WO2001040536A1 - Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe - Google Patents

Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe Download PDF

Info

Publication number
WO2001040536A1
WO2001040536A1 PCT/JP2000/008420 JP0008420W WO0140536A1 WO 2001040536 A1 WO2001040536 A1 WO 2001040536A1 JP 0008420 W JP0008420 W JP 0008420W WO 0140536 A1 WO0140536 A1 WO 0140536A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline
thin film
base material
ion beam
polycrystalline thin
Prior art date
Application number
PCT/JP2000/008420
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Iijima
Mariko Kimura
Takashi Saito
Original Assignee
Fujikura Ltd.
International Superconductivity Technology Center, The Juridical Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd., International Superconductivity Technology Center, The Juridical Foundation filed Critical Fujikura Ltd.
Priority to JP2001542599A priority Critical patent/JP3732780B2/ja
Priority to US09/890,052 priority patent/US6632539B1/en
Priority to EP00978005A priority patent/EP1178129B1/en
Priority to DE60045370T priority patent/DE60045370D1/de
Publication of WO2001040536A1 publication Critical patent/WO2001040536A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/731Sputter coating

Definitions

  • the present invention relates to a polycrystalline thin film having a pyrochlore-type crystal structure with a well-oriented crystal orientation, a method for producing the same, and an oxide superconducting layer formed on a polycrystalline thin film having a pyrochlore-type crystal structure with a well-oriented crystal orientation.
  • the present invention relates to an oxide superconductor having excellent superconductivity and a method for producing the same. Background art
  • Oxide superconductors discovered in recent years are excellent superconductors that exhibit a critical temperature exceeding the temperature of liquid nitrogen, but at present, this type of oxide superconductor is being used as a practical superconductor. There are various problems to be solved. One of the problems is that the critical current density of oxide superconductors is low.
  • an oxide superconductor having a good crystal orientation is formed on the substrate, and moreover, It is necessary to orient the a-axis or b-axis of the oxide superconductor crystal in the direction in which electricity is to flow, and to orient the c-axis of the oxide superconductor in other directions.
  • oxides than on the intermediate layer have been performed.
  • the oxide superconducting layer formed on this type of intermediate layer by a sputtering device is an oxide superconducting layer formed on a single-crystal substrate made of these materials (for example, a critical current density of 100,000 A). / cm 2 ) which is much lower than the critical current density (for example, about 100 to 100 OA / cm 2 )
  • the critical current density for example, about 100 to 100 OA / cm 2
  • Figure 16 shows an oxide superconducting material in which an intermediate layer 2 is formed on a polycrystalline substrate 1 such as a metal tape by a sputtering device, and an oxide superconducting layer 3 is formed on the intermediate layer 2 by a sputtering device.
  • 3 shows a cross-sectional structure of a conductor.
  • the oxide superconducting layer 3 is in a polycrystalline state, and a large number of crystal grains 4 are in a disordered state. Looking at each of these crystal grains 4 individually, the c-axis of the crystal of each crystal grain 4 is oriented somewhat perpendicular to the substrate surface, but the a-axis and b-axis It is considered suitable.
  • the reason why the oxide superconductor is in a polycrystalline state in which the a-axis and b-axis are not oriented is because the intermediate layer 2 formed thereunder is in a polycrystalline state in which the a-axis and the b-axis are not oriented. This is probably because when the oxide superconducting layer 3 is formed, the oxide superconducting layer 3 grows to match the crystal of the intermediate layer 2.
  • the present inventors previously formed an intermediate layer of YSZ (yttrium-stabilized zirconia) having improved a-axis and b-axis orientation on a polycrystalline base material by using a special method. It has been found that if an oxide superconducting layer is formed on the intermediate layer, an oxide superconducting conductor exhibiting a good critical current density can be manufactured.
  • No. 4 Japanese Patent Application No. 8-2 1 4 8 06, Japanese Patent Application No. 8-2 7 2 6 06, Japanese Patent Application No. 8-2 72 6 07, etc. Has filed a patent application.
  • the technology according to these patent applications is based on the fact that when a film is formed on a polycrystalline base material using a YSZ target, the film is inclined in a direction 50 to 6 with respect to the normal to the film formation surface of the polycrystalline base material.
  • the ion beam assist method which simultaneously irradiates an ion beam such as Ar + at an incidence angle of 0 degrees, YSZ crystals with poor crystal orientation are selectively removed, and YSZ crystals with good crystal orientation are obtained.
  • this technology was able to form an intermediate layer of YSZ with excellent orientation.
  • the a-axis and the b-axis are well oriented.
  • the oxide superconductor formed on this polycrystalline thin film exhibited a good critical current density.
  • FIG. 17 shows a cross-sectional structure of an example of an oxide superconductor recently used by the present inventors.
  • the oxide superconducting conductor D of this example is formed by forming an orientation control intermediate layer 6 of YSZ or MgO on a metal tape base material 5 using the ion beam assist method described above, and then forming Y 20. It has a four-layer structure in which a reaction prevention intermediate layer 7 of No. 3 is formed and an oxide superconducting layer 8 is formed thereon.
  • the YSZ crystal constituting the orientation control intermediate layer 6 has a cubic crystal structure
  • the oxide superconducting layer having a composition of ⁇ , ⁇ a 2 Cu 3 ⁇ 7 - x is a perovskite type.
  • Each of them is a kind of face-centered cubic structure, and has similar crystal lattices, but the difference in lattice size between both crystal lattices is about 5%.
  • nearest interatomic distance 3.63A (0. 363 nm) of the atoms located in the central portion of the surface of the nuclear and cubic lattice located at a corner of the cubic lattice of YS Z, Y 2 0 3 similar distance between nearest atoms is 3.75 a (0.
  • YiB a 2 Cu 3 0 7 - x becomes the same nearest interatomic distance of the oxide superconducting layer of composition 3.81 a (0. 38 in m) in and, Y 2 ⁇ 3 YSZ and Upsilon, beta a 2 Cu 3 ⁇ 7 - exhibits a value between in the chi, also it is advantageous to fill the difference in size of the grid, by Ino near also the composition It is considered to be advantageous as a reaction prevention layer.
  • the four-layer structure shown in FIG. 17 has a problem that the number of necessary layers is large and the number of manufacturing steps is increased.
  • the present inventors conducted research on a material having a crystal structure with good orientation directly on the base material 5 of the metal tape, and having a closest atomic spacing closer to the oxide superconductor than YSYS. As a result, the present invention has been achieved.
  • the present invention has been made to solve the above-mentioned problems, and forms a polycrystalline layer with good orientation on a substrate by applying the ion beam assist method provided by the present inventors.
  • the polycrystalline thin film of the present invention has a composition of either AZrAZ or AHf ⁇ formed on the surface on which the polycrystalline base material is to be formed.
  • A is one rare earth element selected from Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La
  • the relative ratio of the rare earth element to Zr or Hf constituting the polycrystalline thin film of the composite oxide having a pyrochlore type crystal structure represented by either the composition of AZrO or AHf0 is 1: 1. You may.
  • the relative ratio of the rare earth element and Zr or Hf constituting a polycrystalline thin film of a composite oxide having a pi-croe type crystal structure mainly represented by either AZr ⁇ or AHf0 is 0.1. : 0.9 to 0.9: 0.1 and may be cubic.
  • the crystal structure does not always have to be a pyrochlore type, but may have a very similar structure called a defective fluorite type or a rare-earth C type. Even in such a case, it is effective if a cubic crystal is maintained. is there.
  • the polycrystalline substrate composed of a heat-resistant metal tape, such as N i alloys the polycrystalline thin film can be composed of Sm 2 Z r 2 ⁇ 7 or Gd 2 Z r 2 0 7.
  • a grain boundary tilt angle formed by the same crystal axis of each crystal grain of the polycrystalline thin film along a plane parallel to a film formation surface of the polycrystalline base material is set to 20 degrees or less.
  • the method for producing a polycrystalline thin film according to the present invention may have a film forming surface of a polycrystalline substrate in order to solve the above problems. Any composition of AZr0 or AHf0 formed on the above (where A is Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce And one type of rare earth element selected from the group consisting of La and a complex oxide crystal grain having a pi-croh-type crystal structure represented by).
  • a polycrystalline thin film having the same crystal axis of the crystal grains along a parallel plane and having a grain boundary tilt angle of 30 degrees or less
  • the polycrystalline base material is heated to a temperature of 300 ° C. or less, and the ion source is heated.
  • an ion beam to be generated an Ar + ion beam, a Kr + ion beam, a Xe-ten ion beam, or a mixed ion beam thereof is used, and the ion beam energy of the ion beam is 150 eV or more and 300 eV or less.
  • the constituent particles are deposited on the substrate while irradiating the beam at an incident angle of 50 degrees or more and 60 degrees or less with respect to the normal to the film formation surface of the substrate. .
  • the polycrystalline base material is heated to 90 ° C. or more. It is preferable to heat to a temperature of 300 ° C or less, more preferably to a temperature of 150 ° C to 250 ° C, and more preferably to a temperature of 200 ° C. .
  • the ion beam generated from an ion source is It is preferable to adjust the ion beam energy to a range of not less than 175 eV and not more than 225 eV, and more preferably, to not more than 200 eV.
  • the constituent particles when depositing constituent particles generated from an overnight get of a constituent element of the polycrystalline thin film on a polycrystalline base, Preferably, the constituent particles are deposited on the substrate while irradiating at an incident angle of 55 degrees or more and 60 degrees or less with respect to the normal line of the surface on which the film is to be formed, and more preferably the ion beam is applied to the substrate.
  • the constituent particles are preferably deposited on the substrate while irradiating the film at an incident angle of 55 degrees with respect to the normal to the surface on which the film is to be formed.
  • the method for producing a polycrystalline thin film having the above-mentioned structure when depositing constituent particles generated from the target of the constituent element of the polycrystalline thin film on the polycrystalline base material, Heat to a temperature of ° C and use an Ar + ion beam, a K r + ion beam, a Xe + ion beam, or a mixed ion beam of these as the ion beam generated from the ion source.
  • the ion beam energy of the ion beam is adjusted to 200 eV, and the ion beam is irradiated at an incident angle of 55 degrees with respect to the normal to the surface on which the film is formed on the substrate. More preferably, it is deposited on the material.
  • the oxide superconducting conductor of the present invention includes a polycrystalline base material, and AZr ⁇ or AHf ⁇ formed on the surface of the polycrystalline base material on which a film is to be formed.
  • Any composition (where A is Y, Yb, Tm, Er, Ho, Indicates one kind of rare earth element selected from Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La.
  • the grain boundary tilt angle formed by the same crystallographic axis of the crystal grains along the plane parallel to the film-forming surface of the polycrystalline base material which is composed of crystal grains of a composite oxide having a pyrochlore type crystal structure represented by It is characterized by comprising a polycrystalline thin film having a temperature of 30 degrees or less, and an oxide ultra-thin layer formed on the polycrystalline thin film.
  • the oxide than conductive thin layer AiBazCus 0 7 - x, or the composition formula A 2 Ba 4 Cu 8 ⁇ x
  • a in the composition formula is, Y, One kind of rare earth element selected from Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La.
  • a cubic superconductor of another composition may be applied.
  • a heat-resistant metal tape can be used as the polycrystalline base material.
  • the oxide superconducting thin layer has a grain boundary inclination angle of 30 formed by the same crystal axis of the crystal grains along a plane parallel to a film formation surface of the polycrystalline substrate.
  • the degree may be less than the degree.
  • the method for producing an oxide superconducting conductor of the present invention includes: a polycrystalline base; and either AZrO or AHfO formed on a film-forming surface of the polycrystalline base.
  • a particle comprising a composite oxide crystal particle having a pyrochlore-type crystal structure represented by the following, and having the same crystal axis of the crystal particle along a plane parallel to a film-forming surface of the polycrystalline base material.
  • a method for manufacturing an oxide superconducting conductor comprising: a polycrystalline thin film having a field inclination angle of 30 degrees or less; and an oxide superconducting thin layer formed on the polycrystalline thin film, wherein the polycrystalline thin film is
  • the polycrystalline base material The temperature was heated below 300 ° C, as the ion beam I on the source generates, Ar + ion beam, using a Kr + of I O Nbimu, Xe + ion beam, or of mixed ion beam, the ion beam of the ion Beam energy between 150 eV and 300 eV
  • the constituent particles are deposited on the base material while irradiating the ion beam at an incident angle of 50 ° or more and 60 ° or less with respect to the normal to the film-forming surface of the base material, and polycrystalline.
  • the pyrochlore-type polycrystalline film formed on a polycrystalline base material is advantageous in various points over a conventional YSZ polycrystalline thin film when an oxide superconducting layer is provided thereon. Conceivable.
  • the lattice constant of the Z r0 2 consisting mainly in a crystal of YSZ is 5.14A (0. 5 14nm), atoms and the surface you located in the center of the face in the face-centered cubic lattice of the Z r 0 2 If the interval of the atoms located at the corners (nearest interatomic distance) is assumed to be 3.63A (0. 363 nm), S m 2 Z r 2 0 7 lattice constant of crystals of 10.5 9 a (1. 059 nm) at and, nearest interatomic distances 3.74 a (0. 374 nm), and the can nearest interatomic distance of the oxide superconductor of these relative Y!
  • the Sm 2 Z gamma 2 ⁇ 7 is a crystal structure of pyrochlore-type, as other crystal lattice for approximating the crystal structure of pyrochlore-type, Gd 2 Zr 2 0 7 (nearest interatomic distance 3.72 A ( 0. 372 ⁇ m)), L a 2 Z r 2 O 7 ( nearest interatomic distance 3.81 A (0. 381 nm)) , C e 2 Z r 2 0 7 ( nearest interatomic distance 3.78 A (0 . 378 nm)), P r 2 Z r 2 0 7 ( nearest interatomic distance 3.78A (0. 378 nm)), Gd 2 Hf 2 Ov ( recently SeHHara intermolecular distance 3.72A (0.
  • a compound having a pyrochlore type crystal structure represented by any one of the composition formulas can be applied.
  • the relative ratio between the rare earth element and Zr or Hf is not limited to 1: 1 and may be any relative ratio in the range of 0.1: 0.9 to 0.9: 0.1.
  • the crystal structure does not always have to be a pyrochlore type, but may have a very similar structure called a defective fluorite type or a rare earth C type, but in this case, it is effective if the cubic crystal is maintained. .
  • a polycrystalline thin film composed of pyrochlore-type crystal grains such as AZr0 and AHf0 having an excellent crystal orientation with a grain boundary tilt angle of 30 ° or less was formed on a polycrystalline base material. If it is a pyrochlore-type polycrystalline thin film such as SmZr0 having excellent crystal orientation, it is suitable as an underlayer of various thin films formed thereon. If it is a superconducting layer, excellent superconducting characteristics can be obtained. If the thin film to be formed is an optical thin film, it has excellent optical characteristics. If the thin film to be formed is a magnetic thin film, it has excellent magnetic characteristics. If the thin film is a wiring film, a thin film having few wiring resistance and defects can be obtained.
  • Another pyrochlore type composite oxide used for the polycrystalline thin film described above Gd 2 Z r 2 0 Ma, L a 2 Z r 2 O 7S C e 2 Z r 2 0 7, P r 2 Z r 2 0? , Gd 2 H f 2 O 7 , Sm 2 H f 2 ⁇ 7, L a 2 H f 2 0 7 composite oxide represented by any of the composition formula, or, Y 2 Z r 2 ⁇ , Yb 2 Z r 2 ⁇ 7 , ⁇ 2 Z r 2 OTS E r 2 Z r 2 O 7, H o 2 Z r 2 O 7 , Dy 2 Z r 2 0 ?, EU 2 Z r 2 O 7, N d 2 Z r 2 0 ?, Y2 Z r 2 O 7, Y 2 Hf 2 ⁇ 7, Yb 2 Hf 2 0 7 , Tm 2 H f 2 ⁇ 7, E r 2 H f 2 O 7, H o 2 H f 2 O 7
  • a heat-resistant metal tape of Ni alloy is used as the polycrystalline base material used in the present invention.
  • a metal tape provided with a polycrystalline thin film composed of the above-mentioned pi-mouthed crystal grains is used as the polycrystalline base material used in the present invention.
  • the composition of either AZrO or AHf ⁇ Simultaneously with ion beam irradiation when depositing target particles of the pyrochlore-type composite oxide Conditions are 300 ° C or less, ion beam energy is 150 to 300 eV, and the incident angle of the ion beam is 50 to 60 degrees with respect to the normal to the surface on which the film is to be formed. It is possible to obtain a pyrochlore-type composite oxide having a polycrystalline thin film having an excellent grain orientation and an excellent crystal orientation and having an excellent grain boundary tilt angle.
  • any one of AZr ⁇ or AHf0 having excellent crystal orientation as described above (where A is Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La are shown.
  • A is Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce, and La.
  • FIG. 1 is a perspective view showing a cross section of an example of a polycrystalline thin film of a pyrochlore-type composite oxide formed on a substrate by the method of the present invention.
  • FIG. 2 is an enlarged plan view showing crystal grains of the polycrystalline thin film shown in FIG. 1, their crystal axis directions, and grain boundary tilt angles.
  • Figure 3 is a view to conceptual diagram of the crystal lattice of the polycrystalline thin film of pyrochlore type Sm 2 Z r 2 0 7 a composition.
  • FIG. 4 is a configuration diagram showing an example of an apparatus for producing a polycrystalline thin film according to the present invention.
  • FIG. 5A is a configuration diagram showing an example of the ion source of the apparatus shown in FIG.
  • FIG. 5B is an explanatory diagram of the ion beam incident angle.
  • FIG. 6 is a configuration diagram showing an oxide superconducting layer formed on the polycrystalline thin film shown in FIG.
  • FIG. 7 is an enlarged plan view showing crystal grains of the oxide superconducting layer shown in FIG. 6, the crystal axis direction thereof, and the grain boundary tilt angle.
  • FIG. 8 is a configuration diagram showing an example of an apparatus for forming an oxide superconducting layer on the polycrystalline thin film shown in FIG.
  • FIG. 10 a polycrystalline thin film of the composition of Sm 2 Z r 2 0 7 obtained in Example a pole figure of a polycrystalline thin film of Sm 2 Z gamma 2 ⁇ 7 a composition prepared in Example
  • FIG. 6 is a diagram showing the relationship between the incident angle of an ion beam and the crystal orientation at the time of manufacturing the semiconductor device.
  • Figure 11 is a diagram showing the relationship between the substrate temperature and the full width at half maximum in the polycrystalline thin film of Sm 2 Z r 2 0 7 a composition prepared in Example.
  • Figure 12 is a diagram showing the relationship between I O emissions beam energy and the full width at half maximum in the polycrystalline thin film of Sm 2 Z r 2 ⁇ 7 a composition prepared in Example.
  • Figure 13 is a diagram showing a comparison of the full width at half maximum of the polycrystalline thin film of YS Z produced as a comparative example and the full width at half maximum of the polycrystalline thin film of the resulting Sm 2 Z r 2 0 7 a composition in Example 14, YSZ polycrystalline thin film and H f 0 2 polycrystalline thin film and C e ⁇ 2 polycrystalline thin film and Y 2 0 3 polycrystalline thin film and Sm 2 Z ⁇ 2 0? polycrystalline thin film and Gd 2 Z 1 ⁇ ⁇ 7 Polycrystalline thin film?
  • FIG. 4 is a diagram showing the dependence of the value of Ar + ion beam energy on the value of 1 ⁇ 111.
  • Figure 15 is a graph showing by comparison the deposition rate of the G d 2 Z r 2 ⁇ 7 polycrystalline thin film and YSZ polycrystalline thin film.
  • FIG. 16 is a configuration diagram showing a polycrystalline thin film manufactured by a conventional apparatus.
  • FIG. 17 is a cross-sectional view showing an example of a conventional oxide superconductor. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an embodiment in which the polycrystalline thin film of the present invention is formed on a substrate.
  • A is a tape-shaped polycrystalline substrate, and B is formed on the upper surface of the polycrystalline substrate A.
  • 3 shows a polycrystalline thin film.
  • the polycrystalline substrate A for example, various shapes such as a plate, a wire, and a tape can be used, and the polycrystalline substrate A is made of N, such as silver, platinum, stainless steel, copper, and hastelloy. It is made of a metal material such as an i-alloy or a heat-resistant material such as various glasses or various ceramics.
  • the crystal grains 20 of the S m 2 Z r 2 0 7 fine crystal aggregate having a pyrochlore-type cubic crystal structure represented by the composition formula is a number, mutual
  • the c-axis of the crystal axis of each crystal grain 20 is oriented at right angles to the upper surface (surface on which the film is formed) of the base material A, and the crystal axis of each crystal grain 20 is formed.
  • the a-axes and b-axes are oriented in the same direction, facing each other in the same direction.
  • the c-axis of each crystal grain 20 is oriented at right angles to the (upper surface) deposition surface of the polycrystalline base material A.
  • the a-axis (or b-axis) of each crystal grain 20 is joined and integrated by setting the angle between them (the grain boundary tilt angle K shown in Fig. 2) within 30 degrees, for example, within the range of 15 to 25 degrees. ing.
  • the crystal lattice of the above-mentioned pi-mouthed chloride complex oxide is derived from a cubic C a F 2 structure, and has eight unit cells having a face-centered cubic structure as shown in FIG.
  • eight oxygen atoms penetrating into the lattice gap formed by the atoms of Sm located at the apex of the unit cell and the atoms of Zr located at the face center of the unit cell Only one of the ⁇ (existing at the position indicated by the dotted line in Fig. 3) is removed to generate an octant, and an I-type octant and a type-II octant are generated according to the position where the oxygen atom is removed.
  • the type I octant and type II octant are regularly arranged to form a pyrochlore crystal lattice.
  • the unit cell is regarded as a unit cell in the field of X-ray analysis when the eight unit cells are overlapped, and the lattice constant of the unit cell is 10.59, but the width of the unit cell is 5.3 A ( 0.53 nm), and the closest interatomic distance is 3.74 A (0.374 nm).
  • the lattice constant 1 0.6 9 Gd 2 Hf 2 O 7 (between nearest interatomic distance 3.72 A (0. 372 nm), the lattice constant 5.2 9), Sm 2 Hf 2 0 7 ( nearest interatomic distance 3 .74 A (0. 374 nm) , the lattice constant 5.2 9) , L a 2 Hf 2 0 7 ( nearest interatomic distance 3.8 1 a (0. 38 1 nm ), the lattice constant 1 0.77) using either a not good.
  • Sm 2 H f 2 0 7 is 5.2 9
  • regularity in the presence of oxygen vacancies is lost Te sheet Nme but birds are believed to have changed
  • the Gd 2 Hf 2 0 7 and Sm 2 Hf 2 0 7 of may be subjected for the purpose of the present invention as viewed from the value of the distance between nearest atoms of course It is.
  • Y 2 Zr 2 ⁇ 7 nearest interatomic distance 3.67 A (0.367 nm), lattice constant The number 5.19
  • Yb 2 Zr 2 0 7 nearest interatomic distance 3.66 A (0. 366 nm), the lattice constant 5.17
  • Tm 2 Z r 2 O 7 nearest interatomic distance 3.66 A (0. 366 ⁇ m)
  • the lattice constant 5.17 E r 2 Z r 2 0 7 ( nearest interatomic distance 3.67 ⁇ (0. 3 67 nm), the lattice constant 5.19)
  • Ho 2 Zr 2 0 7 nearest interatomic distance 3.68 A
  • the lattice constant of the oxide superconductor is 3.81 and the closest atomic distance is 3.81 A (0.381 nm), and it is particularly close to the closest atomic distance of 3.81 A (0.381 nm).
  • the relative ratio of Zr or Hf is not limited to 1: 1. Any relative ratio within the range of 0.1: 0.9 to 0.9: 0.1 can be employed.
  • the crystal structure does not always have to be a pyrochlore type, but may have a very similar structure called a defective fluorite type or a rare earth C type, but in this case, it is effective if the cubic crystal is maintained. .
  • FIG. 4 shows an example of an apparatus for producing the polycrystalline thin film B.
  • the apparatus in this example has a configuration in which an ion source for ion beam assist is provided in a sputter device.
  • the apparatus of this example includes a base material holder 23 that supports the tape-shaped polycrystalline base material A and can heat it to a desired temperature, and a tape-shaped polycrystalline base material A on the base material holder 23.
  • a plate-shaped evening beam 36 which is arranged at a predetermined distance from each other, and a spark beam irradiating device 38, which is arranged diagonally above the evening gate 36 and faces the lower surface of the evening gate 36.
  • the target 36 and the ion source 39 which is opposed to the side of the substrate holder 23 at a predetermined interval and is spaced apart from the target 36, are placed in a film-forming processing container 40 capable of evacuating. It is a schematic configuration accommodated.
  • the substrate holder 23 is provided with a heating heater inside, so that the tape-shaped polycrystalline substrate A sent out onto the substrate holder 23 can be heated to a desired temperature as required. ing.
  • the substrate holder 23 is rotatably mounted on the support 23a by pins or the like. It is attached, and the inclination angle can be adjusted. Such a substrate holder 23 is disposed in an optimum irradiation area of the ion beam irradiated from the ion source 39 in the film forming processing container 40.
  • a tape-shaped polycrystalline base material A is continuously fed from the base material delivery bobbin 24 onto the base material holder 23, and a polycrystalline thin film is formed in the optimum irradiation region.
  • a polycrystalline thin film is formed in the optimum irradiation region.
  • the evening get 36 is for forming a target polycrystalline thin film, and has the same composition or a similar composition as the target polycrystalline thin film.
  • the evening specifically as an rodents DOO 36, Sm 2 Z r 2 0 7, Gd 2 Zr 2 ⁇ 7, La 2 Z r 2 ⁇ 7, Ce 2 Z r 2 ⁇ 7, P r 2 Z r 2 O 7 , G d 2H f 2 O 7 , Sm 2 Hf 2 0 7, L a 2 H f 2O 7 either the target of the composite oxide represented by the composition formula or, of these individual three constituent elements
  • a target having a composition containing a large amount of elements which are easily scattered when it is formed into a film is used.
  • Such a target 36 is attached to a target support 36a, which is held by a pin or the like in a rotating manner, so that the inclination angle can be adjusted.
  • composition pyrochlore type complex oxide represented by the formula Xi may be employed over g e t and.
  • the relative ratio between the rare earth element and Zr or Hf is not limited to 1: 1 but may be any relative ratio in the range of 0.1: 0.9 to 0.9: 0.1.
  • Targets can be adopted as appropriate.
  • the crystal structure is not necessarily a pyrochlore type, but a force that may take a very similar structure called a defective fluorite type or a rare earth C type; even in this case, it is effective if a cubic crystal is maintained. is there.
  • the sputter beam irradiation device (spa means) 38 In this way, the constituent particles of the target 36 can be beaten toward the polycrystalline base material A by irradiating an ion beam.
  • the ion source 39 has substantially the same configuration as the sputter beam irradiation device 38, is provided with a pipe for introducing gas into the ionization chamber, and is provided with a grid for applying an extraction voltage. I have.
  • This device ionizes some of the atoms or molecules of the introduced gas, and irradiates the ionized particles as an ion beam under the control of an electric field generated by the grid.
  • There are various methods for ionizing particles such as a DC discharge method, a high-frequency excitation method, and a filament method.
  • the filament type is a method in which a tungsten filament is energized and heated to generate thermoelectrons, which are then collided with evaporated particles in a high vacuum to be ionized.
  • an ion source 39 having the internal structure shown in FIG. 5A is used.
  • the ion source 39 is provided with a grid 46, a filament 47, and an inlet tube 48 for Ar gas, Kr gas, Xe gas or the like inside a cylindrical ion chamber 45.
  • the ion beam can be emitted from the beam port 49 at the tip of the ion chamber 45 almost parallel to the beam.
  • the ion source 39 has a central axis S with respect to the upper surface (deposition surface) of the polycrystalline base material A at an incident angle 6> (deposition of the polycrystalline base material A). They are inclined and opposed by the perpendicular (normal) H of the surface (upper surface) and the center line S.
  • the incident angle 0 is preferably in the range of 50 to 60 degrees, more preferably in the range of 55 to 60 degrees, and most preferably about 55 degrees. Therefore, the ion source 39 is arranged so as to be able to irradiate the ion beam at a certain incident angle 6> with respect to the normal H of the film-forming surface of the polycrystalline base material A.
  • the angle of incidence of such an ion beam relates to the technology for which the present inventors have previously applied for a patent.
  • the ion beam applied to the polycrystalline base material A by the ion source 39 is an Ar gas ion beam, a Kr gas ion beam, a Xe gas ion beam, or these Ar gas and K A mixed ion beam of two or more combinations of r gas and Xe gas, for example, a mixed ion beam of Ar gas and Kr gas can be used.
  • the inside of the container 40 is set to a low pressure state such as a vacuum.
  • a cryopump 52 and an atmospheric gas supply source such as a gas cylinder are connected to each other, and the inside of the film forming vessel 40 is kept in a low pressure state such as a vacuum, and Argon gas or other inert gas atmosphere can be used.
  • the film formation processing container 40 includes a current density measuring device for measuring the current density of the ion beam in the container 40, and a pressure gauge 5 for measuring the pressure in the container 40. 5 is installed.
  • the tilt angle can be adjusted by rotatably attaching the substrate holder 23 to the support 23 a with a pin or the like.
  • An angle adjusting mechanism may be attached to the supporting portion of the ion source to adjust the inclination angle of the ion source 39 so that the incident angle of the ion beam can be adjusted.
  • the angle adjusting mechanism is not limited to this example. Of course, various configurations can be adopted.
  • Next the case of forming a polycrystalline thin film B of the pi port Kuroa type of the aforementioned compositions, such as S m 2 Z r 2 0 7 will be described on the polycrystalline substrate A using an apparatus of the configuration.
  • a target 36 made of the above-described complex oxide is used, and a film forming processing vessel 40 containing the polycrystalline base material A is used.
  • the inside of the chamber is evacuated to a reduced-pressure atmosphere, and the polycrystalline base material A is sent out from the base material delivery bobbin 24 to the base material holder 23 at a predetermined speed, and further irradiated with the ion source 39 and the spark beam. Activate device 38.
  • the constituent particles of the target 36 are beaten out and fly onto the polycrystalline base material A.
  • the constituent particles struck out from the evening target 36 are deposited, and simultaneously from the ion source 39, for example, A r + ion of the ion beam, K r + ions of the ion beam, an ion beam of X e + ions, Or, by irradiating a mixed ion beam of K r + and X e + ions forming a polycrystalline thin film having a desired thickness
  • the tape-shaped polycrystalline substrate A after film formation is wound around a substrate winding bobbin 25.
  • the incident angle 0 when irradiating the ion beam is preferably in a range of 50 degrees or more and 60 degrees or less, and most preferably 55 degrees.
  • the c-axis of the above-mentioned polycrystalline thin film of the composite oxide will not be oriented.
  • 0 is set to 30 degrees, the above-mentioned polycrystalline thin film of the composite oxide does not even have c-axis orientation. If the ion beam is irradiated at an incident angle in the preferable range as described above, the c-axis of the crystal of the polycrystalline thin film of the composite oxide will be raised.
  • the a-axis and the b-axis of the crystal axes of the polycrystalline thin film of the composite oxide formed on the polycrystalline base material A are in the same direction as each other.
  • In-plane orientation can be performed along a plane parallel to the upper surface (deposition surface) of the polycrystalline base material A.
  • the temperature of the polycrystalline base material A and the ion beam energy of the assist ion beam are set within a specified range in addition to the irradiation angle of the assist ion beam. It is preferable to set.
  • the temperature of the polycrystalline base material A is preferably formed while heating to an appropriate temperature of 300 ° C. or less, and the grain boundary tilt angle is set to 25 ° or less based on the results of the examples described later.
  • the temperature is preferably 90 ° C or more and 300 ° C or less, and even within this range, 150 ° C or more and 250 ° C to ensure the grain boundary inclination angle of 20 ° or less.
  • the following range is more preferable, and 200 ° C. is most preferable.
  • the temperature of 90 ° C is the temperature at which the substrate is naturally heated by the ion beam irradiating the substrate and the residual heat of the device, even if the substrate is not specially heated, at room temperature. is there.
  • the ion beam energy is preferably 150 eV or more and 300 eV or less in order to make the grain boundary inclination angle 30 degrees or less, but it is 17 7 in order to make the grain boundary inclination angle 20 degrees or less.
  • the range is preferably 5 eV or more and 225 eV or less, more preferably 200 eV.
  • a polycrystalline thin film B such as a pi-crotch type can be formed with good orientation. it can.
  • FIG. 1 shows a S m 2 Z r 2 0 7 polycrystalline substrate A polycrystalline thin film B of the composite oxide is deposited in the above, such as in the manner described.
  • FIG. 1 shows a state in which only one crystal grain 20 is formed, the crystal grain 20 may of course have a multilayer structure. It is. Note that the present inventors assume the following as a factor for adjusting the crystal orientation of the polycrystalline thin film B.
  • Unit cell of the crystal of the polycrystalline thin film B of S m 2 Z r 2 0 7 is a pyrochlore structure of face-centered cubic system of isometric system as shown in FIG. 5 B, in the crystal lattice,
  • the normal direction of the substrate is the ⁇ 100> axis
  • the other ⁇ 110> axes are the directions shown in FIG. 5B.
  • the diagonal direction of the unit cell with respect to the origin ⁇ in Fig. 5B, that is, along the ⁇ 111> axis Incident angle is 54.7 degrees.
  • exhibiting a good crystal orientation in the range of the incident angle of 50 to 60 degrees means that the incident angle of the ion beam coincides with or is about 54.7 degrees.
  • ion channeling occurs most effectively, and in the crystals deposited on the polycrystalline base material A, only atoms that are stable on the upper surface of the polycrystalline base material A due to the arrangement relationship corresponding to the angle described above. It is easy to remain selectively, and other unstable atomic arrangements are sputtered and removed by the ion beam sputtering effect.As a result, only crystals with well-oriented atoms are selectively selected. It is presumed that they will remain and accumulate in the area.
  • FIG. 6 and FIG. 7 show one embodiment of the oxide superconductor according to the present invention.
  • the oxide superconductor 22 of the present embodiment includes a tape-shaped polycrystalline base material A, It comprises a polycrystalline thin film B formed on the upper surface of the polycrystalline base material A, and an oxide superconducting layer C formed on the upper surface of the polycrystalline thin film B.
  • the polycrystalline base material A and the polycrystalline thin film B are composed of the same material as the material described in the previous example, and the crystal grains 20 of the polycrystalline thin film B have grain boundaries as shown in FIG. 1 and FIG.
  • the crystal is oriented so as to have an inclination of 25 degrees or less, preferably 17 to 20 degrees.
  • the oxide superconducting layer C which has been coated on the upper surface of the Sm 2 Z r 2 0?
  • the a-axis and the b-axis of the crystal grains 21 are oriented in a plane parallel to the upper surface of the base material in the same manner as in the case of the polycrystalline thin film B described above.
  • the grain boundary inclination angle K formed by each other, is set within 30 degrees.
  • the oxide superconductor constituting this oxide superconducting layer is Y! Baz Y 2 B a 4 CueOx, Y 3 Ba 3 Cu 6 ⁇ x , or (B i, P b) 2 C a 2 S r 2 Cu 3 Ox, (B i, P b) 2 C a 2 S r 3 Cu 4 ⁇ x , or T l 2 B a 2 C a 2 Cu 3 O x , T 1 i B a 2 C a 2 CuaOx, T 1, B a 2 C a 3 C u 4 ⁇ x
  • it is an oxide superconductor having a high critical temperature typified by such a composition as described above it is a matter of course that other oxide-based superconductors in this example may be used.
  • the oxide superconducting layer C is formed, for example, on the polycrystalline thin film B by a film forming method such as sputtering and laser vapor deposition, and the oxide superconducting layer laminated on the polycrystalline thin film B is also used. Since sm 2 Z r 2 ⁇ deposited to match the orientation of the polycrystalline thin film B of the pyrochlore type composite oxide, such as 7, the oxide superconducting layer formed on the polycrystalline thin film B, the crystal grain excellent quantum binding in the field, because there is little deterioration of superconducting properties at the crystal grain boundary, easily passed, the electrolysis in the longitudinal direction of the polycrystalline substrate a, M gO and S r T0 3 single crystal substrate Sufficiently high critical current density is obtained, which is comparable to that of the oxide superconducting layer obtained by forming it on top.
  • a film forming method such as sputtering and laser vapor deposition
  • the material of the polycrystalline thin film beta preferably towards the pyrochlore type composite oxide such as Sm 2 Z r 2 0 7 than YSZ, provided an oxide superconducting layer on a polycrystalline thin film of for YS Zeta than things, towards the Sm 2 Z r 2 ⁇ 7 pyrochlore multi crystal thin film, such as those provided an oxide superconductor layer is excellent in crystal orientation, at elevated temperature (7 0 0 ⁇ 8 0 0 ° C ) It is resistant to heat treatment and exhibits an excellent critical current density equal to or better than that provided on a YSZ polycrystalline thin film, and has a stable orientation, which is advantageous for maintaining high characteristics during long-length synthesis.
  • heat treatment such as heat treatment Even after passing through, it is possible to obtain a superconducting conductor having a low critical current density and a high critical current. The reason is considered to be due to the following explanation.
  • pie port such as S m 2 Z ⁇ 2 ⁇ 7 having a nearest interatomic distance close to the oxide superconducting layer in terms of nearest interatomic distance than polycrystalline thin film of YSZ This is because a polycrystalline thin film of a chlor-type composite oxide is more advantageous in terms of crystal consistency, and an oxide superconducting layer having more excellent crystal orientation is easily formed.
  • the selection range of the ion beam energy during the film formation and the selection temperature range during the film formation can be broadly selected. A stable crystal orientation can be obtained even if the conditions vary somewhat in the film.
  • FIG. 8 shows an example of an apparatus for forming an oxide superconducting layer by a film forming method
  • FIG. 8 shows a laser vapor deposition apparatus.
  • the laser vapor deposition apparatus 60 of this example has a processing vessel 61, and a tape-shaped polycrystalline substrate ⁇ and a target 63 can be set in a vapor deposition processing chamber 62 inside the processing vessel 61. ing. That is, a base 64 is provided at the bottom of the vapor deposition processing chamber 62, and the polycrystalline base material A can be set on the upper surface of the base 64 in a horizontal state. An evening target 63 supported diagonally upward by a support holder 66 is provided in an inclined state, and the polycrystalline base material A is sent out from a drum-shaped tape feeding device 65 a to a base 64, and this is fed to a drum. It is configured such that it can be wound on a tape-shaped winding device 65a.
  • the processing container 61 is connected to a vacuum exhaust device 67 through an exhaust hole 67a so that the inside can be depressurized to a predetermined pressure.
  • the target 63 has a composition similar or similar to that of the oxide superconducting layer C to be formed, or a composite oxide sintered body containing many components that easily escape during film formation. It is made of a plate such as a superconductor.
  • the base 64 incorporates a heater, and heats the polycrystalline substrate A to a desired temperature. You can heat up.
  • a laser light emitting device 68 a first reflecting mirror 69, a condenser lens 70 and a second reflecting mirror 71 are provided on the side of the processing container 61, and the laser light emitting device 68
  • the laser beam can be focused and irradiated on the evening target 63 through a transparent window 72 attached to the side wall of the processing container 61.
  • any device such as a YAG laser or an excimer laser may be used as long as it can strike out constituent particles from the evening target 63.
  • a laser vapor deposition device 60 shown in FIG. 8 is used.
  • the polycrystalline base material A on which the polycrystalline thin film B is formed is placed on a base 64 of a laser vapor deposition device 60 shown in FIG. 8, and the pressure in the vapor deposition processing chamber 62 is reduced by a vacuum pump.
  • an oxygen gas may be introduced into the vapor deposition processing chamber 62 to make the vapor deposition processing chamber 62 an oxygen atmosphere.
  • the heating heater of the base 64 is operated to heat the polycrystalline base material A to a desired temperature.
  • the laser beam generated from the laser light emitting device 68 is focused and irradiated on the evening target 63 of the evaporation processing chamber 62.
  • the constituent particles of the target 63 are extracted or evaporated, and the particles are deposited on the polycrystalline thin film B.
  • S m 2 Z ⁇ 2 0 7 of polycrystalline thin film B are oriented in advance c-axis during the sedimentary structure particles, since the orientation in the a-axis and b-axis, is formed on the polycrystalline thin film B
  • the c-axis, a-axis, and b-axis of the crystal of the oxide superconducting layer C are also epitaxially grown and crystallized so as to match the polycrystalline thin film B.
  • nearest interatomic distance of the polycrystalline thin film B of S m 2 Z r 2 ⁇ 7 3 7 is 4 A, Y, B a 2 C u 3 0 7 -.
  • the oxide superconducting layer C formed on the polycrystalline thin film B is in a polycrystalline state, In each of the crystal grains of the oxide superconducting layer C, as shown in FIG. 6, the c-axis, through which electricity does not easily flow, is oriented in the thickness direction of the polycrystalline base material A, and the length of the polycrystalline base material A is elongated. The a-axis or b-axis are oriented in the direction. Therefore, the obtained oxide superconducting layer has excellent quantum coupling properties at the crystal grain boundaries and little deterioration of superconducting properties at the crystal grain boundaries, so that electricity can easily flow in the plane direction of the polycrystalline base material A, and the critical current density can be reduced. Excellent results are obtained. In order to further stabilize the crystal orientation and film quality of the superconducting layer C, it is preferable to perform a heat treatment of heating to 700 to 800 ° C for a necessary time and then cooling.
  • Figure 4 Using the apparatus for producing a polycrystalline thin film having the structure shown in, 399.9 x 1 by evacuating the internal deposition process container mouth Isseki Riponpu and cryopump of the manufacturing apparatus 0 - 4 P a (3.0 X 1 0 pressure was reduced to 4 Torr).
  • HASTELLOY C 276 tape having a width of 10 mm, a thickness of 0.5 mm, and a length of 100 cm and having a mirror-polished surface was used.
  • the target is used as the Sm 2 Z r 2 0 7 consisting manufactured composite oxide of the composition, sputtering evening voltage 1 000 V, sputtering evening current 100 mA, an incident angle of A r + ion beam generated from the ion source
  • the temperature was set to 55 degrees with respect to the normal to the film deposition surface of the substrate, the transport distance of the ion beam was set to 40 cm, the assist voltage of the ion source was set to 200 eV, and the temperature of the substrate tape was set.
  • the incident angle of the ion beam in the ion beam assist method was set to 50 degrees. If it is less than 60 degrees, it can be easily presumed that even if the incident angle is set to more than 60 degrees, an intermediate layer having good orientation cannot be obtained.
  • the full width at half maximum of the sample formed at 200 ° C was 17.1 ° C, which was the best. From the relationship shown in Fig. 11, the value of the full width at half maximum, in other words, in order to ensure the grain boundary inclination angle to 25 degrees or less, it is necessary to set the temperature to 100 degrees C or more and 300 degrees C or less, It is clear that the deposition temperature must be set at 150 ° C or higher and 250 ° C or lower to ensure that the grain boundary tilt angle is 20 ° or lower.
  • FIG. 12 shows the result of measuring the full width at half maximum of the polycrystalline thin film of Sm 2 Z r 2 0 7 for each ion beam energy. Other conditions are the same as those of the test described first.
  • the ion beam energy of 150 eV or more and 300 eV or less was selected to make the grain boundary tilt angle of the polycrystalline thin film of Sm 2 Z ⁇ 2 ⁇ 7 30 degrees or less. It has been found that the ion beam energy must be in the range of 175 eV or more and 225 eV or less to ensure that the tilt angle is 20 degrees or less.
  • FIG. 5 shows the ion beam energy dependence in the case of the comparison.
  • one than the grain boundary inclination angle of the polycrystalline thin film of it is YS Z of the grain boundary inclination angle of the polycrystalline thin film of Sm 2 Z r 2 0 7 which method produced using the present invention the ion A low value is also obtained for the beam energy. From the test results, towards the polycrystalline thin film of Sm 2 Z r 2 ⁇ even with variations in the ion beam energy during manufacture if it is shown that easy to manufacture. This means that high Sm 2 Z r 2 0 7 stability it is difficult to constraints conditions during manufacture of the polycrystalline thin film than the polycrystalline thin film of YS Z. Next, to form an oxide superconducting layer using the laser deposition apparatus shown in FIG.
  • a target composed of an oxide superconductor having a composition of YiBazCusO x was used as an evening target.
  • the pressure inside the evaporation chamber was reduced to 26.6 Pa (2 ⁇ 10 1 Torr), and laser evaporation was performed at a substrate temperature of 700 ° C.
  • a KrF excimer laser with a wavelength of 248 nm was used as a laser for evening evaporation.
  • heat treatment was performed at 400 ° C. for 60 minutes in an oxygen atmosphere.
  • the resulting oxide superconductor is 1.0 cm wide and 100 cm long. This oxide superconducting conductor was immersed in liquid nitrogen, and the critical current density was determined for the 10 mm wide and 1 Omm long central part by the four-terminal method.
  • the polycrystalline thin films of any composition have some degree of grain boundary tilt angle, they have excellent orientation in the polycrystalline thin films of any of the composite oxides. It turned out that the nature was obtained. Moreover, I also at 1 50 e V ⁇ 300 e ion beam energy between V in Sm 2 Z r 2 ⁇ 7 polycrystalline thin film and Gd 2 Z r 2 0 7 have shifted the polycrystalline thin film according to the present invention O It is understood that assisting is preferable, and the range of 150 to 250 eV is more preferable, and 200 eV is most preferable.
  • FIG. 4 is a diagram illustrating a relationship between a value and a film forming time. Other conditions are the same as the previous example.
  • is the full width at half maximum
  • A is the constant depending on the initial conditions.
  • the ability to form a film in such a short time is an advantageous condition when manufacturing a long oxide superconductor, and even when manufacturing a long oxide superconductor, the manufacturing time is reduced. It can be shortened, and has the effect of reducing manufacturing costs.
  • the full width at half maximum of the YSZ polycrystalline thin film shown in Fig. 15 converges to 13 to 15 ° by forming the film for 6 to 8 hours, and the YSZ polycrystalline thin film disclosed by The value is better than the orientation. This is due to the optimization of ion beam energy and the film formation temperature, and the improvement of the equipment, which allows longer sputter time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

明細 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法 技術分野
本発明は結晶方位の整ったパイロクロア型の結晶構造を有する多結晶薄膜およ びその製造方法と、 結晶方位の整ったパイロクロア型の結晶構造を有する多結晶 薄膜上に形成された酸化物超電導層を有し、 超電導特性に優れた酸化物超電導導 体およびその製造方法に関する。 背景技術
近年になって発見された酸化物超電導体は、 液体窒素温度を超える臨界温度を 示す優れた超電導体であるが、 現在、 この種の酸化物超電導体を実用的な超電導 体として使用するためには、 種々の解決するべき問題点が存在している。 その問 題点の 1つが、 酸化物超電導体の臨界電流密度が低いという問題である。
前記酸化物超電導体の臨界電流密度が低いという問題は、 酸化物超電導体の結 晶自体に電気的な異方性が存在することが大きな原因となっており、 特に酸化物 超電導体はその結晶軸の a軸方向と b軸方向には電気を流し易いが、 c軸方向に は電気を流しにくいことが知られている。 このような観点から酸化物超電導体を 基材上に形成してこれを超電導導体として使用するためには、 基材上に結晶配向 性の良好な状態の酸化物超電導体を形成し、 しかも、 電気を流そうとする方向に 酸化物超電導体の結晶の a軸あるいは b軸を配向させ、 その他の方向に酸化物超 電導体の c軸を配向させる必要がある。
そこで従来、 金属テープなどの基材上に、 スパッ夕装置を用いて M g Oや S r T i 0 3などの結晶配向性の良好な中間層を被覆し、 この中間層上に酸化物超電 導層を形成することが行なわれている。 ところがこの種の中間層上にスパッ夕装 置により形成した酸化物超電導層は、 これらの材料からなる単結晶基材上に形成 された酸化物超電導層 (例えば、 臨界電流密度数 1 0万 A/ c m2 ) よりもかなり 低い臨界電流密度 (例えば、 1 0 0 0〜 1 0 0 0 O A/ c m2程度) しか示さない という問題があった。 これは以下に説明する理由によるものと考えられる。
図 1 6は、 金属テープなどの多結晶体の基材 1上にスパッ夕装置により中間層 2を形成し、 この中間層 2上にスパッ夕装置により酸化物超電導層 3を形成した 酸化物超電導導体の断面構造を示すものである。 図 1 6に示す構造において、 酸 化物超電導層 3は多結晶状態であり、 多数の結晶粒 4が無秩序に結合した状態と なっている。 これらの結晶粒 4の 1つ 1つを個々に見ると各結晶粒 4の結晶の c 軸は基材表面に対してある程度垂直に配向しているものの、 a軸と b軸は無秩序 な方向を向いているものと考えられる。
このように酸化物超電導層の結晶粒毎に a軸と b軸の向きが無秩序になると、 結晶配向性の乱れた結晶粒界において超電導状態の量子的結合性が失なわれる結 果、 超電導特性、 特に臨界電流密度の低下を引き起こすものと思われる。
また、 前記酸化物超電導体が a軸および b軸配向していない多結晶状態となる のは、 その下に形成された中間層 2が a軸および b軸配向していない多結晶状態 であるために、 酸化物超電導層 3を成膜する場合に、 中間層 2の結晶に整合する ように酸化物超電導層 3が成長するためであると思われる。
そこで本発明者らは先に、 特殊な方法を用いて多結晶基材上に a軸と b軸の配 向性を良好にした Y S Z (イッ トリウム安定化ジルコニァ) の中間層を形成し、 この中間層上に酸化物超電導層を成膜するならば、 良好な臨界電流密度を発揮す る酸化物超電導導体を製造可能なことを見出し、 この技術に関して、 特願平 4 _ 2 9 3 4 6 4号明細書、 特願平 8— 2 1 4 8 0 6号明細書、 特願平 8— 2 7 2 6 0 6号明細書、 特願平 8— 2 7 2 6 0 7号明細書などにおいて特許出願を行って いる。
これらの特許出願に係る技術は、 Y S Zの夕ーゲッ トを用いて多結晶基材上に 成膜する際に、 多結晶基材の被成膜面の法線に対して斜め方向 5 0〜6 0度の入 射角度で A r +などのイオンビームを同時照射するィオンビームアシスト法を行う ことで結晶配向性の悪い Y S Zの結晶を選択的に除去し、 結晶配向性の良好な Y S Zの結晶を選択的に堆積させることができ、 これにより結果的に配向性の優れ た Y S Zの中間層を成膜することができる技術であった。
本願発明者らが先に特許出願した技術によれば、 a軸および b軸が良好に配向 した YS zの多結晶薄膜を得ることができ、 この多結晶薄膜上に形成した酸化物 超電導体は良好な臨界電流密度を発揮することを確認することができたので、 本 願発明者らは更に別の材料から、 より好ましい多結晶薄膜層を製造する技術の研 究に着手した。
ここで図 17は、 本発明者らが最近において使用している酸化物超電導導体の 一例の断面構造を示す。 この例の酸化物超電導導体 Dは、 金属テープの基材 5の 上に YSZあるいは MgOの配向制御中間層 6を先に説明したイオンビームァシ スト法を用いて成膜し、 次いで Y203の反応防止中間層 7を形成し、 その上に酸 化物超電導層 8を形成した 4層構造のものである。
このような 4層構造を採用したのは、 ¥1:6&2〇11307-3<なる組成の酸化物超 電導層を得るためには、 スパッ夕等の成膜法により目的の組成の酸化物超電導層 を成膜した後、 600〜800°Cに加熱する熱処理を行う必要があり、 この熱処 理時の加熱によって YS Zと Υ,Β a2Cu37 なる組成の酸化物超電導層との 間で元素の拡散反応が進行する場合があり、 超電導特性が劣化するおそれを有す るのでこの拡散反応を防止するためである。 ここで、 配向制御中間層 6を構成す る YS Zの結晶は立方晶系の結晶構造を有し、 Υ,Β a2Cu37-xなる組成の酸 化物超電導層はべロブスカイ ト型と称される結晶構造を有し、 いずれも面心立方 構造の 1種であり、 近似する結晶格子を有するが、 両結晶格子の間の格子の大き さには 5%程度の差異を有する。 例えば、 YS Zの立方格子の角部に位置する原 子と立方格子の面の中央部に位置する原子との最近接原子間距離は 3.63A (0 . 363 nm) 、 Y203の同様の最近接原子間距離は 3.75 A (0. 375 nm )、 YiB a2Cu307— xなる組成の酸化物超電導層の同様の最近接原子間距離は 3.81 A ( 0. 38 In m) であり、 Y23が YSZと Υ,Β a2Cu37- χの中 間の値を示すので、 格子の大きさの差異を埋めるためにも有利であり、 組成も近 いので反応防止層としては有利であると考えている。
ところが、 図 17に示すような 4層構造では、 必要な層の数が大きくなり、 製 造工程が増加する問題があった。
そこで本発明者らは、 金属テープの基材 5の上に直に配向性の良好な結晶構造 を有し、 YS Ζよりも酸化物超電導体に近い最近接原子間隔を有する物質の研究 に着手した結果として本発明に到達した。
ところで、 前記酸化物超電導体の応用分野以外において、 多結晶体の基材上に 各種の配向膜を形成する技術が利用されている。 例えば光学薄膜の分野、 光磁気 ディスクの分野、 配線基板の分野、 高周波導波路や高周波フィル夕、 空洞共振器 などの分野であるが、 いずれの技術においても基材上に膜質の安定した配向性の 良好な多結晶薄膜を形成することが課題となっている。 即ち、 多結晶薄膜の結晶 配向性が良好であるならば、 その上に形成される光学薄膜、 磁性薄膜、 配線用薄 膜などの質が向上するわけであり、 更に基材上に結晶配向性の良好な光学薄膜、 磁性薄膜、 配線用薄膜などを直接形成できるならば、 なお好ましい。 発明の開示
本発明は前記課題を解決するためになされたもので、 本発明者らが先に提供し ているイオンビームアシスト法を応用し、 基材上に配向性の良好な多結晶層を形 成するべく研究を重ねた結果、 完成されたもので、 基材の被成膜面上に結晶配向 性に優れ、 酸化物超電導体の最近接原子間隔に近い最近接原子間隔を有する複合 酸化物の多結晶薄膜を得ることを目的とする。
また、 このような結晶配向性の良好な多結晶薄膜を高速に成膜することができ る製造方法の提供、 並びに、 更に結晶配向性の良好な多結晶薄膜を製造する方法 の提供を目的の 1つとする。
また、 このような多結晶薄膜上に酸化物超電導層を形成することで臨界電流密 度の高い安定性に優れた酸化物超電導導体を得ることを目的の 1つとする。 本発明の多結晶薄膜は前記課題を解決するために、 多結晶基材の被成膜面上に 形成された A Z r〇、 あるいは A H f 〇のいずれかの組成 (ただし、 前記組成に おいて Aは、 Y、 Y b、 T m、 E r、 H o、 D y、 E u、 G d、 S m、 N d、 P r、 C e、 L aの中から選択される 1種の希土類元素を示す。 ) で示されるパイ ロクロア型の結晶構造を有する複合酸化物の多結晶薄膜で、 前記多結晶基材の被 成膜面と平行な面に沿う前記多結晶薄膜の各結晶粒の同一結晶軸が構成する粒界 傾角が、 3 0度以下にされてなることを特徴とする。 前記 AZ rO、 あるいは AHf 0のいずれかの組成で示されるパイロクロア型 の結晶構造を有する複合酸化物の多結晶薄膜を構成する前記希土類元素と Z r又 は Hfの相対比が 1 : 1であってもよい。
前記 AZ r〇、 あるいは AH f 0のいずれかの組成で示される主としてパイ口 クロア型の結晶構造を有する複合酸化物の多結晶薄膜を構成する前記希土類元素 と Z r又は Hfの相対比が 0.1 : 0.9〜0.9 : 0.1の範囲であり、 かつ立方 晶であってもよい。 なお、 この場合結晶構造は必ずしもパイロクロア型とならず 、 欠損蛍石型、 もしくは希土類 C型とよばれる酷似構造をとることがあるが、 そ の場合でも、 立方晶が維持されていれば有効である。 前記構成において、 前記多結晶基材を N i合金などの耐熱性の金属テープから 構成し、 多結晶薄膜を Sm2Z r27あるいは Gd2Z r207から構成することが できる。
前記構成の多結晶薄膜において、 前記多結晶基材の被成膜面と平行な面に沿う 前記多結晶薄膜の各結晶粒の同一結晶軸が構成する粒界傾角が、 20度以下にさ れているのが好ましく、 より好ましくは 10度以下にされたものであってもよい また、 本発明の多結晶薄膜の製造方法は前記課題を解決するために、 多結晶基 材の被成膜面上に形成された AZ r 0、 あるいは AHf 0のいずれかの組成 (た だし、 前記組成において Aは、 Y、 Yb、 Tm、 Er、 Ho、 Dy、 Eu、 Gd 、 Sm、 Nd、 Pr、 Ce、 L aの中から選択される 1種の希土類元素を示す。 ) で示されるパイ口クロァ型の結晶構造を有する複合酸化物の結晶粒からなり、 前記多結晶基材の被成膜面と平行な面に沿う前記結晶粒の同一結晶軸が構成する 粒界傾角を 30度以下にしてなる多結晶薄膜を製造する方法で、 前記多結晶薄膜 の構成元素の夕ーゲッ 卜から発生させた構成粒子を多結晶基材上に堆積させる際 に、 多結晶基材を 300°C以下の温度に加熱し、 イオンソースが発生させるィォ ンビームとして、 Ar+のイオンビーム、 Kr+のイオンビーム、 Xe十のイオンビ ーム、 あるいはこれらの混合イオンビームを用い、 前記イオンビームのイオンビ ームエネルギーを 150 e V以上、 300 eV以下の範囲に調整し、 前記イオン ビームを基材の被成膜面の法線に対して 5 0度以上、 6 0度以下の入射角度で照 射しながら前記構成粒子を基材上に堆積させることを特徴とするものである。 前記構成の多結晶薄膜の製造方法において、 前記多結晶薄膜の構成元素の夕一 ゲットから発生させた構成粒子を多結晶基材上に堆積させる際に、 多結晶基材を 9 0 °C以上 3 0 0 °C以下の温度に加熱するのが好ましく、 より好ましくは 1 5 0 °C以上 2 5 0 °C以下の温度、 さらに好ましくは 2 0 0 °Cの温度に加熱するのがよ い。
また、 前記構成の多結晶薄膜の製造方法において、 前記多結晶薄膜の構成元素 の夕ーゲッ 卜から発生させた構成粒子を多結晶基材上に堆積させる際に、 イオン ソースから発生させるイオンビームのイオンビームエネルギーを 1 7 5 e V以上 、 2 2 5 e V以下の範囲に調整することが好ましく、 より好ましくは 2 0 0 e V に調整するのがよい。
また、 前記構成の多結晶薄膜の製造方法において、 前記多結晶薄膜の構成元素 の夕一ゲッ トから発生させた構成粒子を多結晶基材上に堆積させる際に、 前記ィ オンビームを基材の被成膜面の法線に対して 5 5度以上、 6 0度以下の入射角度 で照射しながら前記構成粒子を基材上に堆積させるのが好ましく、 より好ましく は前記イオンビームを基材の被成膜面の法線に対して 5 5度の入射角度で照射し ながら前記構成粒子を基材上に堆積させるのがよい。
また、 前記構成の多結晶薄膜の製造方法において、 前記多結晶薄膜の構成元素 の夕ーゲッ 卜から発生させた構成粒子を多結晶基材上に堆積させる際に、 多結晶 基材を 2 0 0 °Cの温度に加熱し、 イオンソースから発生させるイオンビームとし て、 A r +のイオンビーム、 K r +のイオンビーム、 X e +のイオンビーム、 あるい はこれらの混合イオンビームを用い、 前記イオンビームのイオンビームエネルギ 一を 2 0 0 e Vに調整し、 前記イオンビームを基材の被成膜面の法線に対して 5 5度の入射角度で照射しながら前記構成粒子を基材上に堆積させるのがさらに好 ましい。
また、 本発明の酸化物超電導導体は前記課題を解決するために、 多結晶基材と 、 この多結晶基材の被成膜面上に形成された A Z r〇、 あるいは、 A H f 〇のい ずれかの組成 (ただし、 前記組成において Aは、 Y、 Y b、 T m、 E r、 H o、 Dy、 Eu、 Gd、 S m、 Nd、 Pr、 Ce、 L aの中から選択される 1種の希 土類元素を示す。 ) で示されるパイロクロア型の結晶構造を有する複合酸化物の 結晶粒からなり前記多結晶基材の被成膜面と平行な面に沿う前記結晶粒の同一結 晶軸が構成する粒界傾角を 30度以下にしてなる多結晶薄膜と、 この多結晶薄膜 上に形成された酸化物超電薄層とを具備してなることを特徴とする。
前記構成の酸化物超電導導体において、 前記酸化物超電薄層は、 AiBazCus 07x、 A2Ba4Cu8xのいずれかの組成式 (ただし、 前記組成式において Aは 、 Y、 Yb、 Tm、 Er、 Ho、 Dy、 Eu、 Gd、 S m、 Nd、 Pr、 Ce、 Laの中から選択される 1種の希土類元素を示す。 ) で示される酸化物超電導体 を適用できるほか、 他の組成の立方晶系の超電導体を適用してもよい。
前記構成の酸化物超電導導体において、 前記多結晶基材として耐熱性の金属テ ープを適用できる。
前記構成の酸化物超電導導体において、 前記酸化物超電薄層は、 前記多結晶基 材の被成膜面と平行な面に沿う前記結晶粒の同一結晶軸が構成する粒界傾角が 3 0度以下にされてなるものであってもよい。 本発明の酸化物超電導導体の製造方法は前記課題を解決するために、 多結晶基 材と、 この多結晶基材の被成膜面上に形成された AZ rO、 あるいは、 AHf O のいずれかの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 Er、 H o、 Dy、 Eu、 Gd、 Sm、 Nd、 P r、 Ce、 L aの中から選択される 1種 の希土類元素を示す。 ) で示されるパイロクロア型の結晶構造を有する複合酸化 物の結晶粒からなり、 前記多結晶基材の被成膜面と平行な面に沿う前記結晶粒の 同一結晶軸が構成する粒界傾角を 30度以下にしてなる多結晶薄膜と、 この多結 晶薄膜上に形成された酸化物超電薄層とを具備してなる酸化物超電導導体を製造 する方法で、 前記多結晶薄膜の構成元素のターゲッ 卜から発生させた構成粒子を 多結晶基材上に堆積させる際に、 多結晶基材の温度を 300°C以下に加熱し、 ィ オンソースが発生させるイオンビームとして、 Ar+イオンビーム、 Kr+のィォ ンビーム、 Xe+のイオンビームあるいはこれらの混合イオンビームを用い、 前記 イオンビームのイオンビームエネルギーを 150 e V以上、 300 e V以下の範 囲に調整して、 前記イオンビームを基材の被成膜面の法線に対して 50度以上、 60度以下の入射角度で照射しながら前記構成粒子を基材上に堆積させて多結晶 薄膜を形成し、 この後に多結晶薄膜上に酸化物超電導層を形成することを特徴と する。 多結晶基材上に形成されたパイロクロア型の多結晶着膜は、 その上に酸化物系 の超電導層を設けた場合に、 従来の Y S Zの多結晶薄膜よりも種々の点で有利で あると考えられる。
第 1に、 YSZの結晶において主体となる Z r02の格子定数は 5.14A (0 . 5 14nm) であり、 この Z r 02の面心立方格子において面の中央に位置す る原子と面のコーナ部分に位置する原子の間隔 (最近接原子間距離) は 3.63A (0. 363 nm) であるとすると、 S m2 Z r 207の結晶の格子定数が 10.5 9 A ( 1. 059 nm) であり、 最近接原子間距離が 3.74 A (0. 374 nm ) となり、 これらに対して Y!B a2Cu307 なる組成の酸化物超電導体の最近 接原子間距離が 3.81 A (0. 381 nm) であることを考慮すると、 YS Zの 多結晶薄膜よりも S m2 Z r 207の複合酸化物の多結晶薄膜の方が結晶の整合性の 面では有利であると考えられる。 即ち、 イオンビームアシスト法を実施して多結 晶薄膜の原子を堆積させる際に、 最近接原子間の距離が近いものの方が、 原子の 正規な堆積がなされ易いものと考えている。 また、 Sm2Z Γ 27がパイロクロア 型の結晶構造であるので、 パイロクロア型の結晶構造において近似する他の結晶 格子のものとして、 Gd2Zr207 (最近接原子間距離 3.72 A ( 0. 372 η m) ) 、 L a2Z r 2 O 7 (最近接原子間距離 3.81 A (0. 381 nm) ) 、 C e2Z r 207 (最近接原子間距離 3.78 A ( 0. 378 nm) ) , P r 2Z r 20 7 (最近接原子間距離 3.78A ( 0. 378 nm) ) 、 Gd2Hf 2 Ov (最近接原 子間距離 3.72A ( 0. 372 nm) ) , S m2 H f 207 (最近接原子間距離 3 .74 A ( 0. 374 nm) ) 、 La2Hf 207 (最近接原子間距離 3.81 A ( 0 . 381 nm) ) のいずれかの組成式で示されるパイロクロア型の結晶構造を有 するものを適用できる。
また、 これらの外のパイロクロア型の結晶構造を有するものとして、 Y2Z r2 0マヽ Yb2Z Γ 2 Ο 7, Tm2 Z r 207s E r2Z r 207、 H o2Z r27、 D y 2 Z r 20v Eu2Z r 207s Nd2Z r 20τ, Y2 Z r 2 O 7, Y2Hf 207、 Yb2H f 2〇7、 Tm2Hf 207、 E r 2H f 207 Ho2Hf 27、 D y2H f 2 O 7, Eu2H f 207、 Nd2Hf 27、 P r 2Hf 2 O 7, C e2Hf 2 O 7, のいずれかの組成式で 示されるものを採用しても良い。
なお、 更に外のパイロクロア型の結晶構造を有するものとして、 希土類元素と Z r又は H fの相対比が 1 : 1のものに限らず、 0.1 : 0.9〜 0.9 : 0.1の 範囲で任意の相対比のものを採用することができる。 なお、 この場合結晶構造は 必ずしもパイロクロア型とならず、 欠損蛍石型、 もしくは希土類 C型とよばれる 酷似構造をとることがあるが、 その場合でも、 立方晶が維持されていれば有効で ある。 本発明によれば、 粒界傾角が 3 0度以下の結晶配向性に優れた AZ r 0、 AH f 0等のパイロクロア型の結晶粒からなる多結晶薄膜が多結晶基材上に形成され たものであり、 このような結晶配向性に優れた SmZ r 0等のパイロクロア型の 多結晶薄膜であるならば、 その上に形成される種々の薄膜の下地層として好適で あり、 形成する薄膜が超電導層であるならば、 超電導特性に優れたものが得られ 、 形成する薄膜が光学薄膜であるならば光学特性に優れ、 形成する薄膜が磁性薄 膜であるならば磁気特性に優れ、 形成する薄膜が配線用簿膜であるならば配線抵 抗ゃ欠陥の少ない薄膜を得ることができる。
前述の多結晶薄膜に用いる他のパイロクロア型の複合酸化物として、 Gd2Z r 20マ、 L a2Z r 2 O 7S C e2Z r 207、 P r2Z r20?、 Gd2H f 2 O 7, Sm2H f 27、 L a2H f 207のいずれかの組成式で示される複合酸化物、 あるいは、 Y 2Z r 2Οτ, Yb2Z r27、 Τπΐ2 Z r 2OTS E r2Z r 2 O 7, H o 2 Z r 2 O 7, D y2Z r20?、 E U 2 Z r 2 O 7, N d 2Z r20?、 Y2 Z r 2 O 7, Y2Hf 27、 Yb 2Hf 207、 Tm2H f 27、 E r 2H f 2 O 7, H o 2H f 2 O 7, Dy2Hf 27、 E u2H f 20v^ Nd2Hf 27、 P r 2H f 2 O 7, C e 2 H f 207のいずれかの組成 式で示される複合酸化物を適用することができる。
また、 本発明で用いる多結晶基材として N i合金の耐熱性の金属テープを用い ることができ、 金属テープ上に上記パイ口クロァ型の結晶粒からなる多結晶薄膜 を備えたものを得ることができる。
次に本発明方法においては、 多結晶基材上に AZ rO、 あるいは AH f 〇のい ずれかの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 Er、 Ho、 Dy、 Eu、 Gd、 S m、 Nd、 Pr、 Ce、 L aの中から選択される 1種を示 す。 ) で示されるパイロクロア型の複合酸化物のターゲッ トの粒子を堆積させる 際に同時にイオンビームの照射条件として、 基材を 300°C以下、 イオンビーム エネルギーを 150〜300 eV、 イオンビームの入射角度を被成膜面の法線に 対して 50〜 60度とするので、 従来技術では得られない優れた粒界傾角を有す る結晶配向性に優れたパイロクロア型の複合酸化物の多結晶薄膜を備えたものを 得ることができる。
次に、 前記のような結晶配向性に優れた AZ r〇、 あるいは AH f 0のいずれ かの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 Er、 Ho、 D y 、 Eu、 Gd、 Sm、 Nd、 Pr、 Ce、 L aの中から選択される 1種を示す。 ) で示されるパイロクロア型の複合酸化物の多結晶薄膜上に酸化物超電導層を成 膜するならば、 結晶配向性に優れた酸化物超電導層を形成できるので、 高い臨界 電流密度を示し、 臨界電流値の高い酸化物超電導層を得ることができる。 これは 、 上述するパイロクロア型の複合酸化物の多結晶薄膜であるならば、 YSZの多 結晶薄膜の場合よりも更に酸化物超電導層との結晶整合性に優れているので、 Y S Zの多結晶薄膜を用いる場合よりも更に良好な結晶配向性の酸化物超電導層を 得ることができる可能性を有するためである。
次に、 本発明の製造方法により得られるパイロクロア型の複合酸化物の多結晶 薄膜であるならば、 本発明者らが先に公表している YS Z多結晶薄膜よりも短時 間で結晶配向性のより優れたものを得ることができる。 図面の簡単な説明 図 1は、 本発明方法により基材上に形成されたパイロクロア型の複合酸化物の 多結晶薄膜の一例を断面とした斜視図である。 図 2は、 図 1に示す多結晶薄膜の結晶粒とその結晶軸方向および粒界傾角を示 す拡大平面図である。
図 3は、 Sm2Z r 207なる組成のパイロクロア型の多結晶薄膜の結晶格子を示 す概念図である。
図 4は、 本発明に係る多結晶薄膜を製造する装置の一例を示す構成図である。 図 5 Aは、 図 4に示す装置のイオンソースの一例を示す構成図である。
図 5 Bは、 イオンビーム入射角度についての説明図である。
図 6は、 図 1に示す多結晶薄膜の上に形成された酸化物超電導層を示す構成図 である。
図 7は、 図 6に示す酸化物超電導層の結晶粒とその結晶軸方向および粒界傾角 を示す拡大平面図である。
図 8は、 図 1に示す多結晶薄膜上に酸化物超電導層を形成するための装置の一 例を示す構成図である。
図 9は、 実施例で製造した Sm2Z Γ 27なる組成の多結晶薄膜の極点図である 図 10は、 実施例で得られた Sm2Z r207の組成の多結晶薄膜を製造する際の イオンビーム入射角度と結晶配向性の関連性を示す図である。
図 11は、 実施例で製造した Sm2Z r 207なる組成の多結晶薄膜において基材 温度と半値全幅の関係を示す図である。
図 12は、 実施例で製造した Sm2Z r27なる組成の多結晶薄膜においてィォ ンビームエネルギーと半値全幅の関係を示す図である。
図 13は、 実施例で得られた Sm2Z r 207なる組成の多結晶薄膜の半値全幅と 比較例として製造された YS Zの多結晶薄膜の半値全幅を比較して示す図である 図 14は、 Y S Z多結晶薄膜と H f 02多結晶薄膜と C e◦ 2多結晶薄膜と Y 20 3多結晶薄膜と Sm2Z Γ20?多結晶薄膜と Gd2Z 1^〇7多結晶薄膜の?1^111 の 値に対する A r +イオンビームエネルギー依存性を示す図である。
図 15は、 G d 2 Z r 2◦ 7多結晶薄膜と Y S Z多結晶薄膜の成膜速度を比較して 示す図である。 図 16は、 従来の装置で製造された多結晶薄膜を示す構成図である。
図 17は、 従来の酸化物超電導導体の一例を示す断面図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の一実施形態について説明する。
図 1は本発明の多結晶薄膜を基材上に形成した一実施形態を示すものであり、 図 1において Aはテープ状の多結晶基材、 Bは多結晶基材 Aの上面に形成された 多結晶薄膜を示している。
前記多結晶基材 Aは、 例えば、 板材、 線材、 テープ材などの種々の形状のもの を用いることができ、 多結晶基材 Aは、 銀、 白金、 ステンレス鋼、 銅、 ハステロ ィ等の N i合金などの金属材料、 あるいは、 各種ガラスあるいは各種セラミック スなどの耐熱材料からなるものである。
この実施形態の多結晶薄膜 Bは、 S m2 Z r 207の組成式で示される立方晶系の パイロクロア型の結晶構造を有する微細な結晶の集合体の結晶粒 20が、 多数、 相互に結晶粒界を介し接合一体化されてなり、 各結晶粒 20の結晶軸の c軸は基 材 Aの上面 (被成膜面) に対して直角に向けられ、 各結晶粒 20の結晶軸の a軸 どうしおよび b軸どうしは、 互いに同一方向に向けられて面内配向されている。 また、 各結晶粒 20の c軸が多結晶基材 Aの (上面) 被成膜面に対して直角に配 向されている。 そして、 各結晶粒 20の a軸 (あるいは b軸) どうしは、 それら のなす角度 (図 2に示す粒界傾角 K) を 30度以内、 例えば 15~25度の範囲 内にして接合一体化されている。
前記結晶粒 20を構成するパイロクロア型の複合酸化物として、 Sm2Z r20 マの外に、 Gd2Z r 207、 L a2Z r 27、 C e 2 Z r 2 O 7, P r 2Z r 20vN G d 2H f 2 O 7, Sm2H f 207、 L a2H f 207の組成の複合酸化物を適用することが できる。
また、 Y2 Z r27、 Yb2 Z r 2 O 7 , Tm2 Z r 2 O 7, E r 2 Z r 2 O 7, H o 2 Z r 2 O 7, D y2Z r 2 O 7, E u2 Z r 207. N d2 Z r 27、 Y2 Z r 207、 Y2H f 2 O 7, Yb2H f 2 O 7, Tm2H f 27、 E r 2H f 2 O 7, H o 2H f 207、 D y2H f 2 O 7. E u2H f 2 O 7, Nd2H f 2 O 7, P r 2H f 2 O 7, C e 2H f 27のいず れかの組成式で示されるパイロクロア型の複合酸化物を採用しても良い。
前記パイ口クロァ型の複合酸化物の結晶格子は、 立方晶系の C a F 2構造から誘 導されるもので、 図 3に示すような面心立方構造の単位格子が 8個、 縦横方向お よび奥行き方向に積み重ねられた場合に、 単位格子の頂点に位置する Smの原子 と単位格子の面心に位置する Z rの原子とが構成する格子隙間に侵入している 8 個の酸素原子〇 (図 3に鎖線で描いた丸印の位置に存在する) のうちの 1個のみ が抜けてオクタン卜が生成され、 酸素原子の抜ける位置に応じて I型オクタント と I I型オクタントとが生成され、 これらの I型オクタントと I I型オクタント とが規則正しく配列されたものがパイロクロア型の結晶格子とされている。
よって先の単位格子が 8つ重なった状態において X線分析の分野では単位胞と みなすので、 単位胞としての格子定数は 1 0.5 9であるが、 単位格子としての格 子の幅は 5.3 A (0. 5 3 nm) であり、 最近接原子間距離は 3.74 A (0. 374 nm) となる。
本発明で用いるパイロクロア型の複合酸化物としては、 Sm2Z r 207の外に、 Gd2Z r 207 (最近接原子間距離 3.72 A ( 0. 372 nm) 、 格子定数 1 0 .5 2) 、 L a2Z r 2Οτ (最近接原子間距離 3.8 1 A ( 0. 38 1 nm) 、 格子 定数 1 0.7 9) 、 C e2Z Γ 2ΟΤ (最近接原子間距離 3.78 A (0. 378 nm ) 、 格子定数 1 0.7) 、 P r 2Z r 207 (最近接原子間距離 3.78 A ( 0. 37 8 nm) 、 格子定数 1 0.6 9) 、 Gd2Hf 2O7 (最近接原子間距離 3.72 A ( 0. 372 nm) 、 格子定数 5.2 9) 、 Sm2Hf 207 (最近接原子間距離 3 .74 A ( 0. 374 nm) 、 格子定数 5.2 9) 、 L a2Hf 207 (最近接原子間 距離 3.8 1 A ( 0. 38 1 nm) 、 格子定数 1 0.77) のいずれを用いても良 い。 なお、 これらの複合酸化物中で、 Gd2Hf 207の格子定数は 5.2 6、 Sm 2H f 207の格子定数は 5.2 9であり、 酸素空孔の存在する規則性が失われてシ ンメ トリが変わっているものと思われるが、 Gd2Hf 207と Sm2Hf 207の最 近接原子間距離の値から見て本発明の目的に供しても良いのは勿論である。 次に、 同様な考えから、 これらの外に適用可能なパイロクロア型の複合酸化物 として、 Y2Z r27 (最近接原子間距離 3.6 7 A ( 0. 3 67 nm) 、 格子定 数 5.19) 、 Yb2Zr207 (最近接原子間距離 3.66 A ( 0. 366 nm) 、 格子定数 5.17) 、 Tm2Z r 2 O 7 (最近接原子間距離 3.66 A ( 0. 366 η m) 、 格子定数 5.17) , E r2Z r 207 (最近接原子間距離 3.67Α (0. 3 67 nm) 、 格子定数 5.19) 、 Ho2Zr207 (最近接原子間距離 3.68 A
(0. 368 nm) 、 格子定数 5.2 ) 、 Dy2Z r207 (最近接原子間距離 3.6 8A ( 0. 368 nm) , 格子定数 5.21) , Eu2Z r2Ov (最近接原子間距 離 3.72A (0. 372 nm) 、 格子定数 10.53) 、 Nd2Z r 207 (最近接 原子間距離 3.77 A ( 0. 377 nm) 、 格子定数 10.65) 、 Y2Hf27
(最近接原子間距離 3 · 68 A ( 0. 368 nm) 、 格子定数 5.2) 、 Yb2Hf 2 O 7 (最近接原子間距離 3.66A ( 0. 366 nm) 、 格子定数 5.17) 、 T m2Hf 207 (最近接原子間距離 3.66 A ( 0. 366 nm) 、 格子定数 5.17 ) 、 E r2Hf 20v (最近接原子間距離 3.67 A ( 0. 367 nm) 、 格子定数
5.19) 、 Ηο2Ηί> 2〇7 (最近接原子間距離 3.68Α ( 0. 368nm) 、 格 子定数 5.21) 、 Dy2Hf 207 (最近接原子間距離 3.69 A ( 0. 369 nm ) 、 格子定数 5.22) 、 Eu2Hf 207 (最近接原子間距離 3.73A (0. 37 3 nm) 、 格子定数 5.27) 、 Nd2Hf207 (最近接原子間距離 3.76 A (0 , 376 nm) 、 格子定数 5.32) 、 P r 2Hf 207 (最近接原子間距離 3.78 A ( 0. 378 nm) 、 格子定数 10.69) 、 Ce2Hf 20Y (最近接原子間距 離 3.78A (0. 378 nm) 、 格子定数 10.7) のいずれかを適用できる。 先の複合酸化物の単位格子を後述する条件のイオンビームアシスト法により堆 積させる際に重要となるのは、 最近接原子距離であり、 この値が Υ,Β a2Cu30 7 の組成の酸化物超電導体の格子定数 3.81、 最近接原子距離 3.81 A ( 0. 381 nm) のうちの、 特に最近接原子距離 3.81 A (0. 381 nm) に近い ことが望ましい。 この最近接原子距離において Υ,Β a2Cu 307-xの組成の酸化 物超電導体層に対する最近接原子距離の差異は、 Sm2Z r 207の場合に 1.9% であるのに対し、 Y S Ζが最近接原子距離 3.63 A ( 0. 363 nm) であるの で、 YS Zの場合に 4 · 5 %にも達する。 また、 先に記載のパイロクロア型の複合 酸化物において、 La2Z r 207、 L a 2 H f 207の組成の複合酸化物の最近接原 子間距離が 3.81 A ( 0. 381 n m) であり、 Y , B a 2 C u 3 xの組成の酸 化物超電導体の最近接原子間距離と等しいので、 これらの複合酸化物が特に有望 と考えられる。
なお、 更に外のパイロクロア型の結晶構造を有するものとして、 希土類元素と
Z r又は H fの相対比が 1 : 1のものに限らず、 0 . 1 : 0 . 9〜0 . 9 : 0 . 1の 範囲で任意の相対比のものを採用することができる。 なお、 この場合結晶構造は 必ずしもパイロクロア型とならず、 欠損蛍石型、 もしくは希土類 C型とよばれる 酷似構造をとることがあるが、 その場合でも、 立方晶が維持されていれば有効で ある。
また、 前記各組成の複合酸化物において最近接原子間距離が酸化物超電導体の 最近接原子間距離と多少ずれているものにあっても、 他の特性、 例えば成膜時に 高速成膜が可能な点を有するものもあるので、 前述の各種組成の複合酸化物を適 宜選択して本発明の目的に用いることができるは勿論である。 次に前記多結晶薄膜 Bを製造する装置と方法について説明する。
図 4は前記多結晶薄膜 Bを製造する装置の一例を示すものであり、 この例の装 置は、 スパッ夕装置にイオンビームアシスト用のイオンソースを設けた構成とな つている。
この例の装置は、 テープ状の多結晶基材 Aを支持するとともに所望の温度に加 熱することができる基材ホルダ 2 3と、 基材ホルダ 2 3上にテープ状の多結晶基 材 Aを送り出すための基材送出ボビン 2 4と、 多結晶薄膜が形成されたテープ状 の多結晶基材 Aを巻き取るための基材巻取ボビン 2 5と、 前記基材ホルダ 2 3の 斜め上方に所定間隔をもって対向配置された板状の夕ーゲッ ト 3 6と、 この夕一 ゲッ ト 3 6の斜め上方において夕ーゲッ ト 3 6の下面に向けて配置されたスパッ 夕ビーム照射装置 3 8と、 前記基材ホルダ 2 3の側方に所定間隔をもって対向さ れ、 かつ、 前記ターゲッ ト 3 6と離間して配置されたイオンソース 3 9とが真空 排気可能な成膜処理容器 4 0内に収容された概略構成となっている。
前記基材ホルダ 2 3は、 内部に加熱ヒー夕を備え、 基材ホルダ 2 3の上に送り 出されたテープ状の多結晶基材 Aを必要に応じて所望の温度に加熱できるように なっている。 この基材ホルダ 2 3はピン等により支持体 2 3 aに回動自在に取り 付けられており、 傾斜角度を調整できるようになつている。 このような基材ホル ダ 23は、 成膜処理容器 40内のイオンソース 39から照射されるイオンビーム の最適照射領域に配設されている。
この例の多結晶薄膜の製造装置においては、 前記基材送出ボビン 24から基材 ホルダ 23上にテープ状の多結晶基材 Aを連続的に送り出し、 前記最適照射領域 で多結晶薄膜が成膜された多結晶基材 Aを基材卷取ボビン 25で巻き取ることで 多結晶基材 A上に連続成膜することができるようになつている。 この基材卷取ボ ビン 25は、 前記最適照射領域の外に配設されている。
前記夕一ゲット 36は、 目的とする多結晶薄膜を形成するためのものであり、 目的の組成の多結晶薄膜と同一組成あるいは近似組成のものなどを用いる。 夕一 ゲッ ト 36として具体的には、 Sm2Z r207、 Gd2Zr27、 La2Z r27、 Ce2Z r27、 P r 2 Z r 2 O 7, G d 2H f 2 O 7, Sm2Hf 207、 L a2H f 2O 7のいずれかの組成式で示される複合酸化物のターゲッ ト、 あるいは、 これら個々 の 3つの構成元素のうち、 膜とした場合に飛散し易い元素を予め多めに含有した 組成のターゲッ トを用いる。 このようなターゲッ ト 36は、 ピン等により回動自 在に保持された夕ーゲッ ト支持体 36 aに取り付けられており、 傾斜角度を調整 できるようになつている。
なお、 前記組成の外に、 Y2Z r27、 Yb2Z r27、 Tm2 Z r 2 O 7, E r 2 Zr27、 Ho2Z r 207、 D y2Z r 2 O 7, Eu2Z r27、 Nd2Zr27、 Y 2Z r 2 O 7, Y2Hf27、 Yb2Hf 27、 Tm2Hf27、 E r 2H f 2 O 7, Ho 2Hf20?、 D y2H f 2 O 7, E U2H f 2 O 7, Nd2Hf 207、 Pr2Hf27、 C e2H f207のいずれかの組成式で示されるパイロクロア型の複合酸化物の夕ーゲ ットを採用しても良い。 更に外のパイロクロア型の結晶構造を有するものとして 、 希土類元素と Z r又は Hfの相対比が、 1 : 1のものに限らず、 0.1 : 0.9 〜0.9 : 0.1の範囲で任意の相対比のもののターゲットを適宜採用することが できる。 なお、 この場合結晶構造は必ずしもパイロクロア型とならず、 欠損蛍石 型、 もしくは希土類 C型とよばれる酷似構造をとることがある力;、 その場合でも 、 立方晶が維持されていれば有効である。
前記スパッ夕ビーム照射装置 (スパヅ夕手段) 38は、 ターゲッ ト 36に対し てイオンビームを照射して夕一ゲッ ト 3 6の構成粒子を多結晶基材 Aに向けて叩 き出すことができるものである。
前記イオンソース 3 9は、 スパッ夕ビーム照射装置 3 8と略同様の構成のもの であり、 イオン化室内にガスを導入する配管を設けるとともに、 引き出し電圧を かけるためのグリッ ドを備えて構成されている。 そして、 導入ガスの原子または 分子の一部をイオン化し、 そのイオン化した粒子をグリッ ドで発生させた電界で 制御してイオンビームとして照射する装置である。 粒子をイオン化するには直流 放電方式、 高周波励起方式、 フィラメント式などの種々のものがある。 前記フィ ラメント式はタングステン製のフィラメントに通電加熱して熱電子を発生させ、 高真空中で蒸発粒子と衝突させてイオン化する方法である。
この形態の多結晶薄膜の製造装置においては、 図 5 Aに示す構成の内部構造の イオンソース 3 9を用いる。 このイオンソース 3 9は、 筒状のイオン室 4 5の内 部にグリッ ド 4 6とフィラメント 4 7と A rガス、 K rガス、 X eガスなどの導 入管 4 8とを備えて構成され、 イオン室 4 5の先端のビーム口 4 9からイオンを ビ一ム状に略平行に放射できるものである。
前記イオンソース 3 9は、 図 4及び図 5に示すようにその中心軸線 Sを多結晶 基材 Aの上面 (被成膜面) に対して入射角度 6> (多結晶基材 Aの成膜面 (上面) の垂線 (法線) Hと中心線 Sとのなす角度) でもって傾斜させて対向されている 。 この入射角度 0は 5 0〜6 0度の範囲が好ましいが、 より好ましくは 5 5〜6 0度の範囲、 最も好ましくは 5 5度前後の角度である。 従ってイオンソース 3 9 は多結晶基材 Aの被成膜面の法線 Hに対してある入射角度 6>でもってイオンビー ムを照射できるように配置されている。 このようなイオンビームの入射角度は、 本発明者らが先に特許出願している技術に関する。
なお、 前記のイオンソース 3 9によって多結晶基材 Aに照射するイオンビーム は、 A rガスのイオンビーム、 K rガスのイオンビーム、 X eガスのイオンビー ム、 あるいは、 これら A rガスと K rガスと X eガスの 2つ以上の組み合わせの 混合イオンビーム、 例えば、 A rガスと K rガスの混合イオンビーム等を用いる ことができる。
また、 前記成膜処理容器 4 0には、 この容器 4 0内を真空などの低圧状態にす るためのロー夕リ一ポンプ 5 1およびクライオポンプ 5 2と、 ガスボンベなどの 雰囲気ガス供給源がそれそれ接続されていて、 成膜処理容器 4 0の内部を真空な どの低圧状態で、 かつ、 アルゴンガスあるいはその他の不活性ガス雰囲気にする ことができるようになつている。
さらに、 前記成膜処理容器 4 0には、 この容器 4 0内のイオンビームの電流密 度を測定するための電流密度計測装置と、 前記容器 4 0内の圧力を測定するため の圧力計 5 5が取り付けられている。
なお、 この例の多結晶薄膜の製造装置においては、 基材ホルダ 2 3をピン等に より支持体 2 3 aに回動自在に取り付けることにより傾斜角度を調整できるよう したが、 イオンソース 3 9の支持部分に角度調整機構を取り付けてイオンソース 3 9の傾斜角度を調整し、 イオンビームの入射角度を調整できるようにしても良 く、 また、 角度調整機構はこの例に限るものではなく、 種々の構成のものを採用 することができるのは勿論である。 次に前記構成の装置を用いて多結晶基材 A上に S m2 Z r 2 0 7等の前述の組成の パイ口クロァ型の多結晶薄膜 Bを形成する場合について説明する。
テープ状の多結晶基材 A上に多結晶薄膜を形成するには、 前述の複合酸化物か らなる夕ーゲット 3 6を用い、 多結晶基材 Aを収納している成膜処理容器 4 0の 内部を真空引きして減圧雰囲気とするとともに、 基材送出ボビン 2 4から基材ホ ルダ 2 3に多結晶基材 Aを所定の速度で送り出し、 さらにイオンソース 3 9とス パッ夕ビーム照射装置 3 8を作動させる。
スパッ夕ビーム照射装置 3 8から夕一ゲッ ト 3 6にイオンのビームを照射する と、 ターゲッ ト 3 6の構成粒子が叩き出されて多結晶基材 A上に飛来する。 そし て、 基材ホルダ 2 3上に送り出された多結晶基材 A上に夕ーゲッ ト 3 6から叩き 出した構成粒子を堆積させると同時にイオンソース 3 9から、 例えば、 A r +ィォ ンのイオンビーム、 K r+イオンのイオンビーム、 X e +イオンのイオンビーム、 あ るいは、 K r+と X e +イオンの混合イオンビームを照射して 所望の厚みの多結晶 薄膜を成膜し、 成膜後のテープ状の多結晶基材 Aを基材卷取ボビン 2 5に巻き取 る。 ここでイオンビームを照射する際の入射角度 0は、 好ましくは 5 0度以上、 6 0度以下の範囲、 最も好ましくは 5 5度である。 ここで 0を 9 0度とすると、 前 述の複合酸化物の多結晶薄膜の c軸が配向しなくなる。 また、 0を 3 0度とする と、 前述の複合酸化物の多結晶薄膜は c軸配向すらしなくなる。 前記のような好 ましい範囲の入射角度でイオンビーム照射するならば前述の複合酸化物の多結晶 薄膜の結晶の c軸が立つようになる。 このような入射角度でイオンビーム照射を 行ないながらスパッタリングを行なうことで、 多結晶基材 A上に形成される複合 酸化物の多結晶薄膜の結晶軸の a軸どうしおよび b軸どうしは互いに同一方向に 向けられて多結晶基材 Aの上面 (被成膜面) と平行な面に沿って面内配向させる ことができる。
また、 前述の複合酸化物の多結晶薄膜 Bの成膜の際、 アシストイオンビームの 照射角度以外に、 多結晶基材 Aの温度とアシストイオンビームのイオンビームェ ネルギ一を規定の範囲内に設定することが好ましい。
多結晶基材 Aの温度は、 3 0 0 °C以下の適切な温度に加熱しながら成膜するこ とが好ましく、 更に、 後述する実施例の結果から粒界傾角を 2 5度以下にするた めには 9 0 °C以上、 3 0 0 °C以下が好ましく、 この範囲の中でも確実に粒界傾角 を 2 0 ° 以下とするためには 1 5 0 °C以上、 2 5 0 °C以下の範囲がより好ましく 、 2 0 0 °Cが最も好ましい。 ここで、 9 0 °Cという温度は、 基板を特別に加熱し なくとも、 装置設置環境が常温において、 基板に照射するイオンビームや装置の 余熱などにより、 自然に基板加熱された際の温度である。
イオンビームエネルギーは粒界傾角を 3 0度以下にするためには 1 5 0 e V以 上、 3 0 0 e V以下が好ましいが、 粒界傾角を 2 0度以下にするためには 1 7 5 e V以上、 2 2 5 e V以下の範囲が好ましく、 2 0 0 e Vが最も好ましい。
これらの範囲の温度とイオンビームエネルギーでイオンアシスト法により多結 晶基材 A上に成膜することでパイ口クロァ型の等の多結晶薄膜 Bを良好な配向性 でもって成膜することができる。
図 1と図 2に、 前記の方法で S m2 Z r 2 0 7などの前述の複合酸化物の多結晶薄 膜 Bが堆積された多結晶基材 Aを示す。 なお、 図 1では結晶粒 2 0が 1層のみ形 成された状態を示しているが、 結晶粒 2 0は多層構造でも差し支えないのは勿論 である。 なお、 この多結晶薄膜 Bの結晶配向性が整う要因として本発明らは、 以下のこ とを想定している。
S m2 Z r 2 07の多結晶薄膜 Bの結晶の単位格子は、 図 5 Bに示すように等軸晶 系の面心立方晶系のパイロクロア型構造であり、 この結晶格子においては、 基板 法線方向がく 1 0 0 >軸であり、 他のく 0 1 0 >軸とく 0 0 1 >軸はいずれも図 5 Bに示す方向となる。 これらの方向に対し、 基板法線に対して斜め方向から入 射するイオンビームを考慮すると、 図 5 Bの原点◦に対して単位格子の対角線方 向、 即ち、 < 1 1 1〉軸に沿って入射する場合は 5 4 . 7度の入射角度となる。 こ こで前記 のように入射角度 5 0〜6 0度の範囲で良好な結晶配向性を示すことは 、 イオンビームの入射角度が前記 5 4 . 7度と一致するかその前後になった場合、 イオンチャンネリングが最も効果的に起こり、 多結晶基材 A上に堆積している結 晶において、 多結晶基材 Aの上面で前記角度に一致する配置関係になって安定し た原子のみが選択的に残り易くなり、 その他の乱れた原子配列で不安定なものは イオンビームのスパッ夕効果によりスパッ夕されて除去される結果として、 配向 性の良好な原子の集合した結晶のみが選択的に残って堆積してゆくものと推定し ている。
また、 以上のような条件で S m2 Z r 2 07の多結晶薄膜 Bの成膜を行っても、 成 膜時の多結晶基材 Αの温度とイオンビームアシスト時のイオンビームのエネルギ 一を前述の規定の範囲内に設定しなければ、 十分なイオンビームチエネリング効 果が得られない。 よって、 前述のイオンビームアシスト角度と多結晶基材 Aの温 度とイオンビームエネルギーの 3つの条件を全て規定の好ましい範囲内に揃えて 成膜することが重要である。 次に、 図 6と図 7は本発明に係る酸化物超電導導体の一実施形態を示すもので あり、 本実施例の酸化物超電導導体 2 2は、 テープ状の多結晶基材 Aと、 この多 結晶基材 Aの上面に形成された多結晶薄膜 Bと、 多結晶薄膜 Bの上面に形成され た酸化物超電導層 Cとからなっている。 前記多結晶基材 Aと多結晶薄膜 Bは先の例において説明した材料と同等の材 料から構成され、 多結晶薄膜 Bの結晶粒 2 0は、 図 1と図 2に示すように粒界傾 角 2 5度以内、 好ましくは 1 7〜2 0度になるように結晶配向されている。
次に、 酸化物超電導層 Cは、 Sm2 Z r20?の多結晶薄膜 Bの上面に被覆された ものであり、 その結晶粒 2 1の c軸は多結晶薄膜 Bの上面に対して直角に配向さ れ、 その結晶粒 2 1…の a軸と b軸は、 先に説明した多結晶薄膜 Bと同様に基材 上面と平行な面に沿って面内配向し、 結晶粒 2 1どうしが形成する粒界傾角 K, は 3 0度以内にされている。
この酸化物超電導層を構成する酸化物超電導体は、 Y!Baz
Figure imgf000023_0001
Y2B a4 CueOx, Y3Ba3Cu6xなる組成、 あるいは (B i,P b) 2 C a2 S r 2 C u 3Ox、 (B i,P b) 2 C a2 S r3Cu4xなる組成、 あるいは、 T l 2B a2 C a 2Cu3Ox、 T 1 i B a2 C a2 CuaOx, T 1 , B a 2 C a 3 C u 4xなる組成な ど に代表される臨界温度の高い酸化物超電導体であるが、 こられの例の他の酸化物 系の超電導体を用いても良いのは勿論である。
前記酸化物超電導層 Cは、 例えば、 先に説明した多結晶薄膜 B上にスパッタリ ングゃレーザ蒸着法などの成膜法により形成され、 この多結晶薄膜 B上に積層さ れる酸化物超電導層も Sm2Z r 27等のパイロクロア型の複合酸化物の多結晶薄 膜 Bの配向性に整合するように堆積するので、 多結晶薄膜 B上に形成された酸化 物超電導層は、 結晶粒界における量子的結合性に優れ、 結晶粒界における超電導 特性の劣化が殆どないので、 多結晶基材 Aの長さ方向に電気を流し易くなり、 M gOや S r T03の単結晶基材上に形成して得られる酸化物超電導層と同じ程度 の十分に高い臨界電流密度が得られる。
ところで、 多結晶薄膜 Βの構成材料として、 Y S Zよりも Sm2 Z r207などの パイロクロア型の複合酸化物の方が好ましく、 そのため Y S Ζの多結晶薄膜上に 酸化物超電導層を設けたものよりも、 Sm2 Z r 27などのパイロクロア型の多結 晶薄膜上に酸化物超電導層を設けたもののほうが結晶配向性に優れ、 高温 ( 7 0 0〜8 0 0°C) での熱処理に強く、 しかも、 Y S Zの多結晶薄膜上に設けた場合 と同等以上の優れた臨界電流密度を示し、 配向性が安定するので、 長尺合成時の 高特性維持に有利に働く。 特に、 膜厚が大きくなつた場合に熱処理等の加熱処理 を経ても臨界電流密度の低下割合が少なく、 臨界電流の高い超電導導体を得るこ とができる。 その理由は以下に説明することが起因していると考えられる。
第 1に、 先に記載した如く、 Y S Zの多結晶薄膜よりも最近接原子間距離の面 で酸化物超電導層に近い最近接原子間距離を有する S m2 Z Γ 27などのパイ口 クロア型の複合酸化物の多結晶薄膜の方が結晶の整合性の面では有利であり、 よ り結晶配向性に優れた酸化物超電導層が生成し易いためである。
また、 後述する実施例で示す如く、 成膜時のイオンビームエネルギーの選択範 囲、 成膜時の選択温度範囲も広く選択できることから、 長時間、 長尺のものを連 続成膜して成膜中に条件が多少ばらついても安定した結晶配向性のものを得るこ とができる。 次に酸化物超電導層 Cを形成する装置について説明する。
図 8は酸化物超電導層を成膜法により形成する装置の一例を示すもので、 図 8 はレーザ蒸着装置を示している。
この例のレーザ蒸着装置 6 0は処理容器 6 1を有し、 この処理容器 6 1の内部 の蒸着処理室 6 2にテープ状の多結晶基材 Αと夕ーゲット 6 3を設置できるよう になっている。 即ち、 蒸着処理室 6 2の底部には基台 6 4が設けられ、 この基台 6 4の上面に多結晶基材 Aを水平状態で設置できるようになっているとともに、 基台 6 4の斜め上方に支持ホルダ 6 6によって支持された夕ーゲッ ト 6 3が傾斜 状態で設けられ、 多結晶基材 Aをドラム状のテープ送出装置 6 5 aから基台 6 4 上に送り出し、 これをドラム状のテープ卷取装置 6 5 aに巻き取ることができる ように構成されている。 処理容器 6 1は、 排気孔 6 7 aを介して真空排気装置 6 7に接続されて内部を所定の圧力に減圧できるようになつている。
前記ターゲット 6 3は、 形成しょうとする酸化物超電導層 Cと同等または近似 した組成、 あるいは、 成膜中に逃避しやすい成分を多く含有させた複合酸化物の 焼結体ある L、は酸化物超電導体などの板体からなっている。
前記基台 6 4は加熱ヒータを内蔵したもので、 多結晶基材 Aを所望の温度に加 熱できるようになつている。
一方、 処理容器 6 1の側方には、 レーザ発光装置 6 8と第 1反射鏡 6 9と集光 レンズ 7 0と第 2反射鏡 7 1とが設けられ、 レーザ発光装置 6 8が発生させたレ —ザビームを処理容器 6 1の側壁に取り付けられた透明窓 7 2を介して夕ーゲッ ト 6 3に集光照射できるようになつている。 レーザ発光装置 6 8は夕ーゲッ ト 6 3から構成粒子を叩き出すことができるものであれば、 Y A Gレーザ、 エキシマ レーザなどのいずれのものを用いても良い。
次に前記 S m2 Z r 2 0マなどのパイ口クロア型の複合酸化物の多結晶薄膜 Bの上 に、 酸化物超電導層 Cを形成する場合について説明する。
前記のように多結晶基材 A上に S m2 Z r 27なる組成の多結晶薄膜 Bを形成し たならば、 この多結晶薄膜 B上に酸化物超電導層を形成する。 酸化物超電導層を 多結晶薄膜 B上に形成する場合、 この実施形態では図 8に示すレーザ蒸着装置 6 0を使用する。
多結晶薄膜 Bが形成された多結晶基材 Aを図 8に示すレーザ蒸着装置 6 0の基 台 6 4上に設置し、 蒸着処理室 6 2を真空ポンプで減圧する。 ここで必要に応じ て蒸着処理室 6 2に酸素ガスを導入して蒸着処理室 6 2を酸素雰囲気としても良 い。 また、 基台 6 4の加熱ヒー夕を作動させて多結晶基材 Aを所望の温度に加熱 する。
次にレーザ発光装置 6 8から発生させたレーザビームを蒸着処理室 6 2の夕一 ゲッ ト 6 3に集光照射する。 これによつて夕一ゲッ ト 6 3の構成粒子がえぐり出 されるか蒸発されてその粒子が多結晶薄膜 B上に堆積する。 ここで構成粒子の堆 積の際に S m2 Z Γ 2 0 7の多結晶薄膜 Bが予め c軸配向し、 a軸と b軸でも配向し ているので、 多結晶薄膜 B上に形成される酸化物超電導層 Cの結晶の c軸と a軸 と b軸も多結晶薄膜 Bに整合するようにェピタキシャル成長して結晶化する。 更に、 S m2 Z r 27の多結晶薄膜 Bの最近接原子間隔は 3 . 7 4 Aであり、 Y , B a 2 C u 3 0 7 -xなる組成の酸化物超電導体の最近接原子間距離 3 . 8 1 Aに極め て近いので、 ェピタキシャル成長が円滑になされる結果として結晶配向性の良好 な酸化物超電導層 Cが得られる。
前記多結晶薄膜 B上に形成された酸化物超電導層 Cは、 多結晶状態となるが、 この酸化物超電導層 Cの結晶粒の 1つ 1つにおいては、 図 6に示すように多結晶 基材 Aの厚さ方向に電気を流しにくい c軸が配向し、 多結晶基材 Aの長手方向に a軸どうしあるいは b軸どうしが配向している。 従って得られた酸化物超電導層 は結晶粒界における量子的結合性に優れ、 結晶粒界における超電導特性の劣化が 少ないので、 多結晶基材 Aの面方向に電気を流し易く、 臨界電流密度の優れたも のが得られる。 なお、 更に超電導層 Cの結晶配向性や膜質を安定化するために、 700〜800°Cに必要時間加熱してから冷却する熱処理を施しておくことが好 ましい。
(実施例)
図 4に示す構成の多結晶薄膜の製造装置を使用し、 この製造装置の成膜処理容 器内部を口一夕リーポンプおよびクライオポンプで真空引きして 399.9 x 1 0 -4P a (3.0 X 1 0—4 トール) に減圧した。 テープ状の基材としては、 幅 1 0 mm、 厚さ 0.5 mm、 長さ 100 c mの表面鏡面研磨済みのハステロィ C 276 テープを使用した。 また、 ターゲッ トは Sm2Z r 207なる組成の複合酸化物製の ものを用い、 スパッ夕電圧 1 000 V、 スパッ夕電流 100mA、 イオンソース から発生させる A r+のイオンビームの入射角度を基材の被成膜面の法線に対して 55度に設定し、 イオンビームの搬送距離 40 cmに設定し、 イオンソースのァ シスト電圧を 200 e Vに設定し、 基材テープの温度を 200°Cに設定し、 雰囲 気中に 133.3 x 10— 4Pa ( 1 x 10— 4トール) の酸素を流し、 基材上に夕一 ゲッ 卜の構成粒子を堆積させると同時にイオンビームを照射して厚さ 1.0〃mの 膜状の S m2 Z r 207の多結晶薄膜を形成した。
得られた Sm2Z r 207の多結晶薄膜について、 CuKひ線を用いた 20法 による X線回折を行って得られた、 Sm2Z r207の極点図を図 9に示す。 図 9に 示す極点図から、 Sm2Z r 207なる組成の複合酸化物の多結晶薄膜が良好な配向 性でもって配向していることが明らかであり、 図 9の極点図から求めた S m2 Z r 207の多結晶薄膜の粒界傾角に相当する半値全幅 (FWHM) の値は 17.1度で あった。
なお、 イオンビームの入射角度を 60度に設定して同等の条件で Sm2Z r 20 7の多結晶薄膜を製造してみたが、 図 10に示す同じ粒界傾角 (半値全幅と同値) の良好な配向性の Sm2Z r27得ることができ、 50度に設定した場合に得られ た試料においても若干悪化するものの粒界傾角 1 9度の値を得た。
なお、 50度未満と 60度を超える入射角度の試験は行っていないが、 先の本 発明者らの特許出願に係る技術の蓄積から、 イオンビームアシスト法におけるィ オンビームの入射角度について、 50度未満と、 60度を超える入射角度に設定 しても、 良好な配向性の中間層が得られないことは容易に推定できる。
次に、 Sm2Z r207の多結晶薄膜の成膜条件を確認するために、 Ar+のィォ ンビームエネルギーとテープ基材の温度を調整した場合に得られた Sm2Z r 20 マの多結晶薄膜の配向性について試験した結果を以下に示す。
Sm2Z r 207の多結晶薄膜を前述とほぼ同等の製造条件で製造した場合におい て、 図 9に示す極点図から得られる半値全幅 (FWHM) の値の基材温度依存性 を測定した結果を図 1 1に示す。
基材温度、 換言すると成膜温度において、 200°Cで成膜した試料の半値全幅 が 17.1度であり、 最も良好であった。 また、 図 1 1に示す関係から半値全幅の 値、 換言すると、 粒界傾角を 25度以下に確実にするためには 100°C以上、 3 00°C以下の温度に設定する必要があり、 粒界傾角を 20度以下に確実にするた めには成膜温度を 1 50°C以上、 250°C以下に設定する必要があることが明ら かである。
次に図 12は Sm2Z r 207の多結晶薄膜の半値全幅をイオンビームエネルギー 毎に測定した結果を示す。 その他の条件は最初に記載した試験の条件と同等であ る。
図 12に示す結果から、 Sm2Z Γ 27の多結晶薄膜の粒界傾角を 30度以下と するためには 150 e V以上、 300 e V以下のイオンビームエネルギーを選択 し、 粒界傾角を確実に 20度以下とするためには 175 e V以上、 225 e V以 下の範囲のイオンビームエネルギーとする必要があることが判明した。
更に図 1 3は、 Sm2Z Γ 207の多結晶薄膜を基材上に成膜した場合のイオンビ ームエネルギー依存性と YS Ζ (Υ23を 3 a t %添加した安定化ジルコニァの 多結晶薄膜を前述と同様の条件で成膜した試料) の多結晶薄膜を基材上に成膜し た場合のイオンビームエネルギー依存性を比較して示したものである。
図 13に示す比較から、 本発明に係る方法を用いて製造した Sm2Z r 207の多 結晶薄膜の粒界傾角の方が YS Zの多結晶薄膜の粒界傾角よりもいずれのイオン ビームエネルギーにおいても低い値が得られている。 この試験結果から、 仮に製 造中にイオンビームエネルギーの変動があっても Sm2Z r 2〇 の多結晶薄膜の方 が製造し易いことを示している。 これは YS Zの多結晶薄膜よりも Sm2Z r 20 7の多結晶薄膜の方が製造時の条件に制約され難く安定性が高いことを意味する。 次に、 前記 Sm2Z r27の多結晶薄膜上に図 8に示す構成のレーザ蒸着装置を 用いて酸化物超電導層を形成した。 更に夕一ゲッ トとして、 YiBazCusO x なる組成の酸化物超電導体からなるターゲッ トを用いた。 また、 蒸着処理室の内 部を 26.6Pa (2 x 10 1トール) に減圧し、 基板温度 700°Cにてレーザ蒸 着を行なった。 夕ーゲッ ト蒸発用のレーザとして波長 248 nmの K r Fエキシ マレ一ザを用いた。 その後、 400° Cで 60分間、 酸素雰囲気中において熱処 理した。 得られた酸化物超電導体は幅 1.0 cm、 長さ 100 cmのものである。 この酸化物超電導導体を液体窒素に浸漬し、 4端子法にて中央部分の幅 10m m、 長さ 1 Ommの部分について臨界電流密度を求めたところ。
J c = 1.3 X 106 (A/cm2) の優れた値を得ることができた。
これにより、 結晶配向性に優れた Sm2Z Γ27の多結晶薄膜上に形成した酸化 物超電導層の結晶配向性を良好とすることができ、 単結晶基板上に形成した同種 の酸化物超電導層と同等レベルの臨界電流密度を得られることを実証できた。 次に、 図 14は、 先の例の場合と同様に Ar+のイオンビームを用いて Y S 多 結晶薄膜と Hf 02多結晶薄膜と C e 02多結晶薄膜と Υ23多結晶薄膜 (希土類 酸化物型結晶構造) と Sm2Z r 〇7多結晶薄膜と Gd2Z r27多結晶薄膜をそ れそれ基材テープ上に成膜した場合に、 得られた各複合酸化物の多結晶薄膜の粒 界傾角に相当する半値全幅 (FWHM) の値を測定した結果を比較して示すもの である。
図 14に示す測定結果から明らかなように、 いずれの組成の多結晶薄膜におい ても、 粒界傾角の多少の大小はあるものの、 いずれの複合酸化物の多結晶薄膜に おいても優れた配向性が得られることが判明した。 また、 本発明に係る Sm2Z r27多結晶薄膜と Gd2Z r 207多結晶薄膜のい ずれにおいても 1 50 e V〜300 e Vの間のイオンビームエネルギーにてィォ ンアシストすることが好ましく、 その範囲の中でも、 150〜 250 eVの範囲 がより好ましく、 200 eVが最も好ましいことがわかる。
図 1 5は、 YS Z多結晶薄膜と Gd2Z r27多結晶薄膜について、 基板温度 2 00°C、 イオンビームエネルギー 200 eVの条件において成膜した場合の粒界 傾角を示す FWHMの値と成膜時間との関係を示す図である。 なお、 その他の条 件については先の例と同等とした。
図 15から、 先の例の試料よりも更に結晶配向性の良好な粒界傾角 10° に達 する Gd2Z Γ 207多結晶薄膜 (図 1 5において成膜時間を 5時間以上とした試料 の場合) を製造できることが判明した。 また、 YS Ζ多結晶薄膜に対して Gd2Z Γ 2〇 7多結晶薄膜であるならば、 半分程度の成膜時間で同程度の配向のものを製 造できることがわかる。 例えば、 図 1 5において、 以下の式 ( 1 ) で定義される 結晶配向進展に要する時定数てについて、 YS Z多結晶薄膜ではて = 106分で あるが、 Gd2Z r 27多結晶薄膜では r= 64分であり、 約 60%の時間で成膜 できることが明らかとなった。
φ ( t ) 二 + Ax exp (- t /r) … ( 1)
このとき、 øは半値全幅、 は無限時間成膜後に収束すると仮定した半値全 幅、 Aは初期条件に依存する定数である。
このように短時間で成膜できることは、 長尺の酸化物超電導導体を製造しょう とする場合に有利な条件であり、 長尺の酸化物超電導導体を製造する場合であつ ても、 製造時間を短縮することができ、 製造コストを低減できる効果を奏する。 なお、 図 1 5に示す YS Z多結晶薄膜の半値全幅が 6〜8時間成膜により 13 〜 1 5° に収束し、 先に本発明者らが種々公表している YS Z多結晶薄膜の配向 性よりも優れた値となっている。 これは、 イオンビームエネルギーの最適化と成 膜温度の最適化、 並びに、 装置の改良によりスパッ夕時間を長くできるようにし たことによっている。
なお、 他のパイロクロア型材料のうち Yb2Z r 207、 Y2Z r 20Υ, H o 2 Z r 2〇7、 については、 Gd2Z r207 と同様の成膜条件において、 YS Zとほぼ同 等の配向速度が得られた。 一方、 L a2Z Γ20?については、 500°C以下の基板 加熱温度においては有意な配向性が得られなかった。

Claims

請求の範囲
1. 多結晶基材の被成膜面上に形成された A Z r 0、 あるいは AH f Oのいずれ かの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 E r、 Ho、 D y 、 Eu、 Gd、 Sm、 Nd、 P r、 C e、 L aの中から選択される 1種の希土類 元素を示す。 ) で示されるパイロクロア型の結晶構造を有する複合酸化物の多結 晶薄膜で、 前記多結晶基材の被成膜面と平行な面に沿う前記多結晶薄膜の各結晶 粒の同一結晶軸が構成する粒界傾角が、 30度以下にされてなることを特徴とす る多結晶薄膜。
2. 前記 AZ r〇、 あるいは AH f 0のいずれかの組成で示される主としてパイ ロクロア型の結晶構造を有する複合酸化物の多結晶薄膜を構成する前記希土類元 素と Z r又は Hfの相対比が 0.1 : 0.9〜0.9 : 0.1の範囲であり、 かつ立 方晶であることを特徴とする請求項 1記載の多結晶薄膜。
3. 前記多結晶基材が耐熱性の金属テープであり、 前記結晶粒が Sm2Z Γ27、 Gd2Z r207のいずれかであることを特徴とする請求項 1に記載の多結晶薄膜。
4. 前記多結晶基材の被成膜面と平行な面に沿う前記多結晶薄膜の各結晶粒の同 一結晶軸が構成する粒界傾角が、 20度以下にされてなることを特徴とする請求 項 1記載の多結晶薄膜。
5. 多結晶基材の被成膜面上に形成された A Z r 0、 あるいは AH f 0のいずれ かの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 E r、 Η Ο、 D y 、 Eu、 Gd、 Sm、 Nd、 P r、 Ce、 L aの中から選択される 1種の希土類 元素を示す。 ) で示されるパイロクロア型の結晶構造を有する複合酸化物の結晶 粒からなり、 前記多結晶基材の被成膜面と平行な面に沿う前記結晶粒の同一結晶 軸が構成する粒界傾角を 30度以下にしてなる多結晶薄膜を製造する方法で、 前記多結晶薄膜の構成元素の夕一ゲッ 卜から発生させた構成粒子を多結晶基材 上に堆積させる際に、 多結晶基材を 300°C以下の温度に加熱し、 イオンソース から発生させるイオンビームとして、 Ar+のイオンビーム、 K r+のイオンビー ム、 Xe+のイオンビーム、 あるいはこれらの混合イオンビームを用い、 前記ィォ ンビームのイオンビームエネルギーを 1 50 e V以上、 300 eV以下の範囲に 調整し、 前記イオンビームを基材の被成膜面の法線に対して 50度以上、 60度 以下の入射角度で照射しながら前記構成粒子を基材上に堆積させることを特徴と する多結晶薄膜の製造方法。
6. 前記多結晶薄膜の構成元素の夕ーゲッ 卜から発生させた構成粒子を多結晶基 材上に堆積させる際に、 多結晶基材を 90°C以上 300°C以下の温度に加熱する ことを特徴とする請求項 5記載の多結晶薄膜の製造方法。
7. 前記多結晶薄膜の構成元素の夕ーゲッ卜から発生させた構成粒子を多結晶基 材上に堆積させる際に、 イオンソースから発生させるイオンビームのイオンビー ムエネルギーを 175 e V以上、 225 e V以下の範囲に調整することを特徴と ずる請求項 5記載の多結晶薄膜の製造方法。
8. 前記多結晶薄膜の構成元素の夕ーゲッ卜から発生させた構成粒子を多結晶基 材上に堆積させる際に、 前記イオンビームを基材の被成膜面の法線に対して 55 度以上、 60度以下の入射角度で照射しながら前記構成粒子を基材上に堆積させ ることを特徴とする請求項 5記載の多結晶薄膜の製造方法。
9. 多結晶基材と、 この多結晶基材の被成膜面上に形成された AZ rO、 あるい は、 AHf 0のいずれかの組成 (ただし、 前記組成において Aは、 Y、 Yb、 T m、 E r、 Ho、 Dy、 Eu、 Gd、 S m、 Nd、 P r、 C e、 L aの中から選 択される 1種の希土類元素を示す。 ) で示されるパイロクロア型の結晶構造を有 する複合酸化物の結晶粒からなり、 前記多結晶基材の被成膜面と平行な面に沿う 前記結晶粒の同一結晶軸が構成する粒界傾角を 30度以下にしてなる多結晶薄膜 と、 この多結晶薄膜上に形成された酸化物超電薄層とを具備してなることを特徴 とする酸化物超電導導体。
10. 前記酸化物超電薄層は、 AiBaz Cu307-x、 A2 Ba4 C u 80 xのいずれか の組成式 (ただし、 前記組成式において Aは、 Y、 Yb、 Tm、 E r、 Η Ο、 D y、 Eu、 Gd、 Sm、 Nd、 P r、 C e、 L aの中から選択される 1種の希土 類元素を示す。 ) で示される酸化物超電導体、 又は他の立方晶系の超電導体であ ることを特徴とする請求項 9に記載の酸化物超電導導体。
1 1. 前記多結晶基材が耐熱性の金属テープであることを特徴とする請求項 9記 載の酸化物超電導導体。
12. 前記酸化物超電薄層は、 前記多結晶基材の被成膜面と平行な面に沿う前記 結晶粒の同一結晶軸が構成する粒界傾角が 30度以下にされてなることを特徴と する請求項 9に記載の酸化物超電導導体。
13. 多結晶基材と、 この多結晶基材の被成膜面上に形成された A Z r〇、 ある いは、 AHf 〇のいずれかの組成 (ただし、 前記組成において Aは、 Y、 Yb、 Tm、 Er、 Ho、 Dy、 Eu、 Gd、 S m、 Nd、 Pr、 Ce、 Laの中から 選択される 1種の希土類元素を示す。 ) で示されるパイロクロア型の結晶構造を 有する複合酸化物の結晶粒からなり、 前記多結晶基材の被成膜面と平行な面に沿 う前記結晶粒の同一結晶軸が構成する粒界傾角を 30度以下にしてなる多結晶薄 膜と、 この多結晶薄膜上に形成された酸化物超電薄層とを具備してなる酸化物超 電導導体を製造する方法で、
前記多結晶薄膜の構成元素の夕ーゲッ 卜から発生させた構成粒子を多結晶基材 上に堆積させる際に、 多結晶基材を 300°C以下の温度に加熱し、 イオンソース から発生させるイオンビームとして、 Ar+のイオンビーム、 Kr+のイオンビー ム、 X e+のイオンビームあるいはこれらの混合イオンビームを用い、 前記イオン ビームのイオンビームエネルギーを 150 e V以上、 300 e V以下の範囲に調 整して、 前記イオンビームを基材の被成膜面の法線に対して 50度以上、 60度 以下の入射角度で照射しながら前記構成粒子を基材上に堆積させて多結晶薄膜を 形成し、 この後に多結晶薄膜上に酸化物超電導層を形成することを特徴とする酸 化物超電導導体の製造方法。
PCT/JP2000/008420 1999-11-29 2000-11-29 Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe WO2001040536A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001542599A JP3732780B2 (ja) 2000-05-29 2000-11-29 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
US09/890,052 US6632539B1 (en) 1999-11-29 2000-11-29 Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
EP00978005A EP1178129B1 (en) 1999-11-29 2000-11-29 Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
DE60045370T DE60045370D1 (de) 1999-11-29 2000-11-29 Polykristalliner dünner film und verfahren zu dessen herstellung, und supraleitendes oxid und verfahren zu dessen herstellung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33873199 1999-11-29
JP11/338731 1999-11-29
JP2000-159249 2000-05-29
JP2000159249 2000-05-29

Publications (1)

Publication Number Publication Date
WO2001040536A1 true WO2001040536A1 (fr) 2001-06-07

Family

ID=26576187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008420 WO2001040536A1 (fr) 1999-11-29 2000-11-29 Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe

Country Status (4)

Country Link
US (1) US6632539B1 (ja)
EP (1) EP1178129B1 (ja)
DE (1) DE60045370D1 (ja)
WO (1) WO2001040536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123441A1 (ja) 2007-03-29 2008-10-16 Fujikura Ltd. 多結晶薄膜とその製造方法及び酸化物超電導導体
JP2014055349A (ja) * 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd スパッタリングターゲット、およびスパッタリングターゲットの使用方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266072A (ja) * 2001-03-09 2002-09-18 Sumitomo Electric Ind Ltd 積層膜および成膜方法
US7507481B2 (en) 2002-11-20 2009-03-24 Shin-Etsu Chemical Co., Ltd. Heat resistant coated member, making method, and treatment using the same
US7432229B2 (en) * 2004-03-23 2008-10-07 Ut-Battelle, Llc Superconductors on iridium substrates and buffer layers
US7338683B2 (en) * 2004-05-10 2008-03-04 Superpower, Inc. Superconductor fabrication processes
US7619272B2 (en) * 2004-12-07 2009-11-17 Lsi Corporation Bi-axial texturing of high-K dielectric films to reduce leakage currents
WO2007009095A2 (en) * 2005-07-13 2007-01-18 Los Alamos National Security, Llc Coated conductors
JP4602911B2 (ja) * 2006-01-13 2010-12-22 財団法人国際超電導産業技術研究センター 希土類系テープ状酸化物超電導体
DE602006021287D1 (de) * 2006-05-18 2011-05-26 Nexans Leiter, beschichtet mit einem polykristallinen Film verwendbar zur Herstellung von Hochtemperatursupraleitungsschichten
DE102006041513B4 (de) * 2006-08-29 2008-10-16 Evico Gmbh Hochtemperatur-Schichtsupraleiteraufbau und Verfahren zu seiner Herstellung
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
ATE529900T1 (de) 2007-07-02 2011-11-15 Nexans Verfahren zum herstellen eines beschichteten leiters mit vereinfachter schichtarchitektur
US8227082B2 (en) * 2007-09-26 2012-07-24 Ut-Battelle, Llc Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom
KR101222789B1 (ko) * 2008-07-07 2013-01-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화란탄기 소결체, 동 소결체로 이루어지는 스퍼터링 타겟, 산화란탄기 소결체의 제조 방법 및 동 제조 방법에 의한 스퍼터링 타겟의 제조 방법
US20110034338A1 (en) * 2009-08-04 2011-02-10 Amit Goyal CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
US20110034336A1 (en) * 2009-08-04 2011-02-10 Amit Goyal CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
US8685549B2 (en) 2010-08-04 2014-04-01 Ut-Battelle, Llc Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
US9221076B2 (en) 2010-11-02 2015-12-29 Ut-Battelle, Llc Composition for forming an optically transparent, superhydrophobic coating
US8993092B2 (en) 2011-02-18 2015-03-31 Ut-Battelle, Llc Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same
US8748349B2 (en) 2011-04-15 2014-06-10 Ut-Battelle, Llc Buffer layers for REBCO films for use in superconducting devices
US8748350B2 (en) 2011-04-15 2014-06-10 Ut-Battelle Chemical solution seed layer for rabits tapes
US10283691B2 (en) 2013-02-14 2019-05-07 Dillard University Nano-composite thermo-electric energy converter and fabrication method thereof
US20140227461A1 (en) * 2013-02-14 2014-08-14 Dillard University Multiple Beam Pulsed Laser Deposition Of Composite Films
JP6067524B2 (ja) * 2013-09-25 2017-01-25 株式会社東芝 半導体装置および誘電体膜
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
EP2991126B1 (de) 2014-08-25 2016-10-05 Theva Dünnschichttechnik GmbH Verfahren und Vorrichtung zum Herstellen eines Hochtemperatur-Supraleiters
US10316403B2 (en) 2016-02-17 2019-06-11 Dillard University Method for open-air pulsed laser deposition
EP3282493B1 (de) 2016-08-10 2020-03-11 Theva Dünnschichttechnik GmbH Hochtemperatur-supraleiter-bandleiter mit edelstahl-substrat
CN111039674B (zh) * 2019-11-29 2021-11-16 四川大学 一种固化trpo模拟废物的锆酸钆陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252313A (ja) * 1990-02-28 1991-11-11 Osaka Titanium Co Ltd A↓22↓2o↓7型酸化物粉末の製造方法
JPH0465397A (ja) * 1990-06-29 1992-03-02 Matsushita Electric Ind Co Ltd 薄膜の形成方法および薄膜の形成装置
JPH06145977A (ja) * 1992-10-30 1994-05-27 Fujikura Ltd 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JPH06271393A (ja) * 1993-03-19 1994-09-27 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 薄膜積層体と酸化物超電導導体およびそれらの製造方法
JPH0967193A (ja) * 1995-08-31 1997-03-11 Sumitomo Metal Mining Co Ltd 強誘電体薄膜の製造方法
JPH1149599A (ja) * 1997-08-01 1999-02-23 Fujikura Ltd 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726016A1 (de) * 1987-08-05 1989-02-16 Siemens Ag Verfahren zur herstellung eines schichtartigen aufbaus aus einem oxidkeramischen supralteitermaterial
US5650378A (en) * 1992-10-02 1997-07-22 Fujikura Ltd. Method of making polycrystalline thin film and superconducting oxide body
US5432151A (en) * 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
JP3252313B2 (ja) 1995-03-28 2002-02-04 日本蓄電器工業株式会社 電解コンデンサ用アルミニウム箔のエッチング方法
US5556713A (en) * 1995-04-06 1996-09-17 Southwest Research Institute Diffusion barrier for protective coatings
US6451450B1 (en) * 1995-04-10 2002-09-17 Ut-Battelle, Llc Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5872080A (en) * 1995-04-19 1999-02-16 The Regents Of The University Of California High temperature superconducting thick films
US6140773A (en) * 1996-09-10 2000-10-31 The Regents Of The University Of California Automated control of linear constricted plasma source array
DE69730591T3 (de) * 1996-10-23 2015-05-21 Fujikura Ltd. Verfahren zur herstellung von polykristallinem dünnen film, verfahren zur herstellung von oxidsupraleitern und vorrichtung dafür
US6440211B1 (en) * 1997-09-02 2002-08-27 Ut-Battelle, Llc Method of depositing buffer layers on biaxially textured metal substrates
US6270908B1 (en) * 1997-09-02 2001-08-07 Ut-Battelle, Llc Rare earth zirconium oxide buffer layers on metal substrates
US6256521B1 (en) * 1997-09-16 2001-07-03 Ut-Battelle, Llc Preferentially oriented, High temperature superconductors by seeding and a method for their preparation
US6190752B1 (en) * 1997-11-13 2001-02-20 Board Of Trustees Of The Leland Stanford Junior University Thin films having rock-salt-like structure deposited on amorphous surfaces
US6060433A (en) * 1998-01-26 2000-05-09 Nz Applied Technologies Corporation Method of making a microwave device having a polycrystalline ferrite substrate
DE69925420T2 (de) * 1998-07-30 2006-02-02 Sumitomo Electric Industries, Ltd. Oxydsupraleitender Draht vom Typ Supraleiter auf Kern
US6376090B1 (en) * 1998-09-25 2002-04-23 Sharp Kabushiki Kaisha Method for manufacturing a substrate with an oxide ferroelectric thin film formed thereon and a substrate with an oxide ferroelectric thin film formed thereon
US6361598B1 (en) * 2000-07-20 2002-03-26 The University Of Chicago Method for preparing high temperature superconductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252313A (ja) * 1990-02-28 1991-11-11 Osaka Titanium Co Ltd A↓22↓2o↓7型酸化物粉末の製造方法
JPH0465397A (ja) * 1990-06-29 1992-03-02 Matsushita Electric Ind Co Ltd 薄膜の形成方法および薄膜の形成装置
JPH06145977A (ja) * 1992-10-30 1994-05-27 Fujikura Ltd 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JPH06271393A (ja) * 1993-03-19 1994-09-27 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 薄膜積層体と酸化物超電導導体およびそれらの製造方法
JPH0967193A (ja) * 1995-08-31 1997-03-11 Sumitomo Metal Mining Co Ltd 強誘電体薄膜の製造方法
JPH1149599A (ja) * 1997-08-01 1999-02-23 Fujikura Ltd 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1178129A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123441A1 (ja) 2007-03-29 2008-10-16 Fujikura Ltd. 多結晶薄膜とその製造方法及び酸化物超電導導体
US8299363B2 (en) 2007-03-29 2012-10-30 Fujikura Ltd. Polycrystalline thin film, method for producing the same and oxide superconductor
JP2014055349A (ja) * 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd スパッタリングターゲット、およびスパッタリングターゲットの使用方法

Also Published As

Publication number Publication date
DE60045370D1 (de) 2011-01-27
EP1178129A4 (en) 2007-12-19
EP1178129B1 (en) 2010-12-15
US6632539B1 (en) 2003-10-14
EP1178129A1 (en) 2002-02-06

Similar Documents

Publication Publication Date Title
WO2001040536A1 (fr) Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe
JP5103443B2 (ja) 多結晶薄膜とその製造方法及び酸化物超電導導体
KR100545547B1 (ko) 다결정 박막의 제조방법 및 산화물 초전도체의 제조방법
JP5227722B2 (ja) 多結晶薄膜とその製造方法及び酸化物超電導導体
JP2996568B2 (ja) 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JP4131771B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体
JPH06271393A (ja) 薄膜積層体と酸化物超電導導体およびそれらの製造方法
JP4033945B2 (ja) 酸化物超電導導体およびその製造方法
JP3634078B2 (ja) 酸化物超電導導体
JP2010287475A (ja) MgB2超電導導体およびその製造方法
JP2011009106A (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JP4619697B2 (ja) 酸化物超電導導体とその製造方法
JPH1149599A (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP3732780B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP5481135B2 (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JP2005113220A (ja) 多結晶薄膜及びその製造方法、酸化物超電導導体
JP4519540B2 (ja) 酸化物超電導導体の製造方法及び酸化物超電導導体
JP5452216B2 (ja) 3回対称MgO膜及び4回対称MgO膜の成膜方法
JP2003096563A (ja) 多結晶薄膜の形成方法並びに酸化物超電導導体
JP2004124255A (ja) 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JP5481180B2 (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JP4128557B2 (ja) 酸化物超電導導体
JP2003151386A (ja) 多結晶薄膜及び酸化物超電導導体
JP2005330533A (ja) 多結晶配向中間薄膜とその製造方法及び酸化物超電導導体とその製造方法
JP2004022505A (ja) 酸化物超電導導体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09890052

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 542599

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000978005

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000978005

Country of ref document: EP