WO2001046592A1 - Trockenverdichtende vakuumpumpe mit gasballasteinrichtung - Google Patents

Trockenverdichtende vakuumpumpe mit gasballasteinrichtung Download PDF

Info

Publication number
WO2001046592A1
WO2001046592A1 PCT/EP2000/008201 EP0008201W WO0146592A1 WO 2001046592 A1 WO2001046592 A1 WO 2001046592A1 EP 0008201 W EP0008201 W EP 0008201W WO 0146592 A1 WO0146592 A1 WO 0146592A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
gas ballast
ballast device
gas
vacuum pump
Prior art date
Application number
PCT/EP2000/008201
Other languages
English (en)
French (fr)
Inventor
Lutz Arndt
Thomas Dreifert
Michael HÖLZEMER
Jürgen Meyer
Frank SCHÖNBORN
Original Assignee
Leybold Vakuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum Gmbh filed Critical Leybold Vakuum Gmbh
Priority to AU64431/00A priority Critical patent/AU6443100A/en
Priority to JP2001547466A priority patent/JP2003518228A/ja
Priority to US10/168,289 priority patent/US6776588B1/en
Priority to EP00951529A priority patent/EP1240433B1/de
Priority to DE50013201T priority patent/DE50013201D1/de
Publication of WO2001046592A1 publication Critical patent/WO2001046592A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • F04B37/20Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids for wet gases, e.g. wet air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/50Pumps with means for introducing gas under pressure for ballasting

Definitions

  • the invention relates to a dry compressing vacuum pump with continuous or gradual internal compression and with a gas ballast device.
  • “Dry-compressing vacuum pump with internal compression” should be understood to mean any vacuum pump whose pumping chamber or pumping chambers is / are oil-free and in which the pumping chamber volume decreases continuously or in stages from the inlet to the pump outlet.
  • a dry-compressing vacuum pump with a continuously decreasing pumping chamber volume is one Screw vacuum pump with screw gears, the pitch, depth and / or width of which decreases continuously from the inlet to the outlet.
  • Examples of dry-compressing vacuum pumps with gradually decreasing internal compression are multi-stage claw, roots or piston vacuum pumps, in which the volume of the pumping or compression chambers increases from stage to stage It also is known for screw vacuum pumps that the screw threads training courses in such a way that they gradually change their properties.
  • Dry-compressing vacuum pumps are generally used in applications (e.g. in semiconductor production) in which toxic, very expensive or even explosive gases have to be conveyed.
  • the object of the present invention is to design the gas ballast device in a vacuum pump of the type mentioned at the outset in such a way that the risk of gases escaping no longer exists. Moreover the aim is to ensure that gas ballast operation does not put an additional load on the pump drive motor.
  • a check valve is part of the gas ballast device, it can be ensured that gases conveyed by the pump cannot escape to the outside via the gas ballast device.
  • FIG. 1 is a schematically illustrated multi-stage
  • FIG. 2 shows a concrete version of the gas ballast device
  • - Figure 3 shows the rotors of a screw vacuum pump with internal compression
  • the pump 1 according to FIG. 1 comprises three stages 2, 3, 4 with a scoop volume decreasing from the inlet 5 to the outlet 6.
  • a gas ballast device 8 designed according to the invention is connected between the penultimate and the last stage and has a shut-off valve 11, a check valve 12 and a differential pressure valve 13 in a ballast gas supply line 9, arranged in any order.
  • the gas ballast operation can be switched on or off in a known manner.
  • the check valve 12 is installed in such a way that it prevents the escape of gases which are conveyed in the pump 1 through the line 9.
  • the differential pressure valve 13 has the effect that the ballast gas only enters the pump 1 when the valve 11 is open when the pressure in the region of the ballast gas inlet falls below a pressure predetermined by the differential pressure valve.
  • FIG. 2 shows an embodiment of the gas ballast device 8, which is placed directly on the housing 15 of a vacuum pump 1. It comprises the housing 16, which is fastened on the vacuum pump 1 with the aid of a screw 17.
  • the screw 17 is screwed into the channel 18 that supplies the ballast gas and has a shaft cavity 19 in this area on, which is connected via a lateral opening 21 to the interior 22 of the housing 16.
  • the check valve 12 is located in the cavity 19. It consists of a ball 23 (for example made of an elastomer), a seat 24 (for example made of steel) and a spring 25 which acts in the direction of the closed position.
  • the check valve 12 described also has the function of the differential pressure valve 13.
  • the desired differential pressure can be determined via the design of the closing spring 25.
  • the interior 22 of the cylindrical housing 16 has lateral openings 27.
  • a rotatable sleeve 28 comprising the housing 16 has openings 29 concentric with the openings 27 in the position shown. By turning the sleeve 28, the gas ballast supply is opened or closed.
  • FIG. 3 shows the rotors 31, 32 of a dry-compressing vacuum pump 1 based on the screw principle. Inlet and outlet are schematically indicated by arrows 34, 35.
  • the screw threads of the rotors 31, 32 have a decreasing pitch and a decreasing width of the thread webs.
  • a gas ballast supply is provided near the outlet via the gas ballast device 8.
  • Screw vacuum pumps are advantageously operated with a clear internal compression, so that there is a maximum power consumption of the drive motor at an intake pressure of approximately 300 mbar. With this suction The supply of ballast gas is not necessary because the then usually high pump temperatures avoid condensation. If ballast gas were nevertheless pumped in this operating state, this would result in additional power consumption, ie an additional engine power would have to be stored. It is therefore expedient to dimension the differential pressure valve 13 such that a gas ballast supply can only take place at a relatively high pressure difference. For example, if the opening pressure of the differential pressure valve is 900 mbar, gas ballast could only be introduced at a pressure of approx. 100 mbar (atmospheric pressure minus 900 mbar). In this operating state, the full engine power is no longer required, so that no greater engine power has to be installed for the gas ballast.
  • FIGS. 4 and 5 show an embodiment (FIG. 4 only partially) of a dry-compressing vacuum pump, which is designed as a multi-stage piston vacuum pump.
  • the cylindrical scooping areas 43 to 46 are located in their pump chamber parts 41 and 42. Between the housing parts 41, 42 there is the crankshaft chamber 47, the housing of which is designated by 48.
  • the pistons 51 to 54 are each stepped and form eight pump chambers, some of which are connected in parallel, so that the pump shown has four pumping stages with decreasing volume. Its inlet is 55, its outlet 56.
  • a vacuum pump of this type is described in detail.
  • the last annular pump chamber forms the last stage of the one shown Vacuum pump. Its inlet is 57, its outlet 58.
  • the gas ballast is fed into the connecting line between the outlet of the penultimate pump stage and the inlet 57 of the last pump stage.
  • the gas ballast device 8 is connected to this connecting line.
  • the gas ballast is supplied via the crankshaft space 47, as is known per se from DE-A-197 09 206.
  • the inlet 57 of the last stage of the pump is connected to the crankshaft chamber 47 via the line 59. Its mouth forms a ballast gas inlet 61 close to the suction chamber. It is located near one end face of the crankshaft housing 48.
  • the gas ballast or flushing gas inlet 8 is located in the region of the opposite side of the crankshaft housing 48. or maintain negative pressure therein.
  • crankcase 47 In piston vacuum pumps, it is important that the pressure in the crankcase 47 matches the pressure in the pump chambers. In particular, it is difficult to start a piston vacuum pump when using AC motors that have a weak starting torque if there is a high pressure (for example atmospheric pressure) in the crankcase and a vacuum in the working spaces 43 to 46. This occurs when the pump clients shut down and the crankcase 47 is flooded via the open gas ballast device 8. However, if the gas ballast supply only opens when a pressure difference is exceeded, a negative pressure can also be maintained in the crankcase when the pump is stopped.
  • a high pressure for example atmospheric pressure
  • the crankcase 47 is only vented up to a pressure of approximately 400 mbar (atmospheric pressure minus 600 mbar).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Trockenverdichtende Vakuumpumpe (1) mit kontinuierlicher oder stufenweiser innerer Verdichtung sowie mit einer Gasballasteinrichtung (8), die ein Absperrventil (11) umfasst; die Gasballasteinrichtung (8) umfasst zusätzlich ein Rückschlagventil (12), das den Austritt von Gasen aus der Pumpe (1) durch die Gasballasteinrichtung (8) nach aussen verhindert.

Description

Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung
Die Erfindung bezieht sich auf eine trockenverdichtende Vakuumpumpe mit kontinuierlicher oder stufenweiser innerer Verdichtung sowie mit einer Gasballasteinrichtung.
Unter „trockenverdichtende Vakuumpumpe mit innerer Verdichtung" soll jede Vakuumpumpe verstanden werden, deren Schöpfraum oder Schöpfräume ölfrei ist/sind und bei denen das Schöpfraumvolumen kontinuierlich oder stufenweise vom Einlass zum Auslass der Pumpe abnimmt. Ein Beispiel für eine trockenverdichtende Vakuumpumpe mit kontinuierlich abnehmendem Schöpfraumvolumen ist eine Schraubenvakuumpumpe mit Schraubengängen, deren Steigung, Tiefe und/oder Breite kontinuierlich vom Einlass zum Auslass abnimmt. Beispiele für trockenverdichtende Vakuumpumpen mit stufenweise abnehmender innerer Verdichtung sind mehrstufige Klauen-, Roots- oder Kolbenvakuumpumpen, bei denen das Volumen der Schöpf- oder Kompressionsräume von Stufe zu Stufe abnimmt. Auch bei Schraubenvakuumpumpen ist es bekannt, die Schraubengän- gänge so auszubilden, dass sie ihre Eigenschaften stufenweise verändern.
Trockenverdichtende Vakuumpumpen werden in der Regel bei Applikationen (z.B. bei der Halbleiter-Fertigung) eingesetzt, bei denen giftige, sehr teure oder auch explosive Gase gefördert werden müssen.
Es ist bekannt, bei trockenverdichtenden Vakuumpumpen der erwähnten Art Gasballasteinrichtungen einzusetzen, um im auslassseitigen Bereich Kondensationen zu vermeiden. Der Gasballast wird deshalb dem oder den im Auslassbereich gelegenen Schöpfräumen oder Schöpfraumabschnitten zugeführt.
Trockenverdichtende Vakuumpumpen der hier betroffenen Art weisen wegen ihrer inneren Verdichtung im auslassseitigen Bereich häufig Drücke auf, die nicht nur den Ansaugdruck sondern auch den Atmosphärendruck deutlich überschreiten können. Dieses gilt auch für den Fall, dass Bypassventile eingesetzt werden, weil diese Ventile einen großen Gasstrom auf Grund ihrer begrenzten Querschnitte drosseln. Würde eine Vakuumpumpe der hier betroffenen Art in dieser Betriebsphase mit offenem Gasballastventil betrieben, dann würden von der Pumpe geförderte Gase aus dem Schöpfraum in die Atmosphäre gelangen .
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, bei einer Vakuumpumpe der eingangs genannten Art die Gasballasteinrichtung so auszubilden, dass die Gefahr des Austritts von Gasen nicht mehr besteht. Außerdem soll erreicht werden, dass der Gasballastbetrieb den Antriebsmotor der Pumpe nicht zusätzlich belastet.
Diese Aufgabe wird durch die kennzeichnenden Merkmale der Patentansprüche gelöst.
Dadurch, dass Bestandteil der Gasballasteinrichtung ein Rückschlagventil ist, kann sichergestellt werden, dass von der Pumpe geförderte Gase über die Gasballasteinrichtung nicht nach außen gelangen können.
Zweckmäßig ist es, zusätzlich ein Differenzdruckventil vorzusehen, das den Ballastgaseinlass nur ab einer bestimmten Druckdifferenz ermöglicht. Durch diese Maßnahme kann sichergestellt werden, dass ein Gasballasteintritt nur bei Drücken in der Vakuumpumpe möglich ist, die unterhalb des durch das Differenzdruckventil vorgegebenen Druckes liegen. Eine unnötige Belastung der Pumpe durch die eingelassenen Ballastgase kann dadurch vermieden werden.
Weitere Vorteile und Einzelheiten der Erfindung sollen an Hand von in den Figuren 1 bis 5 dargestellten Ausführungsbeispielen erläutert v/erden. Es zeigen
- Figur 1 eine schematisch dargestellte mehrstufige
Pumpe mit der erfindungsgemäßen Gasballastein- richtύng,
- Figur 2 eine konkrete Ausführung der Gasballasteinrichtung, - Figur 3 die Rotoren einer Schraubenvakuumpumpe mit innerer Verdichtung sowie
- Figuren 4 und 5 Beispiele für mehrstufige Kolbenvakuumpumpen .
Die Pumpe 1 nach Figur 1 umfasst drei Stufen 2, 3, 4 mit vom Einlass 5 zum Auslass 6 abnehmenden Schöpfraumvolumen. Zwischen der vorletzten und der letzten Stufe ist eine erfindungsgemäß gestaltete Gasballasteinrichtung 8 angeschlossen, die in einer Ballastgaszufüh- rungsleitung 9 - in beliebiger Reihenfolge angeordnet - ein Absperrventil 11, ein Rückschlagventil 12 und ein Differenzdruckventil 13 aufweist.
Mit Hilfe des Absperrventils 11 kann in bekannter Weise der Gasballastbetrieb zu- oder abgeschaltet werden. Das Rückschlagventil 12 ist so eingebaut, dass es den Austritt von Gasen, die in der Pumpe 1 gefördert werden, durch die Leitung 9 verhindert. Das Differenzdruckventil 13 bewirkt, dass das Ballastgas bei offenem Ventil 11 nur dann in die Pumpe 1 eintritt, wenn der Druck im Bereich des Ballastgaseintritts einen durch das Differenzdruckventil vorgegebenen Druck unterschreitet.
Die Figur 2 zeigt eine Ausführungsform der Gasballasteinrichtung 8, die unmittelbar auf das Gehäuse 15 einer Vakuumpumpe 1 aufgesetzt ist. Sie umfasst das Gehäuse 16, das mit Hilfe einer Schraube 17 auf der Vakuumpumpe 1 befestigt ist. Die Schraube 17 ist in den der Zuführung des Ballastgases dienenden Kanal 18 eingeschraubt und weist in diesem Bereich einen Schafthohlraum 19 auf, der über eine seitliche Öffnung 21 mit dem Innenraum 22 des Gehäuses 16 in Verbindung steht. Im Hohlraum 19 befindet sich das Rückschlagventil 12. Es besteht aus einer Kugel 23 (z.B. aus einem Elastomer), einem Sitz 24 (z.B. aus Stahl) und einer Feder 25, die in Richtung Schließstellung wirkt.
Das beschriebene Rückschlagventil 12 hat auch die Funktion des Differenzdruckventiles 13. Der gewünschte Differenzdruck kann über die Auslegung der Schließfeder 25 bestimmt werden.
Der Innenraum 22 des zylindrisch ausgebildeten Gehäuses 16 weist seitliche Öffnungen 27 auf. Eine das Gehäuse 16 umfassende, drehbare Hülse 28 weist in der dargestellten Position zu den Öffnungen 27 konzentrische Durchbrechungen 29 auf. Durch Verdrehen der Hülse 28 erfolgt das Öffnen oder Verschließen der Gasballastzufuhr .
Figur 3 zeigt die Rotoren 31, 32 einer trockenverdichtenden Vakuumpumpe 1 nach dem Schraubenprinzip. Einlass und Auslass sind schematisch durch Pfeile 34, 35 gekennzeichnet. Die Schraubengänge der Rotoren 31, 32 haben eine abnehmende Steigung und eine abnehmende Breite der Gewindestege. Auslassnah ist eine Gasballastzufuhr über die Gasballasteinrichtung 8 vorgesehen.
Schraubenvakuumpumpen werden vorteilhaft mit deutlicher innerer Verdichtung betrieben, so dass sich eine maximale Leistungsaufnahme des Antriebsmotors bei einem Ansaugdruck von etwa 300 mbar ergibt. Bei diesem Ansaug- druck ist die Zufuhr von Ballastgas nicht erforderlich, weil die dann üblicherweise hohen Pumpentemperaturen eine Kondensation vermeiden. Würde dennoch in diesem Betriebszustand Ballastgas gefördert, so würde das eine zusätzliche Leistungsaufnahme zur Folge haben, d.h., dass eine zusätzliche Motorleistung bevorratet werden müsste. Es ist deshalb zweckmäßig, das Differenzdruckventil 13 so zu bemessen, dass eine Gasballastzufuhr erst bei einer relativ hohen Druckdifferenz erfolgen kann. Beträgt beispielsweise der Öffnungsdruck des Differenzdruckventils 900 mbar, könnte Gasballast erst bei einem Druck von ca. 100 mbar (Atmosphärendruck minus 900 mbar) eingelassen werden. In diesem Betriebszustand wird die volle Motorleistung nicht mehr benötigt, so dass für den Gasballast keine größere Motorleistung installiert werden muss.
Die Figuren 4 und 5 zeigen eine Ausführungsform (Figur 4 nur teilweise) einer trockenverdichtenden Vakuumpumpe, die als mehrstufige Kolbenvakuumpumpe ausgebildet ist. In ihren Schöpfraumgehäuseteilen 41 und 42 befinden sich die zylindrischen Schöpfräume 43 bis 46. Zwischen den Gehäuseteilen 41, 42 befindet sich der Kurbelwellenraum 47, dessen Gehäuse mit 48 bezeichnet ist. Die Kolben 51 bis 54 sind jeweils gestuft und bilden acht Pumpenkämmern, die zum Teil parallel geschaltet sind, so dass die dargestellte Pumpe vier Pumpstufen mit abnehmendem Volumen hat. Ihr Einlass ist mit 55, ihr Auslass mit 56 bezeichnet. In der älteren deutschen Patentanmeldung 196 34 519.7 ist eine Vakuumpumpe dieser Art im einzelnen beschrieben. Die letzte ringförmige Pumpkammer bildet die letzte Stufe der dargestellten Vakuumpumpe. Ihr Einlass ist mit 57, ihr Auslass mit 58 bezeichnet .
Bei der Ausführung nach Figur 4 erfolgt die Gasballastzufuhr in die Verbindungsleitung zwischen dem Auslass der vorletzten Pumpstufe und dem Einlass 57 der letzten Pumpstufe. An diese Verbindungsleitung ist die Gasballasteinrichtung 8 angeschlossen.
Bei der Ausführung nach Figur 5 erfolgt die Gasballastzufuhr über den Kurbelwellenraum 47, wie es aus der DE- A-197 09 206 an sich bekannt ist.
Der Einlass 57 der letzten Stufe der Pumpe steht über die Leitung 59 mit dem Kurbelwellenraum 47 in Verbindung. Ihre Mündung bildet einen schöpfraumnahen Ballastgaseintritt 61. Sie liegt in der Nähe der einen Stirnseite des Kurbelwellengehäuses 48. Im Bereich der gegenüberliegenden Seite des Kurbelwellengehäuses 48 befindet sich der Gasballast- oder Spülgaseinlass 8. Über den Gaseinlass 8 einströmendes Gas kann der Kurbelwellenraum 47 gespült und/oder darin ein Unterdruck aufrechterhalten werden.
In Kolbenvakuumpumpen ist es wichtig, dass der Druck im Kurbelgehäuse 47 zum Druck in den Pumpenkammern passt. Insbesondere ist der Start einer Kolbenvakuumpumpe bei der Verwendung von Wechselstrommotoren, die ein schwaches Startmoment aufweisen, schwierig, wenn im Kurbelgehäuse ein hoher Druck (z.B. Atmosphärendruck) und in den Arbeitsräumen 43 bis 46 ein Vakuum herrscht. Dieser Fall tritt auf, wenn die Pumpe bei evakuiertem Rezi- pienten stillgesetzt und über die geöffnete Gasballasteinrichtung 8 das Kurbelgehäuse 47 geflutet wird. Öffnet jedoch die Gasballastzufuhr erst beim Überschreiten einer Druckdifferenz, kann auch beim Stillsetzen der Pumpe im Kurbelgehäuse ein Unterdruck aufrechterhalten werden. Beträgt beispielsweise die durch das Differenzdruckventil vorgegebene Druckdifferenz 600 mbar, dann wird bei geöffneter Gasballasteinrichtung 8 das Kurbelgehäuse 47 nur bis zu einem Druck von etwa 400 mbar (Atmosphärendruck minus 600 mbar) belüftet.

Claims

Trockenverdichtende Vakuumpumpe mit GasballasteinrichtungPATENTANSPRÜCHE
Trockenverdichtende Vakuumpumpe (1) mit kontinuierlicher oder stufenweiser innerer Verdichtung sowie mit einer Gasballasteinrichtung (8), die ein Absperrventil (11) umfasst, dadurch gekennzeichnet, dass die Gasballasteinrichtung (8) zusätzlich ein Rückschlagventil (12) umfasst, das den Austritt von Gasen aus der Pumpe (1) durch die Gasballasteinrichtung (8) nach außen verhindert.
Pumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Gasballasteinrichtung (8) weiterhin ein Ventil (13) umfasst, das seine Offenstellung nur dann einnimmt, wenn die Differenz zwischen dem Atmosphärendruck und dem Druck, der pumpenseitig dem Ventil (13) anliegt, einen eingestellten Wert überschreitet .
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie eine Schraubenvakuumpumpe ist.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, dass das Differenzdruckventil (13) so ausgebildet ist, dass es bei einer Druckdifferenz von 800 bis 1000 mbar, vorzugsweise etwa 900 mbar, öffnet.
5. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie eine mehrstufige Kolbenvakuumpumpe ist .
6. Pumpe nach anspruch 5, dadurch gekennzeichnet, dass den Kolben ein gemeinsamer Kurbelwellenraum (47) zugeordnet ist und dass die Ballastgaszufuhr über den Kurbelwellenraum (47) erfolgt.
7. Pumpe nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Gasballasteinrichtung (8) an eine Leitung angeschlossen ist, die den Ausgang der vorletzten Stufe mit dem Eingang (57) der letzten Stufe verbindet.
8. Pumpe nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das Differenzdruckventil (13) so ausgebildet ist, dass es bei einer Druckdifferenz von 500 bis 1000 mbar, vorzugsweise 800 mbar, öffnet .
PCT/EP2000/008201 1999-12-22 2000-08-23 Trockenverdichtende vakuumpumpe mit gasballasteinrichtung WO2001046592A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU64431/00A AU6443100A (en) 1999-12-22 2000-08-23 Dry compressing vacuum pump having a gas ballast device
JP2001547466A JP2003518228A (ja) 1999-12-22 2000-08-23 ガスバラストを備えた乾式圧縮型真空ポンプ
US10/168,289 US6776588B1 (en) 1999-12-22 2000-08-23 Dry compressing vacuum pump having a gas ballast device
EP00951529A EP1240433B1 (de) 1999-12-22 2000-08-23 Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung
DE50013201T DE50013201D1 (de) 1999-12-22 2000-08-23 Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962445A DE19962445A1 (de) 1999-12-22 1999-12-22 Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung
DE19962445.3 1999-12-22

Publications (1)

Publication Number Publication Date
WO2001046592A1 true WO2001046592A1 (de) 2001-06-28

Family

ID=7934119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008201 WO2001046592A1 (de) 1999-12-22 2000-08-23 Trockenverdichtende vakuumpumpe mit gasballasteinrichtung

Country Status (7)

Country Link
US (1) US6776588B1 (de)
EP (1) EP1240433B1 (de)
JP (1) JP2003518228A (de)
AU (1) AU6443100A (de)
DE (2) DE19962445A1 (de)
TW (1) TW482875B (de)
WO (1) WO2001046592A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150015A3 (de) * 2000-04-26 2003-01-08 Kabushiki Kaisha Toyota Jidoshokki Vacuumpumpe
WO2007104400A1 (de) * 2006-03-10 2007-09-20 Linde Aktiengessellschaft Verdichteranlage mit einem pufferbehälter
EP1967610A1 (de) * 2007-03-08 2008-09-10 Schott AG Fördereinrichtung für Precursor
WO2009033986A1 (de) 2007-09-12 2009-03-19 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe sowie verfahren zur steuerung einer gasballastzufuhr zu einer vakuumpumpe
JP2009270580A (ja) * 2002-10-14 2009-11-19 Edwards Ltd 真空ポンプ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212940A1 (de) * 2002-03-22 2003-10-02 Leybold Vakuum Gmbh Exzenterpumpe und Verfahren zum Betrieb dieser Pumpe
DE102004059486A1 (de) * 2004-12-10 2006-06-22 Leybold Vacuum Gmbh Vakuum-Anlage
DE102004063058A1 (de) * 2004-12-22 2006-07-13 Leybold Vacuum Gmbh Verfahren zum Reinigen einer Vakuum-Schraubenpumpe
JP2008088912A (ja) * 2006-10-03 2008-04-17 Tohoku Univ メカニカルポンプおよびその製造方法
JP5680972B2 (ja) 2008-03-10 2015-03-04 ブルクハルト コンプレッション アーゲー 天然ガス燃料の供給装置および方法
EP2572109B1 (de) * 2010-05-21 2020-09-02 Exxonmobil Upstream Research Company Parallele dynamische kompressorvorrichtung und entsprechendes verfahren
EP3045724A1 (de) * 2015-01-13 2016-07-20 Neoceram S.A. Keramische Pumpe und Gehäuse dafür
DE202016007609U1 (de) * 2016-12-15 2018-03-26 Leybold Gmbh Vakuumpumpsystem
GB2572958C (en) * 2018-04-16 2021-06-23 Edwards Ltd A multi-stage vacuum pump and a method of differentially pumping multiple vacuum chambers
CN111500309A (zh) * 2020-04-27 2020-08-07 中山凯旋真空科技股份有限公司 干式真空泵及原油真空闪蒸处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677664A (en) * 1967-09-21 1972-07-18 Edwards High Vacuum Int Ltd Rotary mechanical pumps of the screw type
GB1364854A (en) * 1971-08-23 1974-08-29 Cenco Inc Vacuum pump
US5066202A (en) * 1989-06-06 1991-11-19 Leybold Aktiengesellschaft Method and apparatus for delivering oil to a multi-stage pump
US5209653A (en) * 1992-01-17 1993-05-11 Spx Corporation Vacuum pump
JPH076962A (ja) * 1993-06-17 1995-01-10 Fujitsu Ltd ガス圧制御方法およびガス圧制御装置
US5573387A (en) * 1992-11-13 1996-11-12 The Boc Group Plc Vacuum pumps
DE19709206A1 (de) * 1997-03-06 1998-09-10 Leybold Vakuum Gmbh Vakuumpumpe

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116872A (en) * 1959-05-18 1964-01-07 Bendix Balzers Vacuum Inc Gas ballast pumps
US3470706A (en) * 1967-10-16 1969-10-07 Mitchell Co John E Machine for making carbonated desserts
DD143172A1 (de) * 1979-05-17 1980-08-06 Rainer Moeller Verfahren zum abpumpen von hochreaktiven oder toxischen gasen oder daempfen mittels drehschiebervakuumpumpen
US4236876A (en) * 1979-07-30 1980-12-02 Carrier Corporation Multiple compressor system
DE3710782A1 (de) * 1987-03-31 1988-10-20 Vacuubrand Gmbh & Co Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
JPH01216082A (ja) * 1988-02-25 1989-08-30 Hitachi Ltd 真空ポンプ
JPH04121468A (ja) * 1990-09-12 1992-04-22 Hitachi Ltd 真空排気装置
DE4136950A1 (de) * 1991-11-11 1993-05-13 Pfeiffer Vakuumtechnik Mehrstufiges vakuumpumpsystem
DE4325281A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Vakuumpumpe mit einer Gasballasteinrichtung
DE4327583A1 (de) * 1993-08-17 1995-02-23 Leybold Ag Vakuumpumpe mit Ölabscheider
DE19524609A1 (de) * 1995-07-06 1997-01-09 Leybold Ag Vorrichtung zum raschen Evakuieren einer Vakuumkammer
DE19634519A1 (de) 1996-08-27 1998-03-05 Leybold Vakuum Gmbh Kolbenvakuumpumpe mit Eintritt und Austritt
DE19704234B4 (de) * 1997-02-05 2006-05-11 Pfeiffer Vacuum Gmbh Verfahren und Vorrichtung zur Regelung des Saugvermögens von Vakuumpumpen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677664A (en) * 1967-09-21 1972-07-18 Edwards High Vacuum Int Ltd Rotary mechanical pumps of the screw type
GB1364854A (en) * 1971-08-23 1974-08-29 Cenco Inc Vacuum pump
US5066202A (en) * 1989-06-06 1991-11-19 Leybold Aktiengesellschaft Method and apparatus for delivering oil to a multi-stage pump
US5209653A (en) * 1992-01-17 1993-05-11 Spx Corporation Vacuum pump
US5573387A (en) * 1992-11-13 1996-11-12 The Boc Group Plc Vacuum pumps
JPH076962A (ja) * 1993-06-17 1995-01-10 Fujitsu Ltd ガス圧制御方法およびガス圧制御装置
DE19709206A1 (de) * 1997-03-06 1998-09-10 Leybold Vakuum Gmbh Vakuumpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04 31 May 1995 (1995-05-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150015A3 (de) * 2000-04-26 2003-01-08 Kabushiki Kaisha Toyota Jidoshokki Vacuumpumpe
JP2009270580A (ja) * 2002-10-14 2009-11-19 Edwards Ltd 真空ポンプ
WO2007104400A1 (de) * 2006-03-10 2007-09-20 Linde Aktiengessellschaft Verdichteranlage mit einem pufferbehälter
EP1967610A1 (de) * 2007-03-08 2008-09-10 Schott AG Fördereinrichtung für Precursor
WO2009033986A1 (de) 2007-09-12 2009-03-19 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe sowie verfahren zur steuerung einer gasballastzufuhr zu einer vakuumpumpe

Also Published As

Publication number Publication date
US6776588B1 (en) 2004-08-17
JP2003518228A (ja) 2003-06-03
EP1240433A1 (de) 2002-09-18
DE50013201D1 (de) 2006-08-31
AU6443100A (en) 2001-07-03
DE19962445A1 (de) 2001-06-28
TW482875B (en) 2002-04-11
EP1240433B1 (de) 2006-07-19

Similar Documents

Publication Publication Date Title
WO2001046592A1 (de) Trockenverdichtende vakuumpumpe mit gasballasteinrichtung
DE2708900A1 (de) Regelsystem fuer schraubenverdichter
DE602004002054T2 (de) Spiralverdichter mit Auslassventil
EP1853824B1 (de) Vorrichtung und verfahren zur schmierölversorgung
DE10321771C5 (de) Verfahren zur Leistungsbegrenzung eines mehrstufigen Kompressor und Kompressor zur Durchführung des Verfahrens
DE3137918A1 (de) Leistungssteuerung fuer einen kompressor
EP1650434B2 (de) Mehrstufiger Kolbenverdichter mit reduzierter Leistungsaufnahme im Leerlauf
DE112017003912B4 (de) Spiralverdichter
DE60307662T2 (de) Kompressor mit leistungsregelung
DE2308265A1 (de) Rotations- bzw. drehkolbenverdichter anlage mit oelkreislauf und ventilanordnungen
DE102012002672A1 (de) Registerpumpe
DE69019553T2 (de) Wärmepumpenkompressor und Betriebsverfahren für den Kompressor.
DE102010031817A1 (de) Hydraulisches Getriebe
DE102005040921B4 (de) Trockenlaufender Schraubenverdichter mit pneumatisch gesteuertem Entlüftungsventil
EP3071837A1 (de) Vakuumpumpen-system sowie verfahren zum betreiben eines vakuumpumpen-systems
DE102009053133A1 (de) Kolbenverdichter mit Leerlaufventil
DE102014202265A1 (de) Verdichter für ein Druckluftsystem insbesondere eines Kraftfahrzeugs
DE102017102645A1 (de) Kältemittel-Scrollverdichter für die Verwendung innerhalb einer Wärmepumpe
DE102009060188B4 (de) Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe mit Kaltstartfunktion
DE102009023507A1 (de) Verdichteraggregat mit einem Schraubenverdichter
DE3828558A1 (de) Fluegelverdichter mit variabler kapazitaet
EP1659292B1 (de) Abgasturbolader
DE102009037733A1 (de) Regelventilanordnung und Verstellpumpe
DE102015016795A1 (de) Druckwandler und Verfahren zur Druckwandlung
EP3130803A1 (de) Pumpvorrichtung, insbesondere axialkolbenpumpe, für eine abwärmenutzungseinrichtung eines kraftfahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CZ HU JP KR NO PL TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000951529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10168289

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 547466

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000951529

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000951529

Country of ref document: EP