评估方法
US9056290B2 (en) 2012-02-20 2015-06-16 The Yokohama Rubber Co., Ltd. Kneading system with closed-type rubber kneader
US9162196B2 (en) 2012-02-20 2015-10-20 The Yokohama Rubber Co., Ltd. Closed-type rubber kneader kneading efficiency evaluation method
CN104159717B (zh) * 2012-02-20 2016-04-27 横滨橡胶株式会社 密闭式橡胶混炼机的混炼效率的评估方法
JP2018146490A (ja) * 2017-03-08 2018-09-20 横浜ゴム株式会社 複合材料の解析用モデルの作成方法、複合材料の解析用モデルの作成用コンピュータプログラム、複合材料の解析方法及び複合材料の解析用コンピュータプログラム
JP7133119B1 (ja) 2021-10-29 2022-09-07 住友理工株式会社 ゴムの混練方法

Also Published As

Publication number Publication date
KR20010106532A (ko) 2001-12-07
EP1172641A1 (en) 2002-01-16
JP4443811B2 (ja) 2010-03-31
CA2369125A1 (en) 2001-08-09
US20030018113A1 (en) 2003-01-23
AU3053801A (en) 2001-08-14
EP1172641A4 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP2807502B2 (ja) エチレン―プロピレン―ジエン系ゴム、エラストマー組成物およびその加硫ゴム
US20180282588A1 (en) Modified resins and uses thereof
CN107001742B (zh) 可硫化的橡胶组合物
US20200056018A1 (en) Modified resins and uses thereof
RU2706509C1 (ru) Каучуковая композиция и покрышка
EP2757131B1 (en) Cross-linked composition, method for producing cross-linked composition, and molding
TWI681008B (zh) 官能化之聚合物組成物及其製造方法
EP3666807B1 (en) Block copolymers and uses thereof
WO2001057493A1 (fr) Methode de test de composition de caoutchouc a l&#39;etat malaxe et procede de production de composition de caoutchouc
KR101577363B1 (ko) 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품
CN105339426B (zh) 充油的乙烯‑α‑烯烃‑非共轭二烯共聚物
JP2019516836A (ja) ゴム組成物
WO2019207925A1 (ja) ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤ
WO2007088980A1 (ja) 水添ジエン系重合体組成物及びゴム成形品
JP5100342B2 (ja) ゴム組成物およびその用途
Wang et al. The influence of trans-1, 4-poly (butadiene-co-isoprene) copolymer rubbers (TBIR) with different molecular weights on the NR/TBIR blends
JP2017171797A (ja) 加硫剤を含む未加硫ゴム組成物の加硫開始温度域での粘度を測定する方法
WO2007018245A1 (ja) 共重合体ゴム、ゴム組成物、及びゴム成形体
JP4861691B2 (ja) 注入スポンジ用ゴム組成物、及びスポンジゴム製品
KR102614617B1 (ko) 수지 조성물, 이의 제조방법, 및 이를 포함하는 도료 조성물
WO2014112654A1 (ja) ゴム組成物
JP6428531B2 (ja) ポリプロピレン系樹脂組成物
KR102183987B1 (ko) 액상 수지 조성물 및 이의 제조방법
Kim Ethylene–propylene–diene terpolymer/silica compound modification with organosilane [bis (triethoxysilylpropyl) disulfide] and improved processability and mechanical properties
JP2002322327A (ja) ゴム組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 556294

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2369125

Country of ref document: CA

Ref country code: CA

Ref document number: 2369125

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09937599

Country of ref document: US

Ref document number: 1020017012497

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001902682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017012497

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001902682

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001902682

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017012497

Country of ref document: KR