WO2001027553A1 - Treibladungsanordnung für rohrwaffen oder ballistische antriebe - Google Patents

Treibladungsanordnung für rohrwaffen oder ballistische antriebe Download PDF

Info

Publication number
WO2001027553A1
WO2001027553A1 PCT/EP2000/009974 EP0009974W WO0127553A1 WO 2001027553 A1 WO2001027553 A1 WO 2001027553A1 EP 0009974 W EP0009974 W EP 0009974W WO 0127553 A1 WO0127553 A1 WO 0127553A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
electromagnetic radiation
compact
arrangement according
propellant charge
Prior art date
Application number
PCT/EP2000/009974
Other languages
English (en)
French (fr)
Inventor
Helmut Schmid
Norbert Eisenreich
Gesa Langer
Andreas Klolezko
Rudolf Emmerich
Peter Elsner
Helfried Urban
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to US10/110,139 priority Critical patent/US6591753B1/en
Priority to DE50006350T priority patent/DE50006350D1/de
Priority to EP00979490A priority patent/EP1221017B1/de
Publication of WO2001027553A1 publication Critical patent/WO2001027553A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/08Cartridges, i.e. cases with charge and missile modified for electric ignition

Definitions

  • the invention relates to a propellant charge arrangement for barrel weapons or ballistic drives, consisting of a compact charge and an ignition system.
  • the power is essentially determined by the ratio of the mass of the charge and its energy density to the mass of the object to be accelerated, e.g. a projectile, a missile or the like.
  • the aim is always to match the mass of the propellant charge and its energy density to the specific need.
  • the internal ballistics i.e. the ignition process and the combustion of the propellant charge, as well as the transfer of energy to the projectile before leaving the barrel, are of particular importance.
  • the erosion of the propellant charge and the acceleration of the projectile is a dynamic process that takes place in an extremely short time, within which the gas development due to the propellant charge not only matches the mass of the projectile, but also takes into account the fact It must be ensured that the volume to be filled by the propellant gas increases with the acceleration of the projectile. These overlapping processes must in turn be coordinated with one another in such a way that the projectile reaches the desired muzzle velocity. Decisive for this is the gas pressure-time curve, which is generally similar to a Gauss curve, ie the pressure rises exponentially to a maximum pressure and drops a little less steeply with increasing projectile acceleration towards the muzzle.
  • a similar characteristic with a somewhat more symmetrical course of the Gaussian curve shows the rate of conversion of the propellant charge.
  • the decisive factor for the drive power is the pressure-time integral, which is limited by the maximum permissible gas pressure in the cargo area.
  • the ideal case would be a trapezoidal pressure curve in which the maximum pressure is reached faster and at the same time the integral of the pressure-time curve should be larger.
  • propellant charges with high charge density that is to say a large ratio of the mass of the propellant charge powder to its volume
  • the high charge density required for a high muzzle velocity of the projectile is made more regular by large-volume propellant charges
  • the ignition is made by chemical ignition means, e.g. Nitrates, which require mechanical ignition devices, such as firing bolts, or electromechanical ignition devices.
  • tubular powder or cylindrical multi-hole powder for example, are used, which are penetrated by channels for the passage of the vapor of the igniter, so that the burn-off of the propellant charge is initiated on a large surface.
  • this lowers the density of propellant and reduces the muzzle velocity of the projectile.
  • the gas pressure drops exponentially again immediately after reaching its maximum. While burn-up times of 1 to 10 ms are achieved in this way with small-caliber barrel weapons, such as anti-aircraft guns or tank cannons, the burn-up times are much longer with large-bore barrel weapons, such as artillery pieces.
  • compact charges that can be initiated by means of electrical energy (electrothermal-chemical cannon) are known, but the ignition and burning off of such compact charges is difficult because the charge arrangement has to be broken up and disassembled and defined surfaces have to be created in order to achieve the desired muzzle velocity required burn-on and burn-off is achieved with a high turnover rate of the propellant charge.
  • DE 195 46 341 AI describes a propellant charge with a secondary arranged in a cylindrical sleeve Explosives and an initial explosive arranged next to this, which is ignited by coupling in laser radiation.
  • a high rate of conversion of the propellant charge during combustion cannot be achieved with such an arrangement, since the initial explosive is arranged only on one side of the secondary explosive facing an optical fiber and the latter is consequently not spontaneously broken up and disassembled when the charge is detonated.
  • DE 35 42 447 A1 shows an ignition mixture which can be activated by means of laser radiation and which contains 10 to 30% by mass of a hot-burning fine particulate metal powder, in particular zirconium, titanium or boron, 60 to 80% by mass of an oxidizing agent, in particular lead oxide, and 1 contains up to 5% by mass of carbon black.
  • a hot-burning fine particulate metal powder in particular zirconium, titanium or boron
  • an oxidizing agent in particular lead oxide
  • 1 contains up to 5% by mass of carbon black.
  • the invention is based on the object of proposing a propellant charge arrangement which, as far as possible, approaches the ideal trapezoidal course of the pressure-time curve while avoiding the abovementioned disadvantages during combustion.
  • this object is achieved by a propellant charge arrangement of the type mentioned at the outset in that at least one medium absorbing electromagnetic radiation is distributedly distributed in the compact charge and can be activated by means of the ignition system which emits electromagnetic radiation, in order to fragment the compact charge when the ignition system is triggered disassemble and the fragments in to accelerate the gas volume generated when the compact charge burns.
  • the compact charge Due to the internal ignition of the propellant charge arrangement according to the invention at the areas absorbing electromagnetic radiation, the compact charge is broken down into fragments in a defined sequence.
  • the structure of the compact charge and its arrangement, as well as that of the ignition system, can be selected so that fragments with a relatively regular geometry are created, which consequently also offer relatively regular surfaces, which in turn ensure regular burning and burning.
  • by increasing the introduction of the medium absorbing electromagnetic radiation into defined areas of the propellant charge it is possible to ignite these areas earlier and thus control the erosion as a function of time.
  • the fragments resulting from the fragmentation have a large burn-off area and are accelerated into the gas volume developing when the propellant charge burns up, and are fully implemented there.
  • the propellant charge arrangement according to the invention makes the use of chemical ignition means unnecessary, as a result of which it b is easier and safer to handle. Furthermore, it does not require any mechanical or electromechanical ignition devices required to initiate such chemical ignition means, so that its simple construction makes it cost-effective.
  • the density of the propellant charge arrangement according to the invention can be increased significantly compared to conventional propellant charges by making the deposits of the medium absorbing electromagnetic radiation very thin, so that they require a significantly smaller space requirement in comparison to the channels provided in conventional propellant charges for swath penetration.
  • the formation of fragments with a relatively regular geometry and consequently a high erosion surface can be achieved in particular in that the compact charge has an essentially regularly structured structure and the electromagnetic radiation-absorbing medium is embedded in the compact charge in a regular arrangement.
  • the triggering of the ignition system of the compact charge is then broken along the area from the electromagnetic radiation-absorbing medium and in accelerated ent ⁇ speaking regular fragments inward with the forming surfaces for proper check-in and burn care.
  • the compact charge can be interspersed, for example, with layers of the electromagnetic radiation-absorbing medium that are arranged essentially geometrically regularly, the layers preferably being arranged essentially in a grid-like manner.
  • the layer thickness is expediently between 1 and 1000 ⁇ m.
  • the compact charge can also be interspersed with channels of the electromagnetic radiation-absorbing medium which are arranged essentially geometrically regularly, the diameter of the channels advantageously being between 1 and 1000 ⁇ m.
  • the medium stored in the explosive and possibly enveloping the electromagnetic radiation absorbing medium can be stored in any way, e.g. lead to ignition of the compact charge or fragmentation thereof by heating and, if appropriate, the thermal expansion and / or evaporation associated with the heating, photo-reaction, cleavage, conversion into a plasma state or the like.
  • the compact charge can either be essentially powdery, the powder particles having a structure of the aforementioned type, or the compact charge is designed in the manner of a molded part, which is e.g. can be introduced into a cargo space of a barrel weapon.
  • the intensity and / or the spectrum of the electromagnetic radiation of the ignition system can be controlled.
  • the pressure-time profile can be influenced in a targeted manner, for example on the one hand by specifically re-igniting the fragments formed or by heating the combustion gases by passing the electromagnetic radiation onto the Resonance frequency of the same is adjusted.
  • a pulsed coupling of the electromagnetic radiation with a possibly variable frequency is conceivable until the projectile emerges from the muzzle of the barrel weapon. It can also be used to ignite the
  • Compact charge used electromagnetic radiation to be adapted to the ambient conditions, so that e.g. at an increased ambient temperature, which brings about an increased burn-up rate, the intensity of the radiation can be reduced in order to activate only a part of the deposits from the electromagnetic radiation-absorbing medium, to reduce the fragmentation of the compact charge or the burn-off surface and the To compensate for the temperature-related increase in the burning rate.
  • the electromagnetic radiation has a wavelength of approximately 1 mm to approximately 1 m (microwaves).
  • electromagnetic radiation of other wavelength ranges e.g. Ultraviolet, infrared or the like.
  • the wavelength ranges can be either laser-like narrowband or plasma-like broadband.
  • the spectrum of the electromagnetic radiation depends primarily on the absorption spectrum of the respective electromagnetic radiation-absorbing medium, it being necessary to ensure that the medium used for the selected wavelength range has a higher absorption capacity than the respective explosive of the compact charge.
  • the electromagnetic radiation can be coupled into the compact charge, for example, by means of an emitter reaching into the compact charge, such as an antenna, or the electromagnetic radiation can be coupled into the compact charge by means of emitters surrounding the compact charge.
  • the compact charge can be arranged in a cartridge, which is particularly advantageous for handling an essentially powdered propellant charge.
  • Carbon, in particular soot is preferably used as the medium absorbing electromagnetic radiation, on the one hand because of its compatibility with most explosives, and on the other hand because of its high absorption capacity for electromagnetic radiation in a wide frequency range.
  • FIG. 1 shows a cross section through a propellant charge arrangement according to the invention for tubular weapons.
  • FIG. 2 shows a schematic view of a propellant grain according to the invention
  • Fig. 3 is a pressure-time diagram of a conventional propellant charge with chemical igniters and
  • Fig. 4 is a pressure-time diagram of a propellant charge arrangement according to the invention.
  • the compact fertilizer 4 consists, for example, of a powder made of an explosive or an explosive mixture and a medium, such as soot, which is used to store electromagnetic radiation.
  • the electromagnetic radiation-absorbing medium 3 is embedded in the propellant charge particles 1 of the compact charge in a regular arrangement, passing through the explosive 2 in layers arranged in a grid.
  • An ignition system 5 with a controllable microwave generator 6 is provided for igniting the propellant charge 4.
  • the electromagnetic radiation generated by the microwave generator 6 can be coupled into the cargo space 11 via an antenna 7.
  • the particles 1 of the compact charge 4 are broken down into essentially regular fragments along the soot layers 3 and the fragments are accelerated into the gas volume generated when the compact charge 4 burns up. At the same time, the fragments burn off and the fuel fragments from the compact charge 4 are converted.
  • the projectile 13 is subjected to an approximately constant pressure over a longer distance and leaves the barrel 12 with the desired high muzzle velocity with a possibly reduced muzzle pressure.
  • FIG. 3 shows the pressure-time profile of a conventional propellant charge with curve 15.
  • the pressure p increases exponentially to a maximum pressure p max and drops somewhat less steeply with increasing acceleration, the projectile towards the muzzle.
  • the propellant charge arrangement according to the invention enables a pressure curve according to the curve Generate 16, which shows a pronounced pressure plateau 17 with a time-delayed pressure drop with a somewhat leading rise.
  • the maximum pressure p max can be reduced or an increased drive power can be achieved with the same maximum pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Toys (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Es wird eine aus einer Kompaktladung (1) und einem Zündsystem bestehende Treibladungsanordnung für Rohrwaffen (10) oder ballistische Antriebe vorgeschlagen. In der Kompaktladung ist wenigstens ein elektromagnetische Strahlung absorbierendes Medium (3), z.B. Ruß, verteilt eingelagert und mittels des elektromagnetische Strahlung emittierenden Zündsystems aktivierbar. Auf diese Weise wird die Kompaktladung durch Auslösen des Zündsystems in Fragmente zerlegt und werden die Fragmente in das bei Abbrand der Kompaktladung erzeugte Gasvolumen beschleunigt. Die erfindungsgemäße Treibladungsanordnung macht einerseits die Verwendung von sowohl chemischen Zündmitteln als auch mechanischen Zündeinrichtungen entbehrlich; andererseits läßt sich durch die Fragmentierung der Kompaktladung der entstehende Maximaldruck über eine längere Zeit aufrechterhalten, um einem zu beschleunigenden Objekt, wie einem Projektil, einer Rakete oder dergleichen, eine höhere Mündungsgeschwindigkeit zu verleihen.

Description

Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe
Die Erfindung betrifft eine Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe, bestehend aus einer Kom- paktladung und einem Zündsystem.
Bei chemisch reagierenden Treibladungen wird die Leistung im wesentlichen von dem Verhältnis der Masse der Ladung und ihrer Energiedichte zur Masse des zu beschleunigenden Ob- jektes, z.B. eines Projektils, einer Rakete oder dergleichen, bestimmt. Das Bestreben geht stets dahin, die Masse der Treibladung und ihre Energiedichte auf den konkreten Bedarfsfall abzustimmen. Für die Mündungssgeschwindigkeit des Projektils ist insbesondere die innere Ballistik, also der Zündvorgang und der Abbrand der Treibladung sowie die Übertragung der Energie auf das Projektil vor Verlassen des Laufs maßgeblich.
Der Abbrand der Treibladung und die Beschleunigung des Pro- jektils ist ein dynamischer Vorgang, der sich in extrem kurzer Zeit abspielt, innerhalb der die Gasentwicklung durch die Treibladung nicht nur auf die Masse des Projektils abgestimmt, sondern auch der Tatsache Rechnung getra- gen werden muß, daß sich mit der Beschleunigung des Projektils das vom Treibgas auszufüllende Volumen vergrößert. Diese sich überlagernden Vorgänge müssen wiederum derart aufeinander abgestimmt sein, daß das Projektil die ge- wünschte Mündungsgeschwindigkeit erreicht. Hierfür maßgeblich ist die Gasdruck-Zeit-Kurve, die im allgemeinen einer Gauß- Kurve ähnlich ist, d.h. der Druck steigt expotentiell auf einen Maximaldruck an und fällt etwas weniger steil mit zunehmender Beschleunigung des Projektils zur Mündung hin expotentiell ab. Eine ähnliche Charakteristik mit etwas symmetrischerem Verlauf der Gauß-Kurve zeigt die Umsatzgeschwindigkeit der Treibladung. Maßgeblich für die Antriebs - leistung ist das Druck- Zeit - Integral , das durch den maximal zulässigen Gasdruck im Ladungsraum nach oben begrenzt ist. Der Idealfall wäre ein trapezförmiger Druckverlauf, bei dem der Maximaldruck schneller erreicht und gleichzeitig das Integral der Druck-Zeit -Kurve größer sein sollte.
Um eine hohe Mündungsgeschwindigkeit des Projektils zu er- reichen, werden in der Regel als Kompaktladungen bezeichnete Treibladungen mit hoher Ladungsdichte, also einem großen Verhältnis der Masse des Treibladungspulvers zu seinem Volumen eingesetzt. Hierbei wird die für eine hohe Mündungs- geschwindigkeit des Projektils erforderliche hohe Ladungs- dichte durch großvolumige Treibladungen mit regelmäßiger
Anordnung der Ladungspartikel erzielt. Die Zündung erfolgt durch chemische Zündmittel, z.B. Nitrate, welche mechanische Zündeinrichtungen, wie Schlagbolzen, oder elektrome- chanische Zündeinrichtungen erfordern.
Nachteilig ist einerseits, daß derartige Zündmittel gegenüber Umwelteinflüssen, wie Wärme oder Feuchtigkeit, empfindlich sind und zu einem unzeitigen Zünden führen können. Andererseits muß beim Zünden sichergestellt sein, daß die entstehenden Schwaden des Zündmittels mit einer möglichst großen Oberfläche der Treibladung in Kontakt treten, da andernfalls die lineare Abbrandgeschwindigkeit der Treibladung zu gering ist, um die gesamte Ladung in kurzer Zeit abzubrennen bzw. den für die gewünschte Mündungsgeschwin- digkeit des Projektils erforderlichen Druck zu erreichen. Um für einen reproduzierbaren Druckanstieg erforderliche reproduzierbare Abbrandflachen auszubilden, werden z.B. Röhrenpulver oder zylindrische Mehrlochpulver eingesetzt, welche von Kanälen zum Durchtritt des Schwaden des Zündmit- tels durchsetzt sind, so daß der Abbrand der Treibladung an einer großen Oberfläche initiiert wird. Hierdurch wird jedoch die Treibladungsdichte herabgesetzt und die Mündungs- geschwindigkeit des Projektils dadurch verringert. Des weiteren fällt der Gasdruck unmittelbar nach Erreichen seines Maximums wieder expontiell ab. Während bei kleinkalibrigen Rohrwaffen, wie Flugabwehrgeschützen oder Panzerkanonen, auf diese Weise Abbrandzeiten von 1 bis 10 ms erreicht werden, sind die Abbrandzeiten bei großkalibrigen Rohrwaffen, wie Artilleriegeschützen, erheblich länger.
Weiterhin sind mittels elektrischer Energie iniitierbare Kompaktladungen (elektrothermisch- chemisch Kanone) bekannt, doch gestaltet sich das Zünden und der Abbrand solcher Kompaktladungen als schwierig, da die Ladungsanordnung aufge- brochen und zerlegt und dabei definierte Oberflächen geschaffen werden müssen, damit ein für die gewünschte Mündungsgeschwindigkeit erforderlicher An- und Abbrand mit hoher Umsatzgeschwindigkeit der Treibladung erreicht wird.
Gleiches gilt für- die in neuerer Zeit untersuchten flüssigen Treibladungen, die in eine entsprechende Dispersion überführt werden müssen.
Die DE 195 46 341 AI beschreibt eine Treibladung mit einem in einer zylindrischen Hülse angeordneten sekundären Sprengstoff und einem neben diesem angeordneten Initialsprengstoff, welcher durch Einkoppeln von Laserstrahlung gezündet wird. Eine hohe Umsatzgeschwindigkeit der Treibladung beim Abbrand kann mit einer solchen Anordnung nicht erreicht werden, da der Initialsprengstoff nur an einer einem Lichtleiter zugewandten Seite des Sekundärsprengstoffs angeordnet ist und letzterer folglich beim Zünden der Ladung nicht spontan aufgebrochen und zerlegt wird.
Der DE 35 42 447 AI ist eine mittels Laserstrahlung aktivierbare Zündmischung entnehmbar, welche 10 bis 30 Mass.-% eines heiß brennenden feinpartikulären Metallpulvers, insbesondere Zirkon, Titan oder Bor, 60 bis 80 Mass.-% eines Oxidationsmittels, insbesondere Bleioxid, und 1 bis 5 Mass.-% Ruß enthält. Zur Zündung einer Treibladung ist vorgesehen, die Zündmischung in einem engen geometrischen Bereich des Ladungspulvers von wenigen mm2 anzuordnen, auf welchen der Laserstrahl auftrifft. Auch in diesem Fall ist eine spontane Umsetzung des Ladungspulvers nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, eine Treibladungsanordnung vorzuschlagen, die unter Vermeidung der vorgenannten Nachteile beim Abbrand dem idealen, trapezförmigen Verlauf der Druck- Zeit -Kurve soweit wie möglich ange nähert ist.
Erfindungsgemäß wird diese Aufgabe durch eine Treibladungs- anordnung der eingangs genannten Art dadurch gelöst, daß in der Kompaktladung wenigstens ein elektromagnetische Strah- lung absorbierendes Medium verteilt eingelagert und mittels des elektromagnetische Strahlung emittierenden Zündsystems aktivierbar ist, um die Kompaktladung bei Auslösen des Zündsystems in Fragmente zu zerlegen und die Fragmente in das bei Abbrand der Kompaktladung erzeugte Gasvolumen zu beschleunigen .
Durch die innere Zündung der erfindungsgemäßen Treibla- dungsanordnung an den elektromagnetische Strahlung absorbierenden Bereichen wird die Kompaktladung in definierter Sequenz in Bruchstücke zerlegt. Der Aufbau der Kompaktladung und ihre Anordnung wie auch die des Zündsystems lassen sich so wählen, daß Bruchstücke mit relativ regelmäßiger Geometrie entstehen, die folglich auch relativ regelmäßige Oberflächen bieten, die wiederum für einen regelmäßigen An- und Abbrand sorgen. Ebenfalls ist es durch verstärktes Einbringen des elektromagnetische Strahlung absorbierenden Mediums in definierte Bereichen der Treibladung möglich, die- se Bereiche früher zu zünden und somit den Abbrand in Abhängigkeit der Zeit zu steuern. Die bei der Fragmentierung entstehenden Bruchstücke weisen eine hohe Abbrandflache auf und werden in das sich beim Abbrand der Treibladung entwik- kelnde Gasvolumen beschleunigt und dort vollständig umge- setzt. Auf diese Weise wird beispielsweise bei einer Rohrwaffe die mit der Beschleunigung des Projektils einhergehende Volumenvergrößerung und Druckabsenkung unverzüglich kompensiert. Durch diesen Aufbau der Treibladungsanordnung läßt sich der entstehende Maximaldruck über eine längere Zeit aufrechterhalten, so daß sich im Druck-Zeit-Diagramm anstelle eines Peaks ein Druckplateau ergibt, um das Projektil mit einem länger anhaltenden Gasdruck zu beschleunigen. Hierdurch kann der Maximaldruck wie auch der Mündungsdruck abgesenkt werden, ohne daß die Antriebsleitung bzw. die Mündungsgeschwindigkeit absinkt. Entsprechend läßt sich bei gleichem Maximaldruck eine wesentlich höhere Mündungs- geschwindigkeit erzielen.
Die erfindungsgemäße Treibladungsanordnung macht die Ver- wendung von chemischen Zündmitteln entbehrlich, wodurch sie b einfacher und sicherer handhabbar ist. Weiterhin erfordert sie keine zur Initiierung solcher chemischer Zündmittel erforderlichen mechanischen oder elektromechanischen Zündeinrichtungen, so daß sie aufgrund ihres einfachen Aufbaus ko- stengünstig ist.
Ferner läßt sich die Dichte der erfindungsgemäßen Treibladungsanordnung gegenüber herkömmlichen Treibladungen wesentlich erhöhen, indem die Einlagerungen des elektromagne- tische Strahlung absorbierenden Mediums sehr dünn ausgelegt werden, so daß diese im Vergleich zu den bei bekannten Treibladungen für einen Schwadendurchgriff vorgesehenen Kanälen einen deutlich geringeren Raumbedarf erfordern.
Die Ausbildung von Fragmenten mit relativ regelmäßiger Geometrie und folglich hoher Abbrandoberflache läßt sich insbesondere dadurch erreichen, daß die Kompaktladung einen im wesentlichen regelmäßig strukturierten Aufbau aufweist bzw. das elektromagnetische Strahlung absorbierende Medium in der Kompaktladung in regelmäßiger Anordnung eingelagert ist. Bei Auslösen des Zündsystems wird dann die Kompaktladung entlang den Bereichen aus dem elektromagnetische Strahlung absorbierenden Medium aufgebrochen und in ent¬ sprechend regelmäßigen Fragmenten nach innen beschleunigt, wobei die sich bildenden Oberflächen für einen einwandfreien An- und Abbrand sorgen.
Die Kompaktladung kann beispielsweise von im wesentlichen geometrisch regelmäßig angeordneten Schichten aus dem elek- tromagnetische Strahlung absorbierenden Medium durchsetzt sein, wobei die Schichten bevorzugt im wesentlichen rasterartig angeordnet sind. Je nach Art des Explosivstoffs und des elektromagnetische Strahlung absorbierenden Mediums beträgt die Schichtdicke hierbei zweckmäßig zwischen 1 und 1000 um. Die Kompaktladung kann auch von im wesentlichen geometrisch regelmäßig angeordneten Kanälen aus dem elektromagnetische Strahlung absorbierenden Medium durchsetzt sein, wobei der Durchmesser der Kanäle zweckmäßig zwischen 1 und 1000 um beträgt.
Ebenfalls ist eine im wesentlichen disperse Anordnung des elektromagnetische Strahlung absorbierenden Mediums in der Kompaktladung denkbar, wobei die dispersen Einlagerungen entweder statistisch oder im wesentlichen geometrisch regelmäßig, insbesondere rasterartig, angeordnet sein können.
In jedem Fall kann das in dem Explosivstoff verteilt einge- lagerte und gegebenenfalls diesen umhüllende elektromagnetische Strahlung absorbierende Medium auf beliebige Weise, z.B. durch Erhitzung und gegebenenfalls mit der Erhitzung einhergehender Wärmeausdehnung und/oder Verdampfung, Photo- reaktion, Spaltung, Überführen in einen Plasmazustand od. dgl. zur Zündung der Kompaktladung bzw. zur Fragmentierung derselben führen. Die Kompaktladung kann hierbei entweder im wesentlichen pulverförmig sein, wobei die Pulverpartikel einen Aufbau der vorgenannten Art aufweisen, oder die Kompaktladung ist nach Art eines Formteils ausgebildet, wel- ches z.B. in einen Ladungsraum einer Rohrwaffe einbringbar ist .
In Weiterbildung der Erfindung ist vorgesehen, daß die Intensität und/oder das Spektrum der elektromagnetischen Strahlung des Zündsystems steuerbar ist. Durch eine zeitliche oder auch örtliche Steuerbarkeit der elektromagnetischen Strahlung kann der Druck- Zeit-Verlauf gezielt beeinflußt werden, z.B. einerseits durch gezieltes Nachzünden der entstandenen Fragmente oder durch Erhitzen der Verbren- nungsgase, indem die elektromagnetische Strahlung an die Resonanzfrequenz derselben angepaßt wird. So ist beispielsweise ein pulsartiges Einkoppeln der elektromagnetischen Strahlung mit gegebenenfalls veränderlicher Frequenz bis zum Austritt des Projektils aus der Mündung der Rohrwaffe denkbar. Ferner kann auf diese Weise die zum Zünden der
Kompaktladung verwendete elekromagnetische Strahlung an die Umgebungsbedingungen angepaßt werden, so daß z.B. bei einer erhöhten Umgebungstemperatur, welche eine erhöhte Abbrand- geschwindigkeit bewirkt, die Intensität der Strahlung ver- ringert werden kann, um nur einen Teil der Einlagerungen aus dem elektromagnetische Strahlung absorbierenden Medium zu aktivieren, die Fragmentierung der Kompaktladung bzw. die Abbrandoberflache zu verringern und die temperaturbedingte Erhöhung der Abbrandgeschwindigkeit dadurch zu kom- pensieren.
Eine bevorzugte Ausführung sieht vor, daß die elektromagnetische Strahlung eine Wellenlänge von etwa 1 mm bis etwa 1 m (Mikrowellen) aufweist. Selbstverständlich kommt je nach Art des elektromagnetische Strahlung absorbierenden Mediums auch elektromagnetische Strahlung anderer Wellenlängenbereiche, z.B. Ultraviolett, Infrarot od. dgl. in Frage, wobei die Wellenlängenbereiche entweder laserartig schmalbandig oder plasmaartig breitbandig sein können. Das Spektrum der elektromagnetischen Strahlung richtet sich vornehmlich nach dem Absorptionspektrum des jeweiligen elektromagnetische Strahlung absorbierenden Mediums, wobei sichergestellt sein muß, daß das verwendete Medium für den gewählten Wellenlängenbereich ein höheres Absorptionsvermö- gen als der jeweilige Explosivstoff der Kompaktladung aufweist .
Die elektromagnetische Strahlung kann beispielsweise mittels eines in die Kompaktladung reichenden Emittors, wie einer Antenne, in die Kompaktladung einkoppelbar sein, oder die elektromagnetische Strahlung ist mittels die Kompaktladung umgebender Emittoren in die Kompaktladung einkoppel - bar. In jedem Fall kann die Kompaktladung in einer Kartusche angeordnet sein, was insbesondere für die Handhabung einer im wesentlichen pulverförmigen Treibladung vorteilhaft ist.
Als elektromagnetische Strahlung absorbierendes Medium wird zum einen aufgrund seiner Verträglichkeit mit den meisten Explosivstoffen, zum anderen aufgrund seines hohen Absorptionsvermögens für elektromagnetische Strahlung in einem breiten Frequenzbereich vorzugsweise Kohlenstoff, insbesondere Ruß , verwendet .
Nachstehend ist die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
Fig. 1 einen Querschnitt durch eine erfindungsgemäße Treibladungsanordnung bei Rohrwaffen;
Fig. 2 eine schematische Ansicht eines erfindungsgemäßen Treibladungskorns ;
Fig. 3 ein Druck-Zeit-Diagramm einer herkömmlichen Treibladung mit chemischen Zündmitteln und
Fig. 4 ein Druck-Zeit-Diagramm einer erfindungsgemäßen Treibladungsanordnung .
Fig. 1 zeigt einen schematischen Querschnitt durch eine Rohrwaffe 10 mit einem (abgebrochen dargestellt) Lauf 12 und einem Ladungsraum 11, in welchem eine Treibladung 4 in Form einer Kompaktladung untergebracht ist. Die Kompaktla- düng 4 besteht z.B. aus einem Pulver aus einem Explosivstoff oder einer Explosivstoffmischung und einem verteilt eingelagerten elektromagnetische Strahlung absorbierenden Medium, z.B. Ruß. Wie in Fig. 2 dargestellt, ist das elek- tromagnetische Strahlung absorbierende Medium 3 in den Treibladungspartikeln 1 der Kompaktladung in regelmäßiger Anordnung eingelagert, wobei es den Explosivstoff 2 in rasterartig angeordneten Schichten durchsetzt. Im Lauf 12 befindet sich ein Projektil 13, dessen Heck in den Ladungs- räum 11 hineinragt. Zum Zünden der Treibladung 4 ist ein Zündsystem 5 mit einem steuerbaren Mikrowellengenerator 6 vorgesehen. Die von dem Mikrowellengenerator 6 erzeugte elektromagnetische Strahlung ist über eine Antenne 7 in den Ladungsraum 11 einkoppelbar .
Nach Zünden der Kompaktladung 4 mittels des Mikrowellengenerators 6 werden die Partikel 1 der Kompaktladung 4 entlang den Rußschichten 3 in im wesentlichen regelmäßige Fragmente zerlegt und die Fragmente in das bei Abbrand der Kompaktladung 4 erzeugte Gasvolumen beschleunigt. Zugleich setzt der Abbrand der Fragmente ein und findet die Umsetzung der Treibstoff -Fragmente aus der Kompaktladung 4 statt. Das Projektil 13 wird auf einer längeren Strecke gleichmäßig mit annähernd konstantem Druck beaufschlagt und verläßt den Lauf 12 mit der gewünscht hohen Mündungsgeschwindigkeit bei gegebenenfalls abgesenktem Mündungsdruck.
In Fig. 3 ist der Druck- Zeit -Verlauf einer herkömmlichen Treibladung mit der Kurve 15 wiedergegeben. Der Druck p steigt expotentiell auf einen Maximaldruck pmax an und fällt etwas weniger steil mit zunehmender Beschleunigung ,des Projektils zur Laufmündung hin expotentiell ab.
Wie aus Fig. 4 ersichtlich, läßt sich durch die erfindungs- gemäße Treibladungsanordnung ein Druckverlauf gemäß Kurve 16 erzeugen, die bei einem etwas voreilenden Anstieg ein ausgeprägtes Druckplateau 17 mit zeitverzögertem Druckabfall zeigt. Hierdurch kann bei einer erhöhten Antriebsleistung, für die das Druck-Zeit- Integral maßgeblich ist, der Maximaldruck pmax verringert bzw. bei gleichem Maximaldruck eine erhöhte Antriebsleistung erzielt werden.

Claims

Patentansprüche
1. Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe, bestehend aus einer Kompaktladung und einem Zündystem, dadurch gekennzeichnet, daß in der Kompakt- ladung wenigstens ein elektromagnetische Strahlung absorbierendes Medium verteilt eingelagert und mittels des elektromagnetische Strahlung emittierenden Zündsystems aktivierbar ist, um die Kompaktladung bei Auslösen des Zündsystems in Fragmente zu zerlegen und die Fragmente in das bei Abbrand der Kompaktladung erzeugte Gasvolumen zu beschleunigen.
2. Treibladungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß das elektromagnetische Strahlung absor- bierende Medium in der Kompaktladung in regelmäßiger Anordnung eingelagert ist.
3. Treibladungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kompaktladung von im wesentli- chen geometrisch regelmäßig angeordneten Schichten aus dem elektromagnetische Strahlung absorbierenden Medium durchsetzt ist.
. Treibladungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Schichten im wesentlichen rasterartig angeordnet sind.
5. Treibladungsanordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Schichtdicke zwischen 1 und 1000 um beträgt.
6. Treibladungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kompaktladung von im wesentlichen geometrisch regelmäßig angeordneten Kanälen aus dem elektromagnetische Strahlung absorbierenden Medium durchsetzt ist.
7. Treibladungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß der Durchmesser der Kanäle zwischen 1 und 1000 um beträgt.
8. Treibladungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das elektromagnetische Strahlung absorbierende Medium in der Kompaktladung im wesentlichen dispers angeordnet ist.
9. Treibladungsanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Intensität und/oder das
Spektrum der elektromagnetischen Strahlung des Zündsystems steuerbar ist.
10. Treibladungsanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die elektromagnetische Strahlung eine Wellenlänge von etwa 1 mm bis etwa 1 m
(Mikrowellen) aufweist.
11. Treibladungsanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die elektromagnetische Strahlung mittels eines in die Kompaktladung reichenden Emittors in die Kompaktladung einkoppelbar ist.
12. Treibladungsanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die elektromagnetische
Strahlung mittels die Kompaktladung umgebender Emitto- ren in die Kompaktladung einkoppelbar ist.
13. Treibladungsanordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Kompaktladung in einer Kartusche angeordnet ist.
14. Treibladungsanordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß als elektromagnetische Strahlung absorbierendes Medium Kohlenstoff, insbesondere Ruß, verwendet wird.
PCT/EP2000/009974 1999-10-14 2000-10-11 Treibladungsanordnung für rohrwaffen oder ballistische antriebe WO2001027553A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/110,139 US6591753B1 (en) 1999-10-14 2000-10-11 Propellant device for pipe weapons or ballistic projection
DE50006350T DE50006350D1 (de) 1999-10-14 2000-10-11 Treibladungsanordnung für rohrwaffen oder ballistische antriebe
EP00979490A EP1221017B1 (de) 1999-10-14 2000-10-11 Treibladungsanordnung für rohrwaffen oder ballistische antriebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19949674A DE19949674C1 (de) 1999-10-14 1999-10-14 Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe
DE19949674.9 1999-10-14

Publications (1)

Publication Number Publication Date
WO2001027553A1 true WO2001027553A1 (de) 2001-04-19

Family

ID=7925716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009974 WO2001027553A1 (de) 1999-10-14 2000-10-11 Treibladungsanordnung für rohrwaffen oder ballistische antriebe

Country Status (4)

Country Link
US (1) US6591753B1 (de)
EP (1) EP1221017B1 (de)
DE (2) DE19949674C1 (de)
WO (1) WO2001027553A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006079A1 (de) * 2009-01-26 2010-07-29 Oao Znjj "Burevestnik" Einrichtung zur Zündung der Wurfladung in der Geschosskammer eines Artilleriesystems mit hülsenloser Ladung
CN105498254A (zh) * 2016-01-29 2016-04-20 王海龙 一种发射体以及发射装置
CN105521612A (zh) * 2016-01-29 2016-04-27 王海龙 一种发射体以及发射装置
CN105561607A (zh) * 2016-01-29 2016-05-11 王海龙 一种发射体以及发射装置
CN105688424A (zh) * 2016-01-29 2016-06-22 王海龙 一种发射体以及发射装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030437B4 (de) * 2005-06-30 2007-09-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Antriebsvorrichtung auf Basis gelförmigen Treibstoffs und Verfahren zur Treibstoff-Förderung
US9091517B1 (en) * 2012-12-20 2015-07-28 Los Alamos National Security, Llc Insensitive detonator apparatus for initiating large failure diameter explosives
US9097503B1 (en) 2012-12-20 2015-08-04 Los Alamos National Security, Llc Munitions having an insensitive detonator system for initiating large failure diameter explosives
US10641572B1 (en) * 2016-04-19 2020-05-05 Triad National Security, Llc Microwave ignition of energetic material housed within a gun
US11585622B1 (en) 2016-04-19 2023-02-21 Triad National Security, Llc Microwave ignition systems with launcher affixed to or located within a gun spindle
US10107607B1 (en) * 2017-04-04 2018-10-23 The United States Of America As Represented By The Secretary Of The Army Radio frequency igniter
CN111854535A (zh) * 2018-10-13 2020-10-30 西安航科等离子体科技有限公司 一种超高场强宽频电磁脉冲武器及宽频电磁脉冲产生方法
US10969206B1 (en) * 2018-11-29 2021-04-06 U.S. Government As Represented By The Secretary Of The Army Radio frequency antenna for use in the confines of a breech
US11255147B2 (en) 2019-05-14 2022-02-22 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US11578549B2 (en) 2019-05-14 2023-02-14 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US10927627B2 (en) 2019-05-14 2021-02-23 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US11204224B2 (en) 2019-05-29 2021-12-21 DynaEnergetics Europe GmbH Reverse burn power charge for a wellbore tool
US11761281B2 (en) 2019-10-01 2023-09-19 DynaEnergetics Europe GmbH Shaped power charge with integrated initiator
US12000267B2 (en) 2021-09-24 2024-06-04 DynaEnergetics Europe GmbH Communication and location system for an autonomous frack system
US11753889B1 (en) 2022-07-13 2023-09-12 DynaEnergetics Europe GmbH Gas driven wireline release tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601054A (en) * 1969-03-17 1971-08-24 Unidynamics Phoenix Method and apparatus for electromagnetically initiating ordnance
FR2159787A5 (de) * 1971-11-12 1973-06-22 France Etat
DE3542447A1 (de) 1985-11-30 1987-06-04 Diehl Gmbh & Co Laserempfindliche zuendstoffmischung
GB2267330A (en) * 1992-05-23 1993-12-01 Secr Defence Laser ignition of gas generators
DE19546341A1 (de) 1995-12-12 1997-01-02 Schneider Alexander Optischer Sprengzünder
DE19521385A1 (de) * 1994-06-17 1998-10-08 Foersvarets Forskningsanstalt Verfahren zum elektrischen Zünden und Steuern des Verbrennens einer Treibladung und Treibladung
DE19917633C1 (de) * 1999-04-19 2000-11-23 Fraunhofer Ges Forschung Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe
EP1067354A1 (de) * 1999-07-07 2001-01-10 Giat Industries Zünder für eine Explosivladung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765244A (en) * 1983-04-15 1988-08-23 Spectronix Ltd. Apparatus for the detection and destruction of incoming objects
US6389974B1 (en) * 2000-04-24 2002-05-21 Raytheon Company Passive doppler fuze
US6460460B1 (en) * 2000-06-29 2002-10-08 University Of Maryland Laser-activated grenade with agile target effects

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601054A (en) * 1969-03-17 1971-08-24 Unidynamics Phoenix Method and apparatus for electromagnetically initiating ordnance
FR2159787A5 (de) * 1971-11-12 1973-06-22 France Etat
DE3542447A1 (de) 1985-11-30 1987-06-04 Diehl Gmbh & Co Laserempfindliche zuendstoffmischung
GB2267330A (en) * 1992-05-23 1993-12-01 Secr Defence Laser ignition of gas generators
DE19521385A1 (de) * 1994-06-17 1998-10-08 Foersvarets Forskningsanstalt Verfahren zum elektrischen Zünden und Steuern des Verbrennens einer Treibladung und Treibladung
DE19546341A1 (de) 1995-12-12 1997-01-02 Schneider Alexander Optischer Sprengzünder
DE19917633C1 (de) * 1999-04-19 2000-11-23 Fraunhofer Ges Forschung Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe
EP1067354A1 (de) * 1999-07-07 2001-01-10 Giat Industries Zünder für eine Explosivladung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006079A1 (de) * 2009-01-26 2010-07-29 Oao Znjj "Burevestnik" Einrichtung zur Zündung der Wurfladung in der Geschosskammer eines Artilleriesystems mit hülsenloser Ladung
CN105498254A (zh) * 2016-01-29 2016-04-20 王海龙 一种发射体以及发射装置
CN105521612A (zh) * 2016-01-29 2016-04-27 王海龙 一种发射体以及发射装置
CN105561607A (zh) * 2016-01-29 2016-05-11 王海龙 一种发射体以及发射装置
CN105688424A (zh) * 2016-01-29 2016-06-22 王海龙 一种发射体以及发射装置

Also Published As

Publication number Publication date
DE19949674C1 (de) 2001-06-07
EP1221017A1 (de) 2002-07-10
DE50006350D1 (de) 2004-06-09
US6591753B1 (en) 2003-07-15
EP1221017B1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP1221017B1 (de) Treibladungsanordnung für rohrwaffen oder ballistische antriebe
EP0164732B1 (de) Einrichtung zur Erzeugung einer Scheinzielwolke, insbesondere einer Infrarot-Scheinzielwolke
DE60026180T2 (de) Infrarotstrahlung emittierende Täuschungsfackel
DE69803262T2 (de) Zündbauelement für pyrotechnische Zusammensetzungen oder Treibladungen
EP1794537B1 (de) Wirkkörper
DE2809497A1 (de) Abschussbehaelter fuer die dueppelung von lenkwaffen
DE2048743A1 (de) Vorrichtung zum ausloesen einer initialzuendung fuer die treibladung von patronen auf elektrischem wege
EP0193766B1 (de) Handfeuerwaffe sowie Schrotmunition hierfür
EP1148314B1 (de) Patrone
DE19917633C1 (de) Treibladungsanordnung für Rohrwaffen oder ballistische Antriebe
DE2130703A1 (de) Geschoss mit kleiner Reichweite
DE19581105C2 (de) Lasergewehr
EP0151676B1 (de) Geschoss mit einem Nutzlastteil und einem Antriebsteil
DE2812915C2 (de) Geschoß mit Laser
DE2547528A1 (de) Artilleriegeschoss
WO1993018364A1 (de) Verfahren und vorrichtung zum verschiessen von hülsenloser munition
DE69008208T2 (de) Mit einer Kombination von Plasmaantrieb und chemischer Treibladung arbeitendes Geschütz.
DE3205431C2 (de)
DE102012012536B4 (de) Feststoffantrieb
DE3921400C2 (de) Kanonenanordnung
DE1294267B (de) Treibladung fuer rueckstossfrei abfeuerbare Geschosse
DE102006017100B4 (de) Zünder
DE3217976A1 (de) Treibladungsanzuender fuer treibladungen extrem hoher ladedichte
DE102010026641A1 (de) Nebelwurfkörper
DE4221649C2 (de) Waffe mit einer zwei Anzündkanäle aufweisenden Verschlußvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000979490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000979490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110139

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000979490

Country of ref document: EP