WO2001031169A1 - Einrichtung zur kompensierung des axialschubs bei turbomaschinen - Google Patents

Einrichtung zur kompensierung des axialschubs bei turbomaschinen Download PDF

Info

Publication number
WO2001031169A1
WO2001031169A1 PCT/EP2000/010619 EP0010619W WO0131169A1 WO 2001031169 A1 WO2001031169 A1 WO 2001031169A1 EP 0010619 W EP0010619 W EP 0010619W WO 0131169 A1 WO0131169 A1 WO 0131169A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
seal
compensating
turbomachine
gap width
Prior art date
Application number
PCT/EP2000/010619
Other languages
English (en)
French (fr)
Inventor
Karl Urlichs
Original Assignee
Alstom Power Turbinen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power Turbinen Gmbh filed Critical Alstom Power Turbinen Gmbh
Priority to DE50009437T priority Critical patent/DE50009437D1/de
Priority to EP00975947A priority patent/EP1224381B1/de
Priority to AT00975947T priority patent/ATE288536T1/de
Priority to JP2001533289A priority patent/JP4485729B2/ja
Publication of WO2001031169A1 publication Critical patent/WO2001031169A1/de
Priority to US10/134,147 priority patent/US6609882B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure

Definitions

  • the invention relates to a device for compensating for the axial thrust in turbomachines according to the preamble of claim 1.
  • the axial forces occurring in a turbomachine are to be compensated for using a compensating piston.
  • Such axial forces occur both in turbines and in compressors.
  • several balancing pistons are provided in a stepwise arrangement.
  • the behavior of individual step groups is simulated by specifying several ring areas that are subject to fixed pressure boundary conditions. These pressure boundary conditions are created by compensating lines from the step groups and the step behavior is simulated by suitable seals.
  • thrust compensation is possible.
  • a conventional thrust bearing is still generally required.
  • a device designed as an auxiliary device for axial force compensation is known, which is provided in addition to an axial bearing.
  • the thrust bearing absorbs the axial forces. Only if the thrust bearing is overloaded, i. H. in the event of large axial movements of the turbine rotor, the device for partial compensation of the axial forces is activated.
  • the task is to set up a facility at the beginning Specify the type mentioned, which allows the most complete possible axial thrust compensation with a simple structure and without any significant loss in the efficiency of the turbomachine.
  • the respective diameter of the axial seal and radial seal is selected depending on the functional diameter of the turbomachine. If these parameters are selected correctly, the admission pressure of the turbomachine is almost reached with an extremely small axial gap of the axial seal in the compensating chamber, whereas if the gap is very large, the final pressure of the turbomachine acts in the compensating chamber due to a compensating line. This also covers the extreme values of the possible thrust forces.
  • the axial seal is preferably designed as a mechanical seal or as a brush seal.
  • the use of a mechanical seal or brush seal results in a rigid seal arrangement which only leads to slight displacements of the turbine rotor.
  • Another axial seal is arranged next to the axial seal, which is equipped with a larger base gap.
  • This secondary seal serves as a safety seal. Due to its larger base gap width, it is only used when the main seal fails.
  • an axial bearing can be assigned to the rotor, which due to its gap width is only used when the sealing chamber is opened extremely and does not transmit any axial forces in normal operation and does not cause any friction losses.
  • FIG. 2 a longitudinal section according to FIG. 1 with a different sealing arrangement
  • Fig. 4 a partial section with 2 axially arranged axial seals and
  • FIG. 1 shows the partial area of a turbomachine 1 with a rotor 2 and a housing 3. Between the housing 3 and the rotor 2, a number of guide wheels and impellers (not shown in FIG. 1) are arranged in the area identified by 4. The guide wheels connected to the housing 3 and the impellers connected to the rotor 2 are flowed through by a medium supplied via a connection piece 5, which has a pre-pressure p x . After flowing through the impellers, the medium has a final pressure p 2 .
  • a disk rotating in a compensation chamber which forms a compensation piston 9 in connection with a radial seal 7 and an axial seal 8.
  • the pressure after the compensating piston 9 is ensured by a compensating line 10 in a space 11 which is acted upon by the final pressure p 2 .
  • the axial seal 8 for example in the form of a brush seal, is arranged on a predetermined diameter denoted by d k and fastened to the housing 3.
  • gap width S referred to as an axial gap width
  • the gap width S being reduced by the amount of the pushing movement when the impellers and the rotor 2 are pushed in the direction of the arrow F ax , since the compensating piston 9 also carries out the pushing movement.
  • the axial seal 8 is made very "stiff", its tightness changes considerably even with small changes in the gap width S.
  • the pressure in the compensation chamber 6 almost reaches the pressure level of the admission pressure x .
  • a large gap width S a pressure is set in the compensation chamber 6 due to the compensation line 10, which pressure equals the final pressure p 2 .
  • the functional diameters of the turbomachines di and d m are matched to the arrangement diameter d k of the axial seal and the arrangement diameter d z of the radial seal, not shown in FIG. 1, in such a way that all limit ranges of the application are covered. Due to the absolutely self-regulating process, the displacement force of the travel path is constantly compensated for, so that the balance of forces is always maintained even with fluctuating axial thrusts.
  • Figure 2 shows a partial section of the housing 3 with the nozzle 5 for the medium supplied under a pre-pressure p x .
  • the impeller 4 with the average diameter d m of its blades is flowed through by the medium, which leads to an axial thrust in the direction of the arrow F ax .
  • the compensating piston 9 projects into the compensating chamber 6, the radial seal 7 being provided between its outer diameter d z and the housing 3.
  • the axial seal 8 is designed as an axially acting mechanical seal which consists of undivided seals which slide on one another in a fluid-supported manner.
  • a slide ring 12 is the housing 3 and a counter ring 13 is assigned to the compensating piston 9 to form a gap width S. If the axial seal 8 and radial seal 7 are correctly coordinated with regard to their sealing effect, this can also be done here Figure 1 achieve the control process described.
  • the section according to FIG. 3 shows an axial seal 8 with a gap width S arranged radially on the inside between the compensating piston 9 and the housing 3.
  • an additional axial seal 8a acting as a safety seal is arranged radially on the outside, which has a larger gap width than S a than the axial seal 8.
  • the axial seal 8a will therefore only be used if the axial seal 8 fails.
  • the pressure in the chamber 6a is measured and compared with the final pressure p 2 .
  • the axial seals 8 and 8a are arranged next to one another in the axial direction, the axial seal 8a with its larger gap width S a only being used when the axial seal 8 should fail.
  • the pressure in the chamber 6a is measured and compared with the final pressure p 2 .
  • FIG. 5 A section of the design according to FIG. 1 is shown in FIG. 5.
  • an axial bearing 14 is provided in FIG. 5 to secure unsteady operating processes. Due to the distances 15 and 16, the axial bearing including injection lubrication is designed so that it is only used in the limit area. In this way, the usual losses of this camp are avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)
  • Paper (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Einrichtung zur Kompensierung des Axialschubes bei Turbomaschinen mit einem in einer Ausgleichskammer (6) angeordneten Ausgleichskolben (9), wenigstens einer zwischen einem Rotor (2) und einem Gehäuse (3) der Turbomaschine wirkenden Radialdichtung (7) und mit einem auf dem Rotor befestigten Laufrad (4), dadurch gekennzeichnet, dass zwischen einer Seitenfläche des Ausgleichskolbens (9) und dem Gehäuse (3) eine Axialdichtung (8) vorgesehen ist, deren Axialspaltweite analog der betriebsbedingten Axialverschiebung des Laufrades (4) variierbar ist und dass der Ausgleichskolben (9) mit dem in Abhängigkeit der Axialspaltbreite in der Ausgleichskammer (6) herrschenden Druck beaufschlagt ist.

Description

Einrichtung zur Ko pensierung des Axialschubs bei Turbomaschinen
Beschreibung
Die Erfindung betrifft eine Einrichtung zur Kompensierung des Axialschubes bei Turbomaschinen nach dem Oberbegriff des Anspruchs 1.
Mit einer derartigen allgemein bekannten Einrichtung sollen unter Einsatz eines Ausgleichskolbens die in einer Turbomaschine auftretenden Axialkräfte kompensiert werden. Derartige Axialkräfte treten sowohl bei Turbinen als auch bei Verdichtern auf . Zur Verbesserung des Kräfteausgleichs werden mehrere Ausgleichskolben in einer stufenweisen Anordnung vorgesehen. Das Verhalten einzelner Stufengruppen wird durch Vorgabe mehrere Ringflächen, die mit festen Druckrandbedingungen beaufschlagt sind, simuliert. Diese Druckrandbedingungen werden durch Ausgleichsleitungen aus den Stufengruppen hergestellt und das Stufenverhalten durch geeignete Dichtungen simuliert. Mit dieser aufwendigen Anordnung ist zwar ein Schubausgleich möglich. Allerdings wird grundsätzlich noch ein konventionelles Axiallager benötigt .
Aus dem DE-GM 17 01 436 ist eine als Hilfseinrichtung ausgebildete Einrichtung zur Axuialkraftkompensation bekannt, die zusätzlich zu einem Axiallager vorhanden ist. Im Normalbetrieb nimmt das Drucklager die Axialkräfte auf. Nur bei Überlastung des Drucklagers, d. h. bei großen Axialbewegungen des Turbinenrotrs, wird die Einrichtung zur teilweisen Kompensation der Axialkräfte aktiviert.
Es stellt sich die Aufgabe, eine Einrichtung der eingangs genannten Art anzugeben, die bei einfachen Aufbau und ohne nennenswerte Einbußen beim Wirkungsgrad der Turbomaschine eine möglichst vollständige AxialSchubkompensation erlaubt.
Gelöst wird diese Aufgabe erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale. Danach ist zwischen einer Seitenfläche des Ausgleichskolbens und dem Gehäuse eine Axialdichtung vorgesehen, deren Axialspaltweite analog der betriebsbedingten Axialverschiebung des Laufrades variierbar ist. Der Axialkolben wird mit dem in Abhängigkeit der Axialspaltbreite in der Ausgleichskammer herrschenden Druck beaufschlagt. Die erfindungsgemäße Einrichtung erfordert nur den von eine Axialdichtung und einer Radialdichtung begrenzte Ringfläche und eine Ausgleichsleitung. Ein Axiallager ist nicht erforderlich. Trotz dieses einfachen Aufbaus findet bei allen Betriebszuständen der Turbomaschine eine vollständige Kompensation der Axialkräfte statt.
Selbst eine geringfügige Axialverschiebung des Laufrades führt durch den ebenfalls mit dem Rotor verbundenen Ausgleichskolben zu einer Änderung der Spaltweite in axialer Richtung. Die dadurch bewirkte Beeinflussung der Dichtwirkung der Axialdichtung verändert auch den auf die Kolbenfläche wirkenden Druck. Die erfindungsgemäße Dichtungsanordnung führt zu einer automatisierten Druckregelung auf dieser Fläche, bei der sich die axiale Lage des Laufrades selbsttätig einstellt und eine vollständige Kompensierung der Axialkräfte der Laufräder mit der Axialkraft des Ausgleichskolbens stattfindet. Für diesen selbstregelneden Schubausgleich ist es notwendig, ein Axialdichtung mit hervorragender Dichtwirkung einzusetzen, da sonst die axialen Bewegungen des Rotors zu groß sind.
Der jeweilige Durchmesser von Axialdichtung und Radialdichtung ist in Abhängigkeit der funktioneilen Durchmesser der Turbomaschine gewählt. Bei richtiger Wahl dieser Parameter stellt sich bei extrem kleinem Axialspalt der Axialdichtung in der Ausgleichskammer nahezu der Vordruck der Turbomaschine ein, während bei sehr großem Spalt aufgrund einer Ausgleichsleitung der Enddruck der Turbomaschine in der Ausgleichskammer wirkt . Damit sind auch die extremen Werte der möglichen Schubkräfte abgedeckt.
Damit die Kompensierung aller möglichen Schubkräfte erfolgen kann, sind die Dichtwirkungen der Axialdichtung und der Radialdichtung aufeinander abgestimmt.
Die Axialdichtung ist vorzugsweise als Gleitringdichtung oder als Bürstendichtung ausgebildet. Die Verwendung einer Gleitring- oder Bürstendichtung ergibt eine steife Dichtungsanordnung, die nur zu geringen Verschiebungen des Turbinenläufers führt .
Der Axialdichtung ist eine andere weitere Axialdichtung nebengeordnet, die mit einer größeren Basisspaltweite ausgestattet ist.
Diese nebengeordnete Dichtung dient als Sicherheitsdichtung. Sie kommt aufgrund Ihrer größeren Basisspaltweite erst zum Einsatz, wenn die Hauptdichtung versagt.
Zur Absicherung instationärer Betriebszustände kann dem Rotor ein Axiallager zugeordnet sein, das aufgrund seiner Spaltweite nur bei extremem Öffnen der Dichtungskammer zu Einsatz kommt und im Normalbetrieb keine Axialkräfte überträgt und keine Reibungsverluste verurusacht .
Anhand von Ausführungsbeispielen und der schematischen Zeichnungen Figur 1 bis 5 wird die erfindungsgemäße Einrichtung beschrieben.
Dabei zeigen: Fig. 1: einen Längsschnitt durch einen Teilbereich der Turbomaschine mit einer Dichtungsanordnung,
Fig. 2: einen Längsschnitt gemäß Fig. 1 mit einer anderen Dichtungsanordnung
Fig. 3: einen Teilausschnitt mit 2 radial angeordneten Axialdichtungen,
Fig. 4: einen Teilausschnitt mit 2 axial angeordneten Axialdichtungen und
Fig. 5: eine Anordnung gemäß Fig. 3 mit einem Axiallager
Die Figur 1 zeigt den Teilbereich einer Turbomaschine 1 mit einem Rotor 2 und einem Gehäuse 3. Zwischen dem Gehäuse 3 und dem Rotor 2 sind mehrere in Fig. 1 nicht dargestellte Leiträder und Laufräder in dem mit 4 gekennzeicheneten Bereich angeordnet . Die mit dem Gehäuse 3 verbundenen Leiträder und die mit dem Rotor 2 verbundenen Laufräder werden von einem über einen Stutzen 5 zugeführten Medium, das einen Vordruck px aufweist, durchströmt. Nach dem Durchströmen der Laufräder weist das Medium einen Enddruck p2 auf .
Ebenfalls mit dem Rotor 2 verbunden ist eine in einer Ausgleichskammer umlaufende Scheibe, die in Verbindung mit einer Radialdichtung 7 und einer Axiadichtung 8 einen Ausgleichskolben 9 bildet. Der Druck nach dem Ausgleichskolben 9 wird durch eine Ausgleichsleitung 10 in einen Raum 11 sichergestellt, der mit dem Enddruck p2 beaufschlagt ist. Die beispielsweise als Bürstendichtung ausgebildete Axialdichtung 8 ist auf einem mit dk bezeichneten vorgegebenen Durchmesser angeordnet und am Gehäuse 3 befestigt. Sie belässt eine als Axialspaltweite bezeichnete Spaltweite S zu einer Seitenfläche des Ausgleichskolbens 9, wobei die Spaltweite S bei einer Schubbewegung der Laufräder und des Rotors 2 in Pfeilrichtung Fax um das Maß der Schubbewegung reduziert wird, da der Ausgleichskolben 9 die Schubbewegung mit ausführt . Da die Axialdichtung 8 sehr "steif" ausgeführt ist, ändert sich ihre Dichtigkeit schon bei kleinen Änderungen der Spaltweite S in erheblichem Maße. Bei reduzierter Spaltweite S erreicht der der Druck in der Ausgleichskammer 6 nahezu das Druckniveau des Vordrucks x . Bei großer Spaltweite S stellt sich aufgrund der Ausgleichsleitung 10 in der Ausgleichskammer 6 ein Druck ein, der dem Enddruck p2 gleichkommt. Die funktioneilen Durchmesser der Turbomaschinen di und dm (innerer und mittlerer Durchmesser der Beschaufelung) sind dabei mit dem Anordnungsdurchmesser dk der Axialdichtung und den in Fig. 1 nicht dargestellten Anordnungsdurchmesser dz der Radialdichtung so abgestimmt, daß alle Grenzbereiche der Anwendung erfaßt werden. Durch den absolut selbst regelnden Vorgang wird die Verschiebekraft des Laufweges ständig kompensiert, so daß das Kräftegleichgewicht auch bei schwankenden Axialschüben stets erhalten bleibt.
Figur 2 zeigt einen Teilausschnitt des Gehäuses 3 mit dem Stutzen 5 für das unter einem Vordruck px zugeführte Medium. Das Laufrad 4 mit dem mittleren Durchmesser dm seiner Beschaufelung wird von dem Medium durchströmt, was zu einem Axialschub in Pfeilrichtung Fax führt. Der Ausgleichskolben 9 ragt in die Ausgleichskammer 6, wobei zwischen seinem Außendurchmesser dz und dem Gehäuse 3 die Radialdichtung 7 vorgesehen ist. Bei diesem Ausführungsbeispiel ist die Axialdichtung 8 als axial wirkende Gleitringdichtung ausgebildet, die aus ungeteilten Dichtungen besteht, die fluidgestützt aufeinander gleiten. Ein Gleitring 12 ist dem Gehäuse 3 und ein Gegenring 13 ist dem Ausgleichskolben 9 unter Bildung einer Spaltweite S zugeordnet. Bei richtiger Abstimmung von Axialdichtung 8 und Radialdichtung 7 hinsichtlich Ihrer Dichtwirkung lässt sich auch hier der zu Figur 1 beschriebene Regelvorgang erzielen.
Der Ausschnitt nach Figur 3 zeigt eine radial innen zwischen dem Ausgleichskolben 9 und dem Gehäuse 3 angeordnete Axialdichtung 8 mit einer Spaltweite S. Zur Erhöhung der Betriebssicherheit ist radial außen eine als Sicherheitsdichtung wirkende weitere Axialdichtung 8a angeordnet, die mit Sa eine größere Spaltweite aufweist als die Axialdichtung 8. Die Axialdichtung 8a wird daher erst beim Versagen der Axialdichtung 8 zum Einsatz kommen. Zur Überwachung der Funktion der Hauptdichtung 8 wird der Druck in der Kammer 6a gemessen und mit dem Enddruck p2 verglichen.
In der Figur 4 sind die Axialdichtungen 8 und 8a in axialer Richtung nebeneinander angeordnet, wobei die Axialdichtung 8a mit Ihrer größeren Spaltweite Sa erst dann zum Einsatz kommt, wenn die Axialdichtung 8 versagen sollte. Zur Überwachung der Funktion der Hauptdichtung 8 wird der Druck in der Kammer 6a gemessen und mit dem Enddruck p2 verglichen.
Ein Ausschnitt der Ausbildung nach Figur 1 ist in Figur 5 dargestellt. In Weiterbildung zu Figur 1 ist in Figur 5 zur Absicherung instationärer Betriebsabläufe ein Axiallager 14 vorgesehen. Aufgrund der Abstände 15 und 16 ist das Axiallager einschließlich einer Einspritzschmierung so ausgelegt, daß es nur im Grenzbereich zum Einsatz kommt. Auf diese Weise werden die sonst üblichen Verluste dieses Lagers vermieden.

Claims

Patentansprüche
1. Einrichtung zur Kompensierung des Axialschubes bei Turbomaschinen mit einem in einer Ausgleichskammer (6) angeordneten Ausgleichskolben (9) , wenigstens einer zwischen einem Rotor (2) und einem Gehäuse (3) der Turbomaschine wirkenden Radialdichtung (7) und mit einem auf dem Rotor befestigten Laufrad (4) , dadurch gekennzeichnet, daß zwischen einer Seitenfläche des Ausgleichskolbens (9) und dem Gehäuse (3) eine Axialdichtung (8) vorgesehen ist, deren Axialspaltweite
(S) analog der betriebsbedingten Axialverschiebung des Laufrades (4) variierbar ist und daß der Ausgleichskolben (9) mit dem in Abhängigkeit der Axialspaltbreite in der Ausgleichskammer (6) herrschenden Druck beaufschlagt ist .
2. Einrichtung nach Anspruchs 1, dadurch gekennzeichnet, daß der jeweilige Durchmesser (dk und dz) von Axialdichtung und Radialdichtung in Abhängigkeit der funktionellen Durchmesser (d und dz) der Turbomaschine gewählt ist.
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Dichtwirkungen der Axialdichtung (8) und der Radialdichtung (7) aufeinander abgestimmt sind.
4. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Axialdichtung (8) eine Gleitringdichtung ist.
5. Einrichtung nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, daß die Axialdichtung (8) eine Bürstendichtung ist.
6. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Axialdichtung (8) eine adaptive Dichtung mit geringer Spaltweite ist .
7. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Axialdichtung (8) eine weitere Axialdichtung (8a) nebengeordnet ist, die mit einer größeren Basisspaltweite ausgestattet ist.
8. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Absicherung instationärer Betriebszustände dem Rotor (2) ein Axiallager (14) zugeordnet ist.
PCT/EP2000/010619 1999-10-27 2000-10-27 Einrichtung zur kompensierung des axialschubs bei turbomaschinen WO2001031169A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50009437T DE50009437D1 (de) 1999-10-27 2000-10-27 Einrichtung zur kompensierung des axialschubs bei turbomaschinen
EP00975947A EP1224381B1 (de) 1999-10-27 2000-10-27 Einrichtung zur kompensierung des axialschubs bei turbomaschinen
AT00975947T ATE288536T1 (de) 1999-10-27 2000-10-27 Einrichtung zur kompensierung des axialschubs bei turbomaschinen
JP2001533289A JP4485729B2 (ja) 1999-10-27 2000-10-27 ターボマシンで軸方向スラストを補償する装置
US10/134,147 US6609882B2 (en) 1999-10-27 2002-04-29 Device for compensating for an axial thrust in a turbo engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19951570.0 1999-10-27
DE19951570A DE19951570A1 (de) 1999-10-27 1999-10-27 Einrichtung zur Kompensierung des Axialschubs bei Turbomaschinen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/134,147 Continuation US6609882B2 (en) 1999-10-27 2002-04-29 Device for compensating for an axial thrust in a turbo engine

Publications (1)

Publication Number Publication Date
WO2001031169A1 true WO2001031169A1 (de) 2001-05-03

Family

ID=7926934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010619 WO2001031169A1 (de) 1999-10-27 2000-10-27 Einrichtung zur kompensierung des axialschubs bei turbomaschinen

Country Status (8)

Country Link
US (1) US6609882B2 (de)
EP (1) EP1224381B1 (de)
JP (1) JP4485729B2 (de)
AT (1) ATE288536T1 (de)
CZ (1) CZ297939B6 (de)
DE (2) DE19951570A1 (de)
ES (1) ES2235985T3 (de)
WO (1) WO2001031169A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549835B2 (en) 2006-07-07 2009-06-23 Siemens Energy, Inc. Leakage flow control and seal wear minimization system for a turbine engine
US8277177B2 (en) 2009-01-19 2012-10-02 Siemens Energy, Inc. Fluidic rim seal system for turbine engines

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50206223D1 (de) * 2001-10-22 2006-05-18 Sulzer Pumpen Ag Wellenabdichtungsanordnung für eine Pumpe zur Förderung heisser Fluide
GB2411931A (en) * 2004-03-08 2005-09-14 Alstom Technology Ltd A leaf seal arrangement
US7195443B2 (en) * 2004-12-27 2007-03-27 General Electric Company Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
DE102008022966B4 (de) * 2008-05-09 2014-12-24 Siemens Aktiengesellschaft Rotationsmaschine
US20090304493A1 (en) * 2008-06-09 2009-12-10 General Electric Company Axially oriented shingle face seal for turbine rotor and related method
EP2154332A1 (de) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Verminderung der thermischen Belastung eines Aussengehäuses für eine Strömungsmaschine
US8061970B2 (en) * 2009-01-16 2011-11-22 Dresser-Rand Company Compact shaft support device for turbomachines
US20100196139A1 (en) * 2009-02-02 2010-08-05 Beeck Alexander R Leakage flow minimization system for a turbine engine
US8186933B2 (en) * 2009-03-24 2012-05-29 General Electric Company Systems, methods, and apparatus for passive purge flow control in a turbine
WO2013109235A2 (en) 2010-12-30 2013-07-25 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
WO2012166236A1 (en) 2011-05-27 2012-12-06 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
DE102017212821A1 (de) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Turbomaschine, insbesondere für ein Brennstoffzellensystem
CN114856720B (zh) * 2022-04-20 2023-04-25 浙大宁波理工学院 一种用于超高速涡轮转子的密封装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE289941C (de) *
DE541079C (de) * 1930-05-27 1932-01-08 Bbc Brown Boveri & Cie Dampfturbine mit selbsttaetig wirkendem Ausgleichkolben fuer den Axialschub
DE1701436U (de) 1955-04-20 1955-06-30 Degussa Apparategehaeuse und teile von solchen aus nichtmetallischem material mit lack- und metallueberzuegen.
DE4422594A1 (de) * 1994-06-28 1996-01-04 Abb Patent Gmbh Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
WO1999030007A1 (en) * 1997-12-11 1999-06-17 Pratt & Whitney Canada Corp. Turbine engine with a thermal valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151965A (en) * 1913-08-12 1915-08-31 Laval Steam Turbine Co Balancing of centrifugal pumps.
US2005429A (en) * 1932-03-21 1935-06-18 Foster Wheeler Corp Centrifugal pump and the like
DE1701347U (de) * 1954-09-08 1955-06-30 Karl Dr Roder Drucklager in turbomaschinen.
DE3424138A1 (de) * 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Luftspeichergasturbine
US5104284A (en) * 1990-12-17 1992-04-14 Dresser-Rand Company Thrust compensating apparatus
US6079945A (en) * 1997-11-10 2000-06-27 Geneal Electric Company Brush seal for high-pressure rotor applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE289941C (de) *
DE541079C (de) * 1930-05-27 1932-01-08 Bbc Brown Boveri & Cie Dampfturbine mit selbsttaetig wirkendem Ausgleichkolben fuer den Axialschub
DE1701436U (de) 1955-04-20 1955-06-30 Degussa Apparategehaeuse und teile von solchen aus nichtmetallischem material mit lack- und metallueberzuegen.
DE4422594A1 (de) * 1994-06-28 1996-01-04 Abb Patent Gmbh Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
WO1999030007A1 (en) * 1997-12-11 1999-06-17 Pratt & Whitney Canada Corp. Turbine engine with a thermal valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549835B2 (en) 2006-07-07 2009-06-23 Siemens Energy, Inc. Leakage flow control and seal wear minimization system for a turbine engine
US8277177B2 (en) 2009-01-19 2012-10-02 Siemens Energy, Inc. Fluidic rim seal system for turbine engines

Also Published As

Publication number Publication date
JP2003513188A (ja) 2003-04-08
ATE288536T1 (de) 2005-02-15
DE19951570A1 (de) 2001-05-03
EP1224381B1 (de) 2005-02-02
CZ297939B6 (cs) 2007-05-02
ES2235985T3 (es) 2005-07-16
US6609882B2 (en) 2003-08-26
DE50009437D1 (de) 2005-03-10
JP4485729B2 (ja) 2010-06-23
US20020197150A1 (en) 2002-12-26
EP1224381A1 (de) 2002-07-24
CZ20021454A3 (cs) 2002-10-16

Similar Documents

Publication Publication Date Title
WO2001031169A1 (de) Einrichtung zur kompensierung des axialschubs bei turbomaschinen
EP0750720B1 (de) Strömungsmaschine mit entlastungskolben
EP1131537B1 (de) Verfahren zum betrieb einer strömungsmaschine
DE102006049516B3 (de) Turbomaschine
EP0355649B1 (de) Dichtungseinrichtung
DE60116455T2 (de) Dichtungseinrichtung
EP1394363B1 (de) Verstellbares Leitgitter für eine Turbineneinheit
DE69629332T2 (de) Gasturbinenrotor mit Trägerringen
DE3219127C2 (de) Dichtungsvorrichtung für Strömungsmaschinen
EP0931210B1 (de) Turbine zur drosselung der ansaugluft für einen verbrennungsmotor
EP0953100B1 (de) Dampfturbine
EP2271827B1 (de) Turbomaschine mit schubausgleichskolben
DE3140693C1 (de) Gehaeuseaufbau fuer ein Gasturbinentriebwerk
DE3226052A1 (de) Deckbandaufbau fuer ein gasturbinentriebwerk
DE69921404T2 (de) Dichtungsanordnung mit automatischer Spieleinstellung
DE3315914C2 (de)
DE3008889A1 (de) Beschaufelter rotor fuer ein gasturbinentriebwerk
EP0953099B1 (de) Dampfturbine
DE3540463A1 (de) Gasturbinentriebwerk
EP0131719B1 (de) Verstellbarer Leitapparat
DE3145783A1 (de) Verbrennungsmotor
EP3379037B1 (de) Dichtung am innenring eines leitschaufelkranzes
WO2011088819A2 (de) Gehäusesystem für eine axialströmungsmaschine
DE4334339A1 (de) Abgas-Turbolader
EP1247938B1 (de) Verfahren zur Relativpositionierung von Stator- oder Rotorschaufeln

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000975947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2002-1454

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2001 533289

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10134147

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000975947

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1454

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2000975947

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV2002-1454

Country of ref document: CZ

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)