WO2001026243A1 - Recepteur amcr et methode afferente - Google Patents

Recepteur amcr et methode afferente Download PDF

Info

Publication number
WO2001026243A1
WO2001026243A1 PCT/JP2000/006994 JP0006994W WO0126243A1 WO 2001026243 A1 WO2001026243 A1 WO 2001026243A1 JP 0006994 W JP0006994 W JP 0006994W WO 0126243 A1 WO0126243 A1 WO 0126243A1
Authority
WO
WIPO (PCT)
Prior art keywords
search window
signal
offset
timing
base station
Prior art date
Application number
PCT/JP2000/006994
Other languages
English (en)
French (fr)
Inventor
Tetsuya Miura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to BR0014822A priority Critical patent/BR0014822A/pt
Priority to EP00964727A priority patent/EP1225707A4/en
Priority to KR1020027004455A priority patent/KR20020035175A/ko
Priority to AU75585/00A priority patent/AU7558500A/en
Publication of WO2001026243A1 publication Critical patent/WO2001026243A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/708Parallel implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70754Setting of search window, i.e. range of code offsets to be searched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70753Partial phase search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure

Definitions

  • the present invention relates to a mobile communication receiver to which a code division multiple access (CDMA: Code Division on Multiple Access) system is applied and a receiving method, and particularly to a diversity handover (hereinafter, referred to as “DH ⁇ ”). Related to improvement of reception performance during operation. DHO is also called soft handover.
  • CDMA Code Division Multiple Access
  • DH ⁇ Diversity handover
  • CDMA cellular mobile code division multiple access
  • CDMA cellular mobile code division multiple access
  • modulated waves of the same carrier frequency spread by each specific spreading code are transmitted as radio signals from the transmitting side to the receiving side.
  • the CDMA receiver on the receiving side performs a synchronization operation using each specific spreading code, and identifies a desired channel. Different spreading codes are used to identify the radio channel between the base station and the mobile station to distinguish the channels from each other.
  • radio signals are received through multiple paths in a CDMA system, i.e., multiple paths, and therefore, in a CDMA system, it is necessary to accurately detect a predetermined signal such as a synchronization signal and / or a pilot signal. Must remove multipath fading from the radio signal.
  • each mobile station is moved from one side to the other within a radio service area, that is, a cell, while maintaining communication between each mobile station and the base station.
  • a radio service area that is, a cell
  • the base station must be able to switch from one to the other without interrupting communication with each mobile station.
  • a CDMA receiver used in a mobile station is composed of a RAKE receiver supplied with radio signals through a multipath, and a searcher that searches for such multipath signals and establishes chip synchronization. And In other words, the searcher is used to detect the optimum reception timing from the radio signal and notify the RAK receiver of the optimum reception timing. This also applies to the CDMA receiver used at each base station. Therefore, in the following, the CDMA receiver of the base station will be mainly described.
  • both the RAKE receiver and the searcher are provided with a received data signal that has been high frequency amplified and frequency converted by a high frequency amplifier and frequency converter, respectively.
  • the RAKE receiver operates in response to the received data signal received through the multipath and uses a spread code to demodulate the received data signal into a demodulated signal by using a plurality of finger receivers.
  • a correlation value between the spreading code of the desired channel and each received multipath signal is calculated, and the code is captured at each reception timing through each path.
  • maximum ratio combining is performed to increase the strength of the received signal.
  • Such maximal ratio combining is effective in reducing the effects of multipath fading and improving the signal-to-noise (SZN) ratio.
  • the searcher operates in response to the received data signal and the delay spread code, calculates a plurality of correlators for calculating the correlation value between the received data signal and the delay spread code, and adds up the respective correlation values to obtain a total. And a plurality of added values that output the calculated correlation values. Further, the totalized correlation value is sent to an effective path determination circuit, where the effective path is determined, and a reception timing signal indicating an effective path, that is, an optimum reception timing is supplied to the finger circuit of the rake receiver. Note that the searcher's correlator has a one-to-one correspondence with the adder.
  • the CDMA receiver disclosed in the publication includes a radio circuit, a timing control circuit, a plurality of replica code generators, a plurality of correlators, a plurality of synchronous detectors, and a plurality of receivers. It has an imming adjustment buffer and a RAKE combiner.
  • the radio circuit converts the high-frequency signal received by the antenna, detects it, and converts it to a baseband signal.
  • the timing control circuit searches the baseband signal to detect the phases of a plurality of paths, a signal indicating the replica code phase, a timing adjustment buffer driving timing signal (having the same cycle as the symbol cycle), and a timing adjustment.
  • a signal indicating the buffer delay time (in symbol periods) is generated.
  • the plurality of replica code generators generate replica codes at the phase specified by the timing control circuit.
  • the plurality of correlators multiply and integrate the baseband signal with the replica code and output a correlation value.
  • the plurality of synchronous detectors synchronously detects the output of the correlator and outputs a symbol signal.
  • the plurality of timing adjustment buffers latch the symbol signal output from the synchronous detector and output the signal with a designated delay time.
  • the RAKE combiner adds and combines the outputs of the plurality of timing adjustment buffers and outputs a demodulated signal. This known receiver improves the anti-interference characteristic by enabling RAKE combining even for a path delayed by one symbol period or more.
  • CDMA receivers generally perform DHO operation.
  • DHO refers to the operation in which the CDMA receiver (mobile station) switches the base station BTS with which the mobile station MS communicates as the MS moves, and moves between cells without interruption.
  • FIG. 1 schematically shows the appearance of DH ⁇ .
  • FIG. 1 shows a mobile station MS moving from a first base station BTS 1 to a second base station BTS 2.
  • the first base station BTS 1 is called a DH ⁇ source base station
  • the second base station BTS 2 is called a DHO destination base station.
  • reference numeral D 1S, D 2 S, D 1E and D 2 E represent the propagation delay time as described below, it is all positive values. That, D 1S will display the propagation delay time of the mobile station MS at the DHO start looking from the first base station BTS 1, D 2 S is moved at DH_ ⁇ starting as seen from the second base station BTS 2 represents the propagation delay time of a station MS, D 1E represents a propagation delay time of the mobile station MS at the DHO termination as seen from the first base station BTS 1, D 2 E is seen from the second base station BTS 2 It shows the propagation delay time of the mobile station MS at the end of DHO.
  • the baseband signal (received data signal) 11 obtained by the radio circuit section 40 from the high frequency signal received by the antenna 41 is transmitted from a plurality of paths included in the baseband signal. These signals are input to the demodulation circuit unit 10 in order to obtain a demodulated signal by combining the signals.
  • the radio circuit unit 40 includes a high-frequency amplifier that amplifies a high-frequency signal received by the antenna and a frequency converter that frequency-converts the high-frequency amplified signal into a baseband signal (received data signal).
  • the received data signal 11 input to the demodulation circuit unit 10 is input to the finger processing unit 12 and the searcher 13.
  • the finger processing unit 12 includes first to n-th finger circuits 12 (1) to 12 (n) corresponding to n channels from # 1 to #n (n is an integer of 2 or more).
  • the searcher 13 is supplied with a frame offset signal 18 from the control unit 19. As described later, the searcher 13 generates a spread code for despreading the received data signal 11 having the phase indicated by the frame offset signal 18. The detailed configuration of the searcher 13 will be described later.
  • the searcher 13 calculates the correlation value level while slightly shifting the despreading timing with respect to the received data signal 11, searches for the optimum reception timing, and receives the reception timing to be received by the finger processing unit 12 (peak).
  • the timing signal 16 instructs the first to n-th finger circuits 12 (1) to 12 (n) of the finger processing unit 12.
  • the finger processing unit 12 performs despreading of the received data signal 11 at the reception timing indicated by the reception (peak) timing signal 16 to perform detection processing.
  • Outputs from the first to n-th finger circuits 12 (1) to 12 (n) of the nger processing unit 12 are input to an adder (maximum ratio combiner) 14 and added (RAKE combining).
  • the data after the addition is decoded by the decoder 15.
  • the conventional searcher 13 will be described with reference to FIG.
  • the received data signal 11 is input to the first to m-th correlators 20 (1) to 20 (m) of the correlator group 20.
  • the first to m-th correlators 20 (1) to 20 (m) respectively perform despreading at slightly different reception timings.
  • the correlation value signal 28 output from the correlator group 20 is input to the first to m-th adders 21 (1) to 21 (m) of the adder group 21, respectively.
  • the first to m-th adders 21 (1) to 21 (m) add (integrate) the correlation value a specified number of times (can be changed as a parameter), and after the addition, the correlation value signal 29 is valid.
  • Output to the path determination unit 22 respectively.
  • the effective path determination unit 22 searches for a high-level reception timing by detecting a peak from the correlation value signal 29 after the addition, and determines whether or not the reception path is an effective path.
  • the valid path determination unit 22 performs protection processing on the valid path determined here, and the allocation of the valid path frequently changes even if the level fluctuates due to fading or the reception timing slightly changes. To ensure stable reception.
  • the information on the valid path determined by the valid path determination unit 22 is output as the peak timing signal 16 of each path, and the first to n-th finger circuits 12 (1) to 12 ( n).
  • the conventional searcher 13 has a fixed search window with a certain search range that the searcher 13 can search.
  • This fixed search range is determined by the number m of correlators in the correlator group 20 and the number of adders in the adder group 21. Further, the start time of the fixed search window is equal to the reception reference timing S10 of the uplink radio frame of the base station, which will be described later with reference to FIG. 4 and FIG.
  • FIG. 4 is an explanatory diagram showing the frame timing of the DHO operation when the mobile station MS moves from the first base station BTS1 to the second base station BTS2.
  • FIG. 4 shows the timing of the first base station BTS1
  • (c) to (j) show the timing of the mobile station MS
  • (k) to (o) show the timing of the mobile station MS. 2 shows base station BTS 2 evening.
  • (a) shows the reference timing of the first base station BTS1
  • (b) shows the reference timing
  • 3 shows downlink transmission timing of the first base station BTS1.
  • (c) to (f) show the timing of the mobile station MS at the start of DHO, (c) shows the downlink reception timing from the first base station BTS1, and (d) shows the timing of the first base station.
  • (E) shows the timing of the perch reception from the second base station BTS2, and (f) shows the timing of the downlink transmission from the second base station BTS2.
  • (G) and (h) show the evening timing of the mobile station MS at the end of DHO, (g) shows the downlink reception timing from the first base station BTS1, and (h) shows the timing of the first base station BTS. The timing of upstream transmission to 1 is shown.
  • (i) and (j) show the timing of the mobile station MS when the reference timing of the mobile station MS is shifted to the second base station BTS2, and (i) shows the timing of the mobile station MS from the second base station BTS2. (J) indicates the timing of uplink transmission to the second base station BTS2.
  • (k) indicates the reference timing of the second base station BTS2.
  • (1) to (o) show the timing of the second base station BTS2 at the start of DHO, (1) shows the perch transmission timing of the second base station BTS2, and (m) shows the timing of the second base station BTS2. The transmission timing below the base station BTS2 is shown, and (n) shows the uplink reception timing of the second base station BTS2.
  • (O) shows the uplink reception timing of the second base station BTS2 at the end of DHO and when the reference timing of the mobile station MS is shifted to the second base station BTS2.
  • the first reference timing S 1 (FIG. 4 (a)) in the first base station B TS 1 and the second base station B TS 2 Since it is not synchronized with the second reference timing S 2 (FIG. 4 (k)), its timing is different.
  • T sectl : S 3 indicates the phase between the long code (long-period spreading code) of the first base station BTS 1 and the perch channel of the first base station BTS 1
  • T sect2 : S7 is the second base station BTS
  • T framel S4 is an offset for averaging the timing of the radio frame while maintaining the downlink orthogonality of the first base station BTS1 , and the offset of the downlink radio frame in the first base station BTS1. Is evident from Fig. 4 (b). It looks like (T sect i + T framel ).
  • the mobile station MS transmits the uplink radio frame at a timing delayed by the downlink offset S5 from the reception timing of the downlink radio frame (FIG. 4 (d)). Therefore, since the propagation delay time of the first base station BTS 1 to the mobile station MS at the start of DHO is D 1S , the transmission timing of the uplink radio frame of the mobile station MS viewed from the first base station BTS 1 is The timing is delayed by (T sectl + T framel + downlink offset + D 1S ) from the reference timing S 1 of the first base station BTS 1 (FIG. 4 (a)) (FIG. 4 (d) ).
  • the transmission timing simply as (T sectl + Tf rame i + downlink uplink offset + D 1S).
  • the mobile station MS determines the timing between the transmission timing of the current uplink radio frame (Fig. 4 (d)) and the reception timing of the perch channel of the second base station BTS2 (Fig. 4 (e)). measures the difference T DH o, the result value T DH0: via the control channel and the host device as S 8, the second transmitting to the base station BTS 2.
  • the reference timing S 2 In the second base station BTS 2, than the timing difference T DH o, the reference timing S 2 (FIG.
  • the second base station BTS 2 transmits a perch channel at a timing delayed from the reference timing S 2 (FIG. 4 (k)) by a phase T sect2 : S 7 (FIG. 4 (1)). Then, the radio frame is transmitted at the transmission timing delayed by the time of TMDH0 : S9, and the radio frame is transmitted (Fig. 4 (m)).
  • the time TM DH o: S 9 is equal to (T DH0 + offset of up / down).
  • the reception reference timing of the uplink radio frame in the second base station BTS2 Since S 10 is a timing (lagged) from the reference timing S 2 (FIG. 4 (k)) of the second base station BTS 2 by (T sect2 + TDH0), the second base station The base station BTS 2 can receive the uplink radio frame from the mobile station MS at the reception timing delayed by (2 XD 2S ) from the reception reference timing S 10 (see FIG. 4 (n )).
  • this reception timing is simply referred to as (2 XD 2 s).
  • receive timing of an uplink radio frame in the second base station BTS 2 is a timing elapsed time from the reception reference timing S 10 (D2S + DIE- D 1S + D2E) ( No. Fig. 4 (o)). In the following, it will be referred to as the reception timing simply as (D 2 S + Di E -D 1S + D 2 E).
  • the mobile station MS switches the reception of the perch channel from the first base station BTS1 to the second base station MTS2.
  • the reception timing of the uplink radio frame changes.
  • the operation is performed so that the timing of the uplink radio frame does not change when the base station (BTS) receiving the perch channel changes. From the above, the reception timing of the uplink radio frame of the second base station BTS 2 during DH 0 is
  • (2 XD2S) changes to (D2S + DIE-D 1S + D2E). Then, as shown in FIG. 4, if these reception timings are always positive values, the second base station BTS2 can receive the uplink radio frame without any problem.
  • the mobile station MS adds an ⁇ to the uplink offset S5 by lowering the uplink radio frame from the reception timing of the downlink radio frame. It is transmitted at a timing delayed by the time (up / down offset + h) (Fig. 4 (j)).
  • the ratio - a (D 1E _D 1S + D 2S D2E), in this example a positive value.
  • Figure 5 shows the situation. This is an explanatory diagram (corresponding to Fig. 4).
  • the same reference numerals as those in FIG. 4 indicate the same parts, and the description of the same parts as those described in FIG. 4 will be omitted.
  • a method and apparatus for performing search acquisition in a CDMA communication system is disclosed in U.S. Patent No. 5,644,591 issued to Todd R. Sutton.
  • Sutton a large window of the PN chip offset assumption is searched, and if an energy signal is found that indicates the presence of a pilot signal with one of the chip offsets of the large search window, the offset assumption is made.
  • a subset search ie, a small window, is searched.
  • searchers with large search windows are needed, so the number of searcher correlators cannot be reduced.
  • an object of the present invention is to solve the above-described problem with a simple configuration. Even when the reception timing of the uplink radio frame at the base station is earlier than the reception reference timing of the base station during DHO, the synchronization is flexible.
  • the purpose is to propose a CDMA receiver that can receive signals and a receiving method. Disclosure of the invention
  • a radio circuit unit that obtains a baseband signal from a high-frequency signal received by an antenna, and a demodulation circuit unit that obtains a demodulated signal by combining signals from a plurality of paths included in the baseband signal
  • a demodulation circuit unit for obtaining a correlation value level while gradually shifting the despreading timing for the baseband signal, searching for an optimum reception timing, and outputting a reception timing signal.
  • a searcher that despreads the baseband signal at the reception timing indicated by the reception timing signal and performs a detection process, and a control unit that controls the CDMA receiver, and the searcher is instructed by the control unit.
  • the searcher is a search window offset delay circuit inserted between a spread code generator and a search delay circuit, in a CDMA receiver having an effective path determination unit for determining whether the search window is offset.
  • a search window offset delay circuit that delays the spread code generated by the spread code generator by a selected search window offset amount and outputs the delay to the search delay circuit;
  • a search window offset control unit connected to the effective path determination unit, the search window offset control unit responding to the peak timing signal and the peak level signal supplied from the effective path determination unit and calculating by referring to a threshold value
  • a search window offset control unit for calculating a window offset amount; and a selector inserted between the search window offset control unit and the search window offset delay circuit and connected to the control unit, and supplied from the control unit.
  • One of the calculated search window offset and the initial search window offset in response to the diversity handover start signal, and supplies the selected search window offset to the search window offset delay circuit.
  • a CDMA receiver characterized by comprising: and a selector.
  • a wireless circuit unit for obtaining a baseband signal from a high-frequency signal received by an antenna, and a searcher having a search window are provided to combine signals from a plurality of paths included in the baseband signal.
  • a search window offset delay circuit for delaying the spread code generated by the spread code generator, a small value is set as the frame offset amount in the spread code generator, and the uplink radio frame is When receiving, the search window offset delay circuit is controlled to delay the operation start timing of the search window.
  • a CDMA receiving method is obtained.
  • a wireless circuit unit for obtaining a baseband signal from a high-frequency signal received by an antenna, and a searcher having a search window are provided to combine signals from a plurality of paths included in the baseband signal.
  • the CDMA receiving method including a search window offset delay circuit that delays the spreading code generated by the code generator, the mobile station performs communication without interruption while moving from the DHO source base station to the DH destination base station.
  • the mobile station if a DHO destination base station with a negative reception timing is specified, the mobile station The difference between the transmission timing of the wireless frame and the phase of the perch channel of the DHO destination base station (T DH0 ) is set in the DHO destination base station, and the CDMA receiver of the DHO destination base station receives the uplink wireless frame.
  • the DH ⁇ start signal is output
  • the search window offset delay circuit is set to the initial value (WOini) as the search window offset amount
  • the spreading code generator is set to the frame offset (T DH0 _W ⁇ ini).
  • FIG. 1 is an explanatory diagram schematically showing a state of diversity handover in a CDMA receiver
  • FIG. 2 is a block diagram showing one configuration example of a conventional CDMA receiver
  • FIG. FIG. 4 is a block diagram showing a schematic configuration of a conventional searcher used in the conventional CDMA receiver shown in FIG. 2, and FIG. 4 shows a case where a mobile station moves from a base station (first base station) to another base station (first base station).
  • FIG. 5 is an explanatory diagram showing a frame timing of a DHO operation when moving to a second base station.
  • FIG. 5 is a diagram illustrating a DHO operation frame when a mobile station moves from a base station to another base station.
  • FIG. 6 is a block diagram showing a configuration of the CDMA receiver according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of the CDMA receiver according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a detailed configuration of a searcher used in a CDMA receiver.
  • 8A to 8C are diagrams for explaining the operation of the searcher shown in FIG. 7, and
  • FIG. 9 shows the configuration of a CDMA receiver according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram showing a detailed configuration of a searcher used in the CDMA receiver shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 6 is a block diagram showing a configuration of a CDMA receiver 5 OA according to the first embodiment of the present invention
  • FIG. 7 is a detail of a -13A used in the CDMA receiver 5 OA
  • FIG. 3 is a block diagram illustrating a configuration.
  • the configuration of this searcher 13A is different from the conventional one, but the configuration of the other parts is almost the same as that of the conventional CDMA receiver 50 (FIG. 2) exemplified above.
  • a received data signal 11 input to a demodulation circuit section 1 OA of a CDMA receiver 5 OA is a finger processing section composed of first to n-th finger circuits 12 (1) to 12 (n).
  • 12 and Searcher 13 A are input.
  • the searcher 13A generates a spreading code of the phase specified by the frame offset signal 18 specified by the control unit 19 for despreading the received data overnight signal 11.
  • Searcher 13A calculates the correlation value level while shifting the despreading timing for received data signal 11 little by little, finds the optimal reception timing, and performs finger processing.
  • the reception timing to be received by the processing unit 12 is instructed as a reception (peak) timing signal 16 to each of the finger circuits 12 (1) to 12 (n) of the finger processing unit 12.
  • the searcher 13A sets the search window offset value to the initial value, that is, the initial search window offset value (WOini). Set.
  • the finger processing unit 12 performs despreading of the received data signal 11 at the reception timing indicated by the reception (peak) timing signal 16 to perform detection processing.
  • the outputs from the finger circuits 12 (1) to 12 (n) of the finger processing unit 12 are input to adders (maximum ratio combiners) 14 and added (RAKE combining).
  • the data after addition is decoded by the decoder 15.
  • the searcher 13A shown in FIG. 7 has a search window offset control unit 26, a search window offset delay circuit 24, and a selector 32 as circuit elements in addition to those of FIG. Initial search window offset amount as signal
  • the received data signal 11 is input to the first to m-th correlators 20 (1) to 20 (m) of the correlator group 20.
  • the first to m-th correlators 20 (1) to 20 (m) perform despreading at slightly different reception timings. That is, the correlator group 20 calculates a correlation value between the continuously delayed spreading code 27 supplied from the search delay circuit 23 and the received data signal 11.
  • the correlation value signal 28, which is the output of the correlator group 20, is the first to m-th adders 2 1 (1) to 21 of the adder group 21.
  • the first to m-th adders 21 (1) to 21 (m) add (integrate) the correlation value a specified number of times (can be changed as a parameter), and after adding the correlation value signal (summed correlation value) 29 is output to the valid path determination unit 22. That is, the combination of the search delay circuit 23, the correlator group 20, and the adder group 21 makes the received data signal 1 within a controllable search window having a fixed search range that the searcher 13A can search. 1 and the successively delayed spread signal 27 It works as a calculation means that calculates the correlation value between and outputs the summed correlation value 29.
  • the effective path determination unit 22 searches for a reception timing having a high level by detecting a peak from the correlation value signal 29 after the addition, and determines whether or not the reception path is an effective path.
  • the valid path determination unit 22 performs protection processing on the determined valid path, and
  • the information of the valid path determined by the valid path determination unit 22 is output as a peak timing signal 16 and a peak level signal 30 of each path.
  • the peak timing signal 16 is output to the first to n-th finger circuits 12 (1) to 12 (n) and the search window offset control unit 26 of the corresponding fingerprint processing unit 12 respectively, and the peak level Signal 30 is output to search window offset control section 26.
  • the effective path determination unit 22 functions as a determination unit that determines the reception timing from the summed correlation values 29.
  • the search window offset control unit 26 responds to the input peak timing signal 16 and peak level signal 30 when the DHO start signal 17 is not output from the control unit 19, and outputs the threshold value D.
  • the search window offset amount W ⁇ is calculated with reference to thE and D thL, and the calculated search window offset amount W ⁇ is output to the selector 32.
  • the selector 32 outputs the calculated search window offset W ⁇ as it is to the search window offset delay circuit 24 as the selected search window offset 31.
  • the control unit 19 outputs the DH ⁇ start signal 17 and indicates DHO
  • the search window offset amount 31 selected by the selector 32 becomes the initial search window offset amount (WO ini). And outputs this signal (the selected search window offset amount) 3 1 to the search window offset delay circuit 24 4 to synchronize the frame of the received signal. After synchronization is established, the same operation as when the DHO start signal 17 is not output from the control unit 19 is performed.
  • the spreading code generator 25 generates a spreading code for despreading in the correlator group 20 with a phase corresponding to the frame offset 18 specified by the control unit 19, and a search window offset delay circuit. Output to 2 and 3.
  • the search window offset delay circuit 24 delays the spread code by the selected search window offset amount 3 1 to provide the search delay circuit 2. Output to 3.
  • the search delay circuit 23 includes a search window offset delay so that the despreading timings of the first to m-th correlators 20 (1) to 20 (m) of the correlator group 20 differ by a fixed time interval.
  • the spread code input from the circuit 24 is delayed and output to the first to m-th correlators 20 (1) to 20 (m) of the correlator group 20.
  • a small frame offset 18 is set in advance in the initial state. Acts as a shifting means to shift possible search windows.
  • the searcher 13A shown in FIG. 7 is a controllable search window having a fixed search range in which the searcher 13A can search as shown in FIGS. 8A to 8C described later. have.
  • the certain search range is determined by the number m of correlators in the correlator group 20 (that is, the adders in the adder group 21).
  • the start time (operation start timing) of the controllable search window corresponds to the reception reference timing S10 of the uplink radio frame of the base station described above with reference to FIGS. As described later with reference to FIGS. 8A to 8C, it is possible to shift on the time axis.
  • D 1S represents the propagation delay time of the mobile station MS at the start of DHO as viewed from the first base station BTS 1
  • D 2S represents the second the base station BTS 2 from represents the propagation delay time of the mobile station MS of the DHO start seen
  • D 1E represents a propagation delay time of the mobile station MS at the DHO termination as seen from the first base station BTS 1
  • D 2 E shall be representative of the propagation delay time of the mobile station MS at the DHO termination as seen from the second base station BTS 2.
  • the frame timing for the DHO operation in which the mobile station MS moves from the first base station MTS 1 to the second base station BTS 2 is exactly the same as shown in FIGS. 4 and 5 above. It is.
  • the relationship D 1S ⁇ (D 2 S + DIE + D 2 E) holds, and the reception time of the uplink radio frame at the second base station BTS 2 at the end of DHO is established.
  • timing - in the case of (D2S + D 1E D 1S + D 2 E) is a negative value
  • the first embodiment The operation of the CDMA receiver 5 OA according to the embodiment will be described.
  • the uplink radio frame arrives at the second base station BTS 2 earlier than the reference timing S10 for receiving the uplink radio frame of the second base station BTS2. Therefore, the second base station BTS2 cannot receive the uplink radio frame.
  • T sectl indicates the phase between the long code (long-period spreading code) of the first base station BTS 1 and the perch channel of the first base station BTS 1
  • T sec t2: S7 indicates the phase between the long code of the second base station BTS2 and the perch channel of the second base station BTS2
  • Tf ramel S4 maintains the downlink orthogonality of the first base station BTS1. It shows the offset for averaging the timing of the radio frame.
  • the offset of the downlink radio frame in the first base station BTS1 is ( T sectl + T framel).
  • the mobile station MS transmits an uplink radio frame at a timing delayed by the downlink uplink offset: S5 from the reception timing of the downlink radio frame, and the mobile station MS as viewed from the first base station BTS 1 at the start of DHO.
  • the transmission timing of the uplink radio frame of the MS is (T sectl + T framel + downlink offset + D 1S ).
  • the mobile station MS measures a timing difference of T sect2 which is a phase between the current transmission timing of the uplink radio frame and the perch channel of the second base station BTS2 , and uses the result as a value T DH08 for the control channel ( (Not shown) and a higher-level device (not shown) to the second base station BTS2.
  • the second base station BTS 2 transmits a radio frame downstream of the timing difference T DH0 at a timing of (T sect 2 + T DH o—down frame upstream offset) (FIG. 5 (m)) . Thereby, the mobile station MS can receive at the same timing as the downlink radio frame of the first base station BTS1.
  • the reception reference timing S 10 of the uplink radio frame in the second base station BTS 2 is (T sect 2 + T DH0 ), and moves at a timing delayed by (2 XD 2 S) from the reception reference timing S 10 Receives uplink radio frame from station MS. From the start of DHO to the end of DH ⁇ , the reception timing of the uplink radio frame from the mobile station MS in the second base station BTS2 gradually changes. At the end of the DHO, the reception timing is (D 2 s + D 1E -D 1S + D 2 E), and the mobile station MS receives the perch channel from the first base station BTS 1 to the second base station BT. Switch to S2.
  • the reception timing at the second base station BTS 2 at the end of DHO is (Ds + DiE—D! S + D2E)
  • the reception timing is as shown in FIG. Has a negative value. Therefore, the uplink radio frame arrives at the second base station BTS 2 earlier than the reception timing signal S 10 of the uplink radio frame of the second base station BTS 2 (the uplink radio frame). The frame comes before the reception reference timing S10) (see Fig. 5 (o)).
  • the second base station BTS2 cannot receive the uplink radio frame in such a case.
  • the CDMA receiver 5 OA has a configuration in which the search start timing (search start time (operation start timing) of the search window 13 A) can be changed as shown in FIG. Therefore, reception can be continued even when the reception timing becomes negative during DHO.
  • the higher-level equipment sets the mobile station MS. Is measured, ie, the timing difference; T DH o is set.
  • T DH o the timing difference
  • the DHO start signal 17 is set, and the search window offset amount 31 selected by the search window offset delay circuit 24 is used as the initial search window offset amount 31.
  • W Oini is set.
  • T DH0 —WOini is set in the spreading code generator 25 as the frame offset signal 18.
  • the BST reception reference timing specified for the second base station BTS 2 is set to (T DH0 _W ⁇ ini), and the searcher 13A
  • the actual BST reception reference timing S10 is equal to the timing difference T DH0 by delaying the timing of starting the switch (start time of the search window (operation start timing)) by the initial search window offset amount (WOini).
  • the propagation delay time increases corresponding to the position of the mobile station MS, and the search window exceeds the search range of the searcher 13A.
  • the search window offset amount W ⁇ 31 in Fig. 7 is increased to follow the position (movement) of the mobile station MS,
  • the second base station BTS2 can continue to receive the uplink radio frame.
  • the search window offset amount WO Appropriate reception can be achieved by reducing 3 in Fig. 7.
  • uplink radio frame to be received at the second base station BTS 2 is even when it becomes short of the timing difference T DH o, the second group Chikyoku MTS 2 is able to receive the uplink radio frame Become. This is because the reception reference timing S10 (search window start time (operation start timing)) in FIG. 5 can be made earlier.
  • the setting of the frame offset for the spreading code generator is set to a relatively small value in advance, the operation start timing of the search window is delayed by that amount, and State ⁇
  • the base station can more flexibly follow the movement of the mobile station MS.
  • the mobile station MS can be flexibly changed by changing the operation start timing of the search window in the searcher 13A. This allows the base station BTS to receive uplink radio frames.
  • FIG. 10 is a block diagram showing a configuration of a searcher 13B according to this embodiment. This configuration has most of the same components as the searcher 13A shown in FIG. 7 earlier, and has a DHO start signal line 17 and a selector compared to the searcher 13A according to the previous embodiment. Only the point excluding 32 is different. In other words, these parts are omitted to simplify.
  • the searcher 13B has a search window offset control unit 26, a search window offset delay circuit 24, an initial search window offset amount ( WO in i) is added.
  • the control of the search window offset delay circuit 24 is directly performed by the search window offset control unit 26 via the control line 31.
  • the second embodiment differs from the first embodiment in control signals and the like. That is, the setting of the frame offset 18 for the spread code generator 25 is always set to a value smaller than the specified value in advance, and the search window operation start timing in the searcher 13B is delayed accordingly. Control by the controller 19 only in the direction in which In any case, the combination of the search window offset delay circuit 24, the spreading code generator 25, and the search window offset control unit 26 always has a small frame offset 18 set in advance, and a controllable search is possible. It works as a shift means to shift windows.
  • the search window in the searcher 13B is also required.
  • start timing start time
  • the base station BTS can flexibly follow the movement of the mobile station MS and receive the uplink radio frame at the base station BTS. Exactly the same effect can be obtained.
  • the base station is provided with a wireless circuit unit for obtaining a baseband signal from a high frequency signal received by an antenna
  • a wireless circuit unit for obtaining a baseband signal from a high frequency signal received by an antenna
  • a small value is set as the frame offset amount in the spreading code generator, and the search window offset delay circuit is controlled so that the operation start timing of the search window is delayed.
  • the synchronization can flexibly follow the mobile station, and the base station can receive the uplink radio frame, and the searcher can receive the radio frame. There is no need to increase the number of correlators.
  • a radio circuit unit for obtaining a baseband signal from a high-frequency signal received by an antenna, and a plurality of paths included in the baseband signal having a searcher In a CDMA receiver that has a demodulation circuit that combines the signals from the CDMA and the demodulation circuit, if a DHO destination base station with a negative reception timing is specified during DHO operation, the DH When setting the timing difference T DH0 measured by the mobile station from the station and receiving the uplink radio frame,
  • a DH ⁇ start signal is set as output, an initial value, that is, an initial search window offset (WO ini) is set as a search window offset in a search window offset delay circuit, and (T DH0 ) is set as a frame offset in a spreading code generator. — WO i ni).
  • the synchronization flexibly follows the mobile station, and the base station continues to receive the uplink radio frame. it can.
  • the setting of the frame offset in the CDMA receiver is set to a smaller value in advance, and the operation start timing of the search window is set to be correspondingly set later, By making the search window operation start timing earlier or later, it is possible to flexibly move the mobile station even if the reception timing of the uplink radio frame during DHO is earlier than the base station reception reference timing. Following this, the base station can receive uplink radio frames.
  • the setting of the frame offset for the spreading code generator is set to be small in advance, and the operation start timing of the search window in the searcher is correspondingly set.
  • the uplink wireless frame reception timing is earlier than the base station reception reference timing during the diversity handover (DHO) operation. Even in such a case, there is an effect that the synchronization is flexibly followed, and the base station can stably receive the uplink radio frame.
  • this method can be used without increasing the number of correlators in the searcher, and has the advantage that it is simple and inexpensive in terms of structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

明細書
CDMA受信機及び受信方法 技術分野
本発明は、 符号分割多元接続 (CDMA: Cod e D i v i s i on Mu l t i p l e Ac c e s s) 方式を適用した移動通信受信機、 および受信方法 に関し、 特にダイバーシチハンドオーバ(以下、 「DH〇」 と記載する。) 動作時 の受信性能の向上に関する。 尚、 DHOはソフトハンドオーバとも呼ばれる。 背景技術
セルラ移動通信方式として、 多種類の多元接続方式が従来から提案されており、 世界において採用されている。 その中で、 最近の傾向はセルラ移動符号分割多元 接続 (CDMA) 方式に向けられており、 それは各チャンネルに割当てられた特 定の拡散符号を持ち、 単に、 CDMA方式と呼ばれる。 そのような CDMA方式 において、 各特定の拡散符号によって拡散された同一の搬送波周波数の変調波は、 送信側から受信側へ無線信号として送信される。 この無線信号に応答して、 受信 側の CDMA受信機は、 各特定の拡散符号によって同期動作を行い、 所望のチヤ ネルを識別する。 互いにチャンネルを区別するために、 異なった拡散符号が基地 局と移動局との間の無線チャンネルを識別するために使用される。
さらに、 無線信号は CDMA方式において複数の経路、 すなわち、 多重経路を 通して受信され、 したがって、 CDMA方式においては、 同期信号及び/又はパ ィロット信号のような、 所定の信号を正確に検出することによって、 無線信号か ら多重経路フェージングを除去しなければならない。
更に、 セルラ移動無線通信方式において、 各移動局は、 各移動局と基地局との 間の通信を維持した状態で、 無線サービスエリアすなわちセル中を一方から他方 へ移動される、 ということを考慮に入れなければならない。 この場合、 基地局は、 各移動局との通信を中断することなく、 一方から他方へ切り替えられなければな らない。
上記を考慮に入れて、 移動局において用いられる C D MA受信機は、 多重経路 を通しての無線信号が供給される R A K E受信機と、 そのような多重経路の信号 をサーチしてチップ同期を確立するサーチャーとを有する。 換言すれば、 サーチ ヤーは、 無線信号から最適な受信タイミングを検出して、 その最適な受信夕イミ ングを R AK E受信機へ通知するために使用される。 これは、 各基地局において 使用される C D MA受信機にも適用される。 従って、 以下では、 主に基地局の C D M A受信機について説明する。
実際には、 R A K E受信機とサーチャーの両方には、 高周波増幅器と周波数変 換器によってそれぞれ高周波増幅および周波数変換された、 受信データ信号が与 えられる。 この場合、 R A K E受信機は、 多重経路を通して受信された受信デー 夕信号に応答して動作し、 拡散符号を使用することによって受信データ信号を復 調した信号に復調する複数のフィンガ一受信機を備えている。 この目的のため、 所望のチャネルの拡散符号と各受信多重経路信号との間の相関値が計算され、 各 経路を通した各受信タイミングで符号を捕らえる。 その後、 最大比合成が、 受信 信号の強度を増大させるために行われる。 そのような最大比合成は、 多重経路フ エージングの影響を軽減し、 信号対雑音 (S ZN) 比を改善するために有効であ る。
他方、 サーチャーは、 受信データ信号と遅延拡散符号に応答して動作し、 受信 データ信号と遅延拡散符号との間の相関値を計算する複数の相関器と、 それぞれ の相関値を加算して総計した相関値を出力する複数の加算値とを有する。 さらに、 総計した相関値は有効パス判定回路へ送られ、 そこで、 有効パスを決定され、 R A K E受信機のフィンガー回路に有効パスすなわち最適な受信タイミングを表 す受信タイミング信号が供給される。 ここで、 サーチャーの相関器は加算器と一 対一に対応することに注意されたい。
さて、 携帯電話等の移動体通信に利用される C D MA方式を用いたスぺクトラ ム拡散受信機の一例が、 特開平 1 0— 1 9 0 5 2 8号公報に開示されている。 同公報に開示された C D MA受信機は、 無線回路と、 タイミング制御回路と、 複数のレプリカ符号発生器と、 複数の相関器と、 複数の同期検波器と、 複数の夕 イミング調整バッファと、 RAKE合成器とを具備している。 無線回路は、 アン テナで受信した高周波信号を周波数変換し検波してベースバンド信号に変換す る。 タイミング制御回路は、 ベースバンド信号をサーチして複数のパスの位相を 検知し、 レプリカ符号の位相を指示する信号と、 (シンボル周期と同じ周期の) タイミング調整バッファ駆動用タイミング信号と、 タイミング調整バッファの遅 延時間を (シンボル周期単位で) 指示する信号とを発生する。 複数のレプリカ符 号発生器は、 このタイミング制御回路から指示された位相でレプリカ符号を発生 する。 複数の相関器は、 ベースバンド信号にレプリカ符号を乗算し積分して相関 値を出力する。 複数の同期検波器は、 この相関器の出力を同期検波してシンポル 信号を出力する。 複数のタイミング調整バッファは、 この同期検波器から出力さ れたシンボル信号をラッチし、 指示された遅延時間で出力する。 RAKE合成器 は、 複数のタイミング調整バッファの出力を加算合成して復調信号を出力する。 この公知受信機は、 1シンボル周期以上遅延したパスも RAKE合成できるよう にして、 対干渉特性を改善するようにしたものである。
ところで、 CDMA受信機は、 一般に、 DHO動作を行うようになっている。 ここで、 「DHO」 とは、 CDMA受信機 (移動局) MSの移動に伴って、 移動 局 M Sが通信している基地局 B T Sを切り替えて、 無瞬断でセル間を移動してい く動作のことを指す。
第 1図は、 この DH〇の様子を模式的に示している。 第 1図は移動局 MSが第 1の基地局 BT S 1から第 2の基地局 BT S 2に移動していく様子を示してい る。 ここで、 第 1の基地局 BTS 1は DH〇元基地局と呼ばれ、 第 2の基地局 B TS 2は DHO先基地局と呼ばれる。
第 1図において、 参照符号 D1S、 D2S、 D1E および D2E は、 それぞれ、 次に 述べるような伝搬遅延時間を表しており、 全て正の値である。 すなわち、 D1Sは 第 1の基地局 BTS 1から見た DHO開始時の移動局 MSの伝搬遅延時間を表 し、 D2S は第 2の基地局 BTS 2から見た DH〇開始時の移動局 MSの伝搬遅 延時間を表し、 D1E は第 1の基地局 BTS 1から見た DHO終了時の移動局 M Sの伝搬遅延時間を表し、 D2E は第 2の基地局 BTS 2から見た DHO終了時 の移動局 MSの伝搬遅延時間を表している。 次に、 第 2図を参照して、 従来の CDMA受信機 50における主要部 (復調回 路部) 10の構成について説明する。 CDMA受信機 50において、 アンテナ 4 1で受信した高周波数信号から無線回路部 40により得られたベースバンド信 号 (受信データ信号) 1 1は、 このベースバンド信号中に含まれる複数のパスか らの信号を合成して復調信号を得るために、 復調回路部 10に入力される。 尚、 図示はしないが、 無線回路部 40は、 アンテナで受信した高周波信号を高周波増 幅する高周波増幅部と、 高周波増幅した信号をベースバンド信号 (受信データ信 号) に周波数変換する周波数変換部とを有する。
第 2図において、 復調回路部 10に入力された受信デ一夕信号 1 1は、 finger 処理部 12とサーチャー 13とに入力される。 finger処理部 12は、 # l〜#n (nは 2以上の整数) までの nチャンネルに対応した第 1乃至第 nの finger 回 路 12 (1) 〜12 (n) から成る。 サーチャー 13には、 制御部 19からフレ ームオフセット信号 18が供給される。 後述するように、 サーチャー 13は、 こ のフレームオフセット信号 1 8で指示された位相の受信データ信号 1 1を逆拡 散するための拡散符号を発生させる。 尚、 このサーチャー 13の詳細な構成につ いては後述する。
サーチャー 13は、 受信データ信号 1 1に対して逆拡散のタイミングを少しず つずらしながら相関値レベルを求め、 最適な受信タイミングを探し、 finger処理 部 12で受信するべき受信タイミングを受信 (ピーク) タイミング信号 1 6で finger処理部 12の第 1乃至第 nの finger回路 12 (1) 〜12 (n) に指示 する。
finger処理部 12では、 受信 (ピーク) タイミング信号 16で指示された受信 タイミングで受信データ信号 1 1の逆拡散を行い検波処理を行う。 nger処理部 12の第 1乃至第 nの finger 回路 12 (1) 〜12 (n) からの出力は加算器 (最大比合成器) 14にそれぞれ入力され加算される (RAKE合成)。 加算後 のデータは復号器 15にて復号される。 ここで、 finger処理部 12の第 1乃至第 nの finger 回路 12 (1) 〜12 (n) はこの CDMA受信機 10で処理すベ きパス数に応じて用意される。 例えば、 n = 8であれば最大 8パス RAKE合成 が可能となる。 次に第 3図を参照して、 従来のサーチャー 13について説明する。 受信データ 信号 11は相関器群 20の第 1乃至第 m (mは 2以上の整数) の相関器 20 (1) 〜20 (m) に入力される。 第 1乃至第 mの相関器 20 (1) 〜20 (m) はそ れぞれ少しずつ異なる受信タイミングで逆拡散を行う。 相関器群 20の出力であ る相関値信号 28は加算器群 21の第 1乃至第 mの加算器 21 ( 1 )〜 21 (m) にそれぞれ入力される。 第 1乃至第 mの加算器 21 (1) 〜21 (m) は指定回 数 (パラメ一夕として変更可能とする) だけ相関値を加算 (積分) し、 加算後相 関値信号 29を有効パス判定部 22にそれぞれ出力する。 有効パス判定部 22は 加算後相関値信号 29からピークを検出することでレベルの高い受信タイミン グを探し、 有効パスとするかどうかを判断する。
尚、 有効パス判定部 22は、 ここで決定された有効パスに対して保護処理を行 い、 フェージング等によってレベルが変動したり、 受信タイミングが多少変化し ても有効パスの割り当てが頻繁に変わらないようにして安定した受信ができる ようにする。 有効パス判定部 22で判定された有効パスの情報は、 各パスのピー クタイミング信号 16として出力され、 それぞれ該当する finger処理部 12の 第 1乃至第 nの finger回路 12 (1) ~12 (n) に出力される。
従来のサーチャー 13は、 サーチャー 13がサーチできる一定のサーチ範囲を 持つ固定のサーチ窓を持つ。 この一定のサーチ範囲は、 相関器群 20における相 関器および加算器群 21における加算器の数 mによって決定される。 また、 固定 のサーチ窓の開始時刻は、 第 4図及び第 5図を参照して後述する、 当該基地局の 上り無線フレームの受信基準タイミング S 10に等しい。
次に、 第 4図を参照して、 上記構成の CDMA受信機 50を例に挙げて、 DH 〇動作について説明する。 第 4図は、 移動局 MSが第 1の基地局 BTS 1から第 2の基地局 BTS 2に移動する際における、 DHO動作のフレームのタイミング について示した説明図である。
第 4図において、 (a) および (b) は第 1の基地局 BTS 1のタイミングを 示し、 (c) 〜 (j ) は移動局 MSのタイミングを示し、 (k) 〜 (o) は第 2の 基地局 BTS 2の夕イミングを示している。
詳述すると、 (a) は第 1の基地局 BTS 1の基準タイミングを示し、 (b) は 第 1の基地局 BTS 1の下り送信タイミングを示している。
(c)〜(f )は DHO開始時での移動局 MSのタイミングを示しており、 (c) は第 1の基地局 BTS 1からの下り受信タイミングを、 (d) は第 1の基地局 B TS 1への上り送信タイミングを、 (e) は第 2の基地局 BTS 2からの止まり 木受信タイミングを、 (f) は第 2の基地局 BTS 2からの下り受信タイミング をそれぞれ示している。 (g) および (h) は DHO終了時での移動局 MSの夕 イミングを示し、 (g) は第 1の基地局 BTS 1からの下り受信タイミングを、 (h) は第 1の基地局 BTS 1への上り送信タイミングをそれぞれ示している。 ( i ) および (j ) は移動局 MSの基準タイミングを第 2の基地局 BTS 2に移 行した場合における移動局 MSのタイミングを示し、 ( i) は第 2の基地局 BT S 2からの下り受信タイミングを、 (j ) は第 2の基地局 BTS 2への上り送信 タイミングを示している。
(k) は第 2の基地局 BTS 2の基準タイミングを示している。 ( 1) 〜 (o) は DHO開始時の第 2の基地局 BTS 2のタイミングを示し、 ( 1 ) は第 2の基 地局 BTS 2の止まり木送信タイミングを、 (m) は第 2の基地局 BTS 2の下 り送信タイミングを、 (n) は第 2の基地局 BTS 2の上り受信タイミングをそ れぞれ示している。 (o) は DHO終了時および移動局 MSの基準タイミングを 第 2の基地局 B T S 2に移行した時の第 2の基地局 B T S 2の上り受信タイミ ングを示している。
例示したような基地局間が非同期であるシステムの場合では、 第 1の基地局 B TS 1における第 1の基準タイミング S 1 (第 4図 (a)) と、 第 2の基地局 B TS 2における第 2の基準タイミング S 2 (第 4図 (k)) とは同期していない ため、 そのタイミングが異なる。 第 4図において、 Tsectl : S 3は、 第 1の基 地局 BTS 1のロングコード (長周期拡散符号) と第 1の基地局 BTS 1の止ま り木チャンネルとの位相を示しており、 Tsect2 : S 7は、 第 2の基地局 BTS
2のロングコードと第 2の基地局 BT S 2の止まり木チャンネルとの位相を示 している。 また、 Tframel : S 4は、 第 1の基地局 BTS 1の下り直交性を保ち ながら無線フレームのタイミングを平均化するためのオフセットで、 第 1の基地 局 BTS 1における下りの無線フレームのオフセットは、 第 4図 (b) から明ら かなように、 (Tsecti + Tframel) となる。
一方、 移動局 MSは、 上りの無線フレームを下りの無線フレームの受信夕イミ ングから下り上りオフセッ ト S 5だけ遅れたタイミングで送信する (第 4図 (d))。 従って、 DHO開始時の第 1の基地局 BTS 1の移動局 MSに対する伝 搬遅延時間は D1Sであるので、第 1の基地局 B T S 1から見た移動局 MSの上り 無線フレームの送信タイミングは、 第 1の基地局 BTS 1の基準タイミング S 1 (第 4図 (a)) から (Tsectl + Tframel+下り上りオフセット + D1S) だけ遅 れたタイミングとなる (第 4図(d))。 ここでは、 この送信タイミングを単に (T sectl + Tframei+下り上りオフセット +D1S) と呼ぶことにする。
ここで、 移動局 MSが第 1の基地局 BTS 1から第 2の基地局 BTS 2に DH 〇するためには、 移動局 MSからの上り無線フレームの送信タイミング (移動局 MSの下り無線フレームの受信タイミングでもある) を第 2の基地局 MTS 2が 掌握する必要がある。 そこで、 移動局 MSでは、 現在の上り無線フレームの送信 タイミング (第 4図 (d)) と第 2の基地局 BTS 2の止まり木チャンネルの受 信タイミング (第 4図 (e)) とのタイミング差 TDHoを測定し、 その結果を値 T DH0: S 8として制御チャンネルと上位装置を経由して、 第 2の基地局 BTS 2 に伝える。 第 2の基地局 BTS 2では、 タイミング差 TDHoよりも、 下りの無線 フレームを第 2の基地局 BTS 2の基準タイミング S 2 (第 4図 (k)) から (T sect2+TDH0一下り上りオフセット) だけ遅れた送信タイミングで送信する (第 4図 (m))。 ここでは、 この送信タイミングを単に (Tsect'2+TDH0—下り上り オフセット) と呼ぶことにする。 このことにより、 移動局 MSは、 第 1の基地局 BTS 1の下り無線フレーム (第 4図 (c)) と同じタイミングで、 第 2の基地 局 BTS 2の下り無線フレームを受信することができる (第 4図 ( f))。
尚、 第 2の基地局 BTS 2は、 その基準タイミング S 2 (第 4図 (k)) から 位相 Tsect2: S 7だけ遅れたタイミングで止まり木チャンネルを送信し (第 4 図 ( 1))、 それからさらに TMDH0: S 9の時間だけ遅れた送信タイミングで下 り無線フレームを送信する (第 4図 (m))。 ここで、 時間 TMDHo : S 9は (T DH0 +下り上りオフセット) に等しい。
一方、 第 2の基地局 BTS 2における上り無線フレームの受信基準タイミング S 1 0は、 第 2の基地局 BTS 2の基準タイミング S 2 (第 4図 (k)) から (T sect2 + TDH0) の時間だけ経過した (遅れた) タイミングとなるので、 第 2の基 地局 BTS 2は、 受信基準タイミング S 10よりも (2 XD2S ) の時間だけ遅 れた受信タイミングにて移動局 M Sからの上り無線フレームを受信することが 可能になる (第 4図 (n))。 以下では、 この受信タイミングを単に (2 XD2s) と呼ぶことにする。
DHO開始から DHO終了に至るまで、 第 2の基地局 BTS 2における移動局 MSからの上り無線フレームの受信タイミングは徐々に変化していく。 そして、 DH〇終了時には、 第 2の基地局 BTS 2における上り無線フレームの受信タイ ミングは、 受信基準タイミング S 10から (D2S+DIE— D1S + D2E ) の時間 だけ経過したタイミングとなる (第 4図 (o))。 以下では、 この受信タイミング を単に (D2S + DiE—D1S+D2E ) と呼ぶことにする。 DHOを終了するとき には、 移動局 MSは止まり木チャンネルの受信を第 1の基地局 BTS 1から第 2 の基地局 MTS 2に切り替える。
発着信時であれば、 止まり木チヤンネルの受信タイミングが異なれば上りの無 線フレームの送信タイミングは変わる。 しかしながら、 DHOの場合は、 止まり 木チャンネルを受信している基地局 (BTS) が変わることにより上りの無線フ レームのタイミングが変わることがないように動作する。 以上のことから、 DH 0中における第 2の基地局 BT S 2の上り無線フレームの受信タイミングは、
(2 XD2S ) から (D2S + DIE— D1S + D2E ) へと変化することがわかる。 そ して、 第 4図に示されるように、 これらの受信タイミングが常に正の値なら、 第 2の基地局 B T S 2は問題なく上りの無線フレームを受信することができる。 尚、 移動局 MSの基準タイミングを第 2の基地局 MST2に移行した場合、 移 動局 MSは、 上りの無線フレームを下りの無線フレームの受信タイミングから下 り上りオフセット S 5に αを加えた時間 (上り下りオフセット +ひ) だけ遅れた タイミングで送信する (第 4図 (j ))。 ここで、 ひ= (D1E_D1S + D2S— D2E) であり、 本例では正の値である。
しかしな力 ら、 DHO中の状態によっては、 第 2の基地局 BTS 2の上り無線 フレームの受信タイミングが負の値になる可能性がある。 第 5図はその様子を示 した説明図 (第 4図と対応) である。 先の第 4図と同一符号は同等部分を示して おり、 第 4図にて説明したと同様な部分についての説明は省略する。
但し、 DHO終了時の第 2の基地局 BTS 2における上り無線フレームの受信 タイミングは (D2S + D1E— D1S+D2E ) であるため、 第 5図に示されている ように (D1S〉 (D2s + D]E + D2E )) となるときには受信タイミングが負の値 の状態となる (第 5図 (0) 参照)。 従って、 第 2の基地局 BTS 2の上り無線 フレームの受信基準タイミング S 10よりも早いタイミングで、 上り無線フレー ムが第 2の基地局 BTS 2に到達することになり、 このため第 2の基地局 BT S 2では所望の受信ができなくなる。 すなわち、 上りの無線フレームが受信基準夕 イミング S 10よりも手前になった場合には、 第 2の基地局 BTS 2は上り無線 フレームを受信ができない。
ここで、 移動局 MSの基準タイミングを第 2の基地局 MS T 2に移行した場合 における、 移動局 MSでの第 2の基地局 MTS 2への送信タイミングの上記ひの 値は負となっている (第 5図 (j ) 参照)。
なお、 基地局 B T Sの受信基準タイミングよりも手前となる上り無線フレーム を想定して、 これを受信するためにサーチャーの相関器の数を増やすとの対応も 考えられる。 しかしながら、 これは構成がより複雑になるし、 コスト的にも好ま しい対処とは言い難い。
また、 CDMA通信システムにおけるサーチ獲得を行う方法および装置が、 サ ットン、 トッド ·アール (Todd R. Sutton) に発行された米国特許第 5, 644, 59 1号に開示されている。 サットンによれば、 PNチップオフセット仮定の大 きな窓がサーチされ、 もし大きなサーチ窓のチップオフセッ卜の 1つを持つパイ ロット信号の存在を指示するエネルギ信号が発見されたなら、 オフセット仮定の サブセットのサーチ、 すなわち、 小さい窓がサーチされる。 サットンにおいても、 大きなサーチ窓を持つサーチャーが必要になるので、 サーチャーの相関器の数を 削減することはできない。
従って、 本発明の目的は、 簡易な構成にて上記問題点を解決した、 DHO時に 基地局での上り無線フレームの受信タイミングが基地局の受信基準タイミング よりも早くなつた場合でも、 同期が柔軟に移動局に追従し、 上り無線フレームを 受信できるようにした C D M A受信機と受信方法を提案することである。 発明の開示
本発明によれば、 アンテナで受信した高周波数信号からベースバンド信号を得 る無線回路部と、 ベースバンド信号に含まれる複数のパスからの信号を合成して 復調信号を得る復調回路部とを有する C D M A受信機であって、 復調回路部は、 ベースバンド信号に対する逆拡散の夕イミングを少しずつずらしながら相関値 レベルを求めて最適な受信タイミングを探し、 受信タイミング信号を出力するサ 一チヤと、 受信タイミング信号で指示された受信タイミングでベースバンド信号 の逆拡散を行い検波処理を行う f i nger 処理部と、 C D M A受信機を制御する制 御部とを含み、 サーチャーは、 制御部で指示されたフレームオフセットに応じた 位相で拡散符号を発生する拡散符号発生器と、 拡散符号を逆拡散のタイミングが 一定時間間隔だけ異なるように遅延させるサーチ用遅延回路と、 サーチ用遅延回 路によって遅延された拡散信号を用いて、 ベースバンド信号をそれぞれ少しずつ 異なる受信夕イミングで逆拡散を行い相関値信号を出力する相関器群と、 相関値 信号を指定回数だけ加算し、 加算後相関値信号を出力する加算器群と、 加算後相 関値信号からピークを検出することでレベルの高い受信タイミングを探し、 有効 パスとするかどうかを判断する有効パス判定部とを有する、 C D MA受信機に於 いて、 サーチャーは、 拡散符号発生器とサーチ用遅延回路との間に挿入されたサ ーチ窓オフセット用遅延回路であって、 拡散符号発生器から発生された拡散符号 を、 選択したサーチ窓オフセット量だけ遅延させてサーチ用遅延回路へ出力する サーチ窓オフセット用遅延回路と、 有効パス判定部に接続されたサーチ窓オフセ ット制御部であって、 有効パス判定部から供給されるピークタイミング信号およ びピークレベル信号に応答し、 しきい値を参照して算出したサーチ窓オフセット 量を算出するサーチ窓オフセット制御部と、 サーチ窓オフセット制御部とサーチ 窓オフセット用遅延回路との間に挿入されると共に制御部に接続されたセレク 夕であって、 制御部から供給されるダイバーシチハンドオーバ開始信号に応答し て、 算出したサーチ窓オフセット量と初期サーチ窓オフセット量の一方を選択し て、 選択したサーチ窓オフセット量をサーチ窓オフセット用遅延回路へ供給する セレクタと、 を具備することを特徴とする CDMA受信機が得られる。
また、 本発明によれば、 アンテナで受信した高周波数信号からベースバンド信 号を得る無線回路部と、 サーチ窓を持つサーチャーを備えてベースバンド信号に 含まれる複数のパスからの信号を合成して復調信号を得る復調回路部とを有す る CDMA受信機の受信方法であって、 サーチャーは、 フレームオフセット量に 応じた位相で拡散符号を発生する拡散符号発生器と、 サーチ窓オフセット量だけ 拡散符号発生器で発生された拡散符号を遅延させるサーチ窓オフセット用遅延 回路とを含む、 CDMA受信方法において、 拡散符号発生器にフレームオフセッ ト量として小さな値を設定しておき、 上り無線フレームを受信する際には、 サー チ窓オフセッ卜用遅延回路をサーチ窓の動作開始タイミングをより遅くするよ うに制御することを特徴とする C D M A受信方法が得られる。
さらに、 本発明によれば、 アンテナで受信した高周波数信号からベースバンド 信号を得る無線回路部と、 サーチ窓を持つサーチャーを備えてベースバンド信号 に含まれる複数のパスからの信号を合成して復調信号を得る復調回路部とを有 する CDMA受信機の受信方法であって、 サーチャーは、 フレームオフセットで 指示された位相の拡散符号を発生する拡散符号発生器と、 サーチ窓オフセッ卜量 だけ拡散符号発生器で発生された拡散符号を遅延させるサーチ窓オフセット用 遅延回路とを含む、 CDMA受信方法において、 移動局が DHO元基地局から D H〇先基地局へ移動しながら無瞬断で通信を継続するダイバーシチハンドォ一 ノ (DHO) 動作中に、 受信タイミングが負の値となる DHO先基地局が指定さ れた場合に、 移動局が測定した、 現在の上り無線フレームの送信タイミングと D HO先基地局の止まり木チャンネルの位相とのタイミング差 (TDH0) を DHO 先基地局に設定し、 DHO先基地局の CDMA受信機において上り無線フレーム を受信する際には、 DH〇開始信号を出力設定し、 サーチ窓オフセット用遅延回 路にサーチ窓オフセット量として初期値 (WOini ) を設定し、 拡散符号発生器 にフレームオフセットとして (TDH0_W〇ini ) を設定するようにすることを 特徵とする C D M A受信方法が得られる。 図面の簡単な説明 第 1図は、 CDMA受信機におけるダイバーシチハンドオーバの様子を模式的 に示す説明図であり、 第 2図は、 従来の CDMA受信機の一構成例を示すブロッ ク図であり、 第 3図は、 第 2図に示した従来の CDMA受信機に用いられる従来 のサーチャーの概略構成を示すプロック図であり、第 4図は、移動局が基地局(第 1の基地局) から他の基地局 (第 2の基地局) へ移動する際の DHO動作のフレ —ムのタイミングについて示した説明図であり、 第 5図は、 移動局が基地局から 他の基地局移動する際の DHO動作のフレームのタイミングについて示した説 明図であり、 第 6図は、 本発明の第 1の実施の形態に係る CDMA受信機の構成 を示すブロック図であり、 第 7図は、 第 6図に示した CDMA受信機に用いられ るサーチャーの詳細構成を示すブロック図であり、 第 8 A図〜第 8 C図は、 第 7 図に示したサーチャーの動作を説明する図であり、 第 9図は、 本発明の第 2の実 施の形態に係る CDMA受信機の構成を示すブロック図であり、 第 10図は、 第 9図に示した CDMA受信機に用いられるサーチャーの詳細構成を示すブロッ ク図である。 発明を実施するための最良の形態
発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。
第 6図は本発明の第 1の実施の形態による CDMA受信機 5 OAの構成を示 すブロック図であり、 第 7図はこの CDMA受信機 5 OAに用いられるサ一チヤ - 13 Aの詳細構成を示すブロック図である。 本実施の形態ではこのサーチャー 13 Aの構成が従来のものと異なるが、 他の部分についての構成は先に例示した 従来の CDMA受信機 50 (第 2図) とほぼ同一である。
第 6図において、 CDMA受信機 5 OAの復調回路部 1 OAに入力された受信 データ信号 1 1は、 第 1乃至第 nの finger 回路 12 (1) 〜12 (n) から成 る finger処理部 12とサーチャー 13 Aとに入力される。 サーチャー 13Aは、 受信デ一夕信号 1 1を逆拡散するための、 制御部 19から指示されたフレームォ フセット信号 18で指示された位相の拡散符号を発生させる。
サーチャ一 13 Aは、 受信データ信号 1 1に対する逆拡散のタイミングを少し ずつずらしながら相関値レベルが求め、 最適な受信タイミングを探し、 finger処 理部 12で受信するべき受信タイミングを受信 (ピーク) タイミング信号 16と して finger処理部 12の各 finger回路 12 (1) 〜12 (n) に指示する。 ま た、 制御部 19から出力される DH〇開始信号 1 7により動作が指示されたら、 サ一チヤ一 13 Aはサーチ窓オフセット値を初期値、 すなわち、 初期サーチ窓ォ フセット値 (WOini ) に設定する。
finger処理部 12では、 受信 (ピーク) タイミング信号 16で指示された受信 タイミングで受信データ信号 1 1の逆拡散を行い検波処理を行う。 finger処理部 12の各 finger 回路 12 ( 1 ) 〜 12 (n) からの出力は加算器 (最大比合成 器) 14にそれぞれ入力され加算される (RAKE合成)。 加算後のデータは復 号器 1 5にて復号される。 ここで、 finger処理部 12の finger回路 12 (1) 〜12 (n) は、 この CDMA受信機 1 OAで処理すべきパス数に応じて用意さ れる。 finger処理部 12で、 例えば n = 8であれば、 最大 8パスの RAKE合成 が可能となる。
第 7図 に示すサーチャー 1 3 Aには、 従来例として挙げた第 3図のものに加 えて、 回路要素として、 サーチ窓オフセット制御部 26、 サーチ窓オフセット用 遅延回路 24、 およびセレクタ 32が、 信号として、 初期サーチ窓オフセット量
(WOini ) の入力信号および DH〇開始信号 17が備わっている。
第 7図 において、 受信データ信号 1 1は相関器群 20の第 1乃至第 mの相関 器 20 (1) 〜20 (m) に入力される。 第 1乃至第 mの相関器 20 (1) 〜2 0 (m) はそれぞれ少しずつ異なる受信タイミングで逆拡散を行う。 すなわち、 相関器群 20は、 サーチ用遅延回路 23から供給される連続して遅延された拡散 符号 27と受信データ信号 1 1との間の相関値を計算する。 相関器郡 20の出力 である相関値信号 28は加算器群 21の第 1乃至第 mの加算器 2 1 (1) 〜21
(m) にそれぞれ入力される。 第 1乃至第 mの加算器 21 (1) 〜21 (m) は 指定回数 (パラメータとして変更可能とする) だけ相関値を加算 (積分) し、 加 算後相関値信号 (総和した相関値) 29を有効パス判定部 22にそれぞれ出力す る。 すなわち、 サーチ用遅延回路 23と相関器群 20と加算器群 21との組み合 わせは、 サーチャー 13 Aがサーチできる一定のサーチ範囲を持つ制御可能なサ ーチ窓内において、 受信データ信号 1 1と連続して遅延された拡散信号 27との 間の相関値を計算して、 総和した相関値 2 9を出力する計算手段として働く。 有効パス判定部 2 2は加算後相関値信号 2 9からピークを検出することでレ ベルの高い受信タイミングを探し、 有効パスとするかどうかを判断する。
有効パス判定部 2 2では、 決定された有効パスに対して保護処理を行い、 フエ
—ジング等によってレベルが変動したり、 受信タイミングが多少変化しても有効 パスの割り当てが頻繁に変わらないようにして安定した受信ができるようにす る。
有効パス判定部 2 2で判定された有効パスの情報は、 各パスのピークタイミン グ信号 1 6とピークレベル信号 3 0として出力される。 ピークタイミング信号 1 6はそれぞれ該当する Fi nger処理部 1 2の第 1乃至第 nの f i nger回路 1 2 ( 1 ) 〜 1 2 ( n ) とサーチ窓オフセット制御部 2 6に出力され、 ピークレベル信号 3 0はサーチ窓オフセット制御部 2 6に出力される。 とにかく、 有効パス判定部 2 2は、 総和した相関値 2 9から受信タイミングを決定する決定手段として働く。 サーチ窓オフセット制御部 2 6は、 制御部 1 9から D H O開始信号 1 7が出力 されていないときには、 入力されたピークタイミング信号 1 6およびピークレべ ル信号 3 0に応答して、 しきい値 D thE、 D thLを参照してサーチ窓オフセット量 W〇を算出し、 この算出したサーチ窓オフセット量 W〇をセレクタ 3 2へと出力 する。 セレクタ 3 2は算出したサーチ窓オフセット量 W〇をそのまま選択したサ —チ窓オフセット量 3 1としてサーチ窓オフセッ卜用遅延回路 2 4に出力する。 一方、 制御部 1 9から D H〇開始信号 1 7が出力され D H Oが指示されている ときは、 セレクタ 3 2により選択したサーチ窓オフセット量 3 1が初期サーチ窓 オフセット量 (WO i n i ) となるように選択して、 この信号 (選択したサーチ窓 オフセット量) 3 1をサーチ窓オフセット用遅延回路 2 4に出力し、 受信信号の フレーム同期をとる。 同期がとれたらその後は制御部 1 9から D H O開始信号 1 7が出力されていない場合と同様の動作を行う。
拡散符号発生器 2 5は、 相関器群 2 0で逆拡散するための拡散符号を制御部 1 9で指示されたフレームオフセット 1 8に応じた位相で発生し、 サーチ窓オフセ ット用遅延回路 2 3へと出力する。 サーチ窓オフセット用遅延回路 2 4は、 拡散 符号を選択したサーチ窓オフセット量 3 1だけ遅延させて、 サーチ用遅延回路 2 3に出力する。 サーチ用遅延回路 23は、 相関器群 20の第 1乃至第 mの相関器 2 0 (1) 〜2 0 (m) の逆拡散のタイミングが一定時間間隔だけ異なるように、 サーチ窓オフセット用遅延回路 2 4から入力された拡散符号を遅延させて相関 器群 2 0の第 1乃至第 mの相関器 2 0 ( 1) 〜2 0 (m) にそれぞれ出力する。 とにかく、 サーチ窓オフセット用遅延回路 24と拡散符号発生器 2 5とサーチ 窓オフセット制御部 2 6とセレクタ 3 2との組み合わせは、 初期状態であらかじ め小さめにフレームオフセット 1 8が設定され、 制御可能なサーチ窓をシフトす るシフト手段として働く。
このように、 第 7図に示すサーチャー 1 3 Aは、 後述する第 8 A図乃至第 8 C 図において示されるような、 サーチャー 1 3 Aがサーチできる一定のサーチ範囲 を持つ制御可能なサーチ窓を持つ。 前述したように、 一定のサーチ範囲は、 相関 器群 2 0における相関器 (すなわち、 加算器群 2 1における加算器) の数 mによ つて決定される。 また、 制御可能なサーチ窓の開始時刻 (動作開始タイミング) は、 第 4図及び第 5図を参照して前述した、 当該基地局の上り無線フレームの受 信基準タイミング S 1 0に相当するが、 第 8 A図乃至第 8 C図を参照して後述す るように、 時間軸上をシフト可能である。
次に、 上記第 1の実施の形態に係る CDMA受信機 5 OAにおける DHO動作 について説明する。
以下の説明でも、 第 1図を参照して述べたように、 D1S は第 1の基地局 BT S 1から見た DHO開始時の移動局 MSの伝搬遅延時間を表し、 D2S は第 2の 基地局 BTS 2から見た DHO開始時の移動局 MSの伝搬遅延時間を表し、 D1E は第 1の基地局 BTS 1から見た DHO終了時の移動局 MSの伝搬遅延時間を 表し、 D2E は第 2の基地局 BTS 2から見た DHO終了時の移動局 MSの伝搬 遅延時間を表すとする。 移動局 MSが第 1の基地局 MTS 1から第 2の基地局 B TS 2に移動する DHO動作についてのフレームのタイミングは、 先の第 4図及 び第 5図にて示したのと全く同様である。
次に、 第 5図を参照しながら、 D1S〉 (D2S + DIE + D2E) なる関係が成り立 ち、 DHO終了時の第 2の基地局 BTS 2における上り無線フレームの受信タイ ミング (D2S + D1E— D1S + D2E ) が負の値になる場合における、 第 1の実施 の形態に係る CDMA受信機 5 OAの動作について説明する。 ちなみに、 従来の CDMA受信機 50の場合では、 第 2の基地局 BTS 2の上り無線フレームの受 信基準タイミング S 1 0よりも早いタイミングで上り無線フレームが第 2の基 地局 BTS 2に到達するため、 第 2の基地局 BTS 2では上り無線フレームを受 信することができない。
既に述べたが、 基地局間は非同期であるため、 両局の基準タイミングは異なる。 第 5図において、 Tsectl : S 3は第 1の基地局 BTS 1のロングコード (長周 期拡散符号) と第 1の基地局 BTS 1の止まり木チャンネルとの位相を示し、 T sect2: S 7は第 2の基地局 BTS 2のロングコードと第 2の基地局 B T S 2の 止まり木チャンネルとの位相を示し、 Tframel : S 4は第 1の基地局 BTS 1の 下り直交性を保ちながら無線フレームのタイミングを平均化するためのオフセ ットを示す。 第 1の基地局 BTS 1における下りの無線フレームのオフセットは (Tsectl + Tframel) である。
本実施の形態においても、 装置の動作の大部分は概略従来のものと同様である。 すなわち、 移動局 M Sは上りの無線フレームを下りの無線フレームの受信タイミ ングから下り上りオフセット : S 5だけ遅れたタイミングで送信し、 DHO開始 時の第 1の基地局 BTS 1から見た移動局 MSの上り無線フレームの送信タイ ミングは (Tsectl + Tframel+下り上りオフセット + D1S) となる。
移動局 MSでは、 現在の上り無線フレームの送信タイミングと第 2の基地局 B TS 2の止まり木チャンネルとの位相である Tsect2 のタイミング差を測定し、 その結果を値 TDH08 として制御チャンネル (図示せず) と上位装置 (図示せず) を経由して、 第 2の基地局 BTS 2に伝える。 第 2の基地局 BTS 2では、 タイ ミング差 TDH0 よりも下りの無線フレームを (Tsect2 + TDHo—下り上りフレー ムオフセット) なるタイミングで送信を行う (第 5図 (m))。 これにより移動局 MSは、 第 1の基地局 BTS 1の下り無線フレームと同じタイミングで受信する ことができる。 第 2の基地局 BTS 2における上り無線フレームの受信基準タイ ミング S 10は(Tsect2 + TDH0)であり、受信基準タイミング S 10よりも(2 XD2S ) だけ遅れたタイミングにて移動局 MSからの上り無線フレームを受信 する。 DHO開始から DH〇終了に至るまで、 第 2の基地局 BTS 2における移動局 MSからの上り無線フレームの受信タイミングは徐々に変化してく。 DHO終了 時には、 この受信タイミングは (D2s + D1E— D1S + D2E ) であり、 移動局 M Sは止まり木チャンネルの受信を第 1の基地局 BTS 1から第 2の基地局 BT S 2に切り替える。
DHO終了時の第 2の基地局 BTS 2における上り無線フレーム受信タイミ ングは (D s + DiE— D!s + D2E ) であるため、 第 5図に示されているような 場合では、 受信タイミングの伝播遅延時間が負の値の状態となる。 従って、 受信 タイミング信号が第 2の基地局 BT S 2の上り無線フレームの受信基準タイミ ング S 1 0よりも早いタイミングで上り無線フレームが第 2の基地局 BT S 2 に到達する (上りの無線フレームが受信基準タイミング S 1 0よりも手前にな る) (第 5図 (o) 参照)。 なお、 従来の CDMA受信機 50では、 このような時 には第 2の基地局 B T S 2が上りの無線フレームを受信できなくなる。
本実施の形態に係る CDMA受信機 5 OAにおいては、 第 7図で示した如く、 サーチャー 1 3 Aにおけるサーチを開始するタイミング (サーチ窓の開始時刻 (動作開始タイミング) を変更できる構成になっている。 その為、 DHO中に受 信タイミングが負の値になるような場合でも受信継続が可能である。
すなわち、 本実施の形態に係る CDMA受信機 5 OAでは、 第 2の基地局 BT S 2が DHO先基地局と指定されたら、 発着信時のフレームオフセッ卜の代わり に、 上位装置から移動局 MSが測定した値、 すなわち、 タイミング差; TDHoが 設定される。 このとき、 第 2の基地局 BTS 2においては、 上り無線フレームを 受信するときは DHO開始信号 17が設定され、 サーチ窓オフセット用遅延回路 24に選択したサーチ窓オフセット量 31として初期サーチ窓オフセット量 (W Oini ) が設定される。 また同時に、 拡散符号発生器 25にフレームオフセット 信号 18として (TDH0— WOini) が設定される。
次に、 第 8 A図、 第 8 B図、 および第 8 C図の説明図を用いて上記動作を説明 する。
先ず第 8 A図の状態となり、 第 2の基地局 BTS 2に指定される B ST受信基 準タイミングは (TDH0_W〇ini) に設定され、 サーチャー 13 Aにおけるサー チを開始するタイミング (サーチ窓の開始時刻 (動作開始タイミング)) を初期 サーチ窓オフセット量 (WOini) だけ遅らせることにより、 実際の BST受信 基準タイミング S 10はタイミング差 TDH0に等しくなつている。
CDMA受信機 (移動局) 5 OAをこのような動作状態とすることにより、 こ の移動局 MSの位置に対応して伝搬遅延時間が大きくなつてサーチャー 1 3 A におけるサーチ窓のサーチ範囲を超えそうになったときには、 第 8 B図に示され るように、 サーチ窓オフセット量 W〇 (第 7図の 3 1) を増やすことにより、 移 動局 MSの位置 (動き) に追従して、 第 2の基地局 BTS 2は上り無線フレーム の受信を続けることができる。
また、 反対に移動局 M Sの移動により伝搬遅延時間が小さくなってサーチャー 13 Aにおけるサーチ窓のサーチ範囲を超えそうになったときには、 第 8 C図に 示されるように、 サーチ窓オフセット量 WO (第 7図の 3 1) を減らすことによ り、 適切な受信ができる。 すなわち、 第 2の基地局 BTS 2において受信すべき 上り無線フレームが、 タイミング差 TDHoより手前になった場合でも、 第 2の基 地局 MTS 2は上り無線フレームを受信することが可能となる。 何故なら、 第 5 図における受信基準タイミング S 10 (サーチ窓の開始時刻 (動作開始タイミン グ)) を早くすることができるからである。
このように本発明によれば、 C D M A受信機の初期状態として拡散符号発生器 に対するフレームオフセッ卜の設定をあらかじめ小さめに設定しておき、 その分 サーチ窓の動作開始タイミングを遅くしておき、 受信状態 ·動作状態に応じてサ —チ窓の動作開始タイミングを早くしたり遅くしたりすることにより、 基地局側 ではより柔軟に移動局 MSの移動に追従できるようになる。 DHO時にも基地局 BT Sの受信基準タイミングよりも無線フレームの受信タイミングが早くなつ た場合でも、 サーチャー 13 Aにおけるサーチ窓の動作開始タイミングを対応さ せて変更することで、 柔軟に移動局 MSの動きに追従し、 基地局 BTSにおいて 上り無線フレームを受信できるようになる。
次に、 第 9図および第 10図を参照して、 本発明の第 2の実施の形態による C DMA受信機 50 Bについて説明する。 この実施の形態に係る CDMA受信機 5 0Bの概略構成は、 先の第 6図のブロック図に示したものと略同様であるが、 そ のサーチャーの構成が異なる。 第 1 0図は、 この実施の形態に係るサーチャー 1 3 Bの構成を示すブロック図である。 この構成は、 先に第 7図 に示したサーチ ヤー 1 3 Aと大部分の構成部は共通しており、 前実施の形態に係るサーチャー 1 3 Aに比べると D H O開始信号線 1 7、 セレクタ 3 2を除いた点のみが異なって いる。 すなわち、 これら部分を省いて簡素化したものである。
先の第 3図に示した従来のサーチャー 1 3と比べた場合には、 サーチャー 1 3 Bには、 サーチ窓オフセット制御部 2 6、 サーチ窓オフセット用遅延回路 2 4、 初期サーチ窓オフセット量 (WO in i ) の入力信号線が加わっていることになる。 サーチ窓オフセッ卜用遅延回路 2 4の制御は、 サーチ窓オフセッ 卜制御部 2 6が 制御線 3 1を介して直接行う。
上記構成に対応して、 本第 2の実施の形態では、 制御信号等が上記第 1の実施 の形態と異なる。 すなわち、 常に拡散符号発生器 2 5に対するフレームオフセッ ト 1 8の設定をあらかじめ指定より小さめに設定しておくようにして、 その分サ 一チヤ一 1 3 Bにおけるサーチ窓の動作開始夕ィミングを遅くする方向にのみ 制御部 1 9により制御させる。 とにかく、 サーチ窓オフセット用遅延回路 2 4と 拡散符号発生器 2 5とサーチ窓オフセット制御部 2 6との組み合わせは、 常にあ らかじめ小さめにフレームオフセッ卜 1 8が設定され、 制御可能なサーチ窓をシ フ卜するシフト手段として働く。
このようにすることにより、 HH〇 (ハードハンドオーバ) や D H Oを繰り返 したときでも、 発着信呼か D H〇かを判断する必要がなくなり、 制御部の動作を 一段と簡略化することができる。
この第 2の実施の形態においても、 D H O時に基地局 B T Sの受信基準タイミ ング S 1 0よりも上り無線フレームの受信タイミングが早くなつた場合 (第 5 図)でも、 サーチャー 1 3 Bにおけるサーチ窓の動作開始タイミング(開始時刻) を対応させて変更することで、 柔軟に移動局 M Sの動きに追従し、 基地局 B T S において上り無線フレームを受信できるようになるという、 前実施の形態の場合 と全く同じ効果を得ることができる。
上述の説明から判るように、 本発明の受信方法では、 アンテナで受信した高周 波数信号からベースバンド信号を得る無線回路部と、 サーチャーを備えてベース バンド信号に含まれる複数のパスからの信号を合成して復調信号を得る復調回 路部とを有する C D MA受信機において、 拡散符号発生器にフレームオフセット 量として小さな値を設定しておき、 上り無線フレームを受信する際には、 サーチ 窓オフセッ ト用遅延回路をサーチ窓の動作開始タイミングをより遅くするよう に制御する。
これにより、 D H O時に無線フレームの受信タイミングが基地局の受信基準夕 イミングよりも早くなつた場合でも、 同期が柔軟に移動局に追従し、 基地局にお いて上り無線フレームを受信でき、 サーチャーの相関器を増やす必要もない。 同様に、 第 6図および第 7図に示した本発明方法では、 アンテナで受信した高 周波数信号からベースバンド信号を得る無線回路部と、 サーチャーを備えて前記 ベースバンド信号に含まれる複数のパスからの信号を合成して復調信号を得る 復調回路部を有する C D MA受信機において、 D H O動作中に、 受信タイミング が負の値となる D H O先基地局が指定された場合に、 D H〇先基地局から移動 局が測定したタイミング差 T DH0を設定し、上り無線フレームを受信する際には、
D H〇開始信号を出力設定し、 サーチ窓オフセット用遅延回路にサーチ窓オフセ ット量として初期値すなわち初期サーチ窓オフセット量 (WO i n i ) を設定し、 拡散符号発生器にフレームオフセットとして (TDH0— WO i ni ) を設定するよ うにする。
このようにしても、 D H O時に無線フレームの受信夕イミングが基地局の受信 基準タイミングよりも早くなつた場合にも、 同期が柔軟に移動局に追従し、 基地 局において上り無線フレームの受信を継続できる。
以上説明したように、 本発明によれば、 C D MA受信機においてフレームオフ セッ卜の設定をあらかじめ小さめに設定し、 対応してその分サーチ窓の動作開始 タイミングを遅く設定するようにしておき、 サーチ窓の動作開始タイミングを早 くしたり遅くしたりすることにより、 D H O時に上り無線フレームの受信夕イミ ングが基地局の受信基準タイミングょりも早くなつても、 柔軟に移動局の移動等 に追従し、 基地局において上り無線フレームを受信できるようになる。
本発明によれば、 拡散符号発生器に対するフレームオフセッ卜の設定をあらか じめ小さめに設定し、 その分サーチャーにおけるサーチ窓の動作開始タイミング を遅くし、 サーチ窓の動作開始タイミングを早くしたり遅くしたりすることがで きるから、 ダイバーシチハンドオーバ(D H O) 動作時において上り無線フレー ムの受信タイミングが基地局の受信基準タイミングょりも早くなつた場合でも、 柔軟に同期が追従して、 基地局において上り無線フレームの安定した受信が行え るという効果が得られる。 なお、 サーチャーの相関器の数を増やすことなしに対 応しており、 構成的に簡易 ·安価になるとの利点も有する。

Claims

請求の範囲
1. アンテナ (41) で受信した高周波数信号からベースバンド信号 (1 1) を得る無線回路部 (40) と、 前記ベースバンド信号に含まれる複数のパスから の信号を合成して復調信号を得る復調回路部 (10A) とを有する CDMA受信 機 (5 OA) であって、
前記復調回路部 (10A) は、 前記ベースバンド信号に対する逆拡散の夕イミ ングを少しづつずらしながら相関値レベルを求めて最適な受信タイミングを探 し、 受信タイミング信号 (16) を出力するサーチャー (13A) と、 前記受信 タイミング信号で指示された受信タイミングで前記ベースバンド信号の逆拡散 を行い検波処理を行う Hnger 処理部 (12) と、 前記 C DMA受信機を制御す る制御部 (19) とを含み、
前記サーチャー(13A)は、前記制御部で指示されたフレームオフセット (1 8) に応じた位相で拡散符号を発生する拡散符号発生器 (25) と、 拡散符号を 逆拡散のタイミングが一定時間間隔だけ異なるように遅延させるサーチ用遅延 回路 (23) と、 前記サーチ用遅延回路によって遅延された拡散信号を用いて、 前記ベースバンド信号をそれぞれ少しずつ異なる受信タイミングで逆拡散を行 い相関値信号 (28) を出力する相関器群 (20) と、 前記相関値信号を指定回 数だけ加算し、 加算後相関値信号 (29) を出力する加算器群 (2 1) と、 前記 加算後相関値信号からピークを検出することでレベルの高い受信タイミングを 探し、 有効パスとするかどうかを判断する有効パス判定部 (22) とを有する、 前記 C D M A受信機に於いて、
前記サーチャー (1 3 A) は、
前記拡散符号発生器と前記サーチ用遅延回路との間に挿入されたサーチ窓ォ フセット用遅延回路 (24) であって、 前記拡散符号発生器から発生された拡散 符号を、 選択したサーチ窓オフセット量 (31) だけ遅延させて前記サーチ用遅 延回路へ出力する前記サーチ窓オフセット用遅延回路 (24) と、
前記有効パス判定部に接続されたサーチ窓オフセット制御部 (26) であって, 該有効パス判定部から供給されるピークタイミング信号 ( 1 6) およびピークレ ベル信号 (3 0) に応答し、 しきい値 (DthE、 DthL) を参照して算出したサ一 チ窓オフセット量 (W〇) を算出する前記サーチ窓オフセット制御部 (2 6) と、 該サーチ窓オフセット制御部と前記サーチ窓オフセッ 卜用遅延回路との間に 挿入されると共に前記制御部に接続されたセレクタであって、 前記制御部から供 給されるダイバーシチハンドオーバ開始信号 (1 7) に応答して、 前記算出した サーチ窓オフセット量 (W〇) と初期サーチ窓オフセット量 (WOini) の一方 を選択して、 前記選択したサーチ窓オフセット量 (3 1) を前記サーチ窓オフセ ット用遅延回路へ供給する前記セレクタ (3 2) と
を具備することを特徴とする C D M A受信機。
2. アンテナ (4 1) で受信した高周波数信号からベースバンド信号を得る無 線回路部 (40) と、 制御可能なサーチ窓を持つサーチャー (1 3 B) を備えて 前記ベースバンド信号に含まれる複数のパスからの信号を合成して復調信号を 得る復調回路部 (1 0 B) とを有する CDMA受信機 (5 0 B) における受信方 法であって、
前記サーチャー (1 3 B) は、 フレームオフセット量 (1 8) に応じた位相で 拡散符号を発生する拡散符号発生器 (2 5) と、 前記サーチ窓の動作開始夕イミ ングを規定するサーチ窓オフセット量 (3 1 ) だけ前記拡散符号発生器で発生さ れた拡散符号を遅延させるサーチ窓オフセット用遅延回路 (24) とを含む、 C DMA受信方法において、
前記拡散符号発生器 (2 5) に前記フレームオフセット量 (1 8) として小さ な値を設定しておき、
上り無線フレームを受信する際には、 前記サーチ窓オフセット用遅延回路 (2 4) を前記サーチ窓の動作開始タイミング (3 1 ) をより遅くするように制御す る (2 6)
ことを特徴とする C D M A受信方法。
3. アンテナ (4 1) で受信した高周波数信号からベースバンド信号を得る無 線回路部 (40) と、 制御可能なサーチ窓を持つサーチャー (1 3A) を備えて 前記ベースバンド信号に含まれる複数のパスからの信号を合成して復調信号を 得る復調回路部 (10A) とを有する CDMA受信機 (5 OA) の受信方法であ つて、 前記サーチャー (13A) は、 フレームオフセット (18) で指示された 位相の拡散符号を発生する拡散符号発生器(25) と、サーチ窓オフセッ卜量(3 1、 WO) だけ前記拡散符号発生器から発生された拡散符号を遅延させるサーチ 窓オフセット用遅延回路 (24) とを含む、 前記受信方法において、
移動局 (MS) が DH〇元基地局 (BTS 1) から DHO先基地局 (BTS 2) へ移動しながら無瞬断で通信を継続するダイバーシチハンドオーバ (DHO) 動 作中に、 受信タイミングが負の値となる前記 DHO先基地局が指定された場合に、 前記移動局が測定した、 現在の上り無線フレームの送信タイミングと前記 DH 0先基地局の止まり木チャンネルの位相とのタイミング差 (TDH0) を前記 DH
〇先基地局に設定し、
前記 D H〇先基地局の前記 C D M A受信機において上り無線フレームを受信 する際には、
DHO開始信号 (17) を出力設定し、
前記サーチ窓オフセット用遅延回路 (24) に前記サーチ窓オフセット量 (3 1) として初期値 (WOini) を設定し、
前記拡散符号発生器 (25) に前記フレームオフセット (18) として (TDH0
-WOini ) を設定する
ことを特徴とする C DM A受信方法。
4. CDMA方式においてサーチ窓を持つサ一チヤ一 (13A) によって、 複 数の経路を通して受信された受信データ信号 (1 1) から受信タイミングをサー チして、 該受信タイミング (16) を検出する方法に於いて、
ダイバーシチハンドオーバ開始 (17) 時には、 初期オフセット量 (WOini) だけ前記サーチ窓をオフセットさせ、
前記ダイバーシチハンドオーバ開始時以外の時には、 前記受信データ信号を逆 拡散した結果に基づいて計算されたオフセット量 (WO) だけ前記サーチ窓をォ フセッ卜させる
ことを特徴とするサーチ方法。
5. CDMA方式において、 フレームオフセット (18) が設定可能でかつサ 一チ窓を持つサーチャー (13A) によって、 複数の経路を通して受信された受 信データ信号 (1 1) から受信タイミングをサーチして、 該受信タイミング (1 6) を検出する方法に於いて、
初期状態として、 前記フレームオフセット (18) の設定をあらかじめ小さめ (TDHo-WOini ) に設定しておき、 その分前記サーチ窓の動作開始タイミン グ (31) を遅く (WOini) しておき、
受信状態 ·動作状態 (16, 30) に応じて、 前記サーチ窓の動作開始夕イミ ング (31、 WO) を早くしたり遅くしたりする (26)
ことを特徴とするサーチ方法。
6. CDMA方式において、 フレームオフセット (18) が設定可能でかつサ —チ窓を持つサーチャー (13 B) によって、 複数の経路を通して受信された受 信デ一夕信号 (1 1) から受信タイミングをサーチして、 該受信タイミング (1 6) を検出する方法に於いて、
常に前記フレームオフセット (18) の設定をあらかじめ指定より小さめに設 定しておき、
前記サーチ窓の動作開始タイミング(31)を遅くする方向にのみ制御する(2 6)
ことを特徴とするサーチ方法。
7. 複数の経路を通して受信された受信データ信号 (1 1) から受信タイミン グ (16) をサーチする、 CDMA受信機に用いられるサーチャー (12A) に 於いて、
前記サーチャーがサーチできる一定のサーチ範囲を持つ制御可能なサーチ窓 内において、 前記受信データ信号(1 1) と連続して遅延された拡散符号 (27) との間の相関値を計算して、 総和した相関値 (29) を出力する計算手段 (23, 20, 21) と、
該総和した相関値から前記受信タイミングを決定する決定手段 (22) と、 初期状態であらかじめ小さめ (TDH0— WOini ) にフレームオフセット (1
8) が設定され、 前記制御可能なサーチ窓をシフトするシフト手段 (24, 25,
26, 32) と、 を具備するサーチャー。
8. 前記決定手段は前記受信タイミングとしてピークタイミング信号 (1 6) とピークレベル信号 (30) とを出力し、 前記シフト手段は、
しきい値 (DihE、 DthL) が供給されると共に前記決定手段に接続され、 前記 ピークタイミング信号 (16) およびピ一クレベル信号 (30) に応答し前記し きい値 (DthE、 DthL) を参照してサーチ窓オフセット量 (WO) を算出するサ ーチ窓オフセット制御部 (26) と、
ダイバーシチハンドオーバ開始信号 (1 7) に応答して、 前記算出したサーチ 窓オフセット量 (W〇) と初期サーチ窓オフセット量 (WOini) の一方を選択 して、 選択したサーチ窓オフセット量 (31) を出力するセレクタ (32) と、 前記フレームオフセット (18) に応じた位相で拡散符号を発生する拡散符号 発生器 (25) と、
前記拡散符号を、 前記選択したサーチ窓オフセット量だけ遅延させ、 オフセッ 卜遅延した拡散符号を前記計算手段へ供給するサーチ窓オフセット用遅延回路 (24) と、
を有する、 請求の範囲第 7項記載のサーチャ一。
9. 前記計算手段は、
前記オフセット遅延した拡散符号を連続的に遅延させて、 連続的に遅延した拡 散符号 (27) を出力するサーチ用遅延回路 (23) と、
前記受信データ信号 (1 1) と前記連続的に遅延した拡散符号 (27) との間 の相関計算を行い、 相関値 (28) を出力する相関器群 (20) と、
前記相関値を連続的に総和して、 前記総和した相関値 (29) を出力する加算 器群 (21) と、
を有する請求の範囲第 8項記載のサーチャー。
10. 複数の経路を通して受信された受信データ信号 (1 1) から受信夕イミ ング (16) をサーチする、 CDMA受信機に用いられるサーチャー (12 B) に於いて、
前記サーチャーがサーチできる一定のサーチ範囲を持つ制御可能なサーチ窓 内において、 前記受信データ信号と連続して遅延された拡散符号との間の相関値 を計算して、 総和した相関値 (29) を出力する計算手段 ( 23, 20, 21) と、
該総和した相関値から前記受信タイミングを決定する決定手段 (22) と、 常にあらかじめ指定より小さめにフレームオフセット (18) が設定され、 前 記制御可能なサーチ窓をシフトするシフト手段 (24, 25, 26) と、 を具備するサーチャー。
1 1.前記決定手段は前記受信タイミングとしてピークタイミング信号(16) とピークレベル信号 (30) とを出力し、 前記シフト手段は、
しきい値 (DthE、 DlhL) が供給されると共に前記決定手段に接続され、 前記 ピークタイミング信号 (16) およびピークレベル信号 (30) に応答し前記し きい値 (DthE、 DthL) を参照してサーチ窓オフセット量 (31) を算出するサ ーチ窓オフセット制御部 (26) と、
前記フレームオフセット (18) に応じた位相で拡散符号を発生する拡散符号 発生器 (25) と、
前記拡散符号を前記サーチ窓オフセット量だけ遅延させ、 オフセッ卜遅延した 拡散符号を前記計算手段へ供給するサーチ窓オフセット用遅延回路 (24) と、 を有する請求の範囲第 10項記載のサーチャー。
12. 前記計算手段は、
前記オフセット遅延した拡散符号を連続的に遅延させて、 連続的に遅延した拡 散符号 (27) を出力するサーチ用遅延回路 (23) と、
前記受信データ信号 (1 1) と前記連続的に遅延した拡散符号 (27) との間 の相関計算を行い、 相関値 (28) を出力する相関器群 (20) と、
前記相関値を連続的に総和して、 前記総和した相関値 (29) を出力する加算 器群 (21) と、
を有する請求の範囲第 1 1項記載のサーチャー。
13. 移動局 (MS) の移動に伴って、 該移動局が通信している基地局を第 1 の基地局 (BTS 1) から第 2の基地局 (BTS 2) に切り替えて、 前記移動局 が無瞬断でセル間を移動していく、 ダイバーシチハンドオーバ (DHO) 動作を 行う CDMAシステムに於いて、 前記第 2の基地局は、 フレームオフセット (18) の設定が可能で、 かつ制御 可能なサーチ窓を持つサーチャー (13A) を含み、
前記第 2の基地局は、 初期状態として、 フレームオフセット (18) の設定を あらかじめ小さめ (TDH0_W〇ini ) に設定しておき、 その分前記サーチ窓の 動作開始タイミング (31) を遅く (WOini) しておく手段 (1 9、 32) を 有し、
前記サーチャーは、 受信状態 '動作状態 (16, 30) に応じて、 前記サーチ 窓の動作 始タイミング (31) を早くしたり遅くしたりする手段 (26) を有 する
ことを特徴とする CDMAシステム。
14. 移動局 (MS) の移動に伴って、 該移動局が通信している基地局を第 1 の基地局 (BTS 1) から第 2の基地局 (BTS 2) に切り替えて、 前記移動局 が無瞬断でセル間を移動していく、 ダイバーシチハンドオーバ (DHO) 動作を 行う CDMAシステムに於いて、
前記第 2の基地局は、 フレームオフセット (18) の設定が可能で、 かつ制御 可能なサーチ窓を持つサーチャー (13B) を含み、
前記第 2の基地局は、 常にフレームオフセット (18) の設定をあらかじめ指 定より小さめに設定しておく手段 (19) を有し、
前記サーチャーは、 前記サーチ窓の動作開始タイミング (3 1) を遅くする方 向にのみ制御する手段 (26) を有する
ことを特徴とする CDMAシステム。
PCT/JP2000/006994 1999-10-06 2000-10-06 Recepteur amcr et methode afferente WO2001026243A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR0014822A BR0014822A (pt) 1999-10-06 2000-10-06 Receptor cdma e métodos de recepção de busca, dispositivo de busca e sistema cdma
EP00964727A EP1225707A4 (en) 1999-10-06 2000-10-06 CDMA RECEIVER AND RECEIVING PROCEDURE
KR1020027004455A KR20020035175A (ko) 1999-10-06 2000-10-06 Cdma 수신기, 및 수신방법
AU75585/00A AU7558500A (en) 1999-10-06 2000-10-06 Cdma receiver, and reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/285989 1999-10-06
JP28598999A JP2001111456A (ja) 1999-10-06 1999-10-06 Cdma受信機及び受信方法

Publications (1)

Publication Number Publication Date
WO2001026243A1 true WO2001026243A1 (fr) 2001-04-12

Family

ID=17698582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006994 WO2001026243A1 (fr) 1999-10-06 2000-10-06 Recepteur amcr et methode afferente

Country Status (7)

Country Link
EP (1) EP1225707A4 (ja)
JP (1) JP2001111456A (ja)
KR (1) KR20020035175A (ja)
CN (1) CN1402911A (ja)
AU (1) AU7558500A (ja)
BR (1) BR0014822A (ja)
WO (1) WO2001026243A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100550668C (zh) * 2006-08-08 2009-10-14 华为技术有限公司 一种实现多小区接入前导检测资源复用的方法和装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714527B2 (en) 1999-09-21 2004-03-30 Interdigital Techology Corporation Multiuser detector for variable spreading factors
WO2001022610A1 (en) 1999-09-21 2001-03-29 Interdigital Technology Corporation Multiuser detector for variable spreading factors
US6741653B2 (en) 2002-07-01 2004-05-25 Interdigital Technology Corporation Data detection for codes with non-uniform spreading factors
US20040072553A1 (en) * 2002-09-20 2004-04-15 Xiaohui Wang Methods, systems, and computer program products for selecting delay positions for a RAKE receiver by adjusting the delay positions based on comparisons of signal to interference ratios and/or powers for multi-path signals over time
DE60303496D1 (de) * 2003-05-27 2006-04-20 Ericsson Telefon Ab L M Positionierung eines Recherchegleitfensters zum Mehrwegsignalenempfäng
WO2004107599A1 (en) * 2003-05-27 2004-12-09 Telefonaktiebolaget L M Ericsson (Publ) Positioning a multipath search window
CN1303839C (zh) * 2003-12-19 2007-03-07 北京天碁科技有限公司 一种降低小区初搜运算量并提高运算精度的方法及装置
CN101185357B (zh) 2005-03-29 2011-06-01 富士通株式会社 切换系统
CN1822527B (zh) * 2006-03-17 2011-04-20 上海宣普实业有限公司 估计窗的有效性的检测方法
JP4904929B2 (ja) 2006-05-31 2012-03-28 富士通セミコンダクター株式会社 Ofdm受信機、妨害波判別方法、窓制御装置、及び窓制御方法
KR101040143B1 (ko) * 2009-05-06 2011-06-09 김태형 수위조절용 자동제어 원추형 플롯스위치
KR101040142B1 (ko) * 2009-05-06 2011-06-09 김태형 수위조절용 자동제어 플롯스위치
CN103973333A (zh) * 2013-01-24 2014-08-06 意法-爱立信有限公司 一种粗小区搜索方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004716A1 (en) * 1994-07-29 1996-02-15 Qualcomm Incorporated Method and apparatus for performing code acquisition in a cdma communications system
JP2000050338A (ja) * 1998-07-31 2000-02-18 Nec Corp スペクトラム拡散通信システム、及びスペクトラム拡散通信システムにおけるハンドオーバー方法
JP2000244387A (ja) * 1999-02-23 2000-09-08 Kokusai Electric Co Ltd 同期方法及び同期回路
JP2000324016A (ja) * 1999-05-10 2000-11-24 Nec Corp Cdma受信機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU677079B2 (en) * 1993-06-14 1997-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Time alignment of transmission in a down-link of a CDMA system
JP2606590B2 (ja) * 1994-06-30 1997-05-07 日本電気株式会社 局間同期方法
US5790589A (en) * 1996-08-14 1998-08-04 Qualcomm Incorporated System and method for rapidly reacquiring a pilot channel
US5881058A (en) * 1996-11-25 1999-03-09 Motorola, Inc. Method for performing a signal search in a wireless communication system
EP0845877A3 (en) * 1996-11-28 2002-03-27 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
US5872774A (en) * 1997-09-19 1999-02-16 Qualcomm Incorporated Mobile station assisted timing synchronization in a CDMA communication system
EP0945992A1 (en) * 1998-03-27 1999-09-29 TTP Communications Limited CDMA array processor
JP3479935B2 (ja) * 1998-08-19 2003-12-15 富士通株式会社 Cdma移動通信におけるハンドオーバ方法並びにcdma移動通信システム、その基地局及び移動局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004716A1 (en) * 1994-07-29 1996-02-15 Qualcomm Incorporated Method and apparatus for performing code acquisition in a cdma communications system
JP2000050338A (ja) * 1998-07-31 2000-02-18 Nec Corp スペクトラム拡散通信システム、及びスペクトラム拡散通信システムにおけるハンドオーバー方法
JP2000244387A (ja) * 1999-02-23 2000-09-08 Kokusai Electric Co Ltd 同期方法及び同期回路
JP2000324016A (ja) * 1999-05-10 2000-11-24 Nec Corp Cdma受信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1225707A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100550668C (zh) * 2006-08-08 2009-10-14 华为技术有限公司 一种实现多小区接入前导检测资源复用的方法和装置

Also Published As

Publication number Publication date
EP1225707A4 (en) 2003-07-09
AU7558500A (en) 2001-05-10
KR20020035175A (ko) 2002-05-09
JP2001111456A (ja) 2001-04-20
CN1402911A (zh) 2003-03-12
BR0014822A (pt) 2002-08-27
EP1225707A1 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US6580749B1 (en) CDMA receiver having a controllable search range and method for controlling the same
KR20080047626A (ko) 다중속도 cdma 무선통신시스템의 역방향링크 상관필터
WO2001026243A1 (fr) Recepteur amcr et methode afferente
KR100355327B1 (ko) 통신 단말 장치 및 그와 통신하는 기지국 장치와 무선 통신 방법
JP3358170B2 (ja) Cdma無線通信の受信方法
JP3323453B2 (ja) Cdma受信装置及びcdma受信方法
KR20000006026A (ko) 회선추정장치및통신단말장치
KR20000012092A (ko) 확산 스펙트럼 통신 시스템 및 그 시스템에서의 핸드오버 방법
JP3686809B2 (ja) 通信システム
KR100504360B1 (ko) 수신기 및 수신 방법
JP3527501B1 (ja) 無線通信基地局装置および遅延プロファイル平均化方法
JPH10271034A (ja) Cdma移動体通信受信装置
JP3835724B2 (ja) 同期方法及び同期回路
US20040259517A1 (en) Apparatus and method for reception
JP3277412B2 (ja) スペクトル拡散通信用受信方法及び装置
JP2002290279A (ja) 同期追従装置及び無線通信端末
JP3153531B2 (ja) 直接拡散受信装置
JPH06197097A (ja) 移動通信システム
JP2003218788A (ja) セルサーチにおける送信電力制御装置及び方法
JP3150129B2 (ja) Cdma移動体通信受信装置
JP2004120643A (ja) Rake受信機とその受信制御プログラム
JP2003023371A (ja) Cdma受信機、その受信方法及びプログラム
JPH06197096A (ja) 移動通信システム
JP3706038B2 (ja) スペクトラム拡散受信装置
WO2003077438A1 (fr) Recepteur et procede de controle de frequence automatique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR NO NZ SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10110085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027004455

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000964727

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027004455

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008164312

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000964727

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000964727

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027004455

Country of ref document: KR