WO2001038437A1 - Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc - Google Patents

Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc Download PDF

Info

Publication number
WO2001038437A1
WO2001038437A1 PCT/FR2000/003260 FR0003260W WO0138437A1 WO 2001038437 A1 WO2001038437 A1 WO 2001038437A1 FR 0003260 W FR0003260 W FR 0003260W WO 0138437 A1 WO0138437 A1 WO 0138437A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
copolymers
acrylate
meth
copolymer
Prior art date
Application number
PCT/FR2000/003260
Other languages
English (en)
Inventor
Christophe Lacroix
Alain Bouilloux
Claude Granel
Michael Tran
Original Assignee
Atofina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina filed Critical Atofina
Priority to EP00993176A priority Critical patent/EP1252234B1/fr
Priority to BR0015828-3A priority patent/BR0015828A/pt
Priority to JP2001540196A priority patent/JP4768947B2/ja
Priority to DE60025652T priority patent/DE60025652T2/de
Priority to CA2392392A priority patent/CA2392392C/fr
Priority to US10/130,993 priority patent/US7022768B1/en
Priority to AU46108/01A priority patent/AU4610801A/en
Publication of WO2001038437A1 publication Critical patent/WO2001038437A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Definitions

  • the present invention relates to thermoplastic polyesters with improved impact properties and impact modifier compositions.
  • Thermoplastic polyesters such as PBT (polybutylene terephthalate) and PET (polyethylene terephthalate) have excellent properties of dimensional stability, thermal resistance or chemical resistance, used in the electrical, electronic or automotive fields.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • polyesters have poor breaking strength properties for notched parts.
  • the present invention provides thermoplastic polyesters in which an impact modifier composition has been added to obtain improved impact resistance properties including resilience at low temperatures.
  • the present invention also relates to this composition of impact modifiers which are added to polyesters to improve the impact properties. These modifier compositions make it possible to achieve impact properties superior to those obtained with each of the compounds taken separately.
  • polyesters such as for example polyethylene terephthalate (PET) or polybutylene terephthalate (PBT) modified with copolymers of ethylene, of an alkyl (meth) acrylate and glycidyl (meth) acrylate.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • Patent EP 737,715 describes PBTs modified by a mixture of an ethylene - methyl methacrylate - glycidyl methacrylate and a heart-bark copolymer (also known as Core-Shell). These heart-shell type copolymers denote fine particles having an elastomer core and a thermoplastic shell.
  • Patent EP 531 008 describes mixtures of PBT and polycarbonate containing core-shell and copolymers which are either ethylene copolymers - glycidyl methacrylate, ie ethylene - vinyl acetate - glycidyl methacrylate copolymers.
  • US Patent 5,369,154 describes blends of PET and polycarbonate containing four different modifiers: a copolymer comprising an epoxide, a core-shell, an elastomer of the SBR or SBS or EPR type and a copolymer of the SAN or ABS type.
  • Patent EP 1 15 015 describes PET or PBT containing linear low density polyethylene (LLDPE), glass fibers and possibly a core-shell.
  • LLDPE linear low density polyethylene
  • Patent EP 133 993 describes PET containing a core-shell and a copolymer of ethylene with either an alkyl acrylate or (meth) acrylic acid.
  • Japanese patent application JP 01 247 454 A published on October 3, 1989 describes PBT containing an ethylene - alkyl (meth) acrylate copolymer and an ethylene - glycidyl methacrylate copolymer.
  • EP 803 537 describes PET and polycarbonate containing a copolymer comprising glycidyl methacrylate.
  • the polycarbonate and the copolymer comprising glycidyl methacrylate are first mixed and then this mixture is incorporated into the PET.
  • Patent EP 187 650 describes PET containing a core-shell and a copolymer of ethylene with either maleic anhydride or a (meth) acrylic acid.
  • saturated polyesters can have their impact properties improved by the addition of core-shell.
  • These polymers have a particularly well-defined structure where the core consists of a polymer of elastomeric character and where the shell has a thermoplastic character.
  • the improvement in impact resistance can be obtained by incorporating in addition a dispersed phase of an impact modifier optionally containing reactive functions capable of reacting with the functional groups of the polyesters. This reactivity ensures a fine and homogeneous dispersion of the modifier as well as good adhesion.
  • the core-shell can also be functionalized to allow better adhesion with the matrix. However, this reactivity is sometimes high and can lead to a decrease in fluidity. This drop in fluidity is detrimental to the injection of large or fine parts
  • thermoplastic polyesters can be improved by adding three kinds of modifier, namely (a) a core-shell, (b) an ethylene - unsaturated epoxide or ethylene - unsaturated carboxylic acid anhydride copolymer.
  • thermoplastic polyester compositions comprising, by weight, the total being 100%
  • thermoplastic polyester • 60 to 99% of thermoplastic polyester
  • impact modifier comprising (a) a copolymer (A) core - shell,
  • a copolymer (B) of ethylene chosen from copolymers (B1) of ethylene and of an unsaturated carboxylic acid anhydride, the copolymers (B2) of ethylene and of an unsaturated epoxide and their mixtures,
  • a copolymer (C) chosen from copolymers (C1) of ethylene and of an alkyl (meth) acrylate, copolymers (C2) of ethylene and of acid
  • the present invention also relates to a composition of impact modifiers which can be added in thermoplastic polyesters to improve their impact properties and comprising (a) a copolymer (A) core - shell,
  • MFI abbreviation of Melt Flow Index
  • thermoplastic polyester refers to polymers which are saturated condensation products of glycols and dicarboxylic acids or their derivatives. Preferably, they comprise the condensation products of aromatic dicarboxylic acids having from 8 to 14 carbon atoms and at least one glycol chosen from the group consisting of neopentylglycol, cyclohexanedimethanol and aliphatic glycols of formula HO (CH2 ) n OH in which n is an integer ranging from 2 to 10.
  • aromatic dicarboxylic acid can be replaced by at least one other aromatic dicarboxylic acid having from 8 to 14 carbon atoms, and / or up to 20 mol% can be replaced by an aliphatic dicarboxylic acid having from 2 to 12 carbon atoms.
  • polyesters are polyethylene terephthalate (PET), poly (1,4-butylene) terephthalate (PBT), 1,4-cyclohexylene dimethylene terephthalate / isophthalate) and other esters derived from aromatic dicarboxylic acids such as as isophthalic acid, dibenzoic acid, naphthalene dicarboxylic acid, 4,4'-diphenylenedicarboxylic acid, bis (p-carboxyphenyl) methane acid, ethylene bis p-benzoic acid, 1-4 tetramethylene acid bis (p-oxybenzoic), ethylene bis (para oxybenzoic) acid, 1, 3-trimethylene bis (p-oxybenzoic) acid and glycols such as ethylene glycol, 1, 3 trimethylene glycol, 1 , 4-tetramethylene glycol, 1, 6-hexamethylene glycol, 1, 3 propylene glycol, 1, 8 octamethyleneglycol, 1, 10-decamethylene glycol.
  • the MFI of these polyesters measured at 250 ° C under 2.16 kg or 5 kg (for PBT) or at 275 ° C under 2.16 kg (for PET), can vary from 2 to 100 and advantageously from 10 80. It would not be departing from the scope of the invention if the polyesters were made up of several diacids and / or several diols. It is also possible to use a mixture of different polyesters.
  • copolyetheresters are copolymers with polyester blocks and polyether blocks having polyether units derived from polyetherdiols such as polyethylene glycol (PEG), polypropylene glycol (PPG) or polytetramethylene glycol (PTMG), dicarboxylic acid units such as terephthalic acid and short chain extender diol units such as glycol (1, 2-ethaned ⁇ ol) or 1, 4-butanediol
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • PTMG polytetramethylene glycol
  • dicarboxylic acid units such as terephthalic acid
  • short chain extender diol units such as glycol (1, 2-ethaned ⁇ ol) or 1, 4-butanediol
  • the chain of polyethers and diacids form the flexible segments whereas the linking of glycol or butanediol with the diacids forms the rigid segments of the copolyetherester
  • Polycarbonate is generally designated by polymers comprising the following units
  • Rj is a divalent aliphatic, alicyclic or aromatic group which may contain up to 8 carbon atoms.
  • R1 ethylene, propylene, t ⁇ methylene, tetramethylene, hexamethylene, dodecamethylene, poly-1, 4- (2-butenylene), poly-1, 10- (2-ethyldecylene), 1, 3-cyclopentylene, 1, 3-cyclohexylene, 1, 4 -cyclohexylene, m-phenylene, p-phenylene, 4,4'-b ⁇ phenylene, 2,2-b ⁇ s (4-phenylene) propane, benzene-1, 4-d ⁇ méthylène
  • at least 60 % of the R1 groups in the polycarbonate and preferably all the R1 groups are aromatics of formula
  • R2 and R3 are divalent monocyclic aromatic radicals and Y is a bonding radical comprising one or two atoms separating R2 and R3
  • the free valences are generally in meta or para position with respect to Y R2 and R3 can be substituted phenylenes or unsubstituted, we can cite as substituents: alkyls, alkenyls, halogens, nitro and alkoxy.
  • the unsubstituted phenylenes are preferred, they can be meta or para together or separately and are preferably para.
  • the bonding radical Y is preferably such that an atom separates R2 and R3 and is preferably a hydrocarbon radical such as methylene, cyclohexylmethylene, 2- [2,2,1] bicycloheptylmethylene, ethylene, 2 , 2-propylene, 1, 1- (2,2dimethylpropylene), 1, 1 -cyclohexylene, 1, 1-cyclopentadecylene, cyclododecylene, carbonyl, oxy radical, thio radical and sulfone.
  • R1 is 2,2-bis (4-phenylene) propane which comes from bisphenol A, that is to say that Y is isopropylidene and R2 and R3 are each p-phenyiene.
  • the intrinsic viscosity of the polycarbonate measured in methylene chloride at 25 ° C, is between 0.3 and 1 dl / g.
  • the proportion of polycarbonate can represent from 0 to 300 parts per 100 parts of thermoplastic polyester.
  • core-shell copolymer (A) or Core-Shell abbreviated as CS thereafter, it is in the form of fine particles having an elastomer core and at least one thermoplastic shell.
  • the particle size is generally between 50 and 1000 nm and advantageously between 100 and 500 nm.
  • a core mention may be made of isoprene or butadiene homopolymers, isoprene copolymers with at most 30 mol% of a vinyl monomer and butadiene copolymers with at most 30% ) in moles of a vinyl monomer.
  • the vinyl monomer can be styrene, an alkylstyrene, acrylonitrile or an alkyl (meth) acrylate.
  • Another core family is made up of homopolymers of an alkyl (meth) acrylate and copolymers of an alkyl (meth) acrylate with at most 30 mol% of a vinyl monomer.
  • the alkyl (meth) acrylate is advantageously butyl acrylate.
  • the vinyl monomer can be styrene, an alkylstyrene, acrylonitrile, butadiene or isoprene.
  • the core of the copolymer (A) can be crosslinked in whole or in part. It suffices to add at least difunctional monomers during the preparation of the core, these monomers can be chosen from poly (meth) acrylic esters of polyols such as butylene di (meth) acrylate and trimethylol propane trimethacrylate. Other difunctional monomers are for example divinylbenzene, trivinyibenzene, vinyl acrylate and vinyl methacrylate.
  • the heart can also be crosslinked by introducing therein, by grafting or as a comonomer during the polymerization, unsaturated functional monomers such as anhydrides of unsaturated carboxylic acids, unsaturated carboxylic acids and unsaturated epoxides Mention may be made, for example, of maleic anhydride, (meth) acrylic acid and glycidyl methacrylate
  • the shell or the barks are homopolymers of styrene, of an alkylstyrene or of methyl methacrylate or of copolymers comprising at least 70 mol% of one of these preceding monomers and at least one comonomer chosen from the other preceding monomers, the vinyl acetate and acrylonitrile
  • the shell can be functionalized by introducing therein, by grafting or as a comonomer during the polymerization, unsaturated functional monomers such as anhydrides of unsaturated carboxylic acids, unsaturated carboxylic acids and uns
  • core-shell copolymers (A) having a polystyrene shell and core-shell copolymers (A) having a PMMA shell II also exist core-shell copolymers (A) having two shells , one made of polystyrene and the other outside of PMMA
  • copolymer (A) and their preparation process are described in the following patents US 4,180,494, US 3,808,180, US 4,096,202, US 4,260,693, US 3,287,443, US 3,657,391, US 4,299,928, US 3,985,704
  • core-shell copolymers (A) having a core based on alkyl acrylate or on a polyorganosiloxane rubber or a mixture thereof and a shell based on polymethylmethacrylate, or of a styrene-acrylonitrile copolymer characterized in that said impact additive comprises from a) 70 to 90% by weight of an elastomeric crosslinked core which is composed
  • a shell grafted on said core consisting of a polymer of an alkyl methacrylate in which the alkyl group has a carbon number ranging from 1 to 4 or else by a random copolymer of a alkyl methacrylate in which the alkyl group has a carbon number ranging from 1 to 4 and an alkyl acrylate in which the alkyl group has a carbon number ranging from 1 to 8, containing a molar amount of acrylate alkyl ranging from 5 to 40% or else consisting of a styrene-acrylonitrile copolymer.
  • 0.1 to 50% by weight of the vinyl monomers have functional groups.
  • This type of core-shell copolymer is described in patent application EP-A-776915 and patent US-5,773,520 of the applicant.
  • core-shell copolymers consisting of (i) from 75 to 80 parts of a core comprising at least 93% of butadiene, 5% of styrene and 0.5 to 1 in moles. % of divinylbenzene and (ii) 25 to 20 parts of two barks essentially of the same weight, one inside made of polystyrene and the other outside made of PMMA.
  • the heart represents 70 to 90%) by weight of (A) and the bark 30 to 10%.
  • copolymers (B1) of ethylene and of an unsaturated carboxylic acid anhydride they may be polyethylenes grafted with an unsaturated carboxylic acid anhydride or copolymers of ethylene and of an anhydride of d
  • the unsaturated carboxylic acid obtained, for example, by radical polymerization.
  • the unsaturated carboxylic acid anhydride may be chosen, for example, from maleic, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1, 2-dicarboxylic, 4-methylenecyclohex-4-ene-1, 2- dicarboxyls, bicyclo (2,2, 1) hept-5-ene-2,3-dicarboxylics, and x - methylbicyclo (2,2, 1) hept-5-ene-2,2-dicarboxylics.
  • Maleic anhydride is advantageously used. It would not be departing from the scope of the invention to replace all or part of the anhydride with an unsaturated carboxylic acid such as for example (meth) acrylic acid.
  • polyethylene means homo- or copolymers.
  • comonomers we can cite:
  • alpha-olefins advantageously those having from 3 to 30 carbon atoms; as examples of alpha olefins, mention may be made of propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1- pentene, 1-octene, 1-dececene, 1 -dodecene, 1 -tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, 1-dococene, 1-tetracocene, 1-hexacocene, 1-octacocene, and 1-triacontene; these alpha-olefins can be used alone or as a mixture of two or more than two,
  • esters of unsaturated carboxylic acids such as, for example, alkyl (meth) acrylates, the alkyls being able to have up to 24 carbon atoms
  • alkyl acrylate or methacrylate are in particular the methacrylate of methyl, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate,
  • Vi ⁇ yl esters of saturated carboxylic acids such as, for example, vinyl acetate or propionate.
  • dienes such as, for example, 1,4-hexadiene.
  • the polyethylene can comprise several of the preceding comonomers.
  • the polyethylene which can be a mixture of several polymers, comprises at least 50% and preferably 75% (in moles) of ethylene, its density can be between 0.86 and 0.98 g / cm 3 .
  • the MFI (at 190 ° C., 2.16 kg) is advantageously between 0.1 and 1000.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • metallocene catalysis that is to say the polymers obtained by copolymerization of ethylene and of alphaolefin such as propylene, butene, hexene or octene in the presence of a monosite catalyst generally consisting of an atom of zirconium or titanium and two cyclic alkyl molecules linked to the metal. More specifically, metallocene catalysts are usually composed of two cyclopentadienic rings linked to the metal. These catalysts are frequently used with aluminoxanes as cocatalysts or activators, preferably methylaluminoxane (MAO). Hafnium can also be used as the metal to which cyclopentadiene is attached. Other metallocenes can include transition metals from groups IV A, V A, and VI A. Metals of the lanthanide series can also be used.
  • Grafting is an operation known in itself.
  • copolymers of ethylene and of the unsaturated carboxylic acid anhydride that is to say those in which the unsaturated carboxylic acid anhydride is not grafted
  • these are the copolymers ethylene, unsaturated carboxylic acid anhydride and optionally another monomer which can be chosen from the comonomers mentioned above for the ethylene copolymers intended to be grafted.
  • the ethylene-maleic anhydride and ethylene - alkyl (meth) acrylate - maleic anhydride copolymers are advantageously used. These copolymers comprise from 0.2 to 10% by weight of maleic anhydride, from 0 to 40% and preferably 5 to 40% by weight of alkyl (meth) acrylate. Their MFI (190 ° C - 2.16 kg) is between 0.5 and 200.
  • the alkyl (meth) acrylates have already been described above.
  • a mixture of several copolymers (B1) can be used. It is also possible to use a mixture of an ethylene-maleic anhydride copolymer and of an ethylene - alkyl (meth) acrylate - maleic anhydride copolymer.
  • the copolymer (B1) is commercially available, it is produced by radical polymerization at a pressure which can be between 200 and 2500 bars and is sold in the form of granules.
  • the copolymers of ethylene and of an unsaturated epoxide can be obtained by copolymerization of ethylene and of an unsaturated epoxide or by grafting of the unsaturated epoxide onto the polyethylene.
  • the grafting can be carried out in the solvent phase or on the molten polyethylene in the presence of a peroxide. These grafting techniques are known in themselves.
  • the copolymerization of ethylene and of an unsaturated epoxide it is possible to use the so-called radical polymerization processes usually operating at pressures between 200 and 2500 bars.
  • unsaturated epoxides there may be mentioned: aliphatic glycidyl esters and ethers such as allyl glycidyl ether, vinyl glycidyl ether, glycidyl itaconate and maleate, glycidyl (meth) acrylate , and alicyclic glycidyl esters and ethers such as 2-cyclohexene-1-glycidylether, cyclohexene-4,5-diglycidylcarboxylate, cyclohexene-4-glycidylcarboxylate, 5-norbornene-2-methyl-2-glycidylcarboxylate and endo cis-bicyclo (2,2,1) - 5-heptene-2,3-diglycidyl dicarboxylate.
  • the copolymer is obtained from the grafting of a homo polyethylene or copolymer as described for (B1) above except that
  • the product (B2) is advantageously an ethylene - alkyl (meth) acrylate - unsaturated epoxide copolymer or an ethylene - unsaturated epoxide copolymer.
  • it can contain up to 40% by weight of alkyl (meth) acrylate, preferably 5 to 40%> and up to 10% by weight of unsaturated epoxide, preferably 0.1 to 8%.
  • the epoxide is advantageously glycidyl (meth) acrylate.
  • the alkyl (meth) acrylate is chosen from methyl (meth) acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, acrylate of 2-ethylhexyl.
  • the amount of alkyl (meth) acrylate is advantageously from 20 to 35%.
  • the MFI (at 190 ° C. under 2.16 kg) is advantageously between 0.5 and 200.
  • a mixture of several copolymers (B2) can be used. It is also possible to use a mixture of an ethylene - alkyl (meth) acrylate - unsaturated epoxide copolymer and an ethylene - unsaturated epoxide copolymer.
  • This copolymer (B2) can be obtained by radical polymerization of the monomers.
  • the alkyls can have up to 24 carbon atoms.
  • alkyl acrylate or methacrylate are in particular methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate.
  • the MFI (at 190 ° C., under 2.16 kg) of these copolymers is advantageously between 0.1 and 50.
  • the content of alkyl (meth) acrylate can be up to 40% by weight of (C1) .
  • the (meth) acrylate content is between 5 and 35% by weight of (C1).
  • copolymers (C2) of ethylene and (meth) acrylic acid the content of (meth) acrylic acid can be up to 10%) in moles of (C2) and advantageously between 1 and 5%. It would not be departing from the scope of the invention if (C2) included an alkyl (meth) acrylate in proportion up to 40%> by weight of (C2).
  • the acid functions can be wholly or partly neutralized by a cation such as lithium, sodium, potassium, magnesium, calcium, strontium, zinc and cadmium.
  • the MFI (at 190 ° C., under 2.16 kg) of these copolymers is advantageously between 0.1 and 50.
  • These copolymers can be produced by radical polymerization in a tube or autoclave at pressures between 300 and 2500 bar.
  • the impact components are in the following proportions by weight for a total of 100%:
  • thermoplastic polyester compositions of the invention comprise per 100 parts by weight 65 to 95 parts of polyester for respectively 35 to 5 parts of impact modifier.
  • the invention also relates to an impact modifier composition having these proportions.
  • the thermoplastic polyesters of the invention can also comprise, in addition to the impact modifier, slip agents, thermal stabilizers, antiblocking agents, antioxidants, anti UNs. and charges.
  • the fillers can be glass fibers, flame retardants, talc or chalk. These charges can be included in the impact modifiers.
  • the blends of the thermoplastic polyester and impact modifiers are prepared by the usual techniques of thermoplastic polymers in single or twin screw extruders, mixers or devices of the Ko type BUSS® kneader.
  • the polyester and the constituents of the impact modifier, namely the copolymers (A), (B) and (C) can be introduced separately into the mixing device.
  • the constituents of the impact modifier can also be added in the form of a mixture prepared in advance, optionally in the form of a masterbatch in the polyester. Additives such as slipping agents, antiblocking agents, antioxidants, anti UNs can be added to these devices. and the fillers either as such or in the form of a masterbatch in the polyester or also in the form of a masterbatch with one or more of the copolymers (A) to (C).
  • the composition of impact modifiers comprising (A) to (C) which can be added to the polyesters is also prepared by the usual previous technique of mixing thermoplastic polymers. [Examples] All the examples were carried out with compositions comprising by weight between 70 to 80% of polyester and between 30 to 20% of impact modifier.
  • the impact modifier is either made up of A, B and C for the examples according to the invention, or of A and B, or of B and C, either of A or, of B or also of C.
  • the notched CHARPY shock conforms to ISO standard 179: 93 (with the unit of measurement kJ / m2) and the notched IZOD shock is measured according to standard ASTM D256 (with the unit of measurement pound-foot / inch), plus the resistance value to the higher the impact, the better the impact resistance.
  • compositions comprising by weight 80% of PBT and 20% of impact modifier. These examples were made with the following products:
  • AX8900 ethylene - methyl acrylate - glycidyl methacrylate (GMA) copolymer comprising by weight 25% of acrylate and 8%> of GMA having an MFI of 6 (190X 2.16 kg). It is sold under the LOTADER® ATOFINA brand.
  • AX8930 ethylene - methyl acrylate - glycidyl methacrylate (GMA) copolymer comprising by weight 25% of acrylate and 3% of GMA having an MFI of 6 (190 ° C. 2.16 kg). It is sold under the LOTADER® ATOFINA brand.
  • Lotryl ethylene-2-ethylhexyl acrylate copolymer comprising by weight 35%> of acrylate and having an MFI of 2 (190 ° C. 2.16 kg).
  • E920 MBS-type core shell with a core essentially based on butadiene and styrene and a PMMA bark sold by ATOFINA under the brand METABLEND®.
  • EXL2314 epoxy functionalized acrylic core-shell sold by RHOM and HAAS under the brand PARALOID®.
  • PBT polybutylene terephthalate of MFI 20 (at 250 ° C under 2.16 kg) sold under the brand ULTRADUR® B4500 by BASF.
  • FIGURE 1 shows the Charpy notched shock for PBT containing either AX8900 (comparative), EXL2314 (comparative), or simultaneously (according to the invention) AX8900, Lotryl and a core- shell.
  • the proportions by weight constituents of the impact modifier are in the following format: (AX8900 / lotryl / core-shell: 2.8 / 11, 2/6) (example)
  • shock values are indicated at four different temperatures for each composition.
  • the values in FIGURE 1 are also shown in the following TABLE 1.
  • FIGURE 2 shows the MFI of the preceding compositions containing the various impact modifiers and in addition the MFI of PBT without modifying: "pure PBT". The values are also shown in the following TABLE 2.
  • the modifier of the invention gives better impact results, especially when cold, than the AX8900 or I ⁇ XL2314.
  • the MFI is however lower than with I ⁇ XL2314 used alone, much higher than with the AX8900 alone but largely sufficient for injection.
  • FIGURE 3 shows the Charpy shock notched at + 23 ° C for PBT containing impact modifier consisting either of AX8900, or of Lotryl or of their mixture. These compositions are not in accordance with the invention.
  • FIGURE 4 the impact resistances of the same compositions for other temperatures have been shown. The values are also on TABLES 3 and 4.
  • FIGURE 5 shows the MFI of the preceding compositions containing the various impact modifiers and in addition the MFI of PBT without modifying: "pure PBT”. The values are also shown in the following TABLE 5.
  • FIGURE 6 shows the Charpy shock notched at -40 ° C for PBT containing impact modifier consisting either of AX (AX8900 or AX8930). either from core-shell (EXL2314 or E920) or from their mixture, these compositions are not in accordance with the invention.
  • FIGURE 7 shows the impact resistances of these same compositions for + 23 ° C.
  • the epoxy-based copolymer has been designed by AX and the core-shell or core-shell by CS. The values are also on TABLE 6 and TABLE 7.
  • FIGURE 8 shows the MFI of the preceding compositions containing the various impact modifiers and in addition the MFI of PBT without modifying: "pure PBT". The values are also shown in the following TABLE 8.
  • PBT polybutylene terephthalate of MFI 8.4 (at 250 ° C, under 5 kg) sold under the brand name CELANEX ⁇ 1600A by TICONA.
  • Lotryl ethylene-butyl acrylate copolymer comprising 30% by weight of acrylate and an MFI of 2 (at 190 ° C., under 2.16 kg)
  • AX8900 composition defined above.
  • AM939 core-shell with a core of n-octyl acrylate and a bark of methyl methacrylate in proportions of 70 to 90%> by weight for n-octyl acrylate and 10 to 30% for methyl methacrylate .
  • the compositions comprising the impact modifier according to the invention gives better impact resistance results in an exemplified temperature range going from room temperature to -40 ° C., unlike to compositions including nant only as a shock modifier the AX8900 (comparison 1) or I ⁇ M939 (comparison 2)
  • compositions comprising the impact modifier according to the invention clearly shows an improvement in the viscosity compared to comparatives 1 and 4 as well as an improvement in impact resistance compared to comparatives 2 and 3.
  • Our results indisputably demonstrate the superiority of our impact modifier compared to comparative impact modifiers and highlights the synergistic effect of the compounds CS / lotryl / AX8900, forming a shock modifier according to the invention, on the melt fluidity and the impact resistance of our thermoplastic polyester compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne des polyesters thermoplastiques (par exemple, PET ou PBT) comprenant, en poids, le total étant 100 %: 60 à 99 % de polyester thermoplastique; 1 à 40 % de modifiant choc comprenant: (a) un copolymère (A) coeur-écorce, (b) un copolymère (B) de l'éthylène choisi parmi les copolymères (B1) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, les copolymères (B2) de l'éthylène et d'un époxyde insaturé et leurs mélanges, (c) un copolymère (C) choisi parmi les copolymères (C1) de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères (C2) de l'éthylène et de l'acide (méth)acrylique éventuellement neutralisés et leurs mélanges. La présente invention concerne aussi une composition de mofifiants choc qu'on peut ajouter dans les polyesters thermoplastiques pour améliorer leurs propriétés choc et comprenant les constituants (A), (B) et (C).

Description

POLYESTERS THERMOPLASTIQUES À PROPRIÉTÉS CHOC AMÉLIORÉES ET
COMPOSITIONS DE MODIFIANTS CHOC
[Domaine de l'invention]
La présente invention concerne des polyesters thermoplastiques à propriétés choc améliorées et des compositions de modifiants choc
Les polyesters thermoplastiques tels que le PBT(polybutylène téréphtalate) et le PET (polyéthylène téréphtalate) possèdent d'excellentes propriétés de stabilité dimensionnelle, de résistance thermique ou de résistance chimique, utilisées dans les domaines électriques, électroniques ou automobiles. Cependant, à haute température, au cours des opérations de transformation, une diminution du poids moléculaire du polymère peut survenir conduisant à une diminution des propriétés de résistance aux chocs. De plus, les polyesters ont de mauvaises propriétés de résistance à la rupture pour des pièces entaillées.
La présente invention fournit des polyesters thermoplastiques dans lesquels on a ajouté une composition de modifiants choc pour obtenir des propriétés de résistance aux chocs améliorées dont la résilience à basse température. La présente invention concerne aussi cette composition de modifiants chocs qu'on additionne aux polyesters pour en améliorer les propriétés chocs. Ces compositions de modifiants permettent d'atteindre des propriétés chocs supérieures à celles obtenues avec chacun des composés pris séparément. [L'art antérieur]
Le brevet US 4,753,890 (= EP 174 343) décrit des polyesters tels que par exemple du polyéthylène téréphtalate (PET) ou du polybutylene téréphtalate (PBT) modifiés par des copolymères de l'éthylène, d'un (méth)acrylate d'alkyle et du (méth)acrylate de glycidyle.
Le brevet EP 737 715 décrit des PBT modifiés par un mélange d'un copolymère éthylène - methacrylate de methyle - methacrylate de glycidyle et d'un copoly- mère de type cceur-écorce (designé aussi sous le nom de Core-Shell). Ces copolymères de type cceur-écorce désignent de fines particules ayant un cœur en élasto- mère et une écorce thermoplastique.
Le brevet EP 531 008 décrit des mélanges de PBT et de polycarbonate contenant des core-shell et des copolymères qui sont soit des copolymères éthylène - methacrylate de glycidyle soit des copolymères éthylène - acétate de vinyle - methacrylate de glycidyle.
Le brevet US 5 369 154 décrit des mélanges de PET et de polycarbonate contenant quatre modifiants différents : un copolymère comprenant un époxyde, un core-shell, un élastomère de type SBR ou SBS ou EPR et un copolymère du type SAN ou ABS.
Le brevet EP 1 15 015 décrit du PET ou du PBT contenant du polyéthylène basse densité linéaire (LLDPE), des fibres de verre et éventuellement un core-shell.
Le brevet EP 133 993 décrit du PET contenant un core-shell et un copolymère de l'éthylène avec soit un acrylate d'alkyle soit de l'acide (méth)acrylique.
La demande de brevet japonais JP 01 247 454 A publiée le 3 octobre 1989 décrit du PBT contenant un copolymère éthylène - (méth)acrylate d'alkyle et un copolymère éthylène - methacrylate de glycidyle.
Les brevets EP 838 501 et EP 51 1 475 décrivent des compositions sembla- blés à celles de la demande japonaise précédente.
Le brevet EP 803 537 décrit du PET et du polycarbonate contenant un copolymère comprenant du methacrylate de glycidyle. On mélange d'abord le polycarbonate et le copolymère comprenant du methacrylate de glycidyle puis on incorpore ce mélange dans le PET. Le brevet EP 187 650 décrit du PET contenant un core-shell et un copolymère de l'éthylène avec soit l'anhydride maléique soit un acide (méth)acrylique. [Le problème technique]
On a vu dans l'art antérieur que les polyesters saturés peuvent avoir leurs propriétés chocs améliorées par l'addition de core-shell. Ces polymères ont une structure particulièrement bien définie où le cœur est constitué d'un polymère à caractère élastomérique et où l'écorce a un caractère thermoplastique. On a vu aussi que l'amélioration des résistances aux chocs peut être obtenue en incorporant en plus une phase dispersée d'un modifiant choc contenant éventuellement des fonctions réactives susceptibles de réagir avec les groupements fonctionnels des polyesters. Cette réactivité permet d'assurer une dispersion fine et homogène du modifiant de même qu'une bonne adhésion. Le core-shell peut lui aussi être fonctionnalisé pour permettre une meilleure adhésion avec la matrice. Cependant, cette réactivité est parfois élevée et peut conduire à une diminution de la fluidité. Cette baisse de fluidité est préjudiciable à l'injection de grandes pièces ou de pièces fines
On a maintenant trouvé qu'on pouvait améliorer les propriétés chocs des polyesters thermoplastiques en y ajoutant trois sortes de modifiant à savoir (a) un core-shell, (b) un copolymère éthylène - époxyde insaturé ou éthylène - anhydride d'acide carboxylique insaturé ou leurs mélanges et (c) un copolymère éthylène - (méth)acrylate d'alkyle ou éthylène - acide (méth)acrylιque éventuellement neutralisé ou leurs mélanges Cette modification n'entraîne pas une baisse de la fluidité par comparaison avec l'art antérieur voire l'améliore Ces modifiants améliorent les propriétés de résistance aux chocs soit à température ambiante soit à basses températures selon le rapport choisi entre les trois composants (a), (b) et (c) comparativement à des compositions rencontrées dans les brevets EP 511 475 et EP 174 343 Ils permettent également d'avoir une meilleure fluidité à l'état fondu du matériau comparativement à des compositions telles que décrit dans EP 737 715 [Brève description de l'invention]
La présente invention concerne des compositions de polyesters thermoplastiques comprenant, en poids, le total étant 100%
• 60 à 99 % de polyester thermoplastique,
• 1 à 40 % de modifiant choc comprenant (a) un copolymère (A) cœur - écorce,
(b) un copolymère (B) de l'éthylène choisi parmi les copolymères (B1 ) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, les copolymères (B2) de l'éthylène et d'un époxyde insaturé et leurs mélanges,
(c) un copolymère (C) choisi parmi les copolymères (C1 ) de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères (C2) de l'éthylène et de l'acide
(méth)acrylιque éventuellement neutralisés et leurs mélanges La présente invention concerne aussi une composition de modifiants chocs qu'on peut ajouter dans les polyesters thermoplastiques pour améliorer leurs propriétés chocs et comprenant (a) un copolymère (A) cœur - écorce,
(b) un copolymère (B) de l'éthylène choisi parmi les copolymères (B1 ) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, les copolymères (B2) de l'éthylène et d'un époxyde insaturé et leurs mélanges, (c) un copolymère (C) choisi parmi les copolymères (C1 ) de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères (C2) de l'éthylène et de l'acide (méth)acrylique éventuellement neutralisés et leurs mélanges. [Description détaillée de l'invention] Le terme « MFI » (abréviation de Melt Flow Index) désigne l'indice de fluidité à l'état fondu en g/10 minutes à une température donnée et sous une charge donnée.
Le terme polyester thermoplastique désigne des polymères qui sont des produits saturés de condensation de glycols et d'acides dicarboxyliques ou de leurs dérivés. De préférence, ils comprennent les produits de condensation d'acides dicar- boxyliques aromatiques ayant de 8 à 14 atomes de carbone et d'au moins un glycol choisi parmi le groupe constitué du néopentylglycol, du cyclohexanediméthanol et des glycols aliphatiques de formule HO(CH2)nOH dans laquelle n est un entier valant de 2 à 10. Jusqu'à 50 % en mole de l'acide aromatique dicarboxylique peut être remplacé par au moins un autre acide aromatique dicarboxylique ayant de 8 à 14 atomes de carbone, et/ou jusqu'à 20 % en mole peut être remplacé par un acide aliphatique dicarboxylique ayant de 2 à 12 atomes de carbone.
Les polyesters préférés sont le polyéthylène téréphtalate (PET), le poly(1 ,4- butylène) téréphtalate (PBT), le 1 ,4-cyclohexylène diméthylène téréphta- late/isophtalate) et d'autres esters dérivés d'acides aromatiques dicarboxyliques tels que l'acide isophtalique, dibenzoïque, naphtalène dicarboxylique, l'acide 4,4'-diphé- nylènedicarboxylique, l'acide bis(p-carboxyphényl) méthane, l'acide éthylène bis p- benzoïque, l'acide 1 -4 tétraméthylène bis(p-oxybenzoïque), l'acide éthylène bis (para oxybenzoïque), l'acide 1 ,3-triméthylène bis (p-oxybenzoique) et des glycols tels que l'éthylène glycol, le 1 ,3 triméthylène glycol, le 1 ,4-tétraméthylèneglycol, le 1 ,6- hexamethylene glycol, le 1 ,3 propylene glycol, le 1 ,8 octamethyleneglycol, le 1 ,10- decaméthylène glycol.
Le MFI de ces polyesters, mesuré à 250°C sous 2,16 kg ou 5 kg (pour le PBT) ou à 275°C sous 2, 16 kg (pour le PET), peut varier de 2 à 100 et avantageusement de 10 à 80. On ne sortirait pas du cadre de l'invention si les polyesters étaient constitués de plusieurs diacides et/ou plusieurs diols. On peut aussi utiliser un mélange de différents polyesters. On ne sortirait pas du cadre de l'invention si les polyesters contenaient des copolyétheresters Ces copolyétheresters sont des copolymères à blocs polyesters et blocs polyéther ayant des motifs polyéthers dérivés de polyétherdiols tels que le polyéthylène glycol (PEG), le polypropylène glycol (PPG) ou le polytétraméthylène glycol (PTMG), des motifs diacide carboxylique tels que l'acide téréphtalique et des motifs diols courts allongeurs de chaîne tels que le glycol (1 ,2-éthanedιol) ou le 1 ,4- butanediol L'enchaînement des polyéthers et des diacides forme les segments souples alors que l'enchaînement du glycol ou du butanediol avec les diacides forme les segments rigides du copolyétherester Ces copolyétheresters sont des élastomè- res thermoplastiques La proportion de ces copolyétheresters peut représenter de 0 à 500 parties pour 100 parties de polyester thermoplastique
On ne sortirait pas du cadre de l'invention si les polyesters contenaient du polycarbonate On désigne généralement par polycarbonate les polymères comprenant les motifs suivants
O
Figure imgf000006_0001
Dans lesquels R-j est un groupe divalent aliphatique, alicyclique ou aromatique pouvant contenir jusqu'à 8 atomes de carbone A titre d'exemple de R1 , on peut citer l'éthylène, le propylene, le tπméthylène, le tétraméthylène, l'hexaméthylène, le dodé- caméthylène, le poly-1 ,4-(2-buténylène), le poly-1 ,10-(2-éthyldécylène), le 1 ,3-cyclo- pentylène, le 1 ,3-cyclohexylène, le 1 ,4-cyclohexylène, le m-phénylène, le p-phény- lène, le 4,4'-bιphénylène, le 2,2-bιs(4-phénylène)propane, le benzène-1 ,4-dιméthy- lène Avantageusement au moins 60% des groupes R1 dans le polycarbonate et de préférence tous les groupes R1 sont des aromatiques de formule
Figure imgf000006_0002
dans laquelle R2 et R3 sont des radicaux aromatiques monocycliques divalents et Y est un radical de liaison comprenant un ou deux atomes séparant R2 et R3 Les valences libres sont généralement en position meta ou para par rapport à Y R2 et R3 peuvent être des phenylènes substitués ou non substitués, on peut citer comme substituants : des alkyles, des aikényles, des halogènes, des nitro et des alkoxy. On préfère les phénylènes non substitués, ils peuvent être ensemble ou séparément meta ou para et sont de préférence para. Le radical de liaison Y est de préférence tel qu'un atome sépare R2 et R3 et est de préférence un radical hydrocarboné tel que le méthylène, le cyclohéxylméthylène, le 2-[2,2,1]bicycloheptylméthylène, l'éthylène, le 2,2-propylène, le 1 ,1-(2,2diméthylpropylène), le 1 ,1 -cyclohexylène, le 1 ,1-cyclopen- tadécylène, le cyclododécylène, le carbonyle, le radical oxy, le radical thio et le sulfone. De préférence R1 est le 2,2-bis(4-phénylène)propane qui vient du bisphénol A, c'est à dire que Y est l'isopropylidène et R2 et R3 sont chacun le p-phényiène. Avantageusement la viscosité intrinsèque du polycarbonate, mesurée dans le chlorure de méthylène à 25°C, est comprise entre 0,3 et 1 dl/g.
La proportion de polycarbonate peut représenter de 0 à 300 parties pour 100 parties de polyester thermoplastique.
S'agissant du copolymère cœur - écorce (A) ou Core-Shell, abrégé CS par la suite, il se présente sous la forme de fines particules ayant un cœur en élastomère et au moins une écorce thermoplastique. La taille des particules est, en général, comprise entre 50 et 1000 nm et avantageusement comprise entre 100 et 500 nm.
A titre d'exemple de cœur on peut citer les homopolymères de l'isoprène ou du butadiène, les copolymères de l'isoprène avec au plus 30% en moles d'un mono- mère vinylique et les copolymères du butadiène avec au plus 30%) en moles d'un monomère vinylique. Le monomère vinylique peut être le styrène, un alkylstyrène, l'acrylonitrile ou un (méth)acrylate d'alkyle. Une autre famille de cœur est constituée par les homopolymères d'un (méth)acrylate d'alkyle et les copolymères d'un (méth)acrylate d'alkyle avec au plus 30% en moles d'un monomère vinylique. Le (méth)acrylate d'alkyle est avantageusement l'acrylate de butyle. Le monomère vinylique peut être le styrène, un alkylstyrène, l'acrylonitrile, le butadiène ou l'isoprène. Le cœur du copolymère (A) peut être réticulé en tout ou partie. Il suffit d'ajouter des monomères au moins difonctionnels au cours de la préparation du cœur, ces monomères peuvent être choisis parmi les esters poly(méth)acryliques de polyols tels que le di(méth)acrylate de butylène et le triméthylol propane trimethacrylate. D'autres monomères difonctionnels sont par exemple le divinylbenzène, le trivinyibenzène, l'acrylate de vinyle et le methacrylate de vinyle. On peut aussi réticuler le cœur en y introduisant, par greffage ou comme comonomère pendant la polymérisation, des monomères fonctionnels insatures tels que des anhydrides d'acides carboxyhques insaturés, des acides carboxyhques insaturés et des époxydes insaturés On peut citer à titre d'exemple l'anhydride maleique, l'acide (méth)acrylιque et le methacrylate de glycidyle L'écorce ou les ecorces sont des homopolymères du styrène, d'un alkylstyrène ou du methacrylate de méthyle ou des copolymères comprenant au moins 70%o en moles de l'un de ces monomères précédents et au moins un comonomère choisi parmi les autres monomères précédents, l'acétate de vinyle et l'acrylonitrile L'écorce peut être fonctionnalisée en y introduisant, par greffage ou comme comonomère pendant la polymérisation, des monomères fonctionnels insaturés tels que des anhydrides d'acides carboxyhques insaturés, des acides carboxyhques insaturés et des époxydes insaturés On peut citer à titre d'exemple l'anhydride maleique, l'acide (méth)acrylιque et le methacrylate de glycidyle
A titre d'exemple, on peut citer des copolymères cœur-écorce (A) ayant une écorce en polystyrène et des copolymères cœur-écorce (A) ayant une écorce en PMMA II existe aussi des copolymères cœur-écorce (A) ayant deux écorces , l'une en polystyrène et l'autre à l'extérieur en PMMA Des exemples de copolymère (A) ainsi que leur procédé de préparation sont décrits dans les brevets suivants US 4 180 494, US 3 808 180, US 4096 202, US 4 260 693, US 3 287 443, US 3 657 391 , US 4 299 928, US 3 985 704
A titre d'exemple, on peut citer des copolymères cœur-écorce (A) ayant un cœur à base d'acrylate d'alkyle ou d'un caoutchouc de polyorganosiloxane ou leur mélange et une écorce à base de polyméthacrylate d'alkyle, ou d'un copolymère styrène-acrylonitnle caractérisé en ce que ledit additif choc comprend de a) 70 à 90 % en poids d'un cœur réticulé élastoméπque qui se compose
1 ) de 20 à 100 % en poids et, de préférence de 20 à 90 % d'un noyau consistant en un copolymère (I) d'acrylate de n-alkyle dont le groupe alkyle a un nombre de carbone allant de 5 à 12 ou d'un mélange d'acrylate d'alkyle dont le groupe alkyle, linéaire ou ramifié, a un nombre de carbone allant de 2 à 12 ou d'un caoutchouc de polyorganosiloxane, d'un agent réticulant polyfonctionnel possédant dans sa molécule des groupements insaturé dont au moins un est de type vinylique CH2=C<, et, éventuellement d'un agent de greffage polyfonctionnel possédant dans sa molécule des groupements insaturés dont au moins un est de type allylique CH2=CH-CH2-, ledit cœur renfermant une quantité molaire d'agent réticulant et, éventuellement d'agent de greffage allant de 0,05 à 5 %, 2) de 80 à 0 % en poids et, de préférence de 80 à 10 % d'une enveloppe enve- loppant le noyau et consistant en un copolymère (II) d'acrylate de n-alkyle dont le groupe alkyle a un nombre de carbone allant de 4 à 12 ou d'un mélange d'acrylates d'alkyle tels que définis précédemment en 1 ) et d'un agent de greffage possédant dans sa molécule des groupements insaturés dont au moins un est de type allylique CH2=CH-CH2-, ladite enveloppe renfermant une quantité molaire d'agent de greffage allant de 0,05 à 2,5 %. b) 30 à 10 % en poids d'une écorce greffée sur ledit cœur constitué par un polymère d'un methacrylate d'alkyle dont le groupe alkyle a un nombre de carbone allant de 1 à 4 ou bien par un copolymère statistique d'un methacrylate d'alkyle dont le groupe alkyle a un nombre de carbone allant de 1 à 4 et d'un acrylate d'alkyle dont le groupe alkyle a un nombre de carbone allant de 1 à 8, renfermant une quantité molaire d'acrylate d'alkyle allant de 5 à 40 % ou bien constitué par un copolymère styrène-acrylonitrile. Optionnellement, 0,1 à 50% en poids des monomères vinyliques possèdent des groupement fonctionnels. Ce type de copolymère cœur-écorce est décrit dans la demande de brevet EP-A- 776915 et le brevet US-5,773,520 de la demanderesse.
A titre d'exemple, on peut citer des copolymères cœur-écorce (A) constitués (i) de 75 à 80 parties d'un cœur comprenant en moles au moins 93% de butadiène, 5% de styrène et 0,5 à 1 % de divinylbenzène et (ii) de 25 à 20 parties de deux écorces essentiellement de même poids l'une intérieure en polystyrène et l'autre extérieure en PMMA.
Avantageusement le cœur représente 70 à 90%) en poids de (A) et l'écorce 30 à 10%.
S'agissant des copolymères (B1 ) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, ils peuvent être des polyéthylènes greffés par un anhydride d'acide carboxylique insaturé ou des copolymères de l'éthylène et d'un anhydride d'acide carboxylique insaturé qu'on obtient, par exemple, par polymérisation radica- laire. L'anhydride d'acide carboxylique insaturé peut être choisi, par exemple, parmi les anhydrides maléiques, itaconiques, citraconiques, allylsucciniques, cyclohex-4- ène-1 ,2-dicarboxyliques, 4 — méthylènecyclohex-4-ène-1 ,2-dicarboxyliques, bicy- clo(2,2, 1 )hept-5-ène-2,3-dicarboxyliques, et x — méthylbicyclo(2,2, 1 )hept-5-ène-2,2- dicarboxyliques. On utilise avantageuse- ment l'anhydride maleique. On ne sortirait pas du cadre de l'invention en remplaçant tout ou partie de l'anhydride par un acide carboxylique insaturé tel que par exemple l'acide (méth)acrylique.
S'agissant des polyéthylènes sur lesquels on vient greffer l'anhydride d'acide carboxylique insaturé, on entend par polyéthylène des homo- ou copolymères. A titre de comonomères, on peut citer :
- les alpha-oléfines, avantageusement celles ayant de 3 à 30 atomes de carbone; à titre d'exemples d'alpha oléfines, on peut citer le propylene, le 1 -butène, le 1- pentène, le 3-méthyl-1 -butène, le 1 -hexène, le 4-méthyl-1-pentène, le 3-méthyl-1- pentène, le 1 -octène, le 1 -décène, le 1 -dodécène, le 1 -tétradécène, le 1 -hexadé- cène, le 1-octadécène, le 1-eicocène, le 1-dococène, le 1 -tétracocène, le 1-hexaco- cène, le 1 -octacocène, et le 1 -triacontène; ces alpha-oléfines peuvent être utilisées seules ou en mélange de deux ou de plus de deux,
- les esters d'acides carboxyliques insaturés tels que, par exemple, les (méth)acrylates d'alkyle, les alkyles pouvant avoir jusqu'à 24 atomes de carbone, des exemples d'acrylate ou methacrylate d'alkyle sont notamment le methacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle,
- les esters viπyliques d'acides carboxyliques saturés tels que, par exemple, l'acétate ou le propionate de vinyle. - les diènes tels que par exemple le 1 ,4-hexadiène.
- le polyéthylène peut comprendre plusieurs des comonomères précédents. Avantageusement, le polyéthylène, qui peut être un mélange de plusieurs polymères, comprend au moins 50% et de préférence 75% (en moles) d'éthylène, sa densité peut être comprise entre 0,86 et 0,98 g/cm3. Le MFI (à 190°C, 2,16 kg) est compris avantageusement entre 0,1 et 1000.
A titre d'exemple de polyéthylènes on peut citer :
- le polyéthylène basse densité (LDPE)
- le polyéthylène haute densité (HDPE) - le polyéthylène linéaire basse densité (LLDPE)
- le polyéthylène très basse densité (VLDPE)
- le polyéthylène obtenu par catalyse métallocène, c'est-à-dire les polymères obtenus par copolymérisation d'éthylène et d'alphaoléfine telle que propylene, butène, héxène ou octène en présence d'un catalyseur monosite constitué généralement d'un atome de zirconium ou de titane et de deux molécules cycliques alkyles liées au métal. Plus spécifiquement, les catalyseurs métallocènes sont habituellement composés de deux cycles cyclopentadiéniques liés au métal. Ces catalyseurs sont fréquemment utilisés avec des aluminoxanes comme cocatalyseurs ou activateurs, de préférence le methylaluminoxane (MAO). Le hafnium peut aussi être utilisé comme métal auquel le cyclopentadiène est fixé. D'autres métallocènes peuvent inclure des métaux de transition des groupes IV A, V A, et VI A. Des métaux de la série des lanthanides peuvent aussi être utilisés.
- les élastomères EPR (éthylène - propylene - rubber) - les élastomères EPDM (éthylène - propylene - diène)
- les mélanges de polyéthylène avec un EPR ou un EPDM
- les copolymères éthylène-(méth)acrylate d'alkyle pouvant contenir jusqu'à 60%) en poids de (méth)acrylate et de préférence 2 à 40%.
Le greffage est une opération connue en soi. S'agissant des copolymères de l'éthylène et de l'anhydride d'acide carboxylique insaturé, c'est-à-dire ceux dans lesquels l'anhydride d'acide carboxylique insaturé n'est pas greffé, il s'agit des copolymères de l'éthylène, de l'anhydride d'acide carboxylique insaturé et éventuellement d'un autre monomère pouvant être choisi parmi les comonomères cités plus haut pour les copolymères de l'éthylène destinés à être greffés.
On utilise avantageusement les copolymères éthylène-anhydride maleique et éthylène - (méth)acrylate d'alkyle - anhydride maleique. Ces copolymères comprennent de 0,2 à 10 % en poids d'anhydride maleique, de 0 à 40 % et de préférence 5 à 40 % en poids de (méth)acrylate d'alkyle. Leur MFI (190°C - 2, 16 kg) est compris entre 0,5 et 200. Les (méth)acrylates d'alkyle ont déjà été décrits plus haut. On peut utiliser un mélange de plusieurs copolymères (B1 ). On peut aussi utiliser un mélange d'un copolymère éthylène-anhydride maleique et d'un copolymère éthylène - (méth)acrylate d'alkyle - anhydride maleique. Le copolymère (B1 ) est disponible dans le commerce il est produit par polymérisation radicalaire à une pression pouvant être comprise entre 200 et 2500 bars et est vendu sous forme de granulés.
S'agissant de (B2), les copolymères de l'éthylène et d'un époxyde insaturé peuvent être obtenus par copolymérisation de l'éthylène et d'un époxyde insaturé ou par greffage de l'époxyde insaturé sur le polyéthylène. Le greffage peut être effectué en phase solvant ou sur le polyéthylène en fusion en présence d'un peroxyde. Ces techniques de greffage sont connues en elles-mêmes. Quant à la copolymérisation de l'éthylène et d'un époxyde insaturé, on peut utiliser les procédés dits de polyméri- sation radicalaire fonctionnant habituellement à des pressions entre 200 et 2500 bars. A titre d'exemple d'époxydes insaturés, on peut citer : les esters et éthers de glycidyle aliphatiques tels que l'allyl glycidyléther, le vinyle glycidyléther, le maléate et l'itaconate de glycidyle, le (méth)acrylate de glyci- dyle, et les esters et éthers de glycidyle alicycliques tels que le 2-cyclohexène-1 -glycidyléther, le cyclohexène-4,5-diglycidylcarboxylate, le cyclohexène-4-glycidylcar- boxylate, le 5-norbornène-2-méthyl-2-glycidylcarboxylate et l'endo cis-bicyclo(2,2,1 )- 5-heptène-2,3-diglycidyl dicarboxylate. S'agissant du greffage, le copolymère s'obtient à partir du greffage d'un polyéthylène homo ou copolymère comme décrit pour (B1 ) ci-dessus sauf qu'on greffe un époxyde au lieu d'un anhydride.
S'agissant d'une copolymérisation, le principe est semblable à celui décrit pour (B1 ) ci-dessus, sauf qu'on utilise un époxyde. Il peut aussi y avoir d'autres comonomères comme dans le cas de (B1 ).
Le produit (B2) est avantageusement un copolymère éthylène - (méth)acrylate d'alkyle - époxyde insaturé ou un copolymère éthylène - époxyde insaturé. Avantageusement, il peut contenir jusqu'à 40% en poids de (méth)acrylate d'alkyle, de préférence 5 à 40 %> et jusqu'à 10% en poids d'époxyde insaturé, de préférence 0,1 à 8%.
L'époxyde est avantageusement le (méth)acrylate de glycidyle.
Avantageusement, le (méth)acrylate d'alkyle est choisi parmi le (méth)acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle. La quantité de (méth)acrylate d'alkyle est avantageusement de 20 à 35%. Le MFI (à 190°C sous 2,16 kg) est avantageusement compris entre 0,5 et 200.
On peut utiliser un mélange de plusieurs copolymères (B2). On peut aussi uti- liser un mélange d'un copolymère éthylène - (méth)acrylate d'alkyle - époxyde insaturé et d'un copolymère éthylène - époxyde insaturé.
Ce copolymère (B2) peut être obtenu par polymérisation radicalaire des monomères.
On peut aussi utiliser un mélange des copolymères (B1 ) et (B2). S'agissant du copolymère (C1 ) de l'éthylène et d'un (méth)acrylate d'alkyle, les alkyles peuvent avoir jusqu'à 24 atomes de carbone. Des exemples d'acrylate ou methacrylate d'alkyle sont notamment le methacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle. Le MFI (à 190°C, sous 2, 16 kg) de ces copolymères est avantageusement compris entre 0, 1 et 50. La teneur en (méth)acrylate d'alkyle peut être jusqu'à 40% en poids de (C1 ). Avantageusement la teneur en (méth)acrylate est comprise entre 5 et 35 % en poids de (C1 ). Ces copolymères peuvent être fabriqués par polymérisation radicalaire en tube ou autoclave à des pressions comprises entre 300 et 2500 bars.
S'agissant des copolymères (C2) de l'éthylène et de l'acide (méth)acrylique , la teneur en acide (méth)acrylique peut être jusqu'à 10%) en moles de (C2) et avantageusement comprise entre 1 et 5%. On ne sortirait pas du cadre de l'invention si (C2) comprenait un (méth)acrylate d'alkyle en proportion pouvant atteindre 40%> en poids de (C2). Les fonctions acides peuvent être en tout ou en partie neutralisées par un cation tel que le lithium, le sodium, le potassium, le magnésium, le calcium, le strontium, le zinc et le cadmium. Le MFI (à 190°C, sous 2, 16 kg) de ces copolymères est avantageusement compris entre 0,1 et 50. Ces copolymères peuvent être fabriqués par polymérisation radicalaire en tube ou autoclave à des pressions comprises entre 300 et 2500 bars.
On peut aussi utiliser un mélange des copolymères (C1 ) et (C2). Avantageusement les constituants choc sont dans les proportions suivantes en poids pour un total de 100% :
(A) 15 à 80%
(B) 5 à 60% (C) 5 à 80%
Des proportions particulièrement utiles sont les suivantes:
Figure imgf000014_0001
Avantageusement les compositions de polyesters thermoplastiques de l'invention comprennent pour 100 parties en poids 65 à 95 parties de polyester pour respectivement 35 à 5 parties de modifiant choc.
L'invention concerne aussi une composition de modifiant choc ayant ces proportions. Les polyesters thermoplastiques de l'invention peuvent aussi comprendre en plus du modifiant choc des agents glissants, des stabilisants thermiques, des agents antibloquants, des antioxydants, des anti UN. et des charges. Les charges peuvent être des fibres de verre, des ignifugeants, du talc ou de la craie. Ces charges peuvent être comprises dans les modifiants chocs. Les mélanges du polyester thermoplastique et des modifiants choc sont préparés par les techniques habituelles des polymères thermoplastiques dans des extrudeuses mono ou double vis, des mélangeurs ou des appareils du type Ko malaxeur BUSS®. Le polyester et les constituants du modifiant choc, à savoir les copolymères (A), (B) et (C) peuvent être introduits séparément dans le dispositif mélangeur. Les constituants du modifiant choc peuvent être aussi ajoutés sous forme d'un mélange préparé à l'avance, éventuellement sous forme de mélange maître dans le polyester. On peut ajouter dans ces appareils les additifs tels que les agents glissants, les agents antibloquants, les antioxydants, les anti UN. et les charges soit tels quels soit sous forme de mélange maître dans le polyester soit encore sous forme de mélange maître avec un ou plusieurs des copolymères (A) à (C). La composition de modifiants choc comprenant (A) à (C) qu'on peut ajouter dans les polyesters est aussi préparée par la technique précédente habituelle de mélange des polymères thermoplastiques. [Exemples] Tous les exemples ont été réalisés avec des compositions comprenant en poids entre 70 à 80% de polyester et entre 30 à 20% de modifiant choc. Le modifiant choc est soit constitué de A, B et C pour les exemples selon l'invention, soit de A et B, soit de B et C, soit de A soit, de B soit encore de C. Le choc CHARPY entaillé est conforme à la norme ISO 179:93 (avec pour unité de mesure le kJ/m2) et le choc IZOD entaillé est mesuré selon la norme ASTM D256 (avec pour unité de mesure la livre-pied/pouce), plus la valeur de résistance au choc mesurée est élevée, meilleure est la résistance au choc.
Les exemples ci-dessous ont été réalisés avec du PBT ou avec du PET en tant que polyester.
• Les exemples suivants ont été réalisés avec des compositions comprenant en poids 80% de PBT et 20% de modifiant choc. Ces exemples ont été réalisés avec les produits suivants :
AX8900 : copolymère éthylène - acrylate de méthyle - methacrylate de glyci- dyle(GMA) comprenant en poids 25% d'acrylate et 8%> de GMA ayant un MFI de 6 (190X 2,16 kg). Il est vendu sous la marque LOTADER® ATOFINA. AX8930 : copolymère éthylène - acrylate de méthyle - methacrylate de glyci- dyle(GMA) comprenant en poids 25% d'acrylate et 3% de GMA ayant un MFI de 6 (190°C 2,16 kg). Il est vendu sous la marque LOTADER® ATOFINA. Lotryl : copolymère éthylène - acrylate de 2-ethylhexyle comprenant en poids 35%> d'acrylate et ayant un MFI de 2 (190°C 2,16 kg). E920 : core-shell de type MBS à cœur essentiellement à base de butadiène et styrène et d'une écorce de PMMA vendu par ATOFINA sous la marque METABLEND®.
EXL2314 : core-shell acrylique fonctionnalisé époxy vendu par RHOM et HAAS sous la marque PARALOID®. PBT : polybutylene téréphtalate de MFI 20 (à 250°C sous 2,16 kg) vendu sous la marque ULTRADUR® B4500 par BASF.
Sur la FIGURE 1 on a représenté le choc Charpy entaillé pour du PBT contenant soit de I' AX8900 (comparatif), soit du EXL2314 (comparatif), soit simultanément (selon l'invention) de l'AX8900, du Lotryl et un core-shell. Les proportions en poids des constituants du modifiant choc sont sous le format suivant : (AX8900/lotryl/core- shell : 2,8/11 ,2/6 )(exemple)
Les valeurs de choc sont indiquées à quatre températures différentes pour chaque composition. Les valeurs de la FIGURE 1 sont aussi représentées sur le TABLEAU 1 suivant.
TABLEAU 1
Figure imgf000016_0001
Sur la FIGURE 2 on a représenté le MFI des compositions précédentes contenant les différents modifiants chocs et en plus le MFI du PBT sans modifiant : "PBT pur". Les valeurs sont aussi représentées sur le TABLEAU 2 suivant.
TABLEAU 2
Figure imgf000016_0002
On voit clairement que le modifiant de l'invention donne de meilleurs résultats de choc en particulier à froid que l'AX8900 ou IΕXL2314. Le MFI est cependant plus bas qu'avec IΕXL2314 utilisé seul, beaucoup plus élevé qu'avec l'AX8900 seul mais largement suffisant pour l'injection.
Sur la FIGURE 3, on a représenté le choc Charpy entaillé à +23°C pour du PBT contenant du modifiant choc constitué soit d'AX8900, soit de Lotryl soit de leur mélange. Ces compositions ne sont pas conformes à l'invention. Sur la FIGURE 4, on a représenté les résistances au choc des mêmes compositions pour d'autres températures. Les valeurs sont aussi sur les TABLEAUX 3 et 4.
TABLEAU 3
Figure imgf000017_0001
TABLEAU 4
Figure imgf000017_0002
Sur la FIGURE 5, on a représenté le MFI des compositions précédentes contenant les différents modifiants chocs et en plus le MFI du PBT sans modifiant : " PBT pur". Les valeurs sont aussi représentées sur le TABLEAU 5 suivant.
TABLEAU 5
Figure imgf000017_0003
En comparant les FIGURES 1 et 4, on voit qu'avec le modifiant de l'invention, on obtient un meilleur choc en particulier à 0°C et en dessous de 0°C, tout en ayant un MFI plus élevé. Sur la FIGURE 6, on a représenté le choc Charpy entaillé à -40°C pour du PBT contenant du modifiant choc constitué soit d'AX (AX8900 ou AX8930). soit de core-shell (EXL2314 ou E920) soit de leur mélange, ces compositions ne sont pas conformes à l'invention.
Sur la FIGURE 7, on a représenté les résistances aux chocs de ces mêmes compositions pour +23°C. Sur ces FIGURES 6 et 7, le copolymère à base d'époxyde a été designé par AX et le cœur-écorce ou core-shell par CS. Les valeurs sont aussi sur les TABLEAU 6 et TABLEAU 7.
TABLEAU 6
Figure imgf000018_0001
TABLEAU 7
Figure imgf000018_0002
Sur la FIGURE 8, on a représenté le MFI des compositions précédentes contenant les différents modifiants chocs et en plus le MFI du PBT sans modifiant : "PBT pur". Les valeurs sont aussi représentées sur le TABLEAU 8 suivant. TABLEAU 8
Figure imgf000019_0001
En comparant les FIGURES 1 et 6, on constate que le modifiant de l'invention conduit à de meilleures valeurs de choc à froid. En examinant les FIGURES 2, 5 et 8 , on constate que le MFI des compositions de l'invention dans lesquelles on associe A, B et C est, de façon inattendue, plus élevé par rapport à celui obtenu en associant les copolymères deux à deux : A et B ou B et C.
• Les exemples ci-dessous ont été réalisés avec des compositions en PBT et modifiant choc telles que définis en % en poids dans le TABLEAU 9. Ce tableau donnent également d'autres valeurs telles que le MFI des compositions y figurant ainsi que leur résistance au choc en mesurant le choc IZOD entaillé selon la norme définie plus haut à différentes températures T (T=20°C, -20°C, -30°C et -40°C). Les compositions exemplifiées ci-dessous ont été réalisés avec les produits suivants :
PBT : polybutylene téréphtalate de MFI 8,4 (à 250°C, sous 5 kg) vendu sous la marque CELANEX ©1600A par TICONA.
Lotryl : copolymère éthylène-acrylate de butyle comprenant 30% en poids d'acrylate et un MFI de 2 (à 190°C, sous 2,16 kg) AX8900 : composition définie ci-dessus.
AM939 : core-shell avec un cœur en acrylate de n-octyle et une écorce en methacrylate de méthyle dans des proportions de 70 à 90%> en poids pour l'acrylate de n- octyle et 10 à 30% pour le methacrylate de méthyle. Au vu des valeurs répertoriées dans le TABLEAU 9, on voit clairement que les compositions comprenant le modifiant choc selon l'invention donne de meilleurs résultats de résistance au choc dans une fourchette de température exemplifiée allant de la température ambiante à -40°C, contrairement aux compositions compre- nant uniquement en tant que modifiant choc l'AX8900 (comparatif 1 ) ou IΑM939 (comparatif 2)
Des essais de résistance au choc ont également été menés avec des compositions non conforme à l'invention comprenant deux modifiants chocs Ce sont les composi- tions appelées dans le TABLEAU 9 comparatifs 3, 5 et 6 Lorsque l'on compare les résultats de résistance au choc obtenus avec de telles compositions et les résultats obtenus avec les compositions comprenant le trio AM939/lotryl/AX8900, on constate que l'utilisation du modifiant choc selon l'invention donne de très bonnes valeurs de résistance au choc sur la gamme de température exemplifiée, ce qui n'est pas le cas des comparatifs 5 et 6 et également donne de très bons résultats de fluidité à l'état fondu, ce qui n'est pas le cas du comparatif 3
On constate donc un effet de synergie entre les protagonistes du trio AM939/lotryl/AX8900 du modifiant choc selon l'invention permettant d'aboutir à un compromis appréciable entre résistance au choc et fluidité des compositions de polyesters thermoplastiques selon l'invention
• Les exemples ci-dessous ont été réalisés avec des compositions en PET et modifiant choc telles que définis en % en poids dans le TABLEAU 10. Ce tableau donnent également d'autres valeurs telles que le MFI des compositions y figurant ainsi que leur résistance au choc en mesurant le choc CHARPY entaillé selon la norme définie plus haut à différentes températures T (T=20°C, 0°C et -30°C) Les exemples ci-dessous ont été réalisés avec les produits suivants PET polyéthylène téréphtalate de MFI 40-50 (à 275°C, sous 2,16 kg) vendu sous la marque ESTAPAK®9921 par EASTMAN AX8900 composition définie plus haut E920 composition définie plus haut AM939 composition définie plus haut
Lotryl copolymère éthylène - acrylate de butyle comprenant en poids 30% d'acrylate et ayant un MFI de 2 (à190°C, sous 2,16 kg) Au vu des résultats de MFI et de résistances au choc reportés dans le TABLEAU 10, on constate que les compositions comprenant uniquement l'AX8900 (comparatifs 1 ) et uniquement le duo lotryl/AX8900 (comparatif 4) en tant que modifiant choc offrent une bonne résistance au choc au détriment de la fluidité à l'état fondu qui est médio- cre. D'autre part, on constate en étudiant les résultats des compositions comprenant uniquement un Core-Shell (AM939 pour le comparatif 2 ou E920 pour le comparatif 3) comme modifiant choc que ces compositions offrent une résistance au choc faible mais une meilleure viscosité à l'état fondu. L'analyse de nos résultats obtenus avec des compositions comprenant le modifiant choc selon l'invention montre clairement une amélioration de la viscosité par rapport aux comparatifs 1 et 4 ainsi qu'une amélioration de la résistance au choc par rapport aux comparatifs 2 et 3. Nos résultats démontrent indiscutablement la supériorité de notre modifiant choc par rapport aux modifiants chocs comparatifs et met en lumière l'effet synergique des composés CS/lotryl/AX8900, formant un modifiant choc selon l'invention, sur la fluidité à l'état fondu et la résistance au choc de nos compositions de polyesters thermoplastiques.
TABLEAU 9
Figure imgf000022_0001
TABLEAU 10
Figure imgf000023_0001

Claims

REVENDICATIONS
1. Compositions de polyesters thermoplastiques comprenant, en poids, le total étant 100% : 60 à 99 % de polyester thermoplastique,
1 à 40 %> de modifiant choc comprenant:
(a) un copolymère (A) cœur - écorce,
(b) un copolymère (B) de l'éthylène choisi parmi les copolymères (B1 ) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, les copolymères (B2) de l'éthylène et d'un époxyde insaturé et leurs mélanges,
(c) un copolymère (C) choisi parmi les copolymères (C1 ) de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères (C2) de l'éthylène et de l'acide (méth)acrylique éventuellement neutralisés et leurs mélanges.
2. Compositions selon la revendication 1 dans laquelle le polyester est choisi parmi le PET et le PBT.
3. Compositions selon la revendication 1 ou 2 comprenant de 0 à 500 parties en poids de copolyétherester pour 100 parties de polyester thermoplastique.
4. Compositions selon l'une quelconque des revendications précédentes comprenant de 0 à 300 parties en poids de polycarbonate pour 100 parties de polyester thermoplastique.
5. Compositions selon l'une quelconque des revendications précédentes dans lesquelles le copolymère (A) comprend un cœur en élastomère, avantageusement en acrylate de n-octyle, et au moins une écorce thermoplastique, avantageusement en methacrylate de méthyle.
6. Compositions selon l'une quelconque des revendications précédentes dans lesquelles les copolymères (B1 ) sont des copolymères éthylène - (méth)acrylate d'alkyle - anhydride maleique qui comprennent de 0,2 à 10 % en poids d'anhydride maleique, de 0 à 40 % et de préférence 5 à 40 %> en poids de (méth)acrylate d'alkyle.
7. Compositions selon l'une quelconque des revendications 1 à 5 dans lesquelles les copolymères (B2) de l'éthylène et d'un époxyde insaturé sont des copolymères éthylène/(méth)acrylate d'alkyle/époxyde insaturé obtenus par copoly- mérisation des monomères et contiennent de 0 à 40% en poids de (méth)acrylate d'alkyle et jusqu'à 10% en poids d'époxyde insaturé.
8. Compositions selon l'une quelconque des revendications précédentes comprenant, pour 100 parties en poids, 65 à 95 parties de polyester pour respecti- vement 35 à 5 parties de modifiant choc.
9. Compositions selon l'une quelconque des revendications précédentes dans lesquelles les proportions en poids de (A), (B) et (C) sont respectivement 15 à 80, 5 à 60 et 5 à 80% et (A)+(B)+(C)=100%.
10. Compositions selon la revendication 9 dans lesquelles les proportions en poids de (A), (B) et (C) sont respectivement 20 à 35, 40 à 60 et 10 à 40% et
(A)+(B)+(C)=100%.
11. Compositions selon la revendication 9 dans lesquelles les proportions en poids de (A), (B) et (C) sont respectivement 25 à 35, 5 à 10 et 60 à 70% et (A)+(B)+(C)=100%.
12. Compositions selon la revendication 9 dans lesquelles les proportions en poids de (A), (B) et (C) sont respectivement 40 à 75, 10 à 35 et 10 à 35% et (A)+(B)+(C)=100%.
13. Compositions de modifiants choc comprenant : (a) un copolymère (A) cœur - écorce, (b) un copolymère (B) de l'éthylène choisi parmi les copolymères (B1 ) de l'éthylène et d'un anhydride d'acide carboxylique insaturé, les copolymères (B2) de l'éthylène et d'un époxyde insaturé et leurs mélanges, (c) un copolymère (C) choisi parmi les copolymères (C1 ) de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères (C2) de l'éthylène et de l'acide (méth)acrylique éventuellement neutralisés et leurs mélanges.
14. Compositions selon la revendication 13 dans lesquelles les proportions de (A), (B) et (C) sont celles de l'une quelconque des revendications 9 à 12
PCT/FR2000/003260 1999-11-26 2000-11-23 Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc WO2001038437A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00993176A EP1252234B1 (fr) 1999-11-26 2000-11-23 Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc
BR0015828-3A BR0015828A (pt) 1999-11-26 2000-11-23 Poliésteres termoplásticos com propriedades de choque melhoradas e composições de modificadores de choque
JP2001540196A JP4768947B2 (ja) 1999-11-26 2000-11-23 耐衝撃性が改良された熱可塑性ポリエステルおよび衝撃改質剤組成物
DE60025652T DE60025652T2 (de) 1999-11-26 2000-11-23 Thermoplastische polyesterharze mit verbesserten schlagzähigkeitseigenschaften und schlagzäh-modifizierende zusammensetzungen
CA2392392A CA2392392C (fr) 1999-11-26 2000-11-23 Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc
US10/130,993 US7022768B1 (en) 1999-11-26 2000-11-23 Thermoplastic polyesters with improved shock-proof properties and impact modifying composition
AU46108/01A AU4610801A (en) 1999-11-26 2000-11-23 Thermoplastic polyesters with improved shock-proof properties and impact modifying composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/14913 1999-11-26
FR9914913A FR2801596B1 (fr) 1999-11-26 1999-11-26 Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc

Publications (1)

Publication Number Publication Date
WO2001038437A1 true WO2001038437A1 (fr) 2001-05-31

Family

ID=9552581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003260 WO2001038437A1 (fr) 1999-11-26 2000-11-23 Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc

Country Status (13)

Country Link
US (1) US7022768B1 (fr)
EP (1) EP1252234B1 (fr)
JP (1) JP4768947B2 (fr)
KR (1) KR100664435B1 (fr)
CN (1) CN1289601C (fr)
AT (1) ATE316118T1 (fr)
AU (1) AU4610801A (fr)
BR (1) BR0015828A (fr)
CA (1) CA2392392C (fr)
DE (1) DE60025652T2 (fr)
ES (1) ES2256089T3 (fr)
FR (1) FR2801596B1 (fr)
WO (1) WO2001038437A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207172A2 (fr) 2000-11-17 2002-05-22 Atofina Chemicals, Inc. Composition d'un modifiant choc pour polymères
WO2005121245A1 (fr) * 2004-06-08 2005-12-22 Lanxess Deutschland Gmbh Matieres de moulage a base d'un polyester thermoplastique a fluidite amelioree
EP1790692A2 (fr) 2005-10-25 2007-05-30 Lanxess Deutschland GmbH Matières moulables à base de polyester thermoplastique présentant une fluidité améliorée
WO2011007093A1 (fr) * 2009-07-17 2011-01-20 Arkema France Procede de fabrication de composition polyester aux proprietes choc ameliorees
FR2948122A1 (fr) * 2009-07-17 2011-01-21 Arkema France Procede de fabrication de composition polyester aux proprietes choc ameliorees
KR101017235B1 (ko) * 2003-10-17 2011-02-25 에보니크 룀 게엠베하 중합체 혼합물 및 이를 사용하여 제조된 사출 성형품
ITPI20110090A1 (it) * 2011-08-17 2013-02-18 Auserpolimeri S R L Materiale termoplastico antiurto a base di polimeri di policondensazione e suo metodo di produzione
US9156737B2 (en) 2008-10-06 2015-10-13 Construction Research & Technology Gmbh Method for producing phosphated polycondensation products and the use thereof
US9803053B2 (en) 2013-12-20 2017-10-31 Construction Research & Technology, Gmbh Additive for rheology improvement of inorganic binders
CN110452434A (zh) * 2018-05-07 2019-11-15 中华人民共和国余姚出入境检验检疫局 一种新型pe-pet-ep微纳米复合材料及其制备方法
US11485683B2 (en) 2015-12-17 2022-11-01 Construction Research & Technology Gmbh Polycondensate based water-reducer

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490658B2 (ja) * 2003-08-28 2010-06-30 住友化学株式会社 エンプラ改質用の樹脂組成物およびこの組成物を用いたポリエステルの改質方法
WO2005071012A1 (fr) * 2004-01-13 2005-08-04 Polyone Corporation Utilisation d'un vulcanisat thermoplastique comme agent antichoc dans des melanges de polyester et de polycarbonate
KR100801832B1 (ko) * 2004-06-08 2008-02-11 란세스 도이치란트 게엠베하 유동성이 개선된 폴리아미드 성형 화합물
DE102006006167A1 (de) * 2005-04-06 2006-10-12 Lanxess Deutschland Gmbh Formmassen auf Basis eines thermoplastischen Polycarbonats
KR20080068683A (ko) * 2005-10-03 2008-07-23 카네카 코포레이션 열가소성 폴리에스테르 수지용 증점제, 이것을 배합하여이루어지는 열가소성 폴리에스테르 수지 조성물, 및 당해조성물로 이루어지는 성형체
CN1990514B (zh) * 2005-12-30 2010-05-12 上海杰事杰新材料股份有限公司 用于pet树脂增韧结晶的核壳结构离聚物及其制备方法
US20090163659A1 (en) * 2006-06-07 2009-06-25 Gregory Gemeinhardt Soft touch, low gloss polymer resins
FR2916203B1 (fr) 2007-05-14 2012-07-20 Arkema Liants de coextrusion sur base renouvelable/biodegradable
US9289795B2 (en) 2008-07-01 2016-03-22 Precision Coating Innovations, Llc Pressurization coating systems, methods, and apparatuses
US20100015456A1 (en) 2008-07-16 2010-01-21 Eastman Chemical Company Thermoplastic formulations for enhanced paintability toughness and melt process ability
US8361577B2 (en) * 2008-07-30 2013-01-29 Ticona Llc Long-term heat aging resistant impact modified poly(cyclohexylene-dimethylene) terephthalate compositions
FR2938262B1 (fr) 2008-11-13 2010-11-19 Arkema France Fabrication de copolymeres ethylene/acide carboxylique a partir de matieres renouvelables, copolymeres obtenus et utilisations
CN101412841B (zh) * 2008-12-02 2011-09-14 上海金发科技发展有限公司 耐热超延展性聚对苯二甲酸丁二醇酯复合物及其制备方法
US8734909B2 (en) * 2010-03-10 2014-05-27 Eastman Chemical Company Methods and apparatus for coating substrates
EP2692798A4 (fr) * 2011-03-31 2014-09-10 Mitsubishi Chem Corp Composition de résine polycarbonate et article moulé obtenu à partir de ladite composition
US9616457B2 (en) 2012-04-30 2017-04-11 Innovative Coatings, Inc. Pressurization coating systems, methods, and apparatuses
WO2014074377A1 (fr) * 2012-11-06 2014-05-15 Arkema France Composition polyhydroxyalcanoate présentant une résistance à l'impact améliorée pour des teneurs faibles en agent antichoc
US8865261B2 (en) 2012-12-06 2014-10-21 Eastman Chemical Company Extrusion coating of elongated substrates
AU2013377931A1 (en) * 2013-02-08 2015-07-02 Valspar Sourcing, Inc. Ultra low cure powder coating
US9920526B2 (en) 2013-10-18 2018-03-20 Eastman Chemical Company Coated structural members having improved resistance to cracking
US9744707B2 (en) 2013-10-18 2017-08-29 Eastman Chemical Company Extrusion-coated structural members having extruded profile members
WO2018060155A1 (fr) * 2016-09-30 2018-04-05 Sabic Global Technologies B.V. Composition polymère comprenant du poly(butylène téréphtalate)
KR101974747B1 (ko) * 2017-10-24 2019-05-02 (주)제이월드텍 진공믹서기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573680A1 (fr) * 1992-06-05 1993-12-15 General Electric Company Polyester et/ou polycarbonate résistant aux chocs
EP0653461A2 (fr) * 1993-11-11 1995-05-17 Kirin Beer Kabushiki Kaisha Conteneur composé d'une composition de résine de polyester saturé
EP0838501A2 (fr) * 1996-10-23 1998-04-29 Hoechst Celanese Corporation Procédé et compositions pour modifier la tenacité de résines de polyester

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1470866B2 (de) 1962-12-24 1971-01-21 Kanegafuchi Chemical Industry Co, Ltd, Osaka (Japan) Thermoplastische Formmassen
US3657391A (en) 1969-03-12 1972-04-18 Borg Warner Graft copolymers of styrene acrylonitrile and methyl acrylate onto diene polymers and blends thereof with vinyl chloride resins
US3808180A (en) 1970-04-13 1974-04-30 Rohm & Haas Composite interpolymer and low haze impact resistant thermoplastic compositions thereof
US3985704A (en) 1975-06-19 1976-10-12 Rohm And Haas Company Methacrylate-butadiene-styrene graft polymers and process for their production
US4096202A (en) 1976-06-09 1978-06-20 Rohm And Haas Company Impact modified poly(alkylene terephthalates)
US4180494A (en) 1977-08-15 1979-12-25 Rohm And Haas Company Thermoplastic polyesters
US4260693A (en) 1979-08-27 1981-04-07 General Electric Company Polycarbonate compositions
US4299928A (en) 1980-03-14 1981-11-10 Mobay Chemical Corporation Impact modified polycarbonates
US4476274A (en) 1983-01-03 1984-10-09 General Electric Company Linear low density polyethylene impact modifier for thermoplastic polyesters
DE3484719D1 (de) 1983-08-19 1991-07-25 Gen Electric Modifizierte polyesterzusammensetzung.
DE3585935D1 (de) 1984-02-24 1992-06-04 Du Pont Verstaerkte thermoplastische polyesterzusammensetzungen.
US4659767A (en) * 1985-01-10 1987-04-21 Allied Corporation Impact modified polyester blends
DE3521957A1 (de) * 1985-06-20 1987-01-02 Basf Ag Kaelteschlagzaehe thermoplastische polyesterformmassen
US4753890A (en) 1986-04-29 1988-06-28 Eastman Kodak Company Analytical element and method for determination of magnesium ions
FR2625215B1 (fr) * 1987-12-23 1990-04-27 Charbonnages Ste Chimique Compositions thermoplastiques a base de polyester sature et articles moules les contenant
JPH01247454A (ja) 1988-03-29 1989-10-03 Nippon Petrochem Co Ltd ポリエステル樹脂組成物
US5369154A (en) 1990-04-12 1994-11-29 The Dow Chemical Company Polycarbonate/aromatic polyester blends containing an olefinic modifier
US5115012A (en) * 1990-06-18 1992-05-19 E. I. Du Pont De Nemours And Company Thermoplastic blow moldable polyester compositions
JPH0488063A (ja) * 1990-07-30 1992-03-19 Nippon Petrochem Co Ltd 熱可塑性樹脂組成物
JPH04202352A (ja) * 1990-11-29 1992-07-23 Toray Ind Inc ポリエステル樹脂組成物
EP0491985B1 (fr) * 1990-12-24 2000-08-02 General Electric Company Polytéréphtalate de butylène à résistance au choc modifiée
EP0511475A1 (fr) 1991-03-08 1992-11-04 Nippon Petrochemicals Company, Limited Composition de résine de polyester
EP0531008A1 (fr) 1991-08-22 1993-03-10 General Electric Company Compositions dérivées de polycarbonate et polyester recyclées
US5824412A (en) * 1991-10-24 1998-10-20 E. I. Du Pont De Nemours And Company Thermoplastic polybutylene terephthalate compositions for wire coating applications
US5321056A (en) * 1992-06-19 1994-06-14 Rohm And Haas Company Amorphous, aromatic polyester containing impact modifier
JP3475966B2 (ja) * 1994-03-07 2003-12-10 横浜ゴム株式会社 ゴルフボール用カバー材組成物
FR2732975A1 (fr) 1995-04-13 1996-10-18 Rohm & Haas France Melange durci constitue d'un polyester aromatique et d'un modificateur d'impact
CN1192754A (zh) * 1995-06-26 1998-09-09 巴斯福股份公司 接枝共聚物的新型聚合物组合物和其共混物以及含有它们的热塑性材料ⅰ
ES2192600T3 (es) 1995-10-27 2003-10-16 Atofina Chem Inc Aditivo choque del tipo nucleo/envoltura para polimeros termoplasticos.
US5652306A (en) * 1996-03-27 1997-07-29 Rohm And Haas Company Impact modifier combination for aromatic polyesters
US5814712A (en) 1996-04-25 1998-09-29 General Electric Company Impact-modified thermoplastics resin molding compositions and articles molded therefrom
JP2000336259A (ja) * 1999-03-24 2000-12-05 Polyplastics Co 難燃性ポリエステル樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573680A1 (fr) * 1992-06-05 1993-12-15 General Electric Company Polyester et/ou polycarbonate résistant aux chocs
EP0653461A2 (fr) * 1993-11-11 1995-05-17 Kirin Beer Kabushiki Kaisha Conteneur composé d'une composition de résine de polyester saturé
EP0838501A2 (fr) * 1996-10-23 1998-04-29 Hoechst Celanese Corporation Procédé et compositions pour modifier la tenacité de résines de polyester

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207172A3 (fr) * 2000-11-17 2002-08-07 Atofina Chemicals, Inc. Composition d'un modifiant choc pour polymères
US7015261B1 (en) 2000-11-17 2006-03-21 Arkema Inc. Impact modifier combination for polymers
EP1207172A2 (fr) 2000-11-17 2002-05-22 Atofina Chemicals, Inc. Composition d'un modifiant choc pour polymères
KR101017235B1 (ko) * 2003-10-17 2011-02-25 에보니크 룀 게엠베하 중합체 혼합물 및 이를 사용하여 제조된 사출 성형품
WO2005121245A1 (fr) * 2004-06-08 2005-12-22 Lanxess Deutschland Gmbh Matieres de moulage a base d'un polyester thermoplastique a fluidite amelioree
US7378470B2 (en) 2004-06-08 2008-05-27 Lanxess Deutschland Gmbh Molding compositions based on a thermoplastic polyester with improved flowability
EP1992662A2 (fr) 2004-06-08 2008-11-19 Lanxess Deutschland GmbH Matières moulables à base de polyester thermoplastique présentant une fluidité améliorée
EP1790692A2 (fr) 2005-10-25 2007-05-30 Lanxess Deutschland GmbH Matières moulables à base de polyester thermoplastique présentant une fluidité améliorée
US9156737B2 (en) 2008-10-06 2015-10-13 Construction Research & Technology Gmbh Method for producing phosphated polycondensation products and the use thereof
FR2948122A1 (fr) * 2009-07-17 2011-01-21 Arkema France Procede de fabrication de composition polyester aux proprietes choc ameliorees
US8653192B2 (en) 2009-07-17 2014-02-18 Arkema France Method for manufacturing a polyester composition having improved impact properties
WO2011007093A1 (fr) * 2009-07-17 2011-01-20 Arkema France Procede de fabrication de composition polyester aux proprietes choc ameliorees
ITPI20110090A1 (it) * 2011-08-17 2013-02-18 Auserpolimeri S R L Materiale termoplastico antiurto a base di polimeri di policondensazione e suo metodo di produzione
US9803053B2 (en) 2013-12-20 2017-10-31 Construction Research & Technology, Gmbh Additive for rheology improvement of inorganic binders
US11485683B2 (en) 2015-12-17 2022-11-01 Construction Research & Technology Gmbh Polycondensate based water-reducer
CN110452434A (zh) * 2018-05-07 2019-11-15 中华人民共和国余姚出入境检验检疫局 一种新型pe-pet-ep微纳米复合材料及其制备方法

Also Published As

Publication number Publication date
US7022768B1 (en) 2006-04-04
CN1289601C (zh) 2006-12-13
ATE316118T1 (de) 2006-02-15
CA2392392C (fr) 2012-01-10
CN1399663A (zh) 2003-02-26
FR2801596A1 (fr) 2001-06-01
DE60025652T2 (de) 2006-11-30
EP1252234B1 (fr) 2006-01-18
AU4610801A (en) 2001-06-04
ES2256089T3 (es) 2006-07-16
FR2801596B1 (fr) 2004-12-03
BR0015828A (pt) 2002-07-30
EP1252234A1 (fr) 2002-10-30
JP2003514974A (ja) 2003-04-22
JP4768947B2 (ja) 2011-09-07
KR100664435B1 (ko) 2007-01-03
CA2392392A1 (fr) 2001-05-31
DE60025652D1 (de) 2006-04-06
KR20020063579A (ko) 2002-08-03

Similar Documents

Publication Publication Date Title
EP1252234B1 (fr) Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc
KR100905208B1 (ko) 내충격성 개선용 첨가제 및 이를 함유하는 열가소성 중합체 조성물
CA2325785C (fr) Compositions de polyesters thermoplastiques a proprietes choc ameliorees
CA2325784C (fr) Compositions de polyesters thermoplastiques a proprietes choc ameliorees
JP3115945B2 (ja) 低光沢ポリマーブレンド
FR2754535A1 (fr) Polymeres greffes a viscosite controlee
CN1150275C (zh) 聚碳酸酯树脂/abs接枝共聚物/san共混物
EP1144505A3 (fr) Compositions de polymeres acryliques antistatiques
FR2807050A1 (fr) Compositions thermoplastiques de polyamide a proprietes choc ameliorees
CA1147881A (fr) Compositions a base de polyamide, de fibres de verre et d&#39;un compose a insaturation acrylique
JPH11502559A (ja) 非混和性ポリマーの相溶化系
FR2801599A1 (fr) Compositions de polyesters thermoplastiques a proprietes choc ameliorees
EP0963412A1 (fr) Pieces injectees en polyester et resistant au choc
JPH0357942B2 (fr)
JP2965701B2 (ja) 熱可塑性エラストマーおよびその製造方法
JPH0116434B2 (fr)
JP2702486B2 (ja) ポリアミド、ポリフェニレンエーテル及び耐衝撃性改良剤を含むポリマー混合物
JP3115438B2 (ja) ポリアセタール樹脂組成物
JPH0357941B2 (fr)
JP2001187838A (ja) ポリカーボネート系樹脂組成物
WO1995029955A1 (fr) Alliage polymere compatibilise avec un polymere greffe d&#39;un polymere de polypropylene fonctionnalise et d&#39;un polymere novolaque
JPH1030011A (ja) 変性ポリオレフィン系重合体及びその製造法
FR2798666A1 (fr) Compositions de polymeres acryliques antistatiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000993176

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2392392

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 540196

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027006681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008163065

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027006681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10130993

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000993176

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000993176

Country of ref document: EP