JP4128557B2 - 酸化物超電導導体 - Google Patents

酸化物超電導導体 Download PDF

Info

Publication number
JP4128557B2
JP4128557B2 JP2004291991A JP2004291991A JP4128557B2 JP 4128557 B2 JP4128557 B2 JP 4128557B2 JP 2004291991 A JP2004291991 A JP 2004291991A JP 2004291991 A JP2004291991 A JP 2004291991A JP 4128557 B2 JP4128557 B2 JP 4128557B2
Authority
JP
Japan
Prior art keywords
thin film
intermediate thin
oxide superconducting
polycrystalline
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004291991A
Other languages
English (en)
Other versions
JP2005038865A (ja
Inventor
隆 齊藤
康裕 飯島
真理子 保坂
伸行 定方
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004291991A priority Critical patent/JP4128557B2/ja
Publication of JP2005038865A publication Critical patent/JP2005038865A/ja
Application granted granted Critical
Publication of JP4128557B2 publication Critical patent/JP4128557B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導発電機用マグネット、磁気浮上列車用マグネット等に利用される酸化物超電導導体に係わり、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度が優れるという特性と、基材の長さ方向に対する超電導特性が安定した酸化物超電導層が形成されるという特性のうち少なくとも一方の特性を備えた酸化物超電導導体に関する。
近年になって発見された酸化物超電導体は、液体窒素温度を超える臨界温度を示す優れた超電導体であるが、現在、この種の酸化物超電導体を実用的な超電導体として使用するためには、種々の解決するべき問題点が存在している。その問題点の1つが、酸化物超電導体の臨界電流密度が低いという問題である。
前記酸化物超電導体の臨界電流密度が低いという問題は、酸化物超電導体の結晶自体に電気的な異方性が存在することが大きな原因となっており、特に酸化物超電導体はその結晶軸のa軸方向とb軸方向には電気を流し易いが、c軸方向には電気を流しにくいことが知られている。このような観点から酸化物超電導体を基材上に形成してこれを超電導体として使用するためには、基材上に結晶配向性の良好な状態の酸化物超電導体を形成し、しかも、電気を流そうとする方向に酸化物超電導体の結晶のa軸あるいはb軸を配向させ、その他の方向に酸化物超電導体のc軸を配向させる必要がある。
ところで、酸化物超電導体を導電体として使用するためには、テープ状などの長尺の基材上に結晶配向性の良好な酸化物超電導層を形成する必要がある。ところが、金属テープなどの基材上に酸化物超電導層を直接形成すると、金属テープ自体が多結晶体でその結晶構造も酸化物超電導体と大きく異なるために、結晶配向性の良好な酸化物超電導層は到底形成できないものである。しかも、酸化物超電導層を形成する際に行なう熱処理によって金属テープと酸化物超電導層との間で拡散反応が生じるために、酸化物超電導層の結晶構造が崩れ、超電導特性が劣化する問題がある。
そこで本発明者らは、図14に示すようなハステロイテープなどの金属テープからなる基材1の上にイットリウム安定化ジルコニア(YSZ)などの多結晶中間薄膜2を形成し、この多結晶中間薄膜2上に、酸化物超電導体の中でも臨界温度が約90Kであり、液体窒素(77K)中で用いることができる安定性に優れたY1Ba2Cu3Ox系の超電導層3を形成することで超電導特性の優れた超電導導体10を製造する試みを種々行なっている。このような試みの中から本発明者らは先に、結晶配向性に優れた中間薄膜を形成するために、あるいは、超電導特性の優れた超電導テープを得るために、特願平3−126836号、特願平3−126837号、特願平3−205551号、特願平4−13443号、特願平4−293464号などにおいて特許出願を行なっている。
これらの特許出願に記載された技術によれば、ハステロイテープなどの金属テープの基材の片面にスパッタ装置により多結晶中間薄膜を形成する際に、スパッタリングと同時に基材成膜面の斜め方向からイオンビームを照射しながら多結晶中間薄膜を成膜する方法(イオンビームアシストスパッタリング法)により、結晶配向性に優れた多結晶中間薄膜を形成することができるものである。この方法によれば、多結晶中間薄膜を形成する多数の結晶粒のそれぞれの結晶格子のa軸あるいはb軸で形成する粒界傾角を30度以下に揃えることができ、結晶配向性に優れた多結晶中間薄膜を形成することができる。そして更に、この配向性に優れた中間薄膜上にYBaCuO系の超電導層をレーザー蒸着法等により成膜するならば、酸化物超電導層の結晶配向性も優れたものになり、これにより、結晶配向性に優れ、77Kで臨界電流密度が10A/cm以上と高い酸化物超電導層を形成することができる。
ところが前記特許出願に係る方法にあっては、基材の片面にイオンビームアシストスパッタリング法により多結晶中間薄膜を成膜すると圧縮応力により歪みが生じ、基材に反りが生じてしまう。酸化物超電導層の蒸着する際には、超電導特性が均質な酸化物超電導層を形成するために基材の表面温度を一定に保つ必要があるが、基材に反りがあると、基材表面を均一に加熱することが困難で基材の表面の温度分布にムラが生じてしまい、その結果、基材の長さ方向に対する超電導特性が不安定な酸化物超電導層が得られてしまうという問題があった。さらにまた、前記特許出願に係る方法にあっては、得られる酸化物超電導層の膜厚が数μmであるため、金属テープからなる基材の数100μmの厚さに比べて薄く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては高くならないという問題があった。そこで、オーバーオールあたりの臨界電流密度を向上させるために、基材となる金属テープの厚さを薄くし、該基材の片面にイオンビームアシストスパッタリング法により多結晶中間薄膜を形成した後、この多結晶中間薄膜上にレーザ蒸着法等により酸化物超電導層を形成すると、酸化物超電導層の蒸着時に高温雰囲気によって基材が熱膨張し、該基材に反りやねじれなどの歪みが生じ、該基材上に形成されている多結晶中間薄膜にも歪みが生じてしまう。このような歪みが多結晶中間薄膜にあると、該多結晶中間薄膜上に形成される酸化物超電導層の結晶配向性が不良となり、目的とする超電導特性が得られない。
本発明は前記課題を解決するためになされたもので、多結晶中間薄膜の形成時の圧縮応力によって基材に反りが生じることなく、基材の長さ方向に対する超電導特性が安定した酸化物超電導層が形成されるという特性と、厚さの薄いテープ状の基材が用いられていても、酸化物超電導層の蒸着時の高温雰囲気によって上記基材に歪みが生じることが少なく、オーバーオールあたりの臨界電流密度が向上するという特性のうち少なくとも一方の特性を備えた酸化物超電導導体を提供することを目的とする。
請求項1記載の発明は前記課題を解決するために、テープ状の基材と、この基材の両面上にそれぞれ形成されて多数の結晶粒が結合されてなる配向制御多結晶中間薄膜と、このうちの1の配向制御多結晶中間薄膜上に形成された酸化物超電導層を具備してなるものである。
請求項2記載の発明は前記課題を解決するために、請求項1記載の酸化物超電導導体の基材の厚みが0.01〜0.15mmであり、配向制御多結晶中間薄膜の厚みが0.1〜1μmであるものである。
以上説明したように本発明の酸化物超電導導体は、テープ状の基材の両面上にそれぞれ中間薄膜が形成され、さらにこれら中間薄膜のうち配向制御多結晶中間薄膜上に酸化物超電導層を形成されたものであるので、テープ状の基材の厚さが薄くても、該基材が両面の中間薄膜で支持されるので、酸化物超電導層の蒸着時に高温雰囲気によって基材に歪みが生じることが抑制される。これによって基材上の中間薄膜に歪みが生じることも少なくなり、配向制御多結晶中間薄膜の表面の平面性が向上するので、配向制御多結晶中間薄膜上に形成される酸化物超電導層の結晶配向性が良好となり、臨界電流密度が優れたものとなる。従って、本発明の酸化物超電導導体にあっては、厚みの薄いテープ状の基材が使用できるので、酸化物超電導導体の厚みを薄くすることができ、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度を向上させることができ、電流容量の大きい長尺の酸化物超電導導体を容易に提供することができるという利点がある。また、本発明の酸化物超電導導体は、基材の両面に形成された中間薄膜が絶縁層として機能するので、酸化物超電導層側のみさらに絶縁層を形成すればよく、また、マグネット等として用いる場合は、絶縁層を形成することなくそのまま巻き込むことが可能である。
また、特に中間薄膜を多結晶速成薄膜と配向制御多結晶薄膜との二層から構成した酸化物超電導導体にあっては、多結晶速成中間薄膜と配向制御多結晶中間薄膜とを合わせた膜厚分を全て配向制御多結晶中間薄膜とするよりも、成膜に時間のかかる配向制御多結晶中間薄膜の部分が少なくなるうえ、多結晶速成中間薄膜部分は成膜速度が早いので、成膜時間が短縮される。
また、基材の両面上に中間薄膜を介して酸化物超電導層が形成された酸化物超電導導体にあっては、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度が基材の一方の面上だけに酸化物超電導層が形成された酸化物超電導導体の約2倍程度となり、オーバーオールあたりの臨界電流密度が大きく、電流容量のより大きい長尺の酸化物超電導導体を容易に提供することができるという利点がある。また、配向制御多結晶中間薄膜を形成する多数の結晶粒のそれぞれの粒界傾角を30度以下としたものにあっては、配向制御多結晶中間薄膜上に成膜された酸化物超電導層の結晶配向性がより良好になるので、より優れた超電導特性を示すものとなる。
さらに、基材の両面上の配向制御多結晶中間薄膜をイオンビームアシストスパッタリング法により形成したものにあっては、圧縮応力が入っているものの両面の配向制御多結晶中間薄膜によって圧縮応力が打ち消されるため基材に反りが生じることを防止でき、しかも、基材の下面(加熱される面)にも多結晶速成中間薄膜や配向制御多結晶中間薄膜が形成されているので、基材の酸化が防止される。これによって、配向制御多結晶中間薄膜上に酸化物超電導層を蒸着する時に薄膜積層体表面を均一に加熱し易くなり、薄膜積層体表面の温度分布にムラが生じることが殆どなく、薄膜積層体の温度が安定するので、基材の長さ方向に対する超電導特性が安定した酸化物超電導層を形成することができる。従って、本発明の酸化物超電導導体によれば、配向制御多結晶中間薄膜の形成時の圧縮応力によって基材に反りが生じることなく、基材の長さ方向に対する超電導特性が安定した酸化物超電導層が形成されるという特性と、厚さの薄いテープ状の基材が用いられていても、酸化物超電導層の蒸着時の高温雰囲気によって上記基材に歪みが生じることが少なく、オーバーオールあたりの臨界電流密度が向上するという特性の少なくとも一方の特性を備えた酸化物超電導導体を提供することができる。
以下、図面を参照して本発明の例について説明する。図1は、本発明に係る酸化物超電導導体の第1の例を示すものであり、この例の酸化物超電導導体20は、テープ状の基材21の上面上に多数の結晶粒が結合されてなる配向制御多結晶中間薄膜22が形成され、上記基材21の下面上に多結晶速成中間薄膜23が形成され、上記配向制御多結晶中間薄膜22上に酸化物超電導層24が形成されてなるものである。
前記基材21の構成材料としては、ステンレス鋼、銅、または、ハステロイなどのニッケル合金などの合金各種金属材料から適宜選択される長尺の金属テープを用いることができる。この基材21の厚みは、0.01〜0.5mm、好ましくは0.02〜0.15mmとされる。基材21の厚みが0.5mmを超えると、後述する酸化物超電導層24の膜厚に比べて厚く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては低下してしまう恐れがある。一方、基材21の厚みが0.01mm未満であると、著しく基材の強度が低下し、超電導体の補強効果を消失してしまう恐れがある。
前記配向制御多結晶中間薄膜22は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなり、各結晶粒の結晶軸のc軸は基材21の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。各結晶粒の結晶のa軸(あるいはb軸)どうしは、それらのなす角度(粒界傾角K)を30度以内にして接合一体化されているのが好ましい。この配向制御多結晶中間薄膜22の厚みは、0.1〜1.0μm、好ましくは0.3〜0.7μmとされる。配向制御多結晶中間薄膜22の厚みを1.0μmを超えて厚くしてもももはや効果の増大は期待できず、経済的にも不利となる。一方、配向制御多結晶中間薄膜22の厚みが0.1μm未満であると、薄すぎて基材21を十分支持できず、後述する酸化物超電導層24の蒸着時に高温雰囲気によって基材21に歪みが生じる恐れがあり、また、熱処理時に酸化物超電導層24の元素を基材21側に拡散させてしまう恐れがあり、酸化物超電導層24の成分組成が崩れる恐れがあるからである。
前記多結晶速成中間薄膜23は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものである。この多結晶速成中間薄膜23の厚みは、0.1〜1.0μm、好ましくは0.3〜0.7μmとされる。多結晶速成中間薄膜23の厚みを1.0μmを超えて厚くしてもももはや効果の増大は期待できず、経済的にも不利となる。一方、多結晶速成中間薄膜23の厚みが0.1μm未満であると、薄すぎて基材21を十分支持できず、後述する酸化物超電導層24の蒸着時に高温雰囲気によって基材21に歪みが生じる恐れがあるからである。
前記酸化物超電導層24は、YBaCu、YBaCu、YBaCuなる組成、(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い超電導材料からなるものである。この酸化物超電導層24の厚みは0.5〜5μm程度とされる。
次に、前記配向制御多結晶中間薄膜22と多結晶速成中間薄膜23を製造する装置と製造方法について説明する。図2は、前記多結晶速成中間薄膜23を製造する装置の一例を示すものであり、この例の装置は、高周波スパッタ装置である。本例の装置は、基材21を保持する基材ホルダ31と、この基材ホルダ31の上方に所定間隔をもって対向配置された板状のターゲット32を主体として構成されている。また、図中符号33は、ターゲット32を保持したターゲットホルダを示し、このターゲットホルダ33は高周波電源34に接続され、この高周波電源34と前述の基材ホルダ31はそれぞれ接地されている。また、図中符号35は、テープ状の基材21の送出装置、36は基材21の巻取装置を示し、この送出装置35から連続的に基材ホルダ31上に基材21を送り出し、続いて巻取装置36で巻き取ることで基材21上に連続成膜することができるようになっている。
また、基材ホルダ31、ターゲットホルダ33は図示略の真空容器に収納されていて、基材ホルダ31とターゲットホルダ33の周囲を真空雰囲気に保持できるようになっている。更に前記真空容器には、ガスボンベなどの雰囲気ガス供給源が接続されていて、必要に応じて真空容器の内部を真空などの低圧状態で、かつ、アルゴンガスあるいはその他の不活性ガス雰囲気または酸素を含む不活性ガス雰囲気にすることができるようになっている。以上の構成により、真空容器の内部を減圧してから高周波電源34を作動させることによって基材21の上方空間にプラズマを発生させることができ、このプラズマの作用によりターゲット32の粒子をスパッタして基材21側に向けて飛ばすことができるようになっている。
前記基材ホルダ31は内部に加熱ヒータを備えて構成され、基材ホルダ31上に配置された基材21を必要に応じて所望の温度に加熱できるようになっている。前記ターゲット32は、目的とする多結晶速成中間薄膜23を形成するためのものであって、目的の組成の多結晶中間薄膜と同一組成あるいは近似組成のものなどが用いられる。ターゲット32として具体的には、MgOあるいはYで安定化したジルコニア(YSZ)、MgO、SrTiOなどを用いることができるがこれらに限るものではなく、形成しようとする多結晶速成中間薄膜23に見合うターゲットを適宜用いれば良い。
次に前記構成の装置を用いて基材21上にYSZの多結晶速成中間薄膜23を形成する場合について説明する。基材21上に多結晶速成中間薄膜23を形成するには、YSZのターゲットを用いるとともに基材21を収納している真空容器の内部を真空引きして減圧雰囲気とする。そして、高周波電源34を作動させる。これによりターゲット32の構成粒子がスパッタされて基材21上に飛来する。この粒子を所用時間かけて堆積させるならば、基材21上に所望の厚さの多結晶速成中間薄膜を形成することができる。このようにして得られた多結晶速成中間薄膜23を構成する多数の結晶粒の結晶軸のa軸とb軸とc軸は、いずれも任意な方向を向いていても良いし配向性があるものでも良い。
次に、図3は前述の配向制御多結晶中間薄膜22を製造する装置の一例を示すものであり、この例の装置は、イオンビームスパッタ装置にイオンビームアシスト用のイオンガンを設けた構成となっている。本例の装置は、基材21を保持する基材ホルダ45と、この基材ホルダ45の斜め上方に所定間隔をもって対向配置された板状のターゲット46と、前記基材ホルダ45の斜め上方に所定間隔をもって対向され、かつ、前記ターゲット46と離間して配置されたイオンガン47と、前記ターゲット46の斜め下方においてターゲット46の下面に向けて配置されたスパッタビーム照射装置48を主体として構成されている。また、図中符号49は、ターゲット46を保持したターゲットホルダを示している。また、図中符号55は、テープ状の基材21の送出装置、56は基材21の巻取装置を示し、この送出装置55から連続的に基材ホルダ45上に基材21を送り出し、続いて巻取装置56で巻き取ることで基材21上に連続成膜することができるようになっている。
また、本の例の装置は図示略の真空容器に収納されていて、基材21の周囲を真空雰囲気に保持できるようになっている。更に前記真空容器には、ガスボンベなどの雰囲気ガス供給源が接続されていて、真空容器の内部を真空などの低圧状態で、かつ、アルゴンガスあるいはその他の不活性ガス雰囲気または酸素を含む不活性ガス雰囲気にすることができるようになっている。
前記基材ホルダ45は内部に加熱ヒータを備え、基材ホルダ45の上に位置された基材21を必要に応じて所望の温度に加熱できるようになっている。また、基材ホルダ45の底部には角度調整機構Dが付設されている。この角度調整機構Dは、基材ホルダ45の底部に接合された上部支持板60と、この上部支持板60にピン結合された下部支持板61と、この下部支持板61を支持する基台62を主体として構成されている。前記上部支持板60と下部支持板61とはピン結合部分を介して互いに回動自在に構成されており、基材ホルダ45の傾斜角度を調整できるようになっている。なお、本例の装置では基材ホルダ45の角度を調整する角度調整機構Dを設けたが、角度調整機構Dをイオンガン47の支持部分に取り付けてイオンガン47の傾斜角度を調整し、イオンビームの入射角度を調整するようにしても良い。また、角度調整機構は本の例の構成に限るものではなく、種々の構成のものを採用することができるのは勿論である。
前記ターゲット46は、目的とする配向制御多結晶中間薄膜を形成するためのものであり、目的の組成の配向制御多結晶中間薄膜と同一組成あるいは近似組成のものなどを用いる。ターゲット46として具体的には、MgOあるいはYで安定化したジルコニア(YSZ)、MgO、SrTiOなどを用いるがこれに限るものではなく、形成しようとする配向制御多結晶中間薄膜に見合うターゲッを適宜用いれば良い。
前記イオンガン47は、容器の内部に、蒸発源を収納し、蒸発源の近傍に引き出し電極を備えて構成されている。そして、前記蒸発源から発生した原子または分子の一部をイオン化し、そのイオン化した粒子を引き出し電極で発生させた電界で制御してイオンビームとして照射する装置である。粒子をイオン化するには直流放電方式、高周波励起方式、フィラメント式、クラスタイオンビーム方式などの種々のものがある。フィラメント式はタングステン製のフィラメントに通電加熱して熱電子を発生させ、高真空中で蒸発粒子と衝突させてイオン化する方法である。また、クラスタイオンビーム方式は、原料を入れたるつぼの開口部に設けられたノズルから真空中に出てくる集合分子のクラスタを熱電子で衝撃してイオン化して放射するものである。本の例においては、図4に示す構成の内部構造のイオンガン47を用いる。このイオンガン47は、筒状の容器65の内部に、引出電極66とフィラメント67とArガスなどの導入管68とを備えて構成され、容器65の先端からイオンをビーム状に平行に照射できるものである。
前記イオンガン47は、図3に示すようにその中心軸線Sを基材21の上面(成膜面)に対して入射角度θ(基材21の垂線(法線)と中心線Sとのなす角度)でもって傾斜させて対向されている。この入射角度θは50〜60度の範囲が好ましいが、55〜60度の範囲が最も好ましい。従ってイオンガン47は基材21の上面に対して入射角度θでもってイオンビームを照射できるように配置されている。なお、前記イオンガン47によって基材21に照射するイオンビームは、He、Ne、Ar、Xe、Krなどの希ガスのイオンビーム、あるいは、それらと酸素イオンの混合イオンビームなどで良い。だだし、形成しようとする配向制御多結晶中間薄膜の結晶構造を整えるためには、ある程度の原子量が必要であり、あまりに軽量のイオンでは効果が薄くなることを考慮すると、Ar、Krなどのイオンを用いることが好ましい。前記スパッタビーム照射装置48は、イオンガン47と同等の構成をなし、ターゲット46に対してイオンビームを照射してターゲット46の構成粒子を基材21に向けて叩き出すことができるものである。
次に前記構成の装置を用いてテープ状の基材21の他方の面(多結晶速成中間薄膜23が形成されていない側の面)上にYSZの配向制御多結晶中間薄膜22をイオンビームアシストスパッタリング法により形成する場合について説明する。基材21の多結晶速成中間薄膜23が形成されていない側の面上に配向制御多結晶中間薄膜22を形成するには、YSZのターゲットを用いるとともに、角度調整機構Dを調節してイオンガン47から照射されるイオンビームを基材21の上面に50〜60度の範囲の角度で照射できるようにする。次に基材21を収納している容器の内部を真空引きして減圧雰囲気とする。この際の真空容器内の圧力は、イオンビームを使用する関係から図2に示す高周波スパッタ装置の真空容器内の圧力よりも低い値となる。そして、イオンガン47とスパッタビーム照射装置48を作動させる。
スパッタビーム照射装置48からターゲット46にイオンビームを照射すると、ターゲット46の構成粒子が叩き出されて基材21上に飛来する。そして、基材21上に、ターゲット46から叩き出した構成粒子を堆積させると同時にイオンガン47からArイオンと酸素イオンの混合イオンビームを照射して所望の厚みの配向制御多結晶中間薄膜22を形成する。このイオン照射する際の入射角度θは、50〜60度の範囲が好ましく、55〜60度の範囲が最も好ましい。ここでθを90度とすると、多結晶中間薄膜22のc軸は基材21上の成膜面に対して直角に配向するものの、基材21の成膜面上に(111)面が立つので好ましくない。また、θを30度とすると、多結晶中間薄膜22はc軸配向すらしなくなる。前記のような好ましい範囲の角度でイオンビーム照射するならば多結晶中間薄膜22の結晶の(100)面が立つようになる。
このような入射角度でイオンビーム照射を行ないながらスパッタリングを行なうことで、基材21上に形成されるYSZの配向制御多結晶中間薄膜22の結晶軸のa軸とb軸とを配向させることができるが、これは、堆積されている途中のスパッタ粒子に対して適切な角度でイオンビーム照射されたことによるものと思われる。
なお、この配向制御多結晶中間薄膜22の結晶配向性が整う要因として本発明らは、以下のことを想定している。YSZの配向制御多結晶中間薄膜22の結晶の単位格子は、図5に示すように立方晶系であり、この結晶格子においては、基板法線方向が<100>軸であり、他の<010>軸と<001>軸はいずれも図5に示す方向となる。これらの方向に対し、基板法線に対して斜め方向から入射するイオンビームを考慮すると、図5の原点Oに対して単位格子の対角線方向、即ち、<111>軸に沿って入射する場合は54.7度の入射角度となる。
ここで、前記のように入射角度50〜60度の範囲内でイオンビームを照射する際に最も良好な結晶配向性を示すということは、イオンビームの入射角度が前記54.7度と一致するかその前後になった場合、イオンチャンネリングが最も効果的に起こり、基材21上に堆積しつつある結晶において、基材21の上面で前記角度に一致する配置関係になった原子のみが選択的に残り易くなり、その他の乱れた原子配列のものは斜め方向からのイオンビームのスパッタ効果によりスパッタされて除去される結果、配向性の良好な原子の集合した結晶のみが選択的に残って堆積してゆくことによるものと推定している。ただし、このように堆積された結晶のうち、乱れた原子配列のものをイオンビームで除去しながら成膜するので、成膜レートは悪くなり、成膜速度は通常のスパッタリングで成膜するよりも遅くなる。
図6に、前記の方法で基材21の一方の面上にYSZの配向制御多結晶中間薄膜22が形成され、基材21の他方の面上に多結晶速成中間薄膜23が形成された薄膜積層体25を示す。なお、図6では結晶粒27が1層のみ形成された状態を示しているが、結晶粒27を多層構造としても差し支えないのは勿論である。
以上のように構成された薄膜積層体25にあっては、更にその上に酸化物超電導層を形成することで実用に供される。そして、薄膜積層体25の最上部には配向制御多結晶中間薄膜22が形成されているので、この上に成膜される酸化物超電導層は結晶配向性に優れたものとなり、これにより超電導特性が向上する。
次に、前記薄膜積層体25の上に酸化物超電導層を形成して酸化物超電導導体を製造する装置と製造する方法について説明する。図7は酸化物超電導層を成膜法により形成する装置の一例を示すもので、図7はレーザ蒸着装置を示している。この例のレーザ蒸着装置70は、処理容器71を有し、この処理容器71の内部の蒸着処理室72に薄膜積層体25とターゲット73を設置できるようになっている。即ち、蒸着処理室72の底部には基台74が設けられ、この基台74の上面に薄膜積層体25を設置できるようになっているとともに、基台74の斜め上方に支持ホルダ73aによって支持されたターゲット73が傾斜状態で設けられている。また、図中符号75は薄膜積層体25の送出装置、76は薄膜積層体25の巻取装置を示し、この送出装置75から連続的に基台74上に薄膜積層体25を送り出し、続いて巻取装置76で巻き取ることで薄膜積層体25上に連続成膜することができるようになっている。また、処理容器71は、排気孔77aを介して真空排気装置77に接続されて蒸着処理室72を所定の圧力に減圧できるようになっている。
前記ターゲット73は、形成しようとする酸化物超電導層と同等または近似した組成、あるいは、成膜中に逃避しやすい成分を多く含有させた複合酸化物の焼結体あるいは酸化物超電導体などの板体からなっている。従ってターゲット73は、YBaCu、YBaCu、YBaCuなる組成、(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導層を形成するために使用するので、これと同一の組成か近似した組成のものを用いることが好ましい。前記基台74は加熱ヒータを内蔵したもので、薄膜積層体25を必要に応じて所望の温度に加熱できるようになっている。
一方、処理容器71の側方には、レーザ発光装置78と第1反射鏡79と集光レンズ80と第2反射鏡81とが設けられ、レーザ発光装置78が発生させたレーザビームを処理容器71の側壁に取り付けられた透明窓82を介してターゲット73に集光照射できるようになっている。レーザ発光装置78はターゲット73から構成粒子を叩き出すことができるものであれば、YAGレーザ、COレーザ、エキシマレーザなどのいずれのものを用いても良い。
次に前記YSZの配向制御多結晶中間薄膜22の上に、酸化物超電導層24を形成する方法について説明する。まず、薄膜積層体25をこれの配向制御多結晶中間薄膜22側を上にして図7に示すレーザ蒸着装置70の基台74上に設置し、蒸着処理室72を真空排気装置77で減圧する。ここで必要に応じて蒸着処理室72に酸素ガスを導入して蒸着処理室72を酸素雰囲気としても良い。また、基台74の加熱ヒータを作動させて薄膜積層体25を所望の温度に加熱しても良い。
次にレーザ発光装置78から発生させたレーザビームを蒸着処理室72のターゲット73に集光照射する。これによってターゲット73の構成粒子がえぐり出されるか蒸発されてその粒子が配向制御多結晶中間薄膜22上に堆積する。ここで構成粒子の堆積の際に配向制御多結晶中間薄膜22が予めc軸配向し、a軸とb軸でも配向しているので、配向制御多結晶中間薄膜22上に形成される酸化物超電導層24の結晶のc軸とa軸とb軸も配向制御多結晶中間薄膜22に整合するようにエピタキシャル成長して結晶化する。これにより結晶配向性の良好な酸化物超電導層24が得られる。なお、成膜後に必要に応じて酸化物超電導層24の結晶構造を整えるための熱処理を施しても良い。上述の方法により薄膜積層体25の上に酸化物超電導層24を形成すると、図1に示すような第1の例の酸化物超電導導体20が得られる。前記配向制御多結晶中間薄膜22上に形成された酸化物超電導層24は、多結晶状態となるが、この酸化物超電導層24の結晶粒の1つ1つにおいては、基材21の厚さ方向に電気を流しにくいc軸が配向し、基材21の面方向にa軸どうしあるいはb軸どうしが配向した結晶配向性が良好なものとなる。従って得られた酸化物超電導層24は結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が少ないので、基材21の面方向に電気を流し易く、臨界電流密度の優れたものが得られる。
第1の例の酸化物超電導導体20にあっては、前述の構成としたことにより、テープ状の基材21の厚さが薄くても、該基材21が両面の配向制御多結晶中間薄膜22と多結晶速成中間薄膜23で支持されるので、酸化物超電導層24の蒸着時に高温雰囲気によって基材21に歪みが生じることが抑制される。これによって基材21上の配向制御多結晶中間薄膜22に歪みが生じることも少なくなり、配向制御多結晶中間薄膜22の表面の平面性が向上するので、配向制御多結晶中間薄膜22上に形成される酸化物超電導層24の結晶配向性が良好となり、臨界電流密度が優れたものとなる。従って、この第1の例の酸化物超電導導体20にあっては、厚みの薄いテープ状の基材21が用いらているので、酸化物超電導導体の厚みが薄くなり、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度を向上させることができ、電流容量の大きい長尺の酸化物超電導導体を容易に提供することができる。
また、この第1の例の酸化物超電導導体20は、基材21の下面に形成された多結晶速成中間薄膜23が絶縁層として機能するので、酸化物超電導層24側のみさらに絶縁層を形成すればよく、また、マグネット等として用いる場合は、絶縁層を形成することなくそのまま巻き込むことが可能である。また、配向制御多結晶中間薄膜22を形成する多数の結晶粒のそれぞれの粒界傾角を30度以下としたものにあっては、配向制御多結晶中間薄膜22上に成膜された酸化物超電導層24の結晶配向性がより良好になるので、より優れた超電導特性を示すものとなる。上記第1の例の酸化物超電導導体20にあっては、多結晶速成中間薄膜23を高周波スパッタにより形成される場合について説明したが、CVD法、真空蒸着法、電子ビーム蒸着法、レーザ蒸着法などの圧縮応力が入るプロセスで多結晶速成中間薄膜を成膜する必要があり、また、高エネルギープラズマによりアシストが必要であり、通常、Ar等の希ガスが膜中にトラップされることが必要であるのでPVD法が好ましい。
また、上記第1の例の酸化物超電導導体20にあっては、基材21の下面に形成される中間薄膜が多結晶速成中間薄膜23である場合について説明したが、この多結晶速成中間薄膜23の代わりに配向制御多結晶中間薄膜22が形成されていてもよく、すなわち図10に示すような基材21の両面上に多数の結晶粒が結合されてなる配向制御多結晶中間薄膜22,22が形成されたものであってもよい。基材21の両面上に配向制御多結晶中間薄膜22,22を形成する場合、各配向制御多結晶中間薄膜22はそれぞれイオンビームアシストスパッタリング法により形成されたものであることが好ましい。図10のような基材21の両面上に配向制御多結晶中間薄膜22,22がイオンビームアシストスパッタリング法により形成された薄膜積層体25にあっては、圧縮応力が入っているものの両面の配向制御多結晶中間薄膜22,22によって圧縮応力が打ち消されるため基材21に反りが生じることを防止でき、さらに、基材21の下面(加熱される面)にも配向制御多結晶中間薄膜22が形成されているので、基材31の酸化が防止される。これによって、配向制御多結晶中間薄膜22上に酸化物超電導層24を蒸着する時に薄膜積層体25表面を均一に加熱し易くなり、薄膜積層体25表面の温度分布にムラが生じることが殆どなく、薄膜積層体25の温度が安定するので、基材21の長さ方向に対する超電導特性が安定した酸化物超電導層24を形成することができる。従って、図10に示した酸化物超電導導体20にあっては、配向制御多結晶中間薄膜の形成時の圧縮応力によって基材に反りが生じることなく、基材の長さ方向に対する超電導特性が安定した酸化物超電導層が形成されるという特性と、厚さの薄いテープ状の基材が用いられていても、酸化物超電導層の蒸着時の高温雰囲気によって上記基材に歪みが生じることが少なく、オーバーオールあたりの臨界電流密度が向上するという特性の両方を備えているいう利点がある。
図8は、本発明に係る酸化物超電導導体の第2の例を示すものである。この第2の例の酸化物超電導導体90は、テープ状の基材21の両面上にそれぞれ多結晶速成中間薄膜23a,23bが形成され、これら多結晶速成中間薄膜23a,23bのうち一方の多結晶速成中間薄膜23b上に配向制御多結晶中間薄膜22bが形成され、この配向制御多結晶中間薄膜22b上に酸化物超電導層24が形成されてなるものである。
この例の多結晶速成中間薄膜23a,23bは、先に説明した第1の例の多結晶中間速成薄膜23と同等に多数の結晶粒が結合されてなるものであり、先に説明した方法とほぼ同様にして図2の高周波スパッタ装置を用いて形成でき、また、多結晶速成中間薄膜23bの各結晶粒の結晶軸においてa軸とb軸は特別には配向されていないが、c軸は基材21の上面(成膜面)に対してほぼ直角に向けられていることが好ましい。この配向制御多結晶中間薄膜22bは、先に説明した方法とほぼ同様にして、図3のイオンビームスパッタ装置にイオンビームアシスト用のイオンガンを備えた装置を用いて形成できるが、先の例のものと異なるところは、多結晶速成中間薄膜23b上に形成されている点である。
基材21に対して上側の中間薄膜の厚みの合計、すなわち配向制御多結晶中間薄膜22bと多結晶速成中間薄膜23bとの厚みの合計は、0.1〜1.0μmとされる。上側の中間薄膜の厚みの合計を1.0μmを超えて厚くしてもももはや効果の増大は期待できず、経済的にも不利となる。一方、上側の中間薄膜の厚みの合計が0.1μm未満であると、薄すぎて基材21を十分支持できず、後述する酸化物超電導層24の蒸着時に高温雰囲気によって基材21に歪みが生じる恐れがあり、また、熱処理時に酸化物超電導層24の元素を基材21側に拡散させてしまう恐れがあり、酸化物超電導層24の成分組成が崩れる恐れがあるからである。また、基材21に対して下側の中間薄膜の厚み、すなわち多結晶速成中間薄膜23bの厚みは、前記第1のの例の多結晶速成中間薄膜23と同様の理由から0.1〜1.0μmとされる。
この第2の例のように基材21に対して上側の中間薄膜を多結晶速成薄膜23bと配向制御多結晶薄膜22bとの二層から構成するならば、多結晶速成中間薄膜23bと配向制御多結晶中間薄膜22bとを合わせた膜厚分を全て配向制御多結晶中間薄膜とするよりも短時間で成膜処理できるようになる。その理由は、第1の例のようにイオンビームを斜め方向から照射しながらスパッタリングすることによって基材21に対して上側の中間薄膜である配向制御多結晶中間薄膜22を形成する場合、その成膜速度は通常のイオンビームスパッタや高周波スパッタリングによって多結晶速成中間薄膜を形成する場合に比べて低下することになる。例えば、高周波スパッタリングによれば、通常、0.5μm/時間程度の速度で成膜処理できるが、斜め方向からイオンビームを照射しながらのスパッタリングによれば、0.1μm/時間程度の速度での成膜処理となる。
従って、第2の例の酸化物超電導導体90にあっては、特に中間薄膜を多結晶速成薄膜と配向制御多結晶薄膜との二層から構成したことにより、多結晶速成中間薄膜23bと配向制御多結晶中間薄膜22bとを合わせた膜厚分を全て配向制御多結晶中間薄膜とするよりも、成膜に時間のかかる配向制御多結晶中間薄膜の部分が少なくなるうえ、多結晶速成中間薄膜部分は成膜速度が早いので、成膜時間が短縮される。また、多結晶速成中間薄膜23bと配向制御多結晶中間薄膜22bを同一材料から構成すると、両薄膜23b、22bの接合性は良好になり、両者の接合強度も十分に高いものとなる。
図9は、本発明に係る酸化物超電導導体の第3の例を示すものである。この第3の例の酸化物超電導導体100は、テープ状の基材21の両面上にそれぞれ多数の結晶粒が結合されてなる多結晶速成中間薄膜23a,23bが形成され、これら多結晶速成中間薄膜23a,23b上にそれぞれ配向制御多結晶中間薄膜22a,22bが形成され、これら配向制御多結晶中間薄膜22a,22b上にそれぞれ酸化物超電導層24a、24bが形成されてなるものである。
この第3の例の酸化物超電導導体100が、先に説明した第2の例の酸化物超電導導体90と異るところは、基材に対して下側の多結晶速成中間薄膜23a上にも配向制御多結晶中間薄膜22aが形成され、さらに該配向制御多結晶中間薄膜22a上に酸化物超電導層24aが形成されている点である。この例の多結晶速成中間薄膜23aは、先に説明した第1の例の多結晶中間速成薄膜23と同等に多数の結晶粒が結合されてなるものであり、先に説明した方法とほぼ同様にして図2の高周波スパッタ装置を用いて形成でき、また、多結晶速成中間薄膜23aの各結晶粒の結晶軸においてa軸とb軸は特別には配向されていないが、c軸は基材21の上面(成膜面)に対してほぼ直角に向けられていることが好ましい。また、この配向制御多結晶中間薄膜22aは、先に説明した方法とほぼ同様にして、図3のイオンビームスパッタ装置にイオンビームアシスト用のイオンガンを備えた装置を用いて形成できる。基材21の両面上に多結晶速成中間薄膜23a,23bを介して形成される配向制御多結晶中間薄膜22a,22bは、それぞれイオンビームアシストスパッタリング法により形成されたものであることが好ましい。このように配向制御多結晶中間薄膜22a,22bがイオンビームアシストスパッタリング法により形成された薄膜積層体25にあっては、圧縮応力が入っているものの両面の配向制御多結晶中間薄膜22a,22bによって圧縮応力が打ち消されるため基材21に反りが生じることを防止でき、さらに、基材21の下面(加熱される面)にも多結晶速成中間薄膜23aや配向制御多結晶中間薄膜22aが形成されているので、基材31の酸化が防止される。これによって、配向制御多結晶中間薄膜22a,22b上に酸化物超電導層24a,24bを蒸着する時に薄膜積層体25表面を均一に加熱し易くなり、薄膜積層体25表面の温度分布にムラが生じることが殆どなく、薄膜積層体25の温度が安定するので、基材21の長さ方向に対する超電導特性が安定した酸化物超電導層24a,24bを形成することができる。
基材21に対して下側の中間薄膜の厚みの合計、すなわち配向制御多結晶中間薄膜22aと多結晶速成中間薄膜23aとの厚みの合計は、前記第2の例の配向制御多結晶中間薄膜22bと多結晶速成中間薄膜23bと同様の理由から0.1〜1.0μmとされる。酸化物超電導層24aは、先に説明した方法とほぼ同様にして、図7のレーザ蒸着装置を用いて形成でき、その厚みは前記第1の例の酸化物超電導層24と同様に0.5〜5μm程度とされる。
第3の例の酸化物超電導導体100にあっては、特に基材21の両面上に中間薄膜を介して酸化物超電導層が形成されているので、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度が第1の例の酸化物超電導導体20や第2の例の酸化物超電導導体90の約2倍程度となり、オーバーオールあたりの臨界電流密度が大きくなり、電流容量のより大きい長尺の酸化物超電導導体を容易に提供することができるという利点がある。さらに、第3の例の酸化物超電導導体100において、配向制御多結晶中間薄膜22a,22bをそれぞれイオンビームアシストスパッタリング法により形成したものにあっては、配向制御多結晶中間薄膜の形成時の圧縮応力によって基材21に反りが生じることなく、基材21の長さ方向に対する超電導特性が安定した酸化物超電導層が形成されるという特性も備えているいう利点がある。
(本発明の作用)本発明においては、テープ状の基材の両面上にそれぞれ中間薄膜を形成し、さらにこれら中間薄膜のうち配向制御多結晶中間薄膜上に酸化物超電導層を形成したことにより、テープ状の基材の厚さが薄くても、該基材が両面の中間薄膜で支持されるので、酸化物超電導層の蒸着時に高温雰囲気によって基材に歪みが生じることが抑制される。これによって基材上の中間薄膜に歪みが生じることも少なくなり、中間薄膜の表面の平面性が向上するので、配向制御多結晶中間薄膜上に形成される酸化物超電導層の結晶配向性が良好となる。
また、中間薄膜を多結晶速成薄膜と配向制御多結晶薄膜との二層から構成したことにより、多結晶速成中間薄膜と配向制御多結晶中間薄膜とを合わせた膜厚分を全て配向制御多結晶中間薄膜とするよりも、成膜に時間のかかる配向制御多結晶中間薄膜の部分が少なくなるうえ、多結晶速成中間薄膜部分は成膜速度が早いので、成膜時間が短縮される。また、粒界傾角を30度以下とした配向制御多結晶薄膜上に成膜された酸化物超電導層は結晶配向性がより良好になるので、より優れた超電導特性を示す。さらに、基材の両面上の配向制御多結晶中間薄膜をイオンビームアシストスパッタリング法により形成したことにより、圧縮応力が入っているものの両面の配向制御多結晶中間薄膜によって圧縮応力が打ち消されるため基材に反りが生じることを防止でき、さらに、基材の下面(加熱される面)にも多結晶速成中間薄膜や配向制御多結晶中間薄膜が形成されているので、基材の酸化が防止される。これによって、配向制御多結晶中間薄膜上に酸化物超電導層を蒸着する時に薄膜積層体表面を均一に加熱し易くなり、薄膜積層体表面の温度分布にムラが生じることが殆どなく、薄膜積層体の温度が安定する。
(参考例1)
図2に示す構成の高周波スパッタ装置を使用し、この装置の真空容器の内部を真空ポンプで真空引きして1×10−3トールに減圧した。基材として、幅10mm、厚さ0.1mm、長さ10cmのハステロイC276テープを使用した。ターゲットはYSZ(安定化ジルコニア)製のものを用い、スパッタ電圧300V、スパッタ電流100mAに設定し、スパッタリングを1時間行なって基材の一方の面(下面)上に厚さ0.5μmの膜状のYSZの多結晶速成中間薄膜を形成した。
次に、図3に示す構成のイオンビームスパッタ装置を使用し、この装置を収納した真空容器内部を真空ポンプで真空引きして3.0×10−4トールに減圧した。ターゲットはYSZ(安定化ジルコニア)製のものを用い、スパッタ電圧1000V、スパッタ電流100mA、イオン源のビームの入射角度を55度に各々設定し、イオン源のアシスト電圧を300Vに、イオンビームの電流密度を20μA/cmにそれぞれ設定して基材の他方の面(上面)上にスパッタリングと同時にイオン照射を行なって5時間成膜処理することで厚さ0.5μmのYSZ配向制御多結晶中間薄膜を形成し、図6と同様の薄膜積層体を得た。なお、前記イオンビームの電流密度とは、試料近くに接地した電流密度計測装置の計測数値によるものである。
次に、前記配向制御多結晶中間薄膜上に図7に示す構成のレーザ蒸着装置を用いて厚さ1.0μmの酸化物超電導層を形成し、図1と同様の酸化物超電導導体を作製した。ターゲットとして、Y0.7Ba1.7Cu3.07−Xなる組成の酸化物超電導体からなるターゲットを用いた。蒸着処理室の内部を1×10−6トールに減圧した後、内部に酸素を導入し2×10−3トールとした後、レーザ蒸着を行なった。ターゲット蒸発用のレーザとして波長193nmのArFレーザを用いた。この成膜後、400゜Cで60分間、酸素雰囲気中において薄膜を熱処理した。ここでの蒸着および熱処理の際、上記基材には歪みが生じなかった。以上の処理で得られた酸化物超電導導体は、厚さ102.0μm、 幅10mm、長さ10cmのものである。
この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=5.1×10A/cm(77K、0T)を示し、オーバーオールあたりの臨界電流密度=5,000A/cm(77K、0T)を示し、極めて優秀な超電導特性を発揮することを確認できた。よって得られた酸化物超電導導体は、厚さが0.1mmと薄い基材を用いても、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じることがなく、オーバーオールあたりの臨界電流密度が向上することが明らかになった。
(参考例2)
基材として、幅10mm、厚さ0.05mm、長さ10cmのハステロイテープを用いた以外は、前記参考例1と同様にして酸化物超電導導体を作製した。ここでの酸化物超電導導体は、厚さ52.0μm、幅10mm、長さ10cmのものである。この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=4.8×10A/cm(77K、0T)を示し、オーバーオールあたりの臨界電流密度=9.2×10A/cmを示し、極めて優秀な超電導特性を発揮することを確認できた。よって得られた酸化物超電導導体は、厚さが0.05mmと薄い基材を用いても、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じることがなく、オーバーオールあたりの臨界電流密度が向上することが明らかになった。
(比較例1)
基材として、幅10mm、厚さ0.5mm、長さ10cmのハステロイテープを用い、かつ該基材の下面に多結晶速成中間薄膜を形成しない以外は、前記参考例1と同様にして酸化物超電導導体を作製した。ここでの酸化物超電導導体は、厚さ501.5μm、幅0.5mm、長さ10cmのものであった。この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=5.2×10A/cm(77K、0T)を示したが、オーバーオールあたりの臨界電流密度=1.0×10A/cmと低いものであった。
(比較例2)
基材の下面に多結晶速成中間薄膜を形成しない以外は、前記参考例1と同様にして酸化物超電導導体を作製した。ここでの酸化物超電導導体は、厚さ101.5μm、幅10mm、長さ10cmのものであった。この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=1.1×10A/cm(77K、0T)を示し、オーバーオールあたりの臨界電流密度=1×10A/cmと低いものであった。また、この酸化物超電導導体は、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じた。
(参考例3)
図7に示す構成のレーザ蒸着装置を使用し、幅10mm、厚さ0.2mm、長さ10cmのハステロイC276テープからなる基材の両面上にそれぞれ厚さ0.5μmの膜状のYSZの多結晶速成中間薄膜を形成した。ターゲットとして、YSZ(安定化ジルコニア)室温にてレーザ蒸着を行なった。ターゲット蒸発用のレーザとして波長193nmのArFレーザを用いた。ここで基材の片面に厚さ0.5μmの多結晶速成中間薄膜を成膜するのに要した時間は10分であり、従って両面に多結晶速成中間薄膜を成膜するのに要した時間は20分であった。次に、図3に示す構成のイオンビームスパッタ装置を使用し、この装置を収納ターゲットはYSZ(安定化ジルコニア)製のものを用い、スパッタ電圧1000V、スパッタ電流100mA、イオン源のビームの入射角度を55度に各々設定し、イオン源のアシスト電圧を300Vに、イオンビームの電流密度を20μA/cmにそれぞれ設定して前記基材の両面に形成された多結晶速成中間薄膜のうち、一方の多結晶速成中間薄膜上にスパッタリングと同時にイオン照射を行なうイオンビームアシストスパッタリング法により1時間成膜処理することで厚さ0.1μmのYSZ配向制御多結晶中間薄膜を形成した。
ここで前述の多結晶速成中間薄膜は、厚さ0.5μmのものを10分で成膜したが、配向制御多結晶中間薄膜は、厚さ0.1μmのものを1時間成膜できたので、レーザ蒸着により多結晶速成中間薄膜を形成する方が、イオンビームアシストを適用したスパッタリングで配向制御多結晶中間薄膜を製造するよりも5倍程度の速度で成膜できることが明かになった。
次に、前記配向制御多結晶中間薄膜上に図7に示すレーザ蒸着装置を用いて前記参考例1と同様にして厚さ1.0μmの酸化物超電導層を形成し、図8と同様の酸化物超電導導体を作製した。ここでの熱処理の際、上記基材には歪みが生じなかった。以上の処理で得られた酸化物超電導導体は、厚さ202.1μm、幅10mm、長さ10cmのものである。
この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=5.2×10A/cm(77K、0T)を示し、オーバーオールあたりの臨界電流密度=2.5×10A/cm(77K、0T)を示し、極めて優秀な超電導特性を発揮することを確認できた。よって得られた酸化物超電導導体は、厚さが0.2mmと薄い基材を用いても、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じることがなく、オーバーオールあたりの臨界電流密度が向上することが明かになった。
(比較例3)
基材の下面に多結晶速成中間薄膜を形成しない以外は、前記参考例3と同様にして酸化物超電導導体を作製した。ここでの酸化物超電導導体は、厚さ201.6μm、幅10mm、長さ10cmのものであった。この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=2.3×10A/cm(77K、0T)を示したが、オーバーオールあたりの臨界電流密度=1.1×10A/cmと低いものであった。また、この酸化物超電導導体は、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じた。
(参考例4)
前記参考例3と同様にして基材の両面に多結晶速成中間薄膜を形成した。次に、図3に示す構成のイオンビームスパッタ装置を使用し、前記参考例3と同様にして基材の両面に形成された多結晶速成中間薄膜のうち、一方の多結晶速成中間薄膜上にスパッタリングと同時にイオン照射を行なって1時間成膜処理することで厚さ0.1μmのYSZ配向制御多結晶中間薄膜を形成した。この後、他方の多結晶速成中間薄膜上に前述の方法と同様にして厚さ0.1μmのYSZ配向制御多結晶中間薄膜を形成した。
次に、基材の両側の前記配向制御多結晶中間薄膜上に図7に示す構成のレーザ蒸着装置を用いて前記参考例1と同様にして厚さ1.0μmの酸化物超電導層をそれぞれ形成し、図9と同様の酸化物超電導導体を作製した。ここでの熱処理の際、上記基材には歪みが生じなかった。以上の処理で得られた酸化物超電導導体は、厚さ203.2μm、幅0.5mm、長さ10cmのものである。
この酸化物超電導導体を冷却し、臨界電流密度の測定を行なった結果、臨界電流密度=4.8×10A/cm(77K、0T)を示し、オーバーオールあたりの臨界電流密度=4.7×10A/cm(77K、0T)を示し、極めて優秀な超電導特性を発揮することを確認できた。よって得られた酸化物超電導導体は、厚さが0.2mmと薄い基材を用いても、酸化物超電導層の蒸着時に高温雰囲気によって上記基材に歪みが生じることがなく、オーバーオールあたりの臨界電流密度が参考例3の酸化物超電導導体の約2倍程度と大きいことが明かになった。
(実施例5)
基材として幅10mm、厚さ0.2mm、長さ80cmのハステロイテープを用い、基材の上面上に形成するYSZ配向制御多結晶中間薄膜の厚みを0.7μmとし、基材の下面上に厚さ0.7μmのYSZ配向制御多結晶中間薄膜をイオンビームアシストスパッタリング法により形成した以外は参考例1と略同様にして薄膜積層体を得た。ついで、一方の配向制御多結晶中間薄膜上に図7に示す構成のレーザ蒸着装置を用いて厚さ1.0μmの酸化物超電導層を形成し、図10と同様の酸化物超電導導体を作製した。
(比較例4)
基材の下面に配向制御多結晶中間薄膜を形成しない以外は前記実施例5と同様にして積層体を得た。ついで、基材の上面に形成された厚さ0.7μmのYSZ配向制御多結晶中間薄膜上に図7に示す構成のレーザ蒸着装置を用いて厚さ1.0μmの酸化物超電導層を形成し、図14と同様の酸化物超電導導体を作製した。
前記実施例5で得られた薄膜積層体ならびに比較例4で得られた積層体を900〜950℃で加熱し、1m/hで移動させたときの幅方向に沿った表面形状を測定することにより、反り状態を調べた。図11に実施例5で得られた薄膜積層体の表面形状のプロファイルを示す。また、図12に比較例4で得られた積層体の表面形状のプロファイルを示す。図11、図12中、横軸は幅方向の長さ(μm)であり、縦軸は厚み方向の高さ(オングストローム)である。
表面形状のプロファイルから反りの曲率半径は以下の式(I)により算出することができる。
R=(X+Y)/2Y ・・・(I)
式I中、Rは曲率半径、Xは表面形状のプロファイル中の高さがピークのときの幅方向の長さ(μm)、Yは表面形状のプロファイル中の高さがピークのときの厚み方向の高さ(オングストローム)を表す。
実施例5の薄膜積層体は図11よりX=4500(μm)、Y=|−100,000|(オングストローム)であるから、これらをI式に代入するとR=964(cm)であった。これに対して比較例4の積層体では図12よりX=4500(μm)、Y=400,000(オングストローム)であるから、これらをI式に代入するとR=25.3(cm)である。これより実施例5で得られた薄膜積層体(基材の両面に配向制御多結晶中間薄膜を形成したもの)は、比較例4で得られた積層体(基材の片面のみに配向制御多結晶中間薄膜を形成したもの)に比べて曲率半径が大きく、反り量が小さいことが分った。
実施例5ならびに比較例4で得られた酸化物超電導導体を、それぞれ酸化物超電導導体の中央部分側に対し、スパッタ装置によりAgコーティングを施し、更に両端部側にそれぞれAgの電極を形成し、Agコーティング後に純酸素雰囲気中にて500℃で2時間熱処理を施して測定試料とした。そして、これら試料を液体窒素で77Kに冷却し、外部磁場0T(テスラ)の条件で各試料における長さ方向ごとの臨界電流(Ic)を測定した結果を図13に示す。図13中、実線1は実施例5で得られた酸化物超電導導体の長さ方向の位置ごとの臨界電流を示すものであり、破線2は比較例4で得られた酸化物超電導導体の長さ方向の位置ごとの臨界電流を示すものである。
図13から明らかなように、比較例4で得られた酸化物超電導導体は、長さ方向の臨界電流がいずれの箇所においても15A以下の値を示しており、基材の長さ方向に対して超電導特性が不良な酸化物超電導薄膜が形成されていることが分る。これに対して実施例5で得られた酸化物超電導導体は、長さ方向の臨界電流がいずれの箇所においても18A以上の特性が得られており、さらに、この実施例5の酸化物超電導導体の臨界電流の平均値は、比較例4のものの約2倍であり、従って基材の長さ方向に対して超電導特性が良好な酸化物超電導薄膜が形成されていることが分る。
本発明に係る酸化物超電導導体の第1の例を示す断面図である。 本発明に係る酸化物超電導導体の製造に好適に用いられる、基材上に多結晶速成中間薄膜を形成する高周波スパッタ装置の一例を示す構成図である。 本発明に係る酸化物超電導導体の製造に好適に用いられる、基材上に配向制御多結晶中間薄膜を形成するイオンビームスパッタ装置の一例を示す構成図である。 図3に示す装置に用いられるイオンガンの一例を示す断面図である。 イオンビーム照射とともに成膜処理を行う場合に、イオンビームの入射角度と立方晶系の結晶格子との角度関係を示す説明図である。 本発明に係る酸化物超電導導体の薄膜積層体を示す構成図である。 本発明に係る酸化物超電導導体の製造に好適に用いられる、配向制御多結晶中間薄膜上に酸化物超電導層を形成するための装置の一例を示す構成図である。 本発明に係る酸化物超電導導体の第2の例を示す断面図である。 本発明に係る酸化物超電導導体の第3の例を示す断面図である。 本発明に係わる酸化物超電導体のその他の例を示す断面図である。 実施例5で得られた薄膜積層体の表面形状のプロファイルである。 比較例4で得られた積層体の表面形状のプロファイルである。 実施例5、比較例4で得られた酸化物超電導導体の長さ方向の位置ごとの臨界電流を示すグラフである。 従来の酸化物超電導導体の例を示す断面図である。
符号の説明
20、90、100・・・酸化物超電導導体、
21・・・基材、
22、22a、22b…多結晶速成中間薄膜、
23、23a、23b・・・配向制御多結晶中間薄膜、
24、24a、24b…酸化物超電導層。

Claims (2)

  1. テープ状の基材と、この基材の両面上にそれぞれ形成されて多数の結晶粒が結合されてなる配向制御多結晶中間薄膜と、このうちの1の配向制御多結晶中間薄膜上に形成された酸化物超電導層を具備してなることを特徴とする酸化物超電導導体。
  2. 基材の厚みが0.01〜0.15mmであり、配向制御多結晶中間薄膜の厚みが0.1〜1μmである請求項1記載の酸化物超電導導体。
JP2004291991A 1995-08-18 2004-10-04 酸化物超電導導体 Expired - Fee Related JP4128557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291991A JP4128557B2 (ja) 1995-08-18 2004-10-04 酸化物超電導導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21083195 1995-08-18
JP2004291991A JP4128557B2 (ja) 1995-08-18 2004-10-04 酸化物超電導導体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21480696A Division JP3634078B2 (ja) 1995-08-18 1996-08-14 酸化物超電導導体

Publications (2)

Publication Number Publication Date
JP2005038865A JP2005038865A (ja) 2005-02-10
JP4128557B2 true JP4128557B2 (ja) 2008-07-30

Family

ID=34219690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291991A Expired - Fee Related JP4128557B2 (ja) 1995-08-18 2004-10-04 酸化物超電導導体

Country Status (1)

Country Link
JP (1) JP4128557B2 (ja)

Also Published As

Publication number Publication date
JP2005038865A (ja) 2005-02-10

Similar Documents

Publication Publication Date Title
US6632539B1 (en) Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
KR100545547B1 (ko) 다결정 박막의 제조방법 및 산화물 초전도체의 제조방법
JP4359649B2 (ja) 多結晶薄膜とその製造方法及び酸化物超電導導体
WO1998017846A1 (fr) Procede pour preparer une couche mince polycristalline, procede pour preparer un supraconducteur de type oxyde, et dispositif associe
JP2996568B2 (ja) 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JP3447077B2 (ja) 薄膜積層体と酸化物超電導導体およびそれらの製造方法
JP3634078B2 (ja) 酸化物超電導導体
JP3771012B2 (ja) 酸化物超電導導体
JP4131771B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体
JP4059963B2 (ja) 酸化物超電導導体の製造方法
JP3415888B2 (ja) 多結晶薄膜の製造装置と製造方法および酸化物超電導導体の製造方法
JP2670391B2 (ja) 多結晶薄膜の製造装置
JP2721595B2 (ja) 多結晶薄膜の製造方法
JPH06231940A (ja) ABaCuO系超電導コイルおよびその製造方法
JP4128557B2 (ja) 酸化物超電導導体
JP3251034B2 (ja) 酸化物超電導導体およびその製造方法
JPH1149599A (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP2614948B2 (ja) 多結晶薄膜
JP3771027B2 (ja) 配向制御多結晶薄膜の蒸着方法及び蒸着装置
JP3532253B2 (ja) 酸化物超電導導体およびその製造方法
JP5122045B2 (ja) 酸化物超電導体及びその製造方法
JP3459092B2 (ja) 多結晶薄膜の製造方法および酸化物超電導導体の製造方法
JP2000203836A (ja) 酸化物超電導導体の製造方法
JP3732780B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP2003096563A (ja) 多結晶薄膜の形成方法並びに酸化物超電導導体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees