WO2001052427A1 - Emetteur et terminal de communication radio comportant un tel emetteur - Google Patents

Emetteur et terminal de communication radio comportant un tel emetteur Download PDF

Info

Publication number
WO2001052427A1
WO2001052427A1 PCT/JP2000/000070 JP0000070W WO0152427A1 WO 2001052427 A1 WO2001052427 A1 WO 2001052427A1 JP 0000070 W JP0000070 W JP 0000070W WO 0152427 A1 WO0152427 A1 WO 0152427A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
output
counter
transmitter
Prior art date
Application number
PCT/JP2000/000070
Other languages
English (en)
French (fr)
Inventor
Taizo Yamawaki
Satoshi Tanaka
Masaru Kokubo
Kazuo Watanabe
Masumi Kasahara
Kazuaki Hori
Julian Hildersley
Original Assignee
Hitachi, Ltd.
Ttpcom Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Ttpcom Limited filed Critical Hitachi, Ltd.
Priority to JP2001552535A priority Critical patent/JP3970611B2/ja
Priority to EP00900166A priority patent/EP1248378B1/en
Priority to PCT/JP2000/000070 priority patent/WO2001052427A1/ja
Priority to US10/148,960 priority patent/US7224948B1/en
Priority to DE60041784T priority patent/DE60041784D1/de
Publication of WO2001052427A1 publication Critical patent/WO2001052427A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0983Modifications of modulator for regulating the mean frequency using a phase locked loop containing in the loop a mixer other than for phase detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0916Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop
    • H03C3/0925Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop applying frequency modulation at the divider in the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0966Modifications of modulator for regulating the mean frequency using a phase locked loop modulating the reference clock
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/161Multiple-frequency-changing all the frequency changers being connected in cascade
    • H03D7/163Multiple-frequency-changing all the frequency changers being connected in cascade the local oscillations of at least two of the frequency changers being derived from a single oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • H03L7/23Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/17Elimination of interference caused by harmonics of local oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Definitions

  • the present invention relates to a transmitter including a frequency synthesizer and a frequency conversion circuit using a PLL, and a wireless communication terminal device using the same, which are used in a wireless communication system such as GSM or DSC180.
  • a wireless communication system such as GSM or DSC180.
  • the following three types of transmitter configurations can be considered for use in wireless communication terminal equipment.
  • (1) A method in which a modulator mixes a baseband signal with a local oscillation signal having the same frequency as the transmission frequency.
  • (2) A method in which a baseband signal is once up-com- plied to an intermediate frequency in a modulator and then up-com- plied to a transmission frequency using a mixer.
  • (3) A method in which a baseband signal is once converted to an intermediate frequency by a modulator, and then converted to a transmission frequency by a frequency conversion circuit using PLL.
  • method (3) can handle only constant amplitude modulation as the modulation method, methods (1) and (2) have been the mainstream transmitter methods. However, since the GSM and DSC180 systems, which have spread rapidly in recent years, employ constant amplitude modulation as a modulation method, a method (3) having various advantages has been widely used.
  • the advantages of method (3) include (1) the need for an expensive filter with a high Q value from the transmitter due to the filter characteristics of the PLL, and (2) the use of a PLL because the VCO output signal is a constant amplitude signal. And that the bias design of the power amplifier at the next stage of the frequency conversion circuit is easy.
  • FIG. 6 shows a transmitter of a comparative example which is the premise of the present invention of the method (3).
  • the transmitter provides a first frequency synthesizer 38, a second frequency synthesizer 39, and a reference signal to the first and second frequency synthesizers. It comprises a crystal oscillator 40, a frequency conversion circuit 41 using a PLL, a frequency divider 47, a modulator 54, and a baseband circuit 42.
  • the first frequency synthesizer 38 includes a first counter 42, a second counter 43, a phase comparator 44, a low-pass filter 45, and a VC 046, and separates the output signal of the VC 046. Input to the divider 47.
  • the second frequency synthesizer 39 includes a third counter 48, a fourth counter 49, a phase comparator 50, a low-pass filter 51, and a VCO 52, and has a frequency of fRF.
  • the output signal of VC05 2 is input to mixer 53.
  • the baseband circuit 42 is a circuit that generates a waveform of a baseband signal based on information signals such as voice and various data, and generates various data for controlling the transmitter.
  • the frequency divider 47 receives the local oscillation signal output from the first frequency synthesizer 38 as an input signal, divides this local oscillation signal to a frequency f IF, and inputs the frequency f IF to the modulator 54.
  • the modulator 54 mixes the baseband signal from the baseband circuit 42 with the signal of the frequency fIF supplied from the frequency divider 47 to increase the frequency to an intermediate frequency (for example, 270 MHz). Convert.
  • the frequency conversion circuit 41 using a PLL includes a phase comparator 55, a low-pass filter 56, a VC 05 7. a mixer 53.
  • Two signals are input to the phase comparator 55.
  • the first input signal is an output signal of the modulator 54, and the second input signal is an output signal of the mixer 53.
  • the phase comparator 55 the first and second input signals are compared in phase, and a signal proportional to the phase difference is output.
  • the output signal of the phase comparator 55 is output to the low-pass filter 56, and is input to the VCO 57 after unnecessary noise is removed.
  • the output frequency of VCO 57 is f VCO, used as an output signal of this transmitter, and input to mixer 53.
  • the mixer 53 receives two signals.
  • the first input signal is an output signal of the VCO 57
  • the second input signal is a local signal having a frequency f RF supplied from the second frequency synthesizer 39.
  • the output frequency of mixer 53 is the absolute value of the difference between the two input frequencies, and is I f RF—f VCO
  • the output signal of the mixer 53 becomes the second input signal of the phase comparator 55.
  • the output frequency f RF of the second frequency synthesizer 39 is changed while the output frequency of the first frequency synthesizer 38 is fixed.
  • the frequency conversion circuit 41 using PLL has a band-pass filter characteristic centered on the output frequency.
  • the pass bandwidth is designed to be about 1 to 2 MHz in consideration of the phase error at the output of the frequency conversion circuit 41 using PLL and the noise level.
  • Fig. 8 shows the measurement results of a transmitter in which the circuits surrounded by solid lines 58 and 59 in Fig. 6 are integrated on the same IC.
  • GSM Global System for Mobile Communications
  • GM SK modulated signal was used as the baseband signal.
  • the horizontal axis shows the transmitter's transmission frequency f VC ⁇
  • the vertical axis shows the signal level at the transmission frequency and the transmission frequency from 400 kHz to 1.8 MHz detuning and 6 MHz to 25 MHz Indicates the worst value of the difference from the signal level in detuning in dB.
  • the specifications of GSM spurious emissions are below 400 dB and below -71 dB, respectively, for detuning from 400 kHz to 1.8 MHz and above 6 MHz.
  • the transmission frequency is near 900 MHz at 400 kHz to 1.8 MHz detuning
  • the transmission frequency is near 8998 MHz at 90 MHz to 25 MHz detuning. It can be seen that the transmission spectrum deteriorates near 2 MHz and does not meet the GSM specifications. This is because an unwanted spurious signal is generated at the detuning frequency shown in Equation 1 from the transmission frequency due to the intermodulation of the harmonics of f IF, f RF and f VCO.
  • FIG. 9 shows an output spectrum of a transmitter in which the circuit surrounded by solid lines 58 and 59 in FIG. 6 and the VCO 46 are integrated on the same IC.
  • GSM Global System for Mobile Communications
  • a GM SK modulated signal was used as the baseband signal.
  • f RF was set to 115 MHz so that f VCO was 880 MHz.
  • the output frequency of the crystal oscillator 40 is 13 MHz.
  • the horizontal axis indicates frequency, and the vertical axis indicates signal level in dBm.
  • this 107 MHz signal is amplified by the VCO 46, and at the same time, the oscillation frequency is centered on the oscillation frequency of 180 MHz due to the even-order distortion characteristic of the amplifier. An unnecessary spurious signal is generated also at 108 MHz due to the folded action.
  • Prentice Hall PTR Prentice—Hall, Inc. 8 7 5 7 1 It is described in 7.4.3 of 5).
  • the transmitter of the comparative example described above had the following problems of unnecessary spurious due to progress in circuit integration, reduction in parasitic capacitance due to improvement in semiconductor processes, and high-density implementation of terminals.
  • the first problem (1) is that an unnecessary spurious signal is generated at a specific transmission frequency due to a harmonic of a frequency synthesizer output signal.
  • the second problem (2) is that if a harmonic of the crystal oscillator output signal exists near the oscillation frequency of VCO, an unnecessary spurious signal is generated at the VCO output due to the folding action of VCO.
  • crosstalk between circuits and crosstalk through the mounting board are difficult to predict when designing the circuit and the mounting board, and it is necessary to make improvements after making the actual measurement and measurement. And needed time.
  • a first object of the present invention is to solve the problem of unnecessary spurious signals due to harmonics of the frequency synthesizer output signal generated in the transmitter of the comparative example, and to facilitate the design of circuits and mounting boards. That is.
  • a second object of the present invention is to solve the problem of unnecessary spurious signals due to the harmonics of the frequency synthesizer output signal in the transmitter of the comparative example, and at the same time, the harmonics of the crystal oscillator output signal to the VCO.
  • the purpose is to solve the problem of unnecessary spurious signals generated by mixing, and to facilitate the design of circuits and mounting boards.
  • a transmitter includes a first frequency synthesizer, a second frequency synthesizer, and a base that outputs a baseband signal and a control signal based on an information signal.
  • a band circuit a control circuit that changes output frequencies of the first frequency synthesizer and the second frequency synthesizer based on the control signal; and a baseband signal that uses an output signal of the first frequency synthesizer as a carrier signal.
  • a modulator that modulates the carrier signal based on: a frequency conversion circuit that upconverts a carrier frequency of the output signal of the modulator using an output signal of the modulator and an output signal of the second frequency synthesizer.
  • a transmitter characterized by having:
  • the frequency conversion circuit has a first phase comparator, a first low-pass filter, a first VCO, and a mixer, and the first phase comparator is a modulator of the modulator. Outputting a signal proportional to the phase difference between the output signal and the output signal of the mixer, wherein the first low-pass filter is connected to the output of the first phase comparator, and the first VCO is The mixer is a frequency conversion circuit using a PLL that is connected to the output of the low-pass filter of No. 1 and mixes the output signal of the first VCO and the output signal of the second frequency synthesizer.
  • the baseband circuit stores a relationship between an output frequency of the frequency conversion circuit and output frequencies of the first frequency synthesizer and the second frequency synthesizer, and outputs the output of the frequency conversion circuit based on the relationship.
  • a baseband circuit for generating the control signal according to a frequency is a relationship in which an unnecessary spurious signal having a level equal to or higher than the level specified by the wireless system is not generated at the output of the frequency conversion circuit using the PLL.
  • the first frequency synthesizer has a first counter, a second counter, a second phase comparator, a second low-pass filter, and a second VCO.
  • W The second phase comparator outputs a signal proportional to the phase difference between the output signal of the first counter and the output signal of the second counter, and the first counter outputs the output of the reference oscillator.
  • the second counter is connected to the output of the second VCO, the second low-pass filter is connected to the output of the second phase comparator, and the second VCO is connected to the output of the second VCO.
  • the second frequency synthesizer includes a third counter, a fourth counter, a third phase comparator, a third low-pass filter, and a third VCO,
  • the third phase comparator outputs a signal proportional to the phase difference between the output signal of the third counter and the output signal of the fourth counter, and the third counter outputs the signal of the reference oscillator.
  • the fourth counter is connected to the output of the third VCO, the third low-pass filter is connected to the output of the third phase comparator,
  • the third VCO is connected to the output of the third low-pass filter, and the frequency division ratio of the fourth power supply can be changed by the second frequency division ratio data sent from the control circuit. It is a frequency synthesizer.
  • the control circuit may further include a first register for holding third division ratio data, a second register for holding fourth division ratio data, and the second division ratio data.
  • a control circuit having a first selector.
  • a frequency divider may be present between the second VCO and the modulator.
  • the first counter, the second counter, the second phase comparator, the third counter, and the fourth counter are manufactured on the same IC. It is.
  • the transmitter of the present invention is In the transmitter, the control circuit may include a fourth register for holding fifth division ratio data, a fifth register for holding sixth division ratio data, and the seventh division.
  • Ratio data a sixth register evening that holds evening, a seventh register evening that holds the second frequency dividing ratio data, and a dividing ratio data of the fifth, sixth, and seventh.
  • a second selector for selecting one based on information included in the control signal and using the selected data as the first frequency division ratio data.
  • a frequency divider may be provided between the second VCO and the modulator.
  • a transmitter that simultaneously solves the above problems (1) and (2), wherein at least the first counter, the second counter, the second phase comparator, and the third counter
  • the fourth counter, the third phase comparator, and the second VCO are manufactured in the same IC, and preferably the modulator, the frequency divider, and the first The phase comparator, the mixer, and the control circuit are manufactured in the same IC.
  • the wireless communication terminal device of the present invention includes: a baseband circuit that outputs a baseband signal and a control signal based on an information signal; a transmission circuit to which the baseband signal and the control signal are input; A receiving circuit to which a first output signal and a second output signal are inputted; a power amplifier to which a third output signal of the transmitting circuit is inputted; and an input of the receiving circuit and a power amplifier.
  • the transmission circuit is the transmitter according to any of the above, wherein the first output signal and the second output
  • the signals are an output signal of a second frequency synthesizer and an input signal of a modulator in the transmission circuit, respectively, and the third output signal is an output signal of a first VCO in the transmission circuit.
  • the output signal of the receiving circuit is a wireless communication terminal device, wherein the one in which the input to the base band circuit information signal in the transmission circuit is taken out.
  • a duplexer may be used instead of the antenna switch.
  • FIG. 1 is a functional block diagram showing an embodiment of the transmitter of the present invention
  • FIG. 2 is a characteristic diagram showing an effect of the embodiment of the transmitter of the present invention
  • FIG. 3 is another transmitter of the present invention.
  • FIG. 4 is a functional block diagram showing an embodiment
  • FIG. 4 is a characteristic diagram showing effects of another embodiment of the transmitter of the present invention
  • FIG. 5 shows an example of a wireless communication terminal device using the transmitter of the present invention.
  • FIG. 6 is a functional block diagram showing a transmitter of a comparative example which is a premise of the present invention
  • FIG. 7 is a characteristic diagram showing a closed-loop characteristic of a frequency conversion circuit using a PLL
  • FIGS. 8 and 9 are comparison diagrams.
  • FIG. 10 is a characteristic diagram illustrating measurement results of the example transmitter.
  • FIG. 1 is a configuration diagram showing a first embodiment of a transmitter of the present invention, and solves the first problem (1).
  • the transmitter according to the present invention includes a first frequency synthesizer 1, a second frequency synthesizer 2, a crystal oscillator 3 for providing a reference signal to the first and second frequency synthesizers 1 and 2, and a first frequency synthesizer 1 and a second frequency synthesizer 1. And a control circuit 4 for the second frequency synthesizers 1 and 2, a frequency conversion circuit 5 using a PLL, a frequency divider 12, a modulator 18, and a baseband circuit 6.
  • the first frequency synthesizer 1 has the first count 7, the second count 8, the phase Comparator 9 is composed of low-pass filter 10 and VCO 11, and outputs the output signal of VCO 11 to frequency divider 12.
  • the second frequency synthesizer 2 comprises a third counter 12, a fourth counter 13, a phase comparator 14, a low-pass filter 15, a VCO 16, and a VCO 16 having a frequency f RF. Is input to mixer 17.
  • the baseband circuit 6 is a circuit that generates a waveform of a baseband signal based on information signals such as voice and various data, and generates various data for controlling a transmitter.
  • the control circuit 4 includes a first register 22, a second register 23, a third register 24, a fourth register 25, a decoder 26, and a selector 27.
  • the clock signal CLK and the data signal DATA are input to the first register 22 from the baseband circuit 6, and the DATA is stored as serial data in synchronization with the CLK. Part of the stored data (for example, the upper 3 bits) is input to the decoder 26, and the rest is input to the second, third, and fourth registers 23, 24, and 25. .
  • the second, third, and fourth register evenings 23, 24, and 25 only one register evening selected by the output signal of the decoder 26 receives data from the first register evening 22. One night is stored.
  • the stored timing of the data is determined by a trigger signal (for example, a falling edge) sent to the LE.
  • the outputs of the second and third registers 23, 24 are input to a selector 27.
  • the selector 27 inputs one of the outputs from the second and third registers 23 and 24 to the counter 8 based on the selector data 28 from the fourth register 25.
  • Part of the data stored in the fourth register 25 (for example, the upper one bit) is output to the selector 27, and the rest is input to the counter 13 of the second frequency synthesizer 2.
  • the frequency divider 12 receives the local oscillator signal output from the first frequency synthesizer 1 as an input signal, divides the local oscillator signal into a frequency f IF, and inputs the frequency to the modulator 18.
  • the modulator 18 mixes the baseband signal from the baseband circuit 6 with the signal of the frequency fIF supplied from the frequency divider 12 and converts the signal to an intermediate frequency (for example, 270 MHz). .
  • the frequency conversion circuit 5 using a PLL includes a phase comparator 19, a low-pass filter 20, a VC 21, and a mixer 17. Two signals input to phase comparator 19 Is done.
  • the first input signal is an output signal of the modulator 18 and the second input signal is an output signal of the mixer 17.
  • the phase comparator 19 the first and second input signals are compared in phase, and a signal proportional to the phase difference is output.
  • the output signal of the phase comparator 19 is output to the low-pass filter 20 to remove unnecessary noise, and is input to the VC021.
  • the output frequency of VCO 21 is: f VCO, used as the output signal of this transmitter, and input to mixer 17.
  • the mixer 17 receives two signals.
  • the first input signal is an output signal of VC021, and the second input signal is a signal of frequency f RF supplied from second frequency synthesizer 2.
  • the output frequency of mixer 17 is the absolute value of the difference between the two input frequencies and is
  • the output signal of the mixer 17 becomes the second input signal of the phase comparator 19.
  • the frequency conversion operation of the frequency conversion circuit 5 using the PLL and the operation as the bandpass filter are the same as those of the frequency conversion circuit using the PLL shown in the comparative example which is a premise of the present invention.
  • a circuit surrounded by a solid line 29 in FIG. 1 is built in one IC.
  • the data is stored in the second register 23, and then the data is stored in the third register 24.
  • the second register 23 has the data of count 8 when f IF is 270 MHz
  • the third register 24 has the following data: count 8 where f IF is 27 2 MHz.
  • the data is not updated thereafter.
  • the selector 27 is given selector data 28 so that the value of the second or third register 23, 24 is input to the counter 8 and the first frequency synthesizer 1 Update the output frequency of.
  • the transmitter of FIG. 1 can solve the problem of unnecessary spurious signals due to harmonics of the frequency synthesizer output signal shown in the comparative example which is a premise of the present invention. I will tell.
  • the unnecessary spurious signal was generated at the detuning frequency defined by Equation 1.
  • Equation 1 the detuning frequency
  • the frequency conversion circuit 5 using the PLL has a band-pass filter characteristic with the transmission frequency as the center frequency.Therefore, increasing the detuning frequency of the unnecessary spurious signal reduces the unnecessary spurious signal level. Can be suppressed.
  • Other measurement conditions are the same as the measurement conditions in FIG.
  • the data of the counter 8 is stored, and when the f VCO is 885 MHz to 905 MHz, the data of the third register 24 is used as the data of the count 8 by the selector 27 by the selector 27.
  • the GSM specification can be satisfied in all frequency ranges by using the data of the second register 23 as the data of the power supply 8.
  • FIG. 3 is a configuration diagram showing a second embodiment of the transmitter of the present invention, and solves the first problem (1) and the second problem (2) simultaneously.
  • This embodiment is different from the first embodiment in that VC ⁇ 11 is added to an IC circuit (portion surrounded by a dotted line 29), and a circuit between the first register 22 and the selector 27 is added.
  • Solid line 3 in 1 The enclosed circuit is built into one IC.
  • the output spectrum of the transmitter when z is set is shown.
  • Unwanted spurious signals are suppressed compared to the comparative example, and the level is 16.6 dB. This value satisfies one of the GSM specifications, which is less than 60 dB.
  • the transmitter of the present embodiment is used as follows.
  • the f IF used is, for example, 270 MHz, 272 MHz and 268 MHz.
  • the output frequency of the first frequency synthesizer 1 is set away from 107 MHz, and is assumed to be 108 MHz. That is, 272 MHz is used as f IF.
  • the fIF is set as the fIF. 268 MHz is also used.
  • the second register 23 stores the data of the counter 8 at which the fIF becomes 270 MHz.
  • the data of Count 8 where f IF is 272 MHz is stored in the register 24, and the data of Count 8 where f IF is 268 MHz is stored in the fifth register 30.
  • TDMA Time Division Multiple Access
  • FIG. 5 is a diagram showing an embodiment of a wireless communication terminal device using a transmitter of the present invention.
  • the wireless communication terminal device includes a baseband circuit 6, a transmission circuit 33, a power amplifier 34, an antenna switch 35, an antenna 36, a reception circuit 37, and a crystal oscillator 3.
  • the transmission circuit 33 consists of the first frequency synthesizer 1, the second frequency synthesizer 2, the frequency conversion circuit 5 using a PLL, the frequency divider 12, the modulator 18 and the control circuit 4 in Fig. 1.
  • the circuit included in the solid line 29 is built into one IC.
  • the transmission circuit 33 is composed of the first frequency synthesizer 1, the second frequency synthesizer 2, the frequency conversion circuit 5 using PLL, the frequency divider 12, the modulator 18 and the control circuit in FIG. 4 and the circuit included in the solid line 31 is built into one IC.
  • the baseband circuit 6 inputs the clock signal CLK, the data signal DAT ⁇ , the trigger signal L ⁇ , and the baseband signal 32 to the transmission circuit 3.
  • the output signal of the crystal oscillator 3 is input to the transmission circuit 33 and serves as a reference signal for the first frequency synthesizer 1 and the second frequency synthesizer 2 included in the transmission circuit 33.
  • the transmitting circuit 33 has three output signals.
  • the first output signal is an output signal of the frequency conversion circuit 5 using the PLL, and its frequency is f VC ⁇ .
  • the second output signal is the output signal of the frequency divider 12 and its frequency is fIF.
  • the third output signal is the output signal of the second frequency synthesizer 2, the frequency of which is f RF.
  • the first output signal of the transmission circuit 33 is input to the power amplifier 34, and the power is amplified. Electric power
  • the output signal of the amplifier 34 is input to the antenna switch 35.
  • the antenna 36, the output of the transmitting circuit 33, and the input of the receiving circuit 37 are connected to the antenna switch 35. ⁇ When the wireless communication terminal device transmits, the output of the antenna 36 and the output of the transmitting circuit 33 are electrically connected. The antenna 36 and the input of the receiving circuit 37 are electrically connected during reception. Note that a duplexer may be used instead of the antenna switch 35.
  • the received signal received by the antenna 36 is input to the receiving circuit 37 through the antenna switch 35.
  • the receiving circuit 37 uses the second and third output signals of the transmitting circuit 33 to down-compute the received signal to a frequency that can be processed by the baseband circuit 6, and inputs the signal to the baseband circuit 6.
  • the circuit constituting the receiving circuit 37 may be manufactured in an IC different from the IC constituting the transmitting circuit 33, and at least one circuit constituting the receiving circuit 37 is built in this IC. May be done.
  • the transmitter according to the present invention is useful for a transmitter that includes a frequency conversion circuit using a frequency synthesizer and a PLL, which is used in a wireless communication system such as GSM or DCS180. It can be widely applied to wireless communication terminal devices using this transmitter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明 細 書
送信器およびそれを用いた無線通信端末機器 技術分野
本発明は、 G SMや D C S 1 8 0 0などの無線通信システムに用いられる、 周 波数シンセサイザと P L Lを用いた周波数変換回路を含む送信器とそれを用いた 無線通信端末機器に関するものである。 背景技術
一般に、 無線通信端末機器で用いられる送信器の構成には以下の 3種類が考え られる。 ( 1 ) 変調器において送信周波数と同じ周波数の局発信号でベースバン ド信号をミキシングする方式。 ( 2 ) 変調器においてベースバンド信号を一旦中 間周波数にアップコンパ一卜した後、 ミキサを用いて送信周波数にアップコンパ 一卜する方式。 ( 3 ) 変調器においてベースバンド信号を一旦中間周波数にアツ プコンバートした後、 P L Lを用いた周波数変換回路で送信周波数に変換する方 式。
方式 ( 3) は変調方式として定振幅変調しか扱えないため、 送信器の方式とし てはこれまで方式 ( 1 ), ( 2 ) が主流であった。 しかし、 近年急速に普及してい る G SM、 D C S 1 8 0 0システムは変調方式として定振幅変調を採用している ため、 さまざまな利点をもつ方式 ( 3 ) が広く使われだしてきた。 方式 ( 3) の 利点には、 ( 1 ) P L Lのもつフィルタ特性により、 送信器から Q値の高い高価 なフィルタが不要となること、 ( 2 ) V C O出力信号は定振幅信号なので、 P L Lを用いた周波数変換回路の次段の電力増幅器のバイアス設計が容易となること、 などが挙げられる。
ここで、 本発明者は、 前述の方式 ( 3 ) の送信器について検討した。 以下は、 公知とされた技術ではないが、 本発明者によって検討された技術であり、 その概 要を図 6〜図 9を用いて説明する。 図 6に、 方式 ( 3 ) の本発明の前提となる比 較例の送信器を示す。 この送信器は、 第 1の周波数シンセサイザ 3 8、 第 2の周 波数シンセサイザ 3 9、 この第 1 と第 2の周波数シンセサイザに参照信号を与え る水晶発振器 4 0、 P L Lを用いた周波数変換回路 4 1、 分周器 4 7、 変調器 5 4とベースバンド回路 4 2から構成される。
第 1の周波数シンセサイザ 3 8は、 第 1のカウン夕 4 2、 第 2のカウンタ 4 3 位相比較器 44、 低域通過フィルタ 4 5、 VC 04 6から構成され、 VC 04 6 の出力信号を分周器 4 7へ入力する。
第 2の周波数シンセサイザ 3 9は、 第 3のカウン夕 4 8、 第 4のカウンタ 4 9 , 位相比較器 5 0、 低域通過フィル夕 5 1、 V C O 5 2から構成され、 周波数 f R Fである VC05 2の出力信号をミキサ 5 3へ入力する。
ベースバンド回路 4 2は、 音声や各種データなどの情報信号に基づくベースバ ンド信号の波形生成やこの送信器を制御する各種データを生成する回路である。 分周器 4 7は、 第 1の周波数シンセサイザ 3 8から出力される局発信号を入力 信号とし、 この局発信号を周波数 f I Fに分周し変調器 5 4に入力する。
変調器 5 4は、 ベースバンド回路 4 2からのべ一スバンド信号に分周器 4 7か ら供給される周波数 f I Fの信号をミキシングして、 中間周波数 (例えば 2 7 0 MH z ) にアップコンバートする。
P L Lを用いた周波数変換回路 4 1は、 位相比較器 5 5、 低域通過フィル夕 5 6、 V C 05 7. ミキサ 5 3から構成される。 位相比較器 5 5には 2つの信号が 入力される。 第 1の入力信号は変調器 5 4の出力信号であり、 第 2の入力信号は ミキサ 5 3の出力信号である。 位相比較器 5 5において、 この第 1 と第 2の入力 信号は位相比較され、 位相差に比例した信号が出力される。 位相比較器 5 5の出 力信号は、 低域通過フィルタ 5 6に出力され、 不要な雑音が除去された後 V C O 5 7に入力される。 V C O 5 7の出力周波数は f V C Oであり、 この送信器の出 力信号として用いられ、 かつ、 ミキサ 5 3に入力される。 ミキサ 5 3には 2つの 信号が入力される。 第 1の入力信号は、 V C O 5 7の出力信号であり、 第 2の入 力信号は第 2の周波数シンセサイザ 3 9から供給される周波数 f R Fの局発信号 である。 ミキサ 5 3の出力周波数は、 2つの入力周波数の差の絶対値であり、 I f R F— f V C O |となる。 ミキサ 5 3の出力信号は、 位相比較器 5 5の第 2の 入力信号となる。 P L Lを用いた周波数変換回路 4 1がロックした状態では、 位 相比較器 5 5の 2つの入力周波数は等しくなるため、 i I F = | i R F— f V C O lとなる。 したがって、 V C 0 5 7の出力周波数 f V C Oは | f R F— f I F l で与えられる。 つまり、 変調器 5 4の出力周波数 f I Fは送信器の出力において f V C O = | f R F - f I F Iに周波数変換される。 送信器の出力周波数を変える には、 第 1の周波数シンセサイザ 3 8の出力周波数は固定のまま第 2の周波数シ ンセサイザ 3 9の出力周波数 f R Fを変化させる。
次に、 P L Lを用いた周波数変換回路 4 1の閉ループ伝達特性の一例を図 7に 示す。 0 d Bの平坦な部分が通過帯域である。 横軸の周波数は出力周波数 f V C Oからの離調周波数を表すから、 P L Lを用いた周波数変換回路 4 1は出力周波 数を中心とした帯域通過フィル夕特性をもつことが分かる。 つまり、 通過帯域幅 が G S Mなどのシステムで規定される変調方式の帯域幅よりも十分広くとれば、 P L Lを用いた周波数変換回路 4 1は変調器 5 4の出力スペク トラムを保存し、 かつ、 中心周波数を変換できる。 実際は、 P L Lを用いた周波数変換回路 4 1の 出力での位相誤差と雑音レベルの兼ね合いから通過帯域幅は 1〜 2 MH z程度に 設計される。
無線通信端末機器には、 低価格化、 小容量化などのニーズが非常に強く、 端末 を構成する回路の集積化が年々進んできている。 しかし、 集積化の高まりと同時 に回路間の信号や高調波のクロストークの問題が発生してきた。 また、 近年の半 導体プロセスの改良は寄生容量が減少する方向に進んでおり、 これもまた回路間 クロストークの問題を助長する。 さらに、 端末における I Cなどの高密度実装化 により実装基板を通じてのクロストークの問題も発生してきた。
図 8に、 図 6において実線 5 8と 5 9に囲まれる回路を同一 I Cに集積した送 信器の測定結果を示す。 システムとして G S Mを想定し、 ベ一スバンド信号には GM S K変調信号を用いた。 第 1の周波数シンセサイザ 3 8は 1 0 8 0 MH zで 発振し、 分周器 4 7で 4分周し、 f I Fを 2 7 0 MH z とした。 また、 f V C O が G S M (E G S M含む) 送信周波数 ( 8 8 0 MH z〜 9 1 5 MH z ) になるよ うに f R F (= f I F + f V C O) を設定した。 横軸は送信器の送信周波数 f V C〇を示し、 縦軸は送信周波数での信号レベルと送信周波数から 4 0 0 k H z〜 1. 8 MH z離調と 6 MH z〜 2 5 MH z離調での信号レベルとの差の最悪値を d B単位で示す。 スペク トラムアナライザを用い V C〇 5 7の出力を測定し、 そ の測定条件は 4 0 0 k H z〜 l . 8 MH z離調において R BW = V BW= 3 0 k H z、 6 MH z〜 2 5 MH zにおいて R B W = V B W= 1 0 0である。 G S Mの S p u r i o u s e m i s s i o n s に関する仕様は、 4 0 0 k H z〜 1. 8 MH z離調と 6 MH z以上離調でそれぞれ一 6 0 d B以下、 ― 7 1 d B以下であ る。 4 0 0 k H z〜 1. 8 MH z離調において送信周波数が 9 0 0 MH z近傍の 時、 6 MH z ~ 2 5 MH z離調において送信周波数が 8 9 8 MH z近傍と 9 0 2 M H z近傍の時に送信スペク トラムが劣化し G S M仕様を満たさないことが分か る。 これは、 f I F、 f R Fと f V C Oの高調波の相互変調により、 送信周波数 から数式 1に示す離調周波数に不要スプリァス信号が発生するためである。
± | 3 X f V C O— 1 0 X f I F | · · · (数式 1 )
ここで、 f I F、 f R Fと : f V C Oの間には f V C 0= f R F— f I Fの関係が ある。 この不要スプリアス信号は、 図 6において実線 5 8と 5 9で囲まれる回路 を同一 I Cに集積することで、 第 1の周波数シンセサイザ 3 8と第 2の周波数シ ンセサイザ 3 9の出力信号の高調波の影響が大きくなった結果発生した。 ただし, 実線 5 8と 5 9で囲まれる回路を別 I Cに集積化したとしても、 この集積化され た I Cの特性、 使用する半導体プロセスや基板への実装方法によっては、 この不 要スプリアス信号が発生する可能性がある。
次に図 9に、 図 6における実線 5 8と 5 9で囲まれる回路と V C O 4 6を同一 I Cに集積した送信器の出カスペク 卜ラムを示す。 システムとして G S Mを想定 し、 ベースバンド信号には GM S K変調信号を用いた。 第 1の周波数シンセサイ ザ 3 8は 1 0 8 0 MH zで発振し、 分周器 4 7で 4分周し、 f I Fを 2 7 0 MH z とした。 f V C Oが 8 8 0 MH zになるように f R Fを 1 1 5 0 MH z に設定 した。 また、 水晶発振器 4 0の出力周波数は 1 3 MH zである。 横軸は周波数を 示し、 縦軸は信号レベルを d Bm単位で示す。 測定はスペク トラムアナライザで 行い、 測定条件は R B W = V B W= 3 0 k H zである。 送信周波数から 1 MH z 離調に不要スプリアス信号が発生し、 そのレベルは一 5 8. 2 d Bである。 前述 の通り G S M仕様では、 4 0 0 k H z〜 l . 8 M H z離調で一 6 0 d B以下と規 定されており、 図 9の測定結果は G S M仕様を満たさない。 この不要スプリアス 信号の発生過程は次の通りである。 水晶発振器 4 0の出力信号の 8 3倍高調波 1 0 7 9 MH zが第 1の周波数シンセサイザ 3 8または第 2の周波数シンセサイザ 3 9で発生する。 この 1 0 7 9 MH z信号がクロストークにより VC04 6に混 入する。 V COを増幅器の正帰還回路とみなすと、 この 1 0 7 9 MH z信号は V C O 4 6にて増幅されると同時に、 増幅器の偶数次歪特性により発振周波数 1 0 8 0 MH zを中心とした折り返し作用によって 1 0 8 1 MH z にも不要スプリァ ス信号が発生する。 V COにおける雑音の折り返し作用の詳細は、 P r e n t i c e H a l l P TR P r e n t i c e— H a l l , I n c . 出版、 B e h z a d R a z a v i著、 ' R F M I C ROE L E C TRON I C S ' ( I S BN O— 1 3— 8 8 7 5 7 1 — 5) の 7. 4. 3章に記されている。
ところで、 前述の本発明の前提となる比較例の送信器について、 本発明者が検 討した結果、 以下のようなことが明らかとなった。 前述の比較例の送信器は、 回 路の集積化の進行、 半導体プロセス改良による寄生容量の低下や端末の高密度実 装化により以下に示す不要スプリアスの問題があった。
第 1の課題 ( 1 ) は、 周波数シンセサイザ出力信号の高調波により特定の送信 周波数において不要スプリアス信号が発生する。
第 2の課題 ( 2) は、 水晶発振器出力信号の高調波が V C Oの発振周波数近傍 に存在すると、 VC Oの折り返し作用により VC O出力に不要スプリァス信号が 発生する。
また、 回路間クロストークや実装基板を通じてのクロストークは回路や実装基 板の設計時には予測が困難であり、 実際に作成し測定を行った後改良を加えてい く必要があつたため、 多大な労力と時間が必要だった。
そこで、 本発明の第 1の目的は、 前述の比較例の送信器で発生する周波数シン セサイザ出力信号の高調波による不要スプリァス信号の問題を解決し、 回路や実 装基板の設計を容易にすることである。
さらに、 本発明の第 2の目的は、 前述の比較例の送信器において、 前記周波数 シンセサイザ出力信号の高調波による不要スプリァス信号の問題を解決すると同 時に、 水晶発振器出力信号の高調波が V C Oに混入することで発生する不要スプ リアス信号の問題を解決し、 回路や実装基板の設計を容易にすることである。 本発明の前記ならびにその他の目的と新規な特徴は、 本明細書の記述および添 付図面から明らかになるであろう。 発明の開示
本願において開示される発明のうち、 代表的なものの概要を簡単に説明すれば、 次のとおりである。
上記課題 ( 1 ) を解決するために、 本発明の送信器は、 第 1の周波数シンセサ ィザと、 第 2の周波数シンセサイザと、 情報信号に基づいてベースバンド信号と 制御信号とを出力するベースバンド回路と、 前記制御信号に基づき前記第 1の周 波数シンセサイザと前記第 2の周波数シンセサイザとの出力周波数を変える制御 回路と、 前記第 1の周波数シンセサイザの出力信号を搬送信号とし前記ベースバ ンド信号に基づき前記搬送信号を変調する変調器と、 前記変調器の出力信号と前 記第 2の周波数シンセサイザの出力信号とを用いて前記変調器の出力信号の搬送 周波数をアップコンバートする周波数変換回路とを有することを特徴とする送信 器である。
さらに、 前記周波数変換回路は、 第 1の位相比較器と、 第 1の低域通過フィル 夕と、 第 1の V C Oと、 ミキサとを有し、 前記第 1の位相比較器は前記変調器の 出力信号と前記ミキザの出力信号との位相差に比例した信号を出力し、 前記第 1 の低域通過フィルタは前記第 1の位相比較器の出力に接続され、 前記第 1の V C Oは前記第 1の低域通過フィル夕の出力に接続され、 前記ミキサは前記第 1の V C Oの出力信号と前記第 2の周波数シンセサイザの出力信号とをミキシングする P L Lを用いた周波数変換回路である。
また、 前記ベースバンド回路は、 前記周波数変換回路の出力周波数と前記第 1 の周波数シンセサイザと前記第 2の周波数シンセサイザの出力周波数との関係を 記憶し、 前記関係に基づいて前記周波数変換回路の出力周波数に応じた前記制御 信号を生成するベースバンド回路である。 前記関係は、 前記 P L Lを用いた周波 数変換回路の出力において、 無線システムで規定されるレベル以上の不要スプリ ァス信号が発生しない関係である。
さらに、 前記第 1の周波数シンセサイザは、 第 1のカウン夕と、 第 2のカウン 夕と、 第 2の位相比較器と、 第 2の低域通過フィル夕と、 第 2の V C Oとを有し、 W 前記第 2の位相比較器は前記第 1のカウン夕の出力信号と前記第 2のカウン夕の 出力信号との位相差に比例した信号を出力し、 前記第 1のカウンタは基準発振器 の出力に接続され、 前記第 2のカウン夕は前記第 2の V C Oの出力に接続され、 前記第 2の低域通過フィル夕は前記第 2の位相比較器の出力に接続され、 前記第 2の V C Oは前記第 2の低域通過フィルタの出力に接続され、 前記第 2のカウン 夕の分周比は前記制御回路から送られる第 1の分周比データにより変えることが できる周波数シンセサイザである。
また、 前記第 2の周波数シンセサイザは、 第 3のカウン夕と、 第 4のカウンタ と、 第 3の位相比較器と、 第 3の低域通過フィルタと、 第 3の V C Oとを有し、 前記第 3の位相比較器は前記第 3のカウン夕の出力信号と前記第 4のカウンタの 出力信号との位相差に比例した信号を出力し、 前記第 3のカウン夕は前記基準発 振器の出力に接続され、 前記第 4のカウン夕は前記第 3の V C Oの出力に接続さ れ、 前記第 3の低域通過フィル夕は前記第 3の位相比較器の出力に接続され、 前 記第 3の V C Oは前記第 3の低域通過フィルタの出力に接続され、 前記第 4の力 ゥン夕の分周比は前記制御回路から送られる第 2の分周比データにより変えるこ とができる周波数シンセサイザである。
さらに、 前記制御回路は、 第 3の分周比データを保持する第 1のレジス夕と、 第 4の分周比データを保持する第 2のレジス夕と、 前記第 2の分周比データを保 持する第 3のレジス夕と、 前記第 3と第 4との分周比データのどちらか 1つを前 記制御信号に含まれる情報に基づいて選択し前記第 1の分周比データとする第 1 のセレクタとを有する制御回路である。
さらに、 前記送信器において、 前記第 2の V C Oと前記変調器の間に分周器が 存在していてもよい。
以上の上記課題 ( 1 ) を解決する送信器において、 前記第 1のカウンタと、 前 記第 2のカウン夕と、 前記第 2の位相比較器と、 前記第 3のカウン夕と、 前記第 4のカウンタと、 前記第 3の位相比較器と、 前記変調器と、 前記分周器と、 前記 第 1の位相比較器と、 前記ミキザと、 前記制御回路とが同一の I Cに製造される ものである。
また、 上記課題 ( 1 ) と (2 ) を同時に解決するために、 本発明の送信器は前 記送信器において、 前記制御回路は、 第 5の分周比データを保持する第 4のレジ ス夕と、 第 6の分周比データを保持する第 5のレジスタと、 前記第 7の分周比デ —夕を保持する第 6のレジス夕と、 前記第 2の分周比データを保持する第 7のレ ジス夕と、 前記第 5と第 6と第 7との分周比データのうち 1つを前記制御信号に 含まれる情報に基づいて選択し前記第 1の分周比データとする第 2のセレクタと を有する制御回路である。
さらに、 前記課題 ( 1 ) と (2 ) を同時に解決するための送信器において、 前 記第 2の V C Oと前記変調器の間に分周器が存在していてもよい。
以上の上記課題 ( 1 ) と (2 ) を同時に解決する送信器において、 少なくとも 前記第 1のカウンタと、 前記第 2のカウン夕と、 前記第 2の位相比較器と、 前記 第 3のカウンタと、 前記第 4のカウン夕と、 前記第 3の位相比較器と、 前記第 2 の V C Oとが同一の I Cに製造され、 好ましくはさらに前記変調器と、 前記分周 器と、 前記第 1の位相比較器と、 前記ミキザと、 前記制御回路とが同一の I Cに 製造されるものである。
また、 本発明の無線通信端末機器は、 情報信号に基づいてベースバンド信号と 制御信号を出力するベースバンド回路と、 前記ベースバンド信号と前記制御信号 が入力される送信回路と、 前記送信回路の第 1の出力信号と第 2の出力信号とが 入力される前記受信回路と、 前記送信回路の第 3の出力信号が入力される電力増 幅器と、 前記受信回路の入力と前記電力増幅器の出力とに接続されるアンテナス イッチと、 前記アンテナスィッチに接続されたアンテナとを有し、 前記送信回路 が前記何れかに記載の送信器であり、 前記第 1の出力信号と第 2の出力信号とは、 それぞれ前記送信回路における第 2の周波数シンセサイザの出力信号と変調器の 入力信号であり、 前記第 3の出力信号は、 前記送信回路における第 1の V C Oの 出力信号であり、 前記受信回路の出力信号は、 前記送信回路における前記ベース バンド回路に入力され情報信号が取り出されるものであることを特徴とする無線 通信端末機器である。
また、 前記無線通信端末機器において、 前記アンテナスィッチの代わりにデュ プレクサを用いてもよい。
本願において開示される発明のうち、 代表的なものによって得られる効果を簡 単に説明すれば、 以下のとおりである。
本発明によれば、 設計時に予測困難な回路間クロス トークや基板上のクロス ト ークによって周波数シンセサイザと P L Lを用いた周波数変換回路を含む送信器 の出力に不要スプリァス信号が発生したとしても、 前記周波数シンセサイザの出 力周波数を前記 P L Lを用いた周波数変換回路の出力周波数に応じて適当に変え ることで、 前記不要スプリアス信号を抑圧することができる。 これにより、 回路 や基板の再設計にかかる時間、 費用を低減することができるという効果がある。 図面の簡単な説明
図 1は本発明の送信器の一実施の形態を示す機能ブロック図、 図 2は本発明の 送信器の一実施の形態の効果を示す特性図、 図 3は本発明の送信器の他の実施の 形態を示す機能ブロック図、 図 4は本発明の送信器の他の実施の形態の効果を示 す特性図、 図 5は本発明の送信器を用いた無線通信端末機器の一例を示す機能ブ ロック図、 図 6は本発明の前提となる比較例の送信器を示す機能ブロック図、 図 7は P L Lを用いた周波数変換回路の閉ループ特性を示す特性図、 図 8および図 9は比較例の送信器の測定結果を示す特性図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 なお、 実施の形 態を説明するための全図において、 同一部材には同一の符号を付し、 その繰り返 しの説明は省略する。
図 1は、 本発明の送信器の第 1の実施の形態を示した構成図であり、 前記第 1 の課題 ( 1 ) を解決する。
本発明に係る送信器は、 第 1の周波数シンセサイザ 1、 第 2の周波数シンセサ ィザ 2、 この第 1 と第 2の周波数シンセサイザ 1 , 2に参照信号を与える水晶発 振器 3、 この第 1 と第 2の周波数シンセサイザ 1, 2の制御回路 4、 P L Lを用 いた周波数変換回路 5、 分周器 1 2、 変調器 1 8とべ一スバンド回路 6から構成 される。
第 1の周波数シンセサイザ 1は、 第 1のカウン夕 7、 第 2のカウン夕 8、 位相 比較器 9、 低域通過フィル夕 1 0 、 V C O 1 1から構成され、 V C O 1 1の出力 信号を分周器 1 2へ入力する。
第 2の周波数シンセサイザ 2は、 第 3のカウンタ 1 2、 第 4のカウンタ 1 3、 位相比較器 1 4、 低域通過フィルタ 1 5 、 V C O 1 6から構成され、 周波数 f R Fである V C O 1 6の出力信号をミキサ 1 7へ入力する。
ベースバンド回路 6は、 音声や各種データなどの情報信号に基づくベースバン ド信号の波形生成や送信器を制御する各種データを生成する回路である。
制御回路 4は、 第 1のレジス夕 2 2、 第 2のレジス夕 2 3、 第 3のレジス夕 2 4、 第 4のレジス夕 2 5、 デコーダ 2 6およびセレク夕 2 7から構成される。 第 1のレジス夕 2 2には、 ベースバンド回路 6からクロック信号 C L Kとデータ信 号 D A T Aが入力され、 この C L Kに同期してこの D A T Aがシリアルデータと して格納される。 格納されたデータの一部 (例えば、 上位 3ビッ ト) はデコーダ 2 6へ入力され、 残りはこの第 2、 第 3と第 4のレジス夕 2 3 , 2 4, 2 5に入 力される。 この第 2、 第 3と第 4のレジス夕 2 3 , 2 4 , 2 5のうち、 デコーダ 2 6の出力信号によって選択された 1つのレジス夕のみに第 1のレジス夕 2 2か らのデ一夕が格納される。 デ一夕の格納されるタイミングは、 前記 L Eに送られ る トリガ信号 (例えば、 下りエッジ) によって決定される。 この第 2と第 3のレ ジス夕 2 3 , 2 4の出力はセレクタ 2 7に入力される。 セレクタ 2 7は、 第 4の レジス夕 2 5からのセレクタデータ 2 8によって、 この第 2 と第 3のレジスタ 2 3 , 2 4からの出力のうちどちらか一方をカウン夕 8へ入力する。 第 4のレジス 夕 2 5に格納されたデータの一部 (例えば、 上位 1 ビッ ト) は前記セレクタ 2 7 へと出力され、 残りは第 2の周波数シンセサイザ 2のカウンタ 1 3へ入力される。 分周器 1 2は、 第 1の周波数シンセサイザ 1から出力される局発信号を入力信 号とし、 この局発信号を周波数 f I Fに分周し変調器 1 8に入力する。
変調器 1 8は、 ベースバンド回路 6からのベースバンド信号に分周器 1 2から 供給される周波数 f I Fの信号をミキシングして、 中間周波数 (例えば 2 7 0 M H z ) にアツプコンバー卜する。
P L Lを用いた周波数変換回路 5は、 位相比較器 1 9、 低域通過フィル夕 2 0 、 V C〇 2 1、 ミキサ 1 7から構成される。 位相比較器 1 9には 2つの信号が入力 される。 第 1の入力信号は、 変調器 1 8の出力信号であり、 第 2の入力信号は、 ミキサ 1 7の出力信号である。 位相比較器 1 9において、 この第 1 と第 2の入力 信号は位相比較され、 位相差に比例した信号が出力される。 位相比較器 1 9の出 力信号は、 低域通過フィル夕 2 0に出力され、 不要な雑音が除去され、 V C 0 2 1 に入力される。 V C O 2 1 の出力周波数は: f V C Oであり、 この送信器の出力 信号として用いられ、 かつ、 ミキサ 1 7に入力される。 ミキサ 1 7には 2つの信 号が入力される。 第 1の入力信号は、 V C 0 2 1の出力信号であり、 第 2の入力 信号は第 2の周波数シンセサイザ 2から供給される周波数 f R Fの信号である。 ミキサ 1 7の出力周波数は、 2つの入力周波数の差の絶対値であり、 | f R F— f V C O lとなる。 ミキサ 1 7の出力信号は、 位相比較器 1 9の第 2の入力信号 となる。 P L Lを用いた周波数変換回路 5の周波数変換動作と帯域通過フィル夕 としての動作は本発明の前提となる比較例で示した P L Lを用いた周波数変換回 路と同様である。
本発明に関わる送信器は、 図 1 において実線 2 9で囲まれた回路が 1つの I C に内蔵される。
次に、 図 1の送信器の動作を説明する。
まず、 この送信器の初期動作時 (例えば、 電源がオフからオンになった時) に、 第 2のレジス夕 2 3にデータを格納し、 次に、 第 3のレジスタ 2 4にデータを格 納する。 例えば、 第 2のレジスタ 2 3には f I Fが 2 7 0 M H z となるカウン夕 8のデー夕を、 第 3のレジスタ 2 4には: f I Fが 2 7 2 M H z となるカウン夕 8 のデータを格納する。 一旦この第 2 と第 3のレジス夕 2 3, 2 4にデ一夕を格納 したら、 その後はデータの更新は行わない。 この送信器の出力周波数 f V C〇を 更新する場合にはその都度、 第 4のレジス夕 2 5にデータを入力してカウン夕 1 3のデータを更新し、 それにより第 2の周波数シンセサイザ 2の出力周波数 f R Fを更新すると同時に、 セレクタ 2 7にセレクタデータ 2 8を与えることでこの 第 2または第 3のレジスタ 2 3, 2 4の値をカウン夕 8に入力し第 1の周波数シ ンセサイザ 1の出力周波数を更新する。
次に、 図 1の送信器により、 本発明の前提となる比較例で示した周波数シンセ サイザ出力信号の高調波による不要スプリァス信号の問題を解決できることを説 明する。
比較例において、 不要スプリアス信号は数式 1で規定される離調周波数で発生 していた。 例えば、 f I F = 2 7 0 MH z、 f R F = l 1 6 8 MH z、 f V C 〇= 8 9 8 MH zの時、 ± 6 MH z離調に不要スプリアス信号が発生する。 比較 例の説明でも述べた通り P L Lを用いた周波数変換回路 5は送信周波数を中心周 波数とした帯域通過フィルタ特性をもつので、 不要スプリァス信号の離調周波数 を増加させることで不要スプリアス信号レベルを抑圧することができる。 例えば, f V C Oを 8 9 8 MH zのまま f I Fと f R Fをそれぞれ 2 7 2 MH z、 1 1 7 0 MH z とすれば、 数式 1から不要スプリァス信号の離調周波数は ± 2 6 MH z 離調になる。 図 2に、 f I Fとして 2 7 0 MH z と 2 7 2 MH zを用いた時の送 信器の測定結果を示す。 分周器 1 2において 4分周するので、 第 1の周波数シン セサイザ 1は、 f I F = 2 7 0 MH zの時 1 0 8 0 MH zで発振し、 f I F = 2 7 2 MH zの時は 1 0 8 8 MH zで発振する。 その他の測定条件は、 比較例の図 8における測定条件と同一である。 f I F = 2 7 0 MH zでは i V C O= 9 0 0 MH z近傍で不要スプリァス信号が発生し G S M仕様を満たすことができなかつ たが、 f I F = 2 7 2 MH z とすれば不要スプリァス信号の発生する f V C Oが 移動するため f V C O= 9 0 0 MH z近傍では抑圧され G S M仕様を満たせるこ とが分かる。 したがって、 例えば、 第 2のレジス夕 2 3には: f I Fが 2 7 0 MH z となるカウン夕 8のデ一夕を、 第 3のレジスタ 2 4には f I Fが 2 7 2 MH z となるカウンタ 8のデータを格納しておき、 f V C Oが 8 8 5 MH z〜 9 0 5 M H zの時にはセレクタ 2 7により第 3のレジス夕 2 4のデータをカウン夕 8のデ —夕として用い、 上記以外の f V C Oの時には第 2のレジス夕 2 3のデータを力 ゥン夕 8のデータとして用いればすべての周波数範囲において G S M仕様を満た すことができる。
図 3は、 本発明の送信器の第 2の実施の形態を示した構成図であり、 前記第 1 の課題 ( 1 ) と第 2の課題 ( 2 ) を同時に解決する。
本実施の形態は、 第 1の実施の形態において、 I C化した回路 (点線 2 9で囲 まれた部分) に V C〇 1 1を加え、 さらに第 1のレジス夕 2 2とセレクタ 2 7の 間に第 5のレジス夕 3 0を追加したことを特徴とする送信器である。 実線 3 1で 囲まれた回路が 1つの I Cに内蔵される。
前述の比較例において、 V C Oの発振周波数 1 0 8 0 MH z近傍に水晶発振器 出力信号の高調波 1 0 7 9 MH zが混入するために、 この V C O出力に不要スプ リアス信号が発生していた。 一般に、 無線通信で用いられる V C Oは共振器をも ち、 共振器は帯域通過フィル夕特性をもつ。 したがって、 この V C Oの発振周波 数を 1 0 7 9 MH zから遠ざけることで不要スプリァスレベルを抑圧することが できる。 図 4に、 比較例の図 9 と同じ測定条件において、 V C O 1 1の発振周波 数を 1 0 8 8 MH z、 すなわち f I F = 2 7 2 MH z とし、 かつ、 f V C O= 8 8 0 MH z とした時の送信器の出カスペク 卜ラムを示す。 不要スプリアス信号は 比較例に比べ抑圧され、 そのレベルは一 6 6. 4 d Bである。 この値は G S M仕 様の一 6 0 d B以下を満たしている。
上記結果から本実施の形態の送信器は次の様に使用する。
使用する f I Fは例えば、 2 7 0 MH z 、 2 7 2 MH z と 2 6 8 MH zであ る。 まず前記第 2の課題 (2 ) を解決するために、 第 1の周波数シンセサイザ 1 の出力周波数は 1 0 7 9 MH zから遠ざけ、 1 0 8 8 M H z とする。 すなわち、 f I Fとして 2 7 2 MH zを使用する。 次に、 f I Fとして 2 7 2 MH zのみを 使用すると前記第 1の課題 ( 1 ) の問題が生じるので、 不要スプリアス信号の発 生する送信器出力周波数 f V C Oを移動させるために f I Fとして 2 6 8 MH z も用いる。 また、 2 7 0 MH zの f I Fは、 第 1の周波数シンセサイザ 1 と第 2 の周波数シンセサイザ 2の出力信号を利用する受信器のために使用する。 この受 信器で用いる f I Fは、 この受信器のフィル夕で決まるので、 f I Fを自由に変 えることができない。 また、 このフィルタとして通過帯域幅が 1 MH zよりも小 さいチャネルフィル夕が用いられるので、 f I F = 2 7 0 MH z として 1 MH z 離調に— 5 8. 2 d Bのスプリアス信号が存在していても、 この受信器の性能に 問題は生じない。
この送信器の初期動作時 (例えば、 電源がオフからオンになった時) に、 第 2 のレジス夕 2 3には f I Fが 2 7 0 MH z となるカウン夕 8のデータを、 第 3の レジス夕 2 4には f I Fが 2 7 2 MH z となるカウン夕 8のデータを、 第 5のレ ジス夕 3 0には f I Fが 2 6 8 MH z となるカウン夕 8のデータを格納する。 一 旦、 この第 2、 第 3 と第 5のレジスタ 2 3 , 2 4, 3 0にデータを格納したら、 その後はデータの更新は行わない。 G SMシステムは TDMA (T i me D i v i s i o n Mu l t i p l e A c c e s s ) 方式であるから、 送信と受信 は同時に起きることはない。 したがって、 送信時には送信周波数 f VCOに応じ てセレクタ 2 7を適宜切り替え、 この第 3または第 5のレジスタ 2 4 , 3 0のデ —夕をカウンタ 8へ入力する。 受信時には、 セレクタ 2 7により第 2のレジスタ 2 3を選択し、 そのデ一夕をカウン夕 8へ入力する。
次に、 本発明に係る送信器を用いた無線通信端末機器の実施の形態を説明する 図 5は、 本発明の送信器を用いた無線通信端末機器の実施の形態を示した図で ある。
本発明にかかる無線通信端末機器は、 ベースバンド回路 6、 送信回路 3 3、 電 力増幅器 3 4、 アンテナスィッチ 3 5、 アンテナ 3 6、 受信回路 3 7と水晶発振 器 3から構成される。
送信回路 3 3は、 図 1 における第 1の周波数シンセサイザ 1、 第 2の周波数シ ンセサイザ 2、 P L Lを用いた周波数変換回路 5、 分周器 1 2、 変調器 1 8と制 御回路 4から構成され、 実線 2 9に含まれる回路が 1つの I Cに内蔵される。 あ るいは、 送信回路 3 3は、 図 3における第 1の周波数シンセサイザ 1、 第 2の周 波数シンセサイザ 2、 P L Lを用いた周波数変換回路 5、 分周器 1 2、 変調器 1 8と制御回路 4から構成され、 実線 3 1 に含まれる回路が 1つの I Cに内蔵され る。
ベースバンド回路 6からクロック信号 C L K、 データ信号 DAT Α、 トリガ信 号 L Εとベースバンド信号 3 2が送信回路 3に入力される。
水晶発振器 3の出力信号は送信回路 3 3に入力され、 送信回路 3 3に含まれる 第 1の周波数シンセサイザ 1 と第 2の周波数シンセサイザ 2の参照信号となる。 送信回路 3 3には 3つの出力信号がある。 第 1の出力信号は、 P L Lを用いた 周波数変換回路 5の出力信号で、 その周波数は f V C Οである。 第 2の出力信号 は、 分周器 1 2の出力信号で、 その周波数は f I Fである。 第 3の出力信号は、 第 2の周波数シンセサイザ 2の出力信号で、 その周波数は f R Fである。 送信回 路 3 3の第 1の出力信号は電力増幅器 3 4に入力され、 電力が増幅される。 電力 増幅器 3 4の出力信号はアンテナスィッチ 3 5に入力される。 アンテナスィッチ 3 5にはアンテナ 3 6、 送信回路 3 3の出力と受信回路 3 7の入力が接続される < この無線通信端末機器が送信時にはアンテナ 3 6と送信回路 3 3の出力が電気的 に接続され、 受信時にはアンテナ 3 6 と受信回路 3 7の入力が電気的に接続され る。 なお、 アンテナスィッチ 3 5の代わりにデュプレクサを用いてもよい。
アンテナ 3 6で受信された受信信号はアンテナスィツチ 3 5を通して受信回路 3 7に入力される。 受信回路 3 7は、 送信回路 3 3の第 2 と第 3の出力信号を用 いて、 この受信信号をベースバンド回路 6で処理できる周波数までダウンコンパ 一卜し、 ベースバンド回路 6へ入力する。 受信回路 3 7を構成する回路は、 送信 回路 3 3を構成する前記 I Cと別の I Cに製造されてもよいし、 また、 受信回路 3 7を構成する少なくとも 1つの回路が、 この I Cに内蔵されてもよい。
以上、 本発明者によってなされた発明をその実施の形態に基づき具体的に説明 したが、 本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱し ない範囲で種々変更可能であることはいうまでもない。 産業上の利用可能性
以上のように、 本発明にかかる送信器は、 G S Mや D C S 1 8 0 0などの無線 通信システムに用いられる、 周波数シンセサイザと P L Lを用いた周波数変換回 路を含む送信器に有用であり、 さらにこの送信器を用いた無線通信端末機器など に広く適用することができる。

Claims

請 求 の 範 囲
1 . 第 1の周波数シンセサイザと、 第 2の周波数シンセサイザと、 情報信号に基 づいてベースバンド信号と制御信号とを出力するべ一スパンド回路と、 前記制御 信号に基づき前記第 1の周波数シンセサイザと前記第 2の周波数シンセサイザと の出力周波数を変える制御回路と、 前記第 1の周波数シンセサイザの出力信号を 搬送信号とし前記ベースバンド信号に基づき前記搬送信号を変調する変調器と、 前記変調器の出力信号と前記第 2の周波数シンセサイザの出力信号とを用いて前 記変調器の出力信号の搬送周波数をアップコンバー卜する周波数変換回路とを有 することを特徴とする送信器。
2 . 第 1の周波数シンセサイザと、 第 2の周波数シンセサイザと、 情報信号に基 づいてベースバンド信号と制御信号とを出力するベースバンド回路と、 前記制御 信号に基づき前記第 1の周波数シンセサイザと前記第 2の周波数シンセサイザと の出力周波数を変える制御回路と、 前記第 1の周波数シンセサイザの出力信号を 分周する分周器と、 前記分周器の出力信号を搬送信号とし前記ベースバンド信号 に基づき前記搬送信号を変調する変調器と、 前記変調器の出力信号と前記第 2の 周波数シンセサイザの出力信号とを用いて前記変調器の出力信号の搬送周波数を アップコンバ一トする周波数変換回路とを有することを特徴とする送信器。
3 . 請求項 1または 2記載の送信器において、
前記周波数変換回路は、 第 1の位相比較器と、 第 1の低域通過フィル夕と、 第 1の V C Oと、 ミキサとを有し、
前記第 1の位相比較器は前記変調器の出力信号と前記ミキザの出力信号との位 相差に比例した信号を出力し、 前記第 1の低域通過フィル夕は前記第 1の位相比 較器の出力に接続され、 前記第 1の V C Oは前記第 1の低域通過フィル夕の出力 に接続され、 前記ミキサは前記第 1の V C Oの出力信号と前記第 2の周波数シン セサイザの出力信号とをミキシングする P L Lを用いた周波数変換回路であるこ とを特徴とする送信器。
4 . 請求項 3記載の送信器において、
前記ベースバンド回路は、 前記周波数変換回路の出力周波数と前記第 1の周波 数シンセサイザと前記第 2の周波数シンセサイザの出力周波数との関係を記憶し、 前記関係に基づいて前記周波数変換回路の出力周波数に応じた前記制御信号を生 成するベースバンド回路であることを特徴とする送信器。
5 . 請求項 4記載の送信器において、
前記第 1の周波数シンセサイザは、 第 1 のカウン夕と、 第 2のカウンタと、 第 2の位相比較器と、 第 2の低域通過フィル夕と、 第 2の V C Oとを有し、
前記第 2の位相比較器は前記第 1のカウン夕の出力信号と前記第 2のカウンタ の出力信号との位相差に比例した信号を出力し、 前記第 1のカウンタは基準発振 器の出力に接続され、 前記第 2のカウン夕は前記第 2の V C Oの出力に接続され、 前記第 2の低域通過フィル夕は前記第 2の位相比較器の出力に接続され、 前記第 2の V C Oは前記第 2の低域通過フィル夕の出力に接続され、 前記第 2のカウン 夕の分周比は前記制御回路から送られる第 1の分周比データにより変えることが できる周波数シンセサイザであることを特徴とする送信器。
6 . 請求項 5記載の送信器において、
前記第 2の周波数シンセサイザは、 第 3のカウン夕と、 第 4のカウン夕と、 第 3の位相比較器と、 第 3の低域通過フィル夕と、 第 3の V C Oとを有し、
前記第 3の位相比較器は前記第 3のカウン夕の出力信号と前記第 4のカウン夕 の出力信号との位相差に比例した信号を出力し、 前記第 3のカウンタは前記基準 発振器の出力に接続され、 前記第 4のカウン夕は前記第 3の V C Oの出力に接続 され、 前記第 3の低域通過フィル夕は前記第 3の位相比較器の出力に接続され、 前記第 3の V C Oは前記第 3の低域通過フィルタの出力に接続され、 前記第 4の カウン夕の分周比は前記制御回路から送られる第 2の分周比データにより変える ことができる周波数シンセサイザであることを特徴とする送信器。
7 . 請求項 6記載の送信器において、
前記制御回路は、 第 3の分周比データを保持する第 1 のレジス夕と、 第 4の分 周比データを保持する第 2のレジス夕と、 前記第 2の分周比データを保持する第 3のレジス夕と、 前記第 3と第 4との分周比データのどちらか 1つを前記制御信 号に含まれる情報に基づいて選択し前記第 1の分周比データとする第 1のセレク 夕とを有する制御回路であることを特徴とする送信器。
8 . 請求項 7記載の送信器において、 前記第 1のカウン夕と、 前記第 2のカウンタと、 前記第 2の位相比較器と、 前 記第 3のカウンタと、 前記第 4のカウン夕と、 前記第 3の位相比較器と、 前記変 調器と、 前記分周器と、 前記第 1の位相比較器と、 前記ミキザと、 前記制御回路 とが同一の I Cに製造されることを特徴とする送信器。
9 . 請求項 6記載の送信器において、
前記制御回路は、 第 5の分周比データを保持する第 4のレジス夕と、 第 6の分 周比データを保持する第 5のレジス夕と、 前記第 7の分周比データを保持する第 6のレジス夕と、 前記第 2の分周比データを保持する第 7のレジスタと、 前記第 5と第 6と第 7との分周比データのうち 1つを前記制御信号に含まれる情報に基 づいて選択し前記第 1の分周比データとする第 2のセレクタとを有する制御回路 であることを特徴とする送信器。
1 0 . 請求項 9記載の送信器において、
少なくとも前記第 1のカウン夕と、 前記第 2のカウン夕と、 前記第 2の位相比 較器と、 前記第 3のカウン夕と、 前記第 4のカウン夕と、 前記第 3の位相比較器 と、 前記第 2の V C Oとが同一の I Cに製造されることを特徴とする送信器。
1 1 . 請求項 1 0記載の送信器において、
さらに前記変調器と、 前記分周器と、 前記第 1の位相比較器と、 前記ミキザと、 前記制御回路とが同一の I Cに製造されることを特徴とする送信器。
1 2 . 請求項 1 , 2 , 3 , 4, 5 , 6, 7, 8, 9 , 1 0または 1 1記載の送信 器を用いた無線通信端末機器において、
受信回路の出力に接続された送信回路と、 前記送信回路の第 1の出力信号と第 2の出力信号とが入力される前記受信回路と、 前記送信回路の第 3の出力信号が 入力される電力増幅器と、 前記受信回路の入力と前記電力増幅器の出力とに接続 されるアンテナスィッチと、 前記アンテナスィツチに接続されたアンテナとを有 し、
前記送信回路が、 請求項 1から 1 1の何れかに記載の送信器であり、
前記第 1の出力信号と第 2の出力信号とは、 それぞれ前記送信回路における第 2の周波数シンセサイザの出力信号と変調器の入力信号であり、
前記第 3の出力信号は、 前記送信回路における第 1の V C〇の出力信号であり、 前記受信回路の出力信号は、 前記送信回路における前記ベースバンド回路に入 力され情報信号が取り出されるものであることを特徴とする無線通信端末機器。
1 3 . 請求項 1 2記載の無線通信端末機器において、
前記アンテナスィッチの代わりにデュプレクサを用いることを特徴とする無線 > 通 ί 顺末機器。
PCT/JP2000/000070 2000-01-11 2000-01-11 Emetteur et terminal de communication radio comportant un tel emetteur WO2001052427A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001552535A JP3970611B2 (ja) 2000-01-11 2000-01-11 送信器およびそれを用いた無線通信端末機器
EP00900166A EP1248378B1 (en) 2000-01-11 2000-01-11 Transmitter and radio communication terminal using the same
PCT/JP2000/000070 WO2001052427A1 (fr) 2000-01-11 2000-01-11 Emetteur et terminal de communication radio comportant un tel emetteur
US10/148,960 US7224948B1 (en) 2000-01-11 2000-01-11 Transmitter and radio communication terminal using the same
DE60041784T DE60041784D1 (de) 2000-01-11 2000-01-11 Sender und Funkkommunikationsendgerät damit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000070 WO2001052427A1 (fr) 2000-01-11 2000-01-11 Emetteur et terminal de communication radio comportant un tel emetteur

Publications (1)

Publication Number Publication Date
WO2001052427A1 true WO2001052427A1 (fr) 2001-07-19

Family

ID=11735562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000070 WO2001052427A1 (fr) 2000-01-11 2000-01-11 Emetteur et terminal de communication radio comportant un tel emetteur

Country Status (5)

Country Link
US (1) US7224948B1 (ja)
EP (1) EP1248378B1 (ja)
JP (1) JP3970611B2 (ja)
DE (1) DE60041784D1 (ja)
WO (1) WO2001052427A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7725124B2 (en) 2004-10-19 2010-05-25 Renesas Technology Corp. Semiconductor device and module having a transceiver with a built-in regulator
US8290527B2 (en) 2004-07-30 2012-10-16 Airvana, Corp. Power control in a local network node (LNN)
US8503342B2 (en) 2004-07-30 2013-08-06 Airvana Llc Signal transmission method from a local network node
JP2013541869A (ja) * 2010-08-22 2013-11-14 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 広帯域の周波数ランプを形成する高周波出力信号を発生させるための回路装置
US9876670B2 (en) 2004-07-30 2018-01-23 Commscope Technologies Llc Local network node

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868261B2 (en) * 2001-09-05 2005-03-15 Broadcom Corporation Transmitter method, apparatus, and frequency plan for minimizing spurious energy
US8081042B2 (en) * 2009-05-19 2011-12-20 Nokia Corporation Apparatus, method and computer program
EP2600544B1 (en) * 2011-11-30 2014-10-15 Telefonaktiebolaget L M Ericsson (publ) Technique for crosstalk reduction
CN104350681A (zh) * 2012-04-12 2015-02-11 马维尔国际贸易有限公司 用于本地振荡器的方法和装置
US10615808B1 (en) 2018-09-14 2020-04-07 Qualcomm Incorporated Frequency synthesis with accelerated locking
US10374651B1 (en) 2018-09-29 2019-08-06 Qualcomm Incorporated Systems and methods of relocking for locked loops

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545319A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Transceiver of multi-channel
JPH03204286A (ja) * 1989-12-29 1991-09-05 Sony Corp Rfモジュレータ
JPH04227128A (ja) * 1990-09-08 1992-08-17 Philips Gloeilampenfab:Nv 無線装置
JPH0888582A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 無線通信装置
JPH09162767A (ja) * 1995-12-08 1997-06-20 Nec Corp 周波数変換装置
JPH09261122A (ja) * 1996-03-26 1997-10-03 Oki Electric Ind Co Ltd Cdma送信装置
JPH09294089A (ja) * 1996-04-26 1997-11-11 Mitsubishi Electric Corp 周波数シンセサイザ回路
JPH10285060A (ja) * 1997-04-02 1998-10-23 Kokusai Electric Co Ltd 無線送信機
JPH11289275A (ja) * 1998-04-03 1999-10-19 Sony Corp Pll回路
EP0964523A1 (fr) 1998-06-11 1999-12-15 Alcatel Convertisseur de radio-fréquences
JPH11355138A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd Pll回路及びそれを用いた無線通信端末装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141132A (ja) * 1997-07-24 1999-02-12 Toshiba Corp 無線通信装置
US6163684A (en) * 1997-08-01 2000-12-19 Microtune, Inc. Broadband frequency synthesizer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545319A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Transceiver of multi-channel
JPH03204286A (ja) * 1989-12-29 1991-09-05 Sony Corp Rfモジュレータ
JPH04227128A (ja) * 1990-09-08 1992-08-17 Philips Gloeilampenfab:Nv 無線装置
JPH0888582A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 無線通信装置
JPH09162767A (ja) * 1995-12-08 1997-06-20 Nec Corp 周波数変換装置
JPH09261122A (ja) * 1996-03-26 1997-10-03 Oki Electric Ind Co Ltd Cdma送信装置
JPH09294089A (ja) * 1996-04-26 1997-11-11 Mitsubishi Electric Corp 周波数シンセサイザ回路
JPH10285060A (ja) * 1997-04-02 1998-10-23 Kokusai Electric Co Ltd 無線送信機
JPH11289275A (ja) * 1998-04-03 1999-10-19 Sony Corp Pll回路
JPH11355138A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd Pll回路及びそれを用いた無線通信端末装置
EP0964523A1 (fr) 1998-06-11 1999-12-15 Alcatel Convertisseur de radio-fréquences

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1248378A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290527B2 (en) 2004-07-30 2012-10-16 Airvana, Corp. Power control in a local network node (LNN)
US8311570B2 (en) 2004-07-30 2012-11-13 Airvana Llc Method and system of setting transmitter power levels
US8503342B2 (en) 2004-07-30 2013-08-06 Airvana Llc Signal transmission method from a local network node
US8886249B2 (en) 2004-07-30 2014-11-11 Airvana Lp Method and system of setting transmitter power levels
US9876670B2 (en) 2004-07-30 2018-01-23 Commscope Technologies Llc Local network node
US7725124B2 (en) 2004-10-19 2010-05-25 Renesas Technology Corp. Semiconductor device and module having a transceiver with a built-in regulator
JP2013541869A (ja) * 2010-08-22 2013-11-14 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 広帯域の周波数ランプを形成する高周波出力信号を発生させるための回路装置

Also Published As

Publication number Publication date
US7224948B1 (en) 2007-05-29
JP3970611B2 (ja) 2007-09-05
DE60041784D1 (de) 2009-04-23
EP1248378B1 (en) 2009-03-11
EP1248378A4 (en) 2006-05-31
EP1248378A1 (en) 2002-10-09

Similar Documents

Publication Publication Date Title
EP1882304B1 (en) Fast hopping frequency synthesizer using an all digital phased locked loop (adpll)
JP4242559B2 (ja) 移動電話における簡略化基準周波数配信
KR100663104B1 (ko) 주파수 변환회로, 무선 주파 수신기, 및 무선 주파트랜스시버
JP5762980B2 (ja) 複数の同調ループを有する周波数シンセサイザ
JP4499739B2 (ja) マルチモードおよびマルチバンドrf送受信機ならびに関連する通信方法
JPH1032520A (ja) 2つの周波数帯域の無線周波数信号を送受信する送受信装置
EP1320926A2 (en) Wideband fast-hopping receiver front-end and mixing method
JP4547084B2 (ja) 移動体通信機および送受信機
JP2004534454A (ja) 低漏洩局部発振器システム
US7170965B2 (en) Low noise divider module for use in a phase locked loop and other applications
WO2001052427A1 (fr) Emetteur et terminal de communication radio comportant un tel emetteur
US5802447A (en) Transmitter-receiver for a radio communication apparatus
JP2000124829A (ja) 無線通信装置及びこれに用いる集積回路
US6640091B1 (en) Dual-band output switching high-frequency transmission circuit with a transmission mixer having two outputs
KR100186586B1 (ko) 이동 통신시스템의 주파수 발생장치 및 방법
US7398074B2 (en) Integrated transceiver circuit with low interference production and sensitivity
JP2008228038A (ja) 半導体集積回路およびそのテスト方法
TWI707551B (zh) 無線區域網路收發器及其方法
JP3825540B2 (ja) 受信機および送受信機
CN101023577A (zh) 复合信号电路中数字噪声耦合的降低及可变中频的产生
JP2002280924A (ja) マルチバンド送受信装置
Valdes-Garcia et al. An 11-Band 3.4 to 10.3 GHz MB-OFDM UWB Receiver in 0.25/spl mu/m SiGe BiCMOS
US7379722B2 (en) Frequency allocation using a single VCO
JP2011109518A (ja) 送受信機および受信機
Wilson et al. Integrated RF receiver front ends and frequency synthesizers for wireless

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT JP)

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 552535

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10148960

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000900166

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000900166

Country of ref document: EP