WO2001023624A1 - Sheet steel and method for producing sheet steel - Google Patents

Sheet steel and method for producing sheet steel Download PDF

Info

Publication number
WO2001023624A1
WO2001023624A1 PCT/JP2000/006639 JP0006639W WO0123624A1 WO 2001023624 A1 WO2001023624 A1 WO 2001023624A1 JP 0006639 W JP0006639 W JP 0006639W WO 0123624 A1 WO0123624 A1 WO 0123624A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
steel sheet
cooling
producing
Prior art date
Application number
PCT/JP2000/006639
Other languages
English (en)
French (fr)
Inventor
Tadashi Inoue
Yoichi Motoyashiki
Hiroyasu Kikuchi
Toru Inazumi
Hiroshi Nakata
Takayuki Odake
Yasuhide Ishiguro
Sadanori Imada
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27530608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001023624(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2000060282A external-priority patent/JP3864663B2/ja
Priority claimed from JP2000119887A external-priority patent/JP2001303129A/ja
Priority claimed from JP2000268894A external-priority patent/JP3879381B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to EP00962863.7A priority Critical patent/EP1143019B1/en
Publication of WO2001023624A1 publication Critical patent/WO2001023624A1/ja
Priority to US09/837,435 priority patent/US6652670B2/en
Priority to US10/448,697 priority patent/US20030196731A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a thin steel sheet such as a hot-rolled steel sheet and a cold-rolled steel sheet, and a method for producing a thin steel sheet.
  • Thin steel sheets such as hot-rolled steel sheets and cold-rolled steel sheets are used in a wide range of fields such as automobiles, home appliances, and industrial machinery. Since such thin steel sheets are often used after being subjected to some kind of processing, various workabilities are required.
  • the workability required for the hot-rolled steel sheet and the cold-rolled steel sheet is, for example,
  • high-tensile steels high-strength hot-rolled steel sheets
  • high stretch flangeability during burring is required.
  • high r-values and elongation at break are required for cold-rolled steel sheets that are drawn at a strength of 440 MPa or less.
  • Japanese Patent Application Laid-Open No. 9-241742 proposes a method of improving the uniformity of mechanical properties in a hot-rolled coil by continuous hot-rolling.
  • This is a technology that uses a hot-rolling continuity process to improve the material at the front and rear ends of the rolled steel sheet and to eliminate variations in the material inside the coil.
  • the improvement of workability of materials is described in JP-B-61-15929 and JP-B-63-6752 by controlling the cooling rate and winding temperature after hot rolling to improve the workability of high tensile hot rolled steel sheets. Methods have been proposed to improve the quality.
  • Japanese Patent Application Laid-Open No. 5-112831 proposes a method of performing high pressure reduction and rapid cooling by hot rolling. .
  • This technology is intended to improve the r-value of cold-rolled steel sheets by making the final rolling reduction of hot-rolled steel 30% or more and quenching immediately after the end of rolling, so as to refine the crystal grains of the hot-rolled steel sheets. Things.
  • the material property (measured value at the center of the coil width) obtained by the technology described in Japanese Patent Application Laid-Open No. 9-241742, which aims to eliminate the variation in the material inside the coil, is the same as that of a 30K to 70K class steel plate.
  • TS fluctuation value
  • the average cooling rate immediately after rolling which is a feature of this technology, is 90 to 105 t: / sec for 1 second from the start of cooling, and 65 to 80 ° C / sec for 3 seconds from the start of cooling. sec.
  • the hot rolling conditions of the actual machine at such a cooling rate, it was not possible to refine the crystal grains of the steel plate, especially at the top of the rolling mill.
  • Patent No. 255555336 has been proposed as a prior art.
  • the cooling rate after finish rolling was set to 30 to 150 ° C / s, and the winding temperature was set to 250 to 540.
  • a technique for improving the elongation-flangeability of 0 to 60 K class high tensile steel is disclosed.
  • the cooling rate should be at least 50: / s within 3 seconds immediately after cooling, preferably at 150 ° CZs or less, depending on the steel composition. It is proposed to improve the stretch-flange properties of 50-70K class high tensile steel by stopping (at 410-620), then air cooling, and winding at 350-500. are doing.
  • Japanese Patent Application Laid-Open No. Sho 61-7338029 combines a method of strengthening cooling after rolling and a method of refining crystal grains, and rapidly cooling a steel sheet having a fine structure by adjusting rolling conditions. Is characterized by further miniaturization. That is, during or immediately after rolling, the steel is rapidly cooled from a state in which ferrite is slightly generated, and the transformed structure is divided by ferrite to obtain a very fine structure, thereby obtaining a high-strength, high-toughness steel sheet.
  • the microstructure of the steel sheet is refined by rolling and then quenching, and the characteristics are unstable due to fluctuations in the manufacturing conditions It is easy to be.
  • the present invention is excellent in workability including elongation flangeability, is suitable for press working with strict dimensional accuracy, and has uniform mechanical properties and various characteristic levels. It is another object of the present invention to provide a method for producing a thin steel sheet that can exhibit an excellent sheet shape.
  • the present invention provides a method for producing a thin steel sheet, which comprises a step of producing a rough bar, a step of producing a steel strip, a step of primary cooling, a step of secondary cooling and a step of winding. provide.
  • the step of producing the rough bar comprises rough rolling a continuous production slab having a C content of 0.8% or less by mass.
  • the step of producing the steel strip comprises finish rolling the rough bar at (Ar 3 transformation point ⁇ 20) at the above finishing temperature.
  • the step of quenching comprises cooling the steel strip after the finish rolling to a temperature of 500 to 800 at a cooling rate exceeding 120 ° C./sec.
  • the winding step comprises winding the steel strip after the secondary cooling at a winding temperature of 400 to 750.
  • the coarse bar is replaced by (Acm Transformation point-20) Finish rolling at a finishing temperature of ° C or higher.
  • the present invention has low defects in molding into a product shape, enables product sampling from a coil at a high yield, and has excellent workability such as stretch-flange property, elongation at break, and impact resistance.
  • the present invention provides a method for producing a thin steel sheet having a step of producing a slab, a step of producing a hot rolled sheet, a primary cooling step, a secondary cooling step, and a winding step.
  • C 0.05 to 0.14%
  • Si 0.5% or less
  • Mn 0.5 to 2.5% by mass% by continuous production that performs segregation reduction processing.
  • P not more than 0.05%
  • S not more than 0.1%
  • not more than 0.005%
  • Ca not more than 0.0005%.
  • the step of producing a hot-rolled sheet comprises hot-rolling the slab at a finish rolling end temperature of Ar 3 or more.
  • the primary cooling step consists of starting primary cooling at a cooling rate of 100 to 2000: Zs within 2 seconds after hot rolling, and cooling the hot rolled sheet to a temperature range of 600 to 750. Process;
  • the secondary cooling step comprises cooling the hot rolled sheet at a cooling rate of less than 50 t: Zs after cooling to the temperature range.
  • the secondary-cooled hot-rolled sheet is wound at a temperature of 450 to 65 O :.
  • an object of the present invention is to provide a method for producing a steel sheet capable of stably obtaining desired strength characteristics.
  • the present invention comprises a hot rolling step and a cooling step.
  • the hot rolling process is performed in the following mass%: C: 0.03 to 0.12%, Si: l% or less, Mn: 5 to 2%, P: 0.02% or less, S: 0. 0 1% or less, Nb: 0.005 to 1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1% It consists of hot rolling the steel contained at a temperature of 1070 ° C or less with a cumulative reduction of 30% or more.
  • the hot rolling process is performed in the following mass%: C: 0.03 to 0.12%, Si: 1%
  • Hot rolling may be performed at a rate of 30% or more.
  • the cooling step comprises cooling within 6 seconds after the end of rolling, at an average cooling rate of 8 O ⁇ Zs or more, over 5 O Ot, and 70 o: or less.
  • FIG. 1 is a diagram showing the effect of the primary cooling start time on the mechanical properties according to Best Mode 2.
  • FIG. 2 is a diagram showing the relationship between tensile strength and hole expansion ratio according to Best Mode 2.
  • Figure 3 shows the effect of the rapid (primary) cooling stop temperature on the strength characteristics (TS, YS) according to Best Mode 3.
  • Fig. 4 is a diagram showing the effect of the rapid (primary) cooling stop temperature on the strength characteristics (E1) according to Best Mode 3.
  • Figure 5 shows the effect of the rapid (primary) cooling stop temperature on the strength characteristics (TS ⁇ E 1) according to Best Mode 3.
  • Fig. 6 is a diagram showing the effect of the rapid (primary) cooling stop temperature on the strength characteristics (YR) according to Best Mode 3.
  • Figure 7 shows the effect of rapid (primary) cooling stop temperature on toughness according to Best Mode 3.
  • Method for producing a thin steel sheet Best Mode 1 by mass%, a C content of 0.8% or less continuous ⁇ Concrete slabs, a step of producing a rough rolling to rough bar, the crude bar, (Ar 3 A step of finish rolling at the above-mentioned finishing temperature at the transformation point-20) to produce a steel strip, and a step of rapidly cooling the steel strip after the finish rolling at a cooling rate exceeding 120 / sec at 120 to a temperature of 500 to 800. Winding the steel strip after the quenching at a winding temperature of 400 to 750 ° C.
  • the continuous production slab can also be obtained by continuously producing steel containing 0.8% or less by mass, Si: 2.5% or less, and Mn: 3.0% or less by mass%.
  • the continuous structure slab contains, by mass%, C: 0.8% or less, Si: 2.5% or less, Mn: 3.0% or less, and one of Ti, Nb, V, Mo, Zr, and Cr. It can also be obtained by continuously forming steel containing 0.01 to 0.2% of a kind or more.
  • Continuously manufactured slabs contain, by mass%, C: 0.8% or less, Si: 2.5% or less, Mn: 3.0% or less, and steel containing 0.005% or less of one or more of Ca and B. It can also be obtained by building.
  • the continuous production slab contains, by mass%, C: 0.8% or less, Si: 2.5% or less, Mn: 3.0% or less, and Ti, Nb, V, Mo, Zr, It can also be obtained by continuously forming steel containing at least one of Cr in an amount of 0.01 to 0.2% and at least one of Ca and B at 0.005% or less.
  • C is an additive element for ensuring the strength of the steel sheet. However, if it is contained excessively, the workability is significantly deteriorated, and if it exceeds 1%, the workability is deteriorated. Therefore, the C content should be 1% or less.
  • Si is a solid solution strengthening element, but if its addition exceeds 2.5%, the surface properties deteriorate. Therefore, the amount of Si is preferably set to 2.5% or less.
  • Mn is an element that improves the toughness of the steel sheet and has a solid solution strengthening action, but has an adverse effect on workability. If the Mn content exceeds 3%, the strength increases and the workability deteriorates significantly. Therefore, the Mn content is preferably set to 3% or less.
  • P is an element that has the effect of strengthening the solid solution. However, if added in excess of 0.2%, grain boundary embrittlement due to grain boundary segregation tends to occur. Therefore, it is desirable that the P content be 0.2% or less.
  • S is an impurity element and is desirably as low as possible. If it exceeds 0.05%, the precipitation of fine sulfides increases and the workability deteriorates. Therefore, it is desirable that the S content be 0.05% or less.
  • the N content is preferably set to 0.02% or less. ⁇ : 0.005% or less
  • the amount of 0 is preferably set to 0.005% or less.
  • Ti, Nb, V, o.Zr.Cr One or two or more types in total 0.01 to 0.2%
  • Ti, Nb, V, Mo, Zr, and Cr are required for non-aging (and improved deep drawability) using strength adjustment or reduction of solid solution C and N by carbide formation. Add accordingly. These elements have no effect when the total added amount is less than 0.01%, and impair the workability such as ductility and deep drawability when the total added amount exceeds 0.2%. Therefore, when adding Ti, Nb, V, Mo, Zr, and Cr, the total amount of these should be 0.01 to 2%.
  • Ca.B 1 or 2 types or more, 0.005% or less in total
  • Ca and B are effective elements that can improve the workability of a thin steel sheet, and are preferably added. However, if the total content of Ca and B exceeds 0.005%, the deep drawability is impaired. Therefore, when Ca and B are added, the total amount of these should be 0.005% or less.
  • the finishing temperature is less than (Acm Cementite that precipitates at the tenite grain boundary increases, and a uniform pearlite structure cannot be obtained, resulting in a non-uniform structure.
  • finish rolling is performed at a finishing temperature (Ar 3 transformation point ⁇ 20) or higher.
  • the structure can be made uniform and the structure can be made finer in the subsequent steps, and workability such as improved hardenability, improved spheroidization rate of cold-rolled steel sheets and improved stretch flangeability can be achieved. Improvement can be achieved.
  • rapid cooling after rolling is necessary in order to refine the structure of the ferrite crystal grains and pearlite after transformation and to make the material uniform.
  • the cooling method is slow cooling, the structure becomes coarse, and the high-C steel does not have a uniform pearlite structure, resulting in a non-uniform structure.
  • the cooling rate is 120 / sec or less, the structure such as ferrite crystal grains and pearlite generated by the transformation becomes coarse, and in the hypereutectoid steel, the cementite precipitates, resulting in an uneven structure.
  • Cooling end temperature 500 ⁇ 800
  • the cooling end temperature As for the cooling end temperature, if the temperature is rapidly cooled to a low temperature range of less than 500, the difference (margin allowance) from the winding temperature becomes small, and it becomes difficult to make the temperature uniform. In addition, additional cooling equipment for quenching is required, which increases equipment costs. Conversely, when the cooling end temperature exceeds 800, only a part of the structure is transformed and the structure becomes non-uniform, and the structure is coarsened by the subsequent cooling (gradual cooling) accompanying the winding temperature control.
  • the steel strip is primarily cooled at a cooling rate of more than 120 Vsec to a temperature of 500 to 80 (T)
  • precipitates such as ferrite grains and pearlite after transformation can be refined.
  • the upper limit of the cooling rate is not specified, but the limit is about 2000 ° C / sec, which is industrially possible.
  • the steel strip After secondary cooling, the steel strip must be wound at a winding temperature of 400 to 750 ° C. This is because if the winding temperature is lower than 400 ° C, a low-temperature transformation phase is generated, and if the temperature exceeds 750 ° C, the structure such as crystal grains becomes coarse and the workability deteriorates.
  • the basic production conditions of the present invention are as described above. Manufacturing conditions can be used.
  • the continuous green slab can be subjected to rough rolling by direct hot rolling or before being cooled to room temperature, charged into a heating furnace and reheated at 1200 to the following temperature.
  • the rough rolling is directly started by rolling without cooling the continuous production slab to room temperature, or the rough rolling is started after heating to 1200 or less.
  • the slab temperature before rolling can be made uniform, and the mechanical properties in the coil can be made more uniform.
  • the material to be rolled can be heated by an induction heating device immediately before or during the finish rolling. According to the present invention, the temperature of the material to be rolled during rolling can be made more uniform, and the mechanical properties in the coil can be made more uniform.
  • quenching After finish rolling, quenching can be started within a time period exceeding O.lsec and less than l.Osec.
  • precipitates such as ferrite crystal grains and pearlite after transformation can be made finer, and workability can be further improved.
  • the thin steel sheet manufactured by the above method for manufacturing a thin steel sheet can be further cold-rolled and annealed.
  • the material and structure of the hot-rolled coil are uniform, if it is annealed after cold-rolling, a cold-rolled steel sheet having excellent workability and uniformity of mechanical properties can be obtained.
  • the fluctuation (maximum value and minimum value) of the tensile strength in the width direction and the longitudinal direction of the hot-rolled steel strip is applied.
  • a thin steel sheet characterized by being within ⁇ 8% of the average value of strength can be obtained.
  • the variation in press workability (spring back during bending, etc.) within the coil is small. Consumers can also improve product yield and shape accuracy after press processing, and have excellent performance as a material.
  • the steel composition is not particularly limited, and a conventional hot rolled steel sheet / cold rolled steel sheet having various characteristic levels can be applied.
  • the present invention can be applied not only to a simple carbon steel sheet but also to a steel sheet containing special elements such as Ti, Nb, V, Mo, Zr, Ca, and B.
  • special elements such as Ti, Nb, V, Mo, Zr, Ca, and B.
  • the slab temperature before rolling can be made uniform, and the mechanical properties in the coil become even more uniform.
  • the temperature of the material to be rolled during rolling can be made more uniform. Further, the mechanical properties in the coil can be made more uniform.
  • the rolling reduction of the final rolling pass be 8% or more and less than 30%. This is because the reduction rate should be 8% or more in order to sufficiently reduce the size of austenite grains, and it should be 30% or more in order to maintain a good shape of the steel sheet. by. From the viewpoint of reducing the grain size of the hot-rolled steel sheet, it is desirable that the rolling reduction be more than 10% for each rolling pass.
  • the finishing temperature when the C content is 0.8% or less, if the finish rolling is preferably performed at (Ar 3 transformation point -20) to (Ar 3 transformation point + 50) ° C, immediately after the finish rolling, Crystal grains before cooling the run-out can be refined.
  • the finishing temperature By setting the finishing temperature to (Ar 3 transformation point +50) or less, coarsening of austenite grains is prevented, and ferrite grains after rolling are easily made fine.
  • the crystal grains can be refined in the subsequent steps, and the strength-ductility balance and stretch flangeability can be improved, and further, the workability can be improved by increasing the r-value of the cold-rolled steel sheet.
  • finish rolling is performed at a finishing temperature of (Acm transformation point -20) to (Acm transformation point + 100) ° C. If it is the same as the case of 8% or less, a thin steel sheet having excellent workability and uniform mechanical properties can be obtained. Finish By setting the temperature to (Acm transformation point +100) ° C or less, coarsening of austenite grains can be prevented and the pearlite core after rolling can be refined.
  • the finishing temperature varies depending on the position of the material to be rolled in the width direction, the longitudinal direction, and the like. If the difference is large, the structure of the steel strip becomes non-uniform, so that the difference in the finishing temperature can be reduced. desirable. If the finish rolling is performed so that the difference in finishing temperature within the material to be rolled is within 50, the structure in the steel strip immediately after finish rolling can be made uniform, and the mechanical properties after winding into a coil can be made uniform. I can do it. As a result, the difference in the structure and the material of the final product can be ignored, so that the difference in the finishing temperature in the material to be rolled is preferably set to 50T: or less.
  • the rapid cooling and the slow cooling are referred to as primary cooling and secondary cooling.
  • the workability can be improved by the refinement of ferrite grains and pearlite after transformation.
  • cooling at a cooling rate of 200 ° C / sec or more, more preferably 40 (TC / sec or more from the viewpoint of refining the ferrite crystal grains and refining the pearlite structure, cooling at a cooling rate of 200 ° C / sec or more, more preferably 40 (TC / sec or more, The upper limit of the cooling rate is not particularly specified, but is industrially limited to about 200 (TC / sec).
  • the above-mentioned quenching stop temperature should be within the range of the present invention, and the temperature fluctuation in the coil width direction and the longitudinal direction after the quenching. (Highest value-lowest value) should be within 60 ° C. More preferably, the above-mentioned performance at the consumer can be remarkably improved by controlling the fluctuation of the tensile strength to within ⁇ . In this case, the variation in the material can be narrowed in this way by keeping the rapid cooling stop temperature fluctuation within 40 or less.
  • the fluctuation of the above-mentioned rapid cooling stop temperature should be within 20 ° C. Reduction of material fluctuations is due to these temperature and tensile strength fluctuations. Can be determined from the relationship.
  • the temperature in the coil width direction indicates a range excluding 30MI from both edges of the coil width in consideration of the measurement method of the temperature sensor.
  • the quenching (primary cooling) capacity by performing cooling with a heat transfer coefficient of 2000 kcal / ni 2 h ° C, the above-mentioned fluctuation in temperature after quenching can be reduced.
  • a preferred heat transfer coefficient is 5000 kcal / m 2 h ° C or more, and a more preferred level is SOOOkcal / n ⁇ .
  • the primary cooling if the cooling is started within 0.1 lsec and less than l.Osec after finish rolling, precipitates such as ferrite crystal grains and perlite after transformation can be made finer. The workability can be further improved. Furthermore, in order to make the variation in the material of the hot-rolled steel strip a more preferable level, it is desirable that the start of cooling be more than 0.5 sec after finish rolling.
  • the primary cooling After the primary cooling, it is desirable to perform slow cooling (secondary cooling) to adjust the winding temperature.
  • second cooling slow cooling
  • the cooling rate of the secondary cooling is less than 6 (TC / sec)
  • high-precision temperature control becomes possible
  • the cooling end temperature that is, the winding temperature becomes uniform. Since the structure of the steel strip can be made more uniform, it is preferable that the steel strip be subjected to secondary cooling at a cooling rate of less than 60 tVsec in order to make the mechanical properties in the coil uniform.
  • the steel strip After secondary cooling, it is necessary to wind the steel strip at a winding temperature of 400 to 750.However, if it is less than 400, a low-temperature transformation phase is generated, and if it exceeds 750, the structure such as crystal grains becomes coarse. This is because workability deteriorates. It is desirable that the winding temperature of the high C material be 450 or more in order to prevent the formation of a low-temperature transformation phase. Also, from the viewpoint of making the material of the final product uniform, it is desirable that the difference in the coiling temperature within the coil be within 80 ° C.
  • the present invention can also be applied to a direct rolling process in which a slab after continuous production is directly hot-rolled without passing through a heating furnace. It is also effective for a continuous rolling process using a coil box or the like. Further, when the material to be rolled is heated by the induction heating device immediately before or during finish rolling, it is effective to perform edge heating. If the obtained hot-rolled coil is annealed after cold-rolling, a cold-rolled steel sheet having excellent workability and uniformity of mechanical properties can be obtained. At this time, annealing is more preferably performed by continuous annealing in order to achieve uniform mechanical properties.
  • Example 1 Example 1
  • Tensile test specimens were taken from five locations in the longitudinal direction of the hot-rolled coil, and the average tensile strength (TS), total elongation (El), variation in tensile strength (ATS), and variation in total elongation ( ⁇ E l) was measured.
  • TS average tensile strength
  • El total elongation
  • ATS variation in tensile strength
  • ⁇ E l variation in total elongation
  • the hole expansion ratio ( ⁇ ) and its variation ( ⁇ ) were measured in order to evaluate the stretch flangeability.
  • the sheet was cold-rolled to a thickness of 0.8 IM, continuously annealed, and the r-value was evaluated to evaluate deep drawability.
  • Table 3 shows the measurement results of the mechanical properties of these hot-rolled coils and cold-rolled annealed sheets.
  • ⁇ TS and ⁇ E1 are respectively 1/2 of the difference between the maximum value and the minimum value of TS and E1.
  • the tensile properties were investigated using samples taken from positions excluding both edges 30I1 in the coil width direction and 5 m each at both ends in the coil longitudinal direction, and the average value of all values was taken as the average value in the coil.
  • the mechanical examples of the present invention are more mechanical in all the component systems. Variation in properties ATS, ⁇ El are small.
  • the steel sheets Nos. 23 to 28 of the comparative examples one or more of the manufacturing conditions specified in the present invention were not satisfied, and the steel sheets No. 15-2.2 of the present invention examples having the same chemical components were not satisfied. However, the uniformity of mechanical properties or workability is poor.
  • the variation in the rapid cooling (primary cooling) stop temperature in the coil is smaller than that of the conventional method using laminar cooling, and the variation in mechanical properties is reduced to a more desirable level.
  • the cooling method in the present invention is a multi-jet type cooling method having a high heat transfer coefficient.
  • the present inventors have conducted intensive studies to improve the stretch-flange property, elongation at break, and impact resistance of a high-tensile steel material manufactured by reheating a continuous green slab or directly hot rolling. Was done.
  • the elongation-flangeability and elongation at break are affected by the presence of a band structure in which C, Mn, etc. are concentrated at the center of the sheet thickness, and the yield strength of the material is required to improve the impact resistance. It has been found that it is effective to increase the workability without impairing it.
  • Mass% characterized by comprising the following steps: C: 0.05 to 0.14%, S i: 0.5% or less, Mn: 0.5 to 2.5%, P : 0.05% or less, S: 0.01% or less, ⁇ : 0.005% or less, and Ca: less than 0.0005%.
  • a step of manufacturing a slab by a continuous structure that performs a segregation reduction treatment (1) A step of manufacturing a slab by a continuous structure that performs a segregation reduction treatment.
  • Mass% characterized by having the following processes: C: 0.05-0.14%, S i: 0.5% or less, Mn: 0.5-2.5%, P : 0.005% or less, S: 0.01% or less, :: 0.005% or less, and Ca: less than 0.0005%.
  • a step of manufacturing a slab by a continuous structure for performing a segregation reduction treatment (1) A step of manufacturing a slab by a continuous structure for performing a segregation reduction treatment.
  • Si is a solid solution strengthening element and is added to strengthen the steel sheet. However, if it exceeds 0.5%, the surface properties deteriorate, so the content is set to 0.5% or less.
  • Mn is added in an amount of 0.5% or more to improve the toughness of the steel sheet and improve the strength by solid solution strengthening. If it exceeds 2.5%, the workability will be significantly deteriorated, so the content should be 0.5% or more and 2.5% or less.
  • P has the effect of solid solution strengthening the steel sheet. However, if the content exceeds 0.05%, the workability is degraded due to segregation, so the content of P is set to 0.05% or less.
  • S forms sulfides, and if it exceeds 0.01%, the amount increases and the workability deteriorates. Therefore, the content of S is set to 0.01% or less.
  • suppresses cracking on the slab surface or under the slab surface during continuous fabrication Therefore, its content is restricted to 0.005% or less.
  • alumina oxide which is a deoxidation product when A1 is used for deoxidation at the time of smelting, is a low melting point A1-Ca- ⁇ -based oxide. Since A1-Ca-0 oxides expand during hot rolling and deteriorate workability (elongation-flangeability), Ca is treated as an unavoidable impurity in the present invention. Regulate to less than 0.0005%, which is the level of no additives. .
  • the above is the basic component composition, but one or more of Ti, Nb, V, Mo, Zr, and Cr can be added to further improve the characteristics.
  • one or more of Ti, Nb, V, Mo, Zr, and Cr can be added in a total amount of 0.01% to 0.3%.
  • elements other than those described above may be contained as long as the function and effect are not impaired.
  • the reheating temperature is 1250 ° C or less.
  • the finishing temperature of the finish rolling mill is set to Ar 3 or more, and the ferrite crystal grain size after transformation and pearlite are refined to improve stretch-flange property and impact resistance.
  • Cooling in the runner-out after hot rolling is performed after finish rolling to refine the ferrite crystal grain size and pearlite after transformation, and to improve the impact resistance due to excellent workability and high yield strength. Start within 2 seconds, more preferably within 1 second.
  • Figure 1 shows the effect of primary cooling start time on mechanical properties. If cooling is started within 2 seconds after finish rolling, excellent workability and high strength can be obtained.
  • the cooling rate of the primary cooling is specified in order to improve the elongation-flangeability by miniaturizing the ferrite crystal grain size and pearlite after transformation and suppressing the band structure at the center of the sheet thickness.
  • the band structure corresponds to the concentration of C and Mn in the solidification stage.
  • the transformation temperature from austenite to ferrite is low. Due to the slow transformation, a large amount of pearlite is formed, deteriorating the elongation and flangeability.
  • the cooling rate is set to 100 ° C / s or more, the ferrite transformation becomes easy even in the C and Mn enriched parts, and as a result, the elements are homogenized and the band structure is suppressed.
  • the cooling rate is out of the range of the present invention, a band structure is observed, and the crystal grain size is larger than that of the microstructure according to the method of the present invention.
  • the cooling rate is more preferably 200 ° CZs or more, and more preferably 400 ° CZs or more in order to further improve the workability, from the viewpoints of ferrite crystal grain size and pearlite miniaturization.
  • the end temperature of primary cooling is more than 750, it will be difficult to refine the ferrite, and if it is less than 600 ° C, the second phase will be a hard low-temperature transformation phase. Less than
  • Secondary cooling is performed. Secondary cooling may be started immediately after primary cooling is stopped, or may be started after cooling for a while, and is not specified. Secondary cooling cold The rejection rate should be 50 ° C / s or less in order to properly transform the austenitic structure into pearlite and achieve excellent workability.
  • the winding temperature When the winding temperature is higher than 65 ° C., coarse pearlite which is harmful to ductility is generated, and when the winding temperature is lower than 450 ° C., a structure mainly composed of a low-temperature transformation phase is formed and workability is deteriorated. It shall be 450 ° C or more and 65 0 ° C or less. If more uniform mechanical properties are desired, it is desirable to keep the temperature difference within the coil within 5 O: by using cooling equipment with excellent cooling controllability.
  • the effect is not impaired. Further, the effects of the present invention are not impaired even as a hot-dip and cold-rolled base material for hot-dip galvanizing.
  • the present invention it is possible to obtain more uniform mechanical properties by heating the widthwise edge portion by an induction heating device or the like after rough rolling, before finishing rolling, or between finishing rolling stands. Becomes Further, the effect of the present invention is not impaired in continuous hot rolling in which the rough rolling bar is welded after the rough rolling and the finish rolling is continuously performed.
  • Materials Nos. 1 to 4 of the present invention example satisfying the chemical components of the present invention and the production conditions are materials which are comparative examples when any one of the production conditions is out of the scope of the present invention. Compared with, it is clear that the workability (strength-hole expansion balance) is excellent, the yield strength is high, and the impact resistance is excellent.
  • FIG. 2 also shows the tensile strength and the hole expansion ratio of the present invention example and the comparative example. It is clear that excellent characteristics can be obtained by the present invention. 6
  • the present inventors studied in detail the composition of the components, the rolling conditions, and the cooling conditions after rolling, and found that the stabilization of the strength characteristics was particularly affected by the cooling conditions after rolling. What was done. That is, the present invention
  • a method for producing a high-strength thin steel sheet comprising: rolling within 6 seconds after the end of rolling, cooling at an average cooling rate of 80: / s or more, and exceeding 500 to 700 ° C or less.
  • the content is set to 0.03% or more and 0.12% or less. .
  • Si is added to promote the precipitation of ferrite and prevent YS from rising excessively. If added over 1%, the weldability will deteriorate, so it should be 1% or less.
  • Mn is added to solid-solution strengthen steel, improve hardenability, and improve strength. If it is less than 0.5%, the effect cannot be obtained, and if it exceeds 2%, the toughness is deteriorated due to the increase in weldability and low-temperature transformation phase, so the content is made 0.5% or more and 2% or less.
  • P is set to 0.02% or less and S is set to 0.01% or less.
  • Nb, V, Ti, and Mo are added to improve the strength.
  • Nb, V, and Ti are precipitation hardening elements that refine the structure of the hot-rolled steel sheet and improve its strength. Add 005% or more for each of these effects. Excessive addition saturates the effect and degrades weldability, and increases the low-temperature transformation phase, thereby deteriorating toughness. Therefore, the upper limit is 0.1%.
  • Mo improves hardenability, strengthens the structure, and improves strength. To obtain this effect, 0.05% or more is added. Excessive addition increases the weldability and low-temperature transformation phase and deteriorates the toughness of the steel sheet.
  • elements other than those described above may be contained as long as the function and effect are not impaired.
  • Al, Cu, Ni, B, Ca, etc. 1% or less, Cu, ⁇ 0. 0% or less, ⁇ , ⁇ . 3 is permitted to contain 0.005% or less.
  • rolling is performed at 1070 or less with a cumulative rolling reduction of 30% or more.
  • Cooling starts within 6 seconds after the end of rolling in order to refine crystal grains and stabilize strength and toughness. In order to improve the strength and the viscous property by the effect of grain refinement, it is preferably within 3 seconds.
  • Cooling rate is the most important factor in the present invention. In order to prevent coarse grains and to obtain uniform fine crystal grains, rapid cooling is used, and the average cooling rate is set to 8 (TCZs or more. More preferably, the average cooling rate is set to 100 ° CZs or more.
  • the cooling stop temperature When the cooling stop temperature is low, the low-temperature transformation phase increases, YS rises significantly, and YR exceeds The temperature rises more than 500 degrees Celsius as the temperature increases and the toughness deteriorates. On the other hand, if the temperature exceeds 700 ° C, strength stability cannot be obtained. Therefore, the cooling stop temperature is set to exceed 500 ° C and 700 ° C or less.
  • the steps after the rapid cooling is stopped are not particularly defined.
  • a coil is formed by winding, it is slowly cooled by air cooling or run-out cooling and wound according to a standard method.
  • the slow cooling reduces the low-temperature transformation phase and suppresses the excessive rise of YS, which has a more preferable effect.
  • the temperature be 40 t: Zs or less.
  • the rough bar is heated by an induction heating device provided on the entrance side of the finishing rolling mill or between the stands of the continuous hot rolling finishing mill, and between the stands of the continuous hot rolling finishing rolling mill or the finishing rolling mill.
  • Heating the edge of the coarse bar in the width direction with an induction heating device in the pre-process to make the temperature distribution uniform in the width direction makes the mechanical properties more uniform, and there is no problem.
  • the present invention to a continuous hot rolling process using a coil pox, there is no problem in performing heating of the coarse bar before and after the coil box and before and after the rough rolling mill, or after the coil box and before and after the welding machine. There is no.
  • 1 and 6 are comparative examples in which the primary cooling stop temperature is out of the range of more than 50,000 to 700 ° C. which is the range of the present invention.
  • the production conditions of 2 to 5 vary the primary cooling stop temperature within the range of the present invention, and are examples of the present invention.
  • All specimens were 7 mm thick and Table 10 shows the results of the mechanical tests.
  • Figures 3 to 7 show the mechanical test results shown in Table 10.
  • the primary cooling rate was 150 ° CZ sec and the secondary cooling rate was 3 ° C / sec.
  • rapid cooling means primary cooling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明細書 薄鋼板および薄鋼板の製造方法
技術分野
本発明は, 熱延鋼板ゃ冷延鋼板のような薄鋼板および薄鋼板の製造方法に関す る。 背景技術
熱延鋼板ゃ冷延鋼板のような薄鋼板は、 自動車、 家電製品、 産業機械等の広範 囲な分野で使用されている。 こうした薄鋼板には、 何らかの加工を受けて用いら れる場合が多いので、 様々な加工性が要求されている。
しかしながら、 近年の自動車、 家電製品、 産業機械等のメーカーからの合理化 の要求が厳しく、 特に製品製造時の歩留りのさらなる向上が求められている。 こ のような背景から、 材質面では特に均一性が高く、 加工性のレベルが高いことが 求められつつある。
また上記の熱延鋼板ゃ冷延鋼板で要求される加工性としては、 例えば、 強度が
340MPa級以上で深絞り用途以外のハイテン材 (高張力熱延鋼板) には、 バーリン グ加工時の高い伸びフランジ性が要求されている。 また、 強度が 440MPa以下で絞 り加工を受ける冷延鋼板には、 高い r値や破断伸びなどが、 要求されている。
近年、 薄鋼板に対する需要家からの品質要求はますます厳しくなって来ており、 上述したような加工性のより一層の向上のみならず、 コイル状に巻かれた製品に おける機械的性質の均一性も強く要望されている。
こうした需要家からの要請に応じて、 いくつかの対策が検討されている。 例え ば、 材質の均一性向上の観点からは、 特開平 9-241742号公報に、 熱延連続化によ り熱延コイル内の機械的性質の均一性を向上させる方法が提案されている。 これ は、 熱延連続化のプロセスを用いて、 圧延鋼板の先端部および後端部の材質の向 上を図るとともに、 コイル内の材質のばらつきの解消を図る技術である。 '材の加工性の向上については、特公昭 61- 15929号公報ゃ特公昭 63- 6752 号公報に、 熱延後の冷却速度や巻取温度を制御して、 高張力熱延鋼板の加工性を 向上させる方法が提案されている。
また、 IF鋼(I n t ers t i a卜 Free S tee l )の加工性の向上に関しては、 特開平 5 - 1 12831号公報に、 熱間圧延で強圧下と急速冷却を行う方法が提案されている。 こ の技術は、 熱延の最終圧下率を 30%以上とし、 圧延終了直後に急冷することによ り、熱延鋼板の結晶粒の微細化を通じて冷延鋼板の r値の向上を図ろうとするもの である。
しかしながら、 上記のいずれの従来技術においても、 加工性と機械的性質の均 一性ともに優れた薄鋼板を得ることはできなかった。 例えば、 コイル内の材質の ばらつきの解消を図るという、 特開平 9- 241742号公報記載の技術で得られている 材質特性 (コイル幅中央部の測定値) は、 30K〜70K級の鋼板での引張強度 (TS) の変動値で見て 4. 5〜6. 3kg/irai2程度あり、 必ずしもユーザー側の満足のいくもの ではなかった。
また、 ハイテン材の加工性の向上を狙った特公昭 61-15929号公報記載の技術で は、強度-延性バランスを従来の鋼板に比べて高めているものの、伸びフランジ性 の抜本的な解決は達成されていない。 さらに、 この技術では、 表面欠陥の改善も なされていなかった。 同様に、特公昭 63- 6752号公報に記載の方法で製造した高張 力熱延鋼板では、 鋼板の破断伸びや靱性を高めているものの、 伸びフランジ性の 抜本的な解決はやはり達成されていない。
I F鋼の加工性の向上を狙った特開平 5- 1 12831号公報記載の方法でも、 材質のば らっきを必ずしも満足のいくレベルまで小さくすることができなかった。 すなわ ち、 この技術の特徴とする圧延直後の平均冷却速度は、 同公報の実施例の記載に よると、 冷却開始から 1秒間は 90〜105t:/se 同 3秒間 65〜80°C/secである。 しか し、 実機の熱延条件では、 この程度の冷却速度の場合、 特に圧延トップ部分の鋼 板の結晶粒を微細化できないことが判明したのである。
これは、 仕上圧延終了から直ちに冷却することができず、 冷却開始まで多少の 時間を要するためと考えられる。 仕上圧延機の最終スタンドの出側には、 仕上温 度計等、 計測機器の設置の必要性から、 冷却装置を最終圧延スタンド出側直近に 設置できないため、 例えば、 仕上圧延終了から 0. 1秒以内は冷却できない。 特に、 圧延トップ部分は、 高速走行が不可能で圧延速度が遅いため冷却開始までの時間 が長くなり、 この公報記載程度の冷却速度で冷却しても、 オーステナイト粒の粗 粒化を防止できないのである。
このように、 熱延後の鋼帯トップ部は、 急速冷却することが難しいことから結 晶粒を十分に微細化できないため、 優れた機械的性質およびその均一性が得られ なかった。 また、 熱延の最終パスの圧下率を高くすることは、 オーステナイト粒 の細粒化のためにはよいが、 特開平 5- 1 12831号公報記載の技術のように圧下率を 30%以上とすることは、 鋼板の形状不良が発生し易くなるため実施は困難である。
また、 自動車の分野においては、 軽量化のニーズが強く、 高強度薄鋼板の使用 比率が高くなる傾向にある力 ハイテン材は 2 7 O M P a級の軟質材と比較して 加工性に劣るため、 製品製造時の歩留まり (プレス加工時の割れ) 、 品質のバラ ツキが問題となり、 材質面における基本特性である加工性の向上が必要とされて いる。
加工性としては、 例えば、 3 4 O M P a級以上のハイテン材においてはパーリ ング加工時の伸び一フランジ性が高いことが熱延鋼板、 冷延鋼板において要求さ れる。 更に、 近年、 自動車用途においては重要な性能の一つとして衝突安全性が 要求され、 耐衝撃特性に優れていること (衝突安全性の評価項目の一つとして衝 突吸収エネルギーが高いこと) が要求されるようになってきている。
ハイテン材の加工性の向上に関して、 先行技術として特許第 2 5 5 5 4 3 6号 が提案されている。 T i系の析出強化鋼を用い、 仕上圧延後の冷却速度を 3 0〜 1 5 0 °C/ s, 巻取温度を 2 5 0〜5 4 0でとし、 フェライト十べイナイト組織 により、 5 0〜6 0 K級ハイテンの伸び—フランジ性を向上させる技術が開示さ れている。 しかし、 仕上圧延後の冷却速度 3 0〜 1 5 0 °CZ sでは、 伸びーフラ ンジ性は抜本的に改善されたとは言い難く、 また、 巻取り温度が低温のため、 破 断伸びが低いという問題を有している。 特公平 7 - 5 6 0 5 3号公報では、 4 5〜5 0 K鋼のフェライト +パ一ライ卜 鋼を用いて、 熱延仕上げ後の冷却速度を 1 0 aC/ s以上 (実施例では, 最大 9 5 °C / s ) とすることにより、 熱延下地の溶融亜鉛めつき鋼板の伸び一フランジ性 を向上させることを提案している。 しかし、 冷却速度は高々、 9 5 5で、 伸 び—フランジ性の本質的改善は図られていない。
特開平 4— 8 8 1 2 5号公報では、 フェライト +パーライト鋼を用いて、 C a を 0 . 0 0 0 5〜0 . 0 0 5 0 %添加し、 熱間圧延を A r 3+ 6 0〜9 5 0での 高温で仕上た後、 直ちに 3秒以内で冷却速度 5 0 :/ s以上、 但し、 好ましくは 1 5 0 °CZ s以下で冷却し、 鋼の成分に応じて冷却を停止 (4 1 0〜6 2 0で) した後、 空冷を経て 3 5 0〜5 0 0 で巻取ることにより、 5 0〜7 0 K級ハイ テンの伸び一フランジ性を向上させることを提案している。 し力、し、 C aを微量 添加するため製鋼段階で R H脱ガス工程が必要で、 製鋼コストが高くなり、 本技 術が特徴としている熱延仕上後の冷却条件によっても伸び一フランジ性を飛躍的 に向上させることはできず、 また、 巻取り温度が低いため、 破断伸びも低い。 上述したように、 何れの先行技術によっても、 伸び—フランジ性および、 破断 伸びについて、 十分な特性が得られているとは言い難く、 また、 耐衝撃特性の向 上については全く記載されていない。 高張力鋼板の製造方法において、 合金成分を多量に添加することなしに、 強度 を確保する手段として、 圧延後の冷却を強化する方法と結晶粒を微細化する方法 があり、 特に後者は強度のみならず靭性も向上させるため、 特開昭 5 8— 1 2 3 8 2 3号公報など多くの提案がなされている。
特開昭 6 1 - 7 3 8 2 9号公報は圧延後の冷却を強化する方法と結晶粒を微細 化する方法の両者を組み合わせたもので、 圧延条件の調整により微細組織化した 鋼板を急冷により、 更に微細化させることを特徴としている。 すなわち、 圧延中 、 または圧延直後に僅かにフェライトを生成させた状態から急冷し、 変態組織を フェライトで分断することにより、 非常に微細な組織とし、 高強度、 高靭性鋼板 を得ている。
しかし、 低温圧延により圧延中または圧延直後のフェライ 卜の析出が必須であ り、 圧延仕上げ温度、 冷却停止温度が圧延幅方向や長手方向で変動した場合、 強 度が同一成分の鋼、 コイル内においても変化し、 所望の強度が得られないという 問題があった。
上述したように、 従来の技術では、 高強度、 高靭性を確保するため、 鋼板のミ クロ組織を圧延とその後の急冷により、 微細化する方法は、 その製造条件の変動 により、 特性が不安定となりやすい。
発明の開示 第 1に、 本発明は、 寸法精度の厳しいプレス加工用途にも適合しうる、 伸びフ ランジ性も含めた加工性に優れ、 かつ機械的性質が均一で種々の特性レベルを有 し、 優れた板形状を示すことが可能な薄鋼板の製造方法を提供することを目的と する。 上記目的を達成するために、 本発明は、 粗バ一を製造する工程、 鋼帯を製造す る工程、 一次冷却する工程、 二次冷却する工程と巻き取る工程を有する薄鋼板の 製造方法を提供する。 前記粗バーを製造する工程は、 質量%で、 C含有量が 0. 8 %以下の連続铸造スラ ブを、 粗圧延することからなる。 前記鋼帯を製造する工程は、 前記粗バーを、 ( Ar3変態点- 20 )で以上の仕上温 度で仕上圧延することからなる。 前記急冷する工程は、 前記仕上圧延後の鋼帯を、 500〜800での温度まで 120°C /secを超える冷却速度で冷却することからなる。 前記巻き取る工程は、 二次冷却後の鋼帯を、 400〜750での巻取温度で巻き取る ことからなる。 上記の薄鋼板の製造方法において、 質量%で、 C含有量が 0. 8 %超え 1 %以下の 連続铸造スラブを、 粗圧延して粗バーを製造する場合には、 粗バーを、 (Acm変態 点 - 20) °C以上の仕上温度で仕上圧延する。 第 2に、 本発明は、 製品形状に成形する際の不良が少なく、 コイルからの製品 採取を高歩留まりで行うことが可能で、 伸び一フランジ性、 破断伸びという加工 性、 及び耐衝撃特性に優れた引張り強さ 34 OMP a以上の薄鋼板の製造方法を 提供する。
上記目的を達成するために、 本発明は、 スラブを製造する工程、 熱延板を製造 する工程、 一次冷却工程, 二次冷却工程と巻取り工程を有する薄鋼板の製造方法 を提供する。
スラブを製造する工程は、 偏析低減処理を行なう連続铸造により、 質量%で、 C : 0. 05〜0. 14%, S i : 0. 5%以下、 Mn : 0. 5〜2. 5%、 P : 0. 05 %以下、 S : 0 1 %以下、 〇: 0. 005 %以下、 C a : 0. 0005 % 未満をを含有するスラブを製造することからなる。
熱延板を製造する工程は、 A r 3以上の仕上圧延終了温度で該スラブを熱間圧延 することからなる。
一次冷却工程は、 熱間圧延後、 2秒以内に冷却速度 1 00〜2000 :Zsの 一次冷却を開始し、 600〜7 50での温度範囲まで該熱延板を冷却することか らなる。 工程;
二次冷却工程は、 該温度範囲まで冷却後、 該熱延板を冷却速度 50t:Zs未満 で冷却することからなる。 二次冷却された熱延板は、 450〜6 5 O :の温度で で巻取られる。 第 3に、 本発明は、 安定して所望の強度特性が得られる鋼板の製造方法を提供 することを目的とする。
上記目的を達成するために、 本発明は、 熱間圧延する工程と冷却する工程から なる。
熱間圧延する工程は、 質量%で、 C : 0. 03〜0. 1 2%、 S i : l %以 下、 Mn : 5〜2%、 P : 0. 02%以下、 S : 0. 0 1 %以下、 更に、 Nb : 0. 005〜 1 %、 V : 0. 00 5〜0. l %、 T i : 0. 00 5〜0. 1 %の グループから選択された少なくとも一つを含有する鋼を、 1 0 70°C以下におい て累積圧下率 30 %以上で熱間圧延することからなる。
また、 熱間圧延する工程は、 質量%で、 C : 0. 03〜0. 1 2 %、 S i : 1 % 以下、 Mn : 0. 5〜2%、 P : 0. 02%以下、 S : 0. 01 %以下、 Mo : 0. 05〜0. 5%を含有する鋼を、 107 O :以下において累積圧下率 30% 以上で熱間圧延してもよい。
冷却する工程は、 圧延終了後 6秒以内に、 平均冷却速度 8 O^Zs以上で、 5 O Ot超え、 70 o :以下まで冷却することからなる。
図面の簡単な説明 図 1は、 最良の形態 2に係わる機械的性質に及ぼす一次冷却開始時間の影響を 示す図である。
図 2は、 最良の形態 2に係わる引張強さと穴拡げ率の関係を示す図である。 図 3は、 最良の形態 3に係わる強度特性 (TS, YS) に及ぼす急速 (一次) 冷却停止温度の影響を示す図。
図 4は、 最良の形態 3に係わる強度特性 (E 1) に及ぼす急速 (一次) 冷却停 止温度の影響を示す図。
図 5は、 最良の形態 3に係わる強度特性 (TS · E 1 ) に及ぼす急速 (一次) 冷却停止温度の影響を示す図。
図 6は、 最良の形態 3に係わる強度特性 (YR) に及ぼす急速 (一次) 冷却停 止温度の影響を示す図。
図 7は、 最良の形態 3に係わる靭性に及ぼす急速 (一次) 冷却停止温度の影響 を示す図。
発明を実施するための最良の形態 最良の形態 1
最良の形態 1の薄鋼板の製造方法は、質量%で、 C含有量が 0.8%以下の連続铸 造スラブを、 粗圧延して粗バーを製造する工程と、 前記粗バーを、 (Ar3変態点- 20)で以上の仕上温度で仕上圧延して鋼帯を製造する工程と、前記仕上圧延後の鋼 帯を 500~800 の温度まで 120で/ secを超える冷却速度で急冷する工程と、前記 急冷後の鋼帯を 400〜750°Cの巻取温度で巻き取る工程と、 を有する。
また、 この製造方法において、 連続铸造スラブは、 質量%で、 0.8%以下、 Si:2.5%以下、 Mn:3.0%以下を含有する鋼を連続铸造して得ることもできる。 さ らに、 連続銬造スラブは、 質量%で、 C:0.8%以下、 Si:2.5%以下、 Mn:3.0%以下 を含有するとともに、 Ti,Nb,V,Mo,Zr,Crの内 1種以上を 0.01〜0.2%含有する鋼 を連続铸造して得ることもできる。 また、 連続铸造スラブは、 質量%で、 C:0.8% 以下、 Si:2.5%以下、 Mn:3.0%以下を含有するとともに、 Ca,B の内 1 種以上を 0.005%以下含有する鋼を連続铸造して得ることもできる。
さらに、 これらの製造方法において、 連続铸造スラブは、 質量%で、 C:0.8%以 下、 Si:2.5%以下、 Mn:3.0%以下を含有するとともに、 Ti, Nb, V, Mo, Zr, Crの内 1 種以上を 0.01〜0.2%含有し、 かつ、 Ca,Bの内 1種以上を 0.005%以下含有する 鋼を連続铸造して得ることもできる。
以上に述べた製造方法において、 C含有量を 0.8%以下とする代わりに質量%で 0.8%を超え 1.0%以下とし、 仕上温度を (Ar3変態点- 20)°C以上とする代わりに (Acm変態点- 20) 以上とし、その他についてはこれらの製造方法と同じ製造方法 とすることもできる。
これらの発明は、 上記の課題を解決すべく鋭意検討を重ねる中でなされた。 そ の中で、 薄鋼板の加工性および機械的性質の均一性については、 特に圧延直後か ら冷却開始までの時間と冷却速度の影響が大きいことを見出し、 種々検討の結果 完成された。 その結果、 自動車、 家電製品、 産業機械等のメーカーでの使用条件 からみて、 コィルからの製品採取を高歩留りで行うことのできる加工性に優れ、 かつ機械的性質が均一な薄鋼板を得ることに成功した。 以下、 本発明における製 造方法の詳細について説明する。 まず、 化学成分について説明する。
C: 1%以下 (質量%、 以下同じ)
C は鋼板の強度を確保するための添加元素であるが、 過剰に含まれると加工性 の劣化が著しくなり、 1%を超えると加工性の劣化を招く。 従って、 C量を 1%以 下とする。
Si : 2.5%以下
Siは、 固溶強化元素であるが、 添加量が 2.5%を超えると表面性状が劣化する。 従って、 Si量を 2.5 %以下とするのが好ましい。
Mn : 3%以下
Mnは、 鋼板の靭性を改善し、 固溶強化作用を有するが、 加工性には悪影響を及 ぼす元素である。 Mn量が 3%を超えると、 強度が上昇し加工性の劣化が顕著とな る。 従って、 Mn 量を 3%以下とするのが好ましい。
P: 0.2%以下
P は、 固溶強化する作用を有する元素であるが、 0.2 %を超えて添加すると、 粒界偏析による粒界脆化が生じやすくなる。従って、 P量を 0.2%以下とするのが 望ましい。
S: 0.05%以下
Sは、 不純物元素であり、 できるだけ低いことが望ましく、 0.05 %を超えると、 微細な硫化物の析出が多くなり加工性が劣化する。 従って、 S 量を、 0.05%以下 とするのが望ましい。
N: 0.02%以下
N は、 その含有量が少ないほど後述の炭窒化物形成元素の添加量を低減でき経 済的となる。 N量が 0.02%を超えると、 炭窒化物形成元素を添加して Nを固定し ても鋼板の加工性の低下が避けられなくなる。 従って、 N量を 0.02%以下とする のが好ましい。 〇 : 0.005%以下
Oは、 連続铸造時のスラブ表面あるいはスラブ表層下で、 割れ発生を抑制する ために制御が必要である。 Oが 0.005%を超えると、 スラブの割れが顕著となり、 本発明の意図する加工性も劣化する。 従って、 0量を 0.005%以下とするのが好 ましい。
Ti,Nb,V, o.Zr.Cr: 1種または 2種以上合計で 0.01〜0.2%
前述の化学成分に加えて、 強度調整あるいは炭化物形成による固溶 C,N低減を 利用した非時効化 (および深絞り性向上) のため、 Ti,Nb,V,Mo,Zr,Crを必要に応 じて添加する。 これらの元素は、 合計の添加量が 0.01%未満では効果がなく、 0.2 %を超えると延性や深絞り性等の加工性を損なう。従って、 Ti, Nb, V, Mo, Zr, Cr を添加する場合は、 これらの添加量を合計で 0.01〜 2%とする。
Ca.B: 1種または 2種以上合計で 0.005%以下
本発明において、 Ca,Bは薄鋼板の加工性を向上しうる有効な元素であり、 添加 することが好ましい。 しかし、 Ca,Bの添加量が合計で 0.005%を超えると深絞り 性を損なう。 従って、 Ca,Bを添加する場合は、 これらの添加量を合計で 0.005% 以下とする。
次に、 本発明における製造条件について説明する。
仕上温度 (C≤0.8%の場合) : 変態点-20) 以上
C含有量が 0.8%以下の場合、 仕上温度が (Ar3変態点- 20) 未満では、 一部でフ エライ ト変態が進行するためフェライト粒が加工され、 材質の不均一、 面内異方 性の増加等、 材質上好ましくない結果となる。 以上より、 本発明では C含有量が 0.8%以下の場合、 (Ar3変態点- 20) °C以上の仕上温度で仕上圧延する。 これにより、 組織の均一化とその後の工程にぉレ て結晶粒の微細化を図ることができ、 強度 - 延性バランスや伸びフランジ性の向上や、 冷延鋼板における高 r値化など加工性 の向上が図れる。
仕上温度 (C>0.8%の場合) : (Acm変態点- 20)°C以上
C含有量が 0.8%を超える場合、 仕上温度が (Acm変態点- 20)未満では、 オース テナイ 卜粒界に析出するセメンタイ卜が増加し、 均一なパーライト組織が得られ ず組織が不均一となる。 以上より、 本発明では、 C含有量が 0. 8%超の場合、 仕 上温度(Ar3変態点- 20) 以上で仕上圧延する。 これにより、 組織の均一化とその 後の工程において組織の微細化を図ることができ、 焼入性の向上、 冷延鋼板にお ける球状化率の向上や伸びフランジ性の向上など加工性の向上が図れる。
圧延後の冷却: 冷却速度 > 120tVsecで急冷
本発明では、 変態後のフェライト結晶粒やパーライト等の組織の微細化と材質 の均一化を図るため、 圧延後の急冷が必要である。 冷却方法が徐冷であると、 組 織が粗大化し、 さらに、 高 C鋼では均一なパーライト組織が得られず組織が不均 一となる。 冷却速度が 120 / sec以下の場合、 変態により生成するフェライト結 晶粒ゃパーライト等の組織が粗大化し、 また、 過共析鋼ではセメン夕イトが析出 するため、 組織が不均一となる。
冷却終了温度: 500〜800で
冷却終了温度については、 500で未満の低温域まで急冷すると、巻取り温度との 差 (余裕代) が小さくなり、 温度の均一化が困難となる。 また、 急冷用の冷却設 備の増設が必要となり、 設備コストが増加する。 これとは逆に冷却終了温度が 800でを超えると、一部しか変態せず組織が不均一となり、その後の巻取り温度調 節に伴う冷却 (徐冷) で組織が粗大化する。
以上より、 圧延後は、 鋼帯を 500〜80(T の温度まで 120 Vsecを超える冷却速 度で一次冷却すると、 変態後のフェライ卜結晶粒やパーライト等の析出物を微細 化できるので、 加工性の向上が図れる。 なお、 冷却速度の上限は特に規定しない 力 工業的に可能な 2000°C/sec程度が限度である。
巻取温度: 400〜750
二次冷却後は、 鋼帯を 400〜750°Cの巻取温度で巻き取る必要がある。 これは、 巻取温度が 400°C未満では低温変態相が生成し、 750°Cを超えると結晶粒などの組 織の粗大化が起こり加工性が劣化するためである。
本発明の基本的な製造条件は以上の通りであるが、 必要に応じてさらに次の製 造条件を用いることができる。
連続錶造〜粗圧延における処理: 直接圧延または温間装入
連続铸造スラブを、 直接熱間圧延で、 または室温まで冷却する前に温間で加熱 炉に装入して 1200で以下の温度に再加熱し、 粗圧延を行うこともできる。 この発 明では、 連続铸造スラブを室温まで冷却することなく、 そのまま直接圧延で粗圧 延を開始し、 あるいは 1200で以下の温度に加熱後、 粗圧延を開始する。 その結果、 圧延前のスラブ温度を均一化でき、 コイル内の機械的性質をより一層均一化でき る。
仕上圧延直前〜圧延中の処理: 誘導加熱
仕上圧延直前または仕上圧延中に、 被圧延材を誘導加熱装置により加熱するこ ともできる。 この発明では、 圧延中の被圧延材の温度をより均一にでき、 コイル 内の機械的性質のより一層の均一化が図れる。
急冷開始時期: O. l sec超〜 l . Osec未満
仕上圧延後、 O. l sec を超え l . Osec未満の時間内で急冷を開始することもでき る。 この発明では、 変態後のフェライト結晶粒やパーライト等の析出物をより微 細化でき、 加工性をより一層向上できる。
巻取り後の処理: 冷間圧延-焼鈍
上記の薄鋼板の製造方法により製造した薄鋼板を、 さらに、 冷間圧延し、 焼鈍 することもできる。 この発明では、 熱延コイルの材質および組織が均一であるた め、 それを冷延後焼鈍すれば、 加工性と機械的性質の均一性ともに優れた冷延鋼 板が得られる。
このようにして、 本発明では、 コイル内での温度の変動を低減することにより、 熱延鋼帯の幅方向及び長手方向における引張強さの変動 (最大値と最小値) 力 コイル内の引張強さの平均値の ± 8%以内であることを特徴とする薄鋼板を得る ことができる。 このようなばらつきが狭小な鋼板は、 プレス加工性 (曲げ加工時 のスプリングバック等) のコイル内での変動が小さい。 需要家においても、 プレ ス加工後の製品歩留まりや形状精度を向上でき、 材料としての性能が優れている。 発明の実施に当たっては、 鋼成分は特に限定されることなく、 従来の種々の特 性レベルを有する熱延鋼板ゃ冷延鋼板の成分系を適用できる。 すなわち、 単純な 炭素鋼板のみならず、 T i、 Nb、 V、 Mo, Zr、 Ca、 B等の特殊元素が含有された鋼板 にも適用できる。 なお、 本発明においては、 Cuを 0. 02〜2 %添加すること、 Snを 0. 01 %以下添加 (含有) することが許容される。 この範囲内であれば、 これらの 元素によって本発明の効果が損なわれることはない。
連続錶造スラブを室温まで冷却することなく、 1200°C以下の温度に加熱後粗圧 延を開始すれば、 圧延前のスラブ温度を均一化でき、 コイル内の機械的性質をよ り一層均一化できる。 連続铸造スラブを粗圧延した後、 仕上圧延直前の粗バ一を、 または仕上圧延中の被圧延材を、 誘導加熱装置により加熱すれば、 圧延中の被圧 延材の温度をより均一にでき、 コイル内の機械的性質のより一層の均一化が図れ る。
仕上圧延においては、 最終圧延パスの圧下率を 8%以上、 30%未満とすること が望ましい。これは、オーステナイト粒を十分に細粒化するためには圧下率を 8% 以上とするのがよく、鋼板の形状を良好に維持するためには圧下率を 30%以上と するのがよいことによる。 なお、 熱延鋼板の粒径の細粒化の観点からは、 圧下率 を各圧延パスについて 10 %超とすることが望ましい。
仕上温度については、 C含有量が 0. 8%以下の場合は、 好ましくは (Ar3変態点 -20)〜(Ar3変態点 + 50) °Cで仕上圧延すれば、仕上圧延直後、即ちランナウト冷却 前の結晶粒を細粒化することができる。 仕上温度を (Ar3変態点 + 50) 以下とす ることにより、 オーステナイト粒の粗大化を防止し、 圧延後のフェライ卜粒が細 粒化し易くなる。 その結果、 その後の工程において結晶粒の微細化を図ることが でき、強度-延性バランスや伸びフランジ性の向上、 さらには冷延鋼板における高 r値化など加工性の向上が図れる。
C含有量が 0. 8%を超える場合は、 (Acm変態点- 20)〜(Acm変態点 + 100) °Cの仕 上温度で仕上圧延し、 それ以外の条件を C含有量が 0. 8%以下の場合と同様にす れば、 加工性に優れ、 かつ機械的性質が均一な薄鋼板を得ることができる。 仕上 温度を (Acm変態点 +100) °C以下とすることにより、オーステナイ ト粒の粗大化を 防止し圧延後のパーライトコ口ニーの微細化が可能となる。
また、 このとき、 被圧延材の幅方向や長手方向等の位置により仕上温度が異な り、 その差が大きくなると鋼帯の組織を不均一とするので、 仕上温度の差を小さ くすることが望ましい。被圧延材内の仕上温度差が 50で以内となるように仕上圧 延すれば、 仕上圧延直後の鋼帯内の組織を均一にでき、 コイルに巻き取り後の機 械的性質の均一化が図れる。 その結果、 最終製品の組織および材質の差が無視で きるようになるので、 好ましくは被圧延材内の仕上温度の差を 50T:以内とする。 圧延後は、 フェライト結晶粒やパーライト等の組織の微細化と材質の均一化を 図るため、 圧延後の冷却の際、 急冷と徐冷を組合せて行うことが望ましい。 急冷 後に徐冷を行うことで、 冷却終了温度の場所的不均一が軽減され、 冷却終了温度 の絶対値の変動も小さくなり、 材質レベルの変動を縮小できる。 以下、 上記の急 冷及び徐冷を一次冷却及び二次冷却と呼ぶ。
鋼帯を 500〜800°Cの温度まで ^O^/secを超える冷却速度で一次冷却すると、 変態後のフェライ卜結晶粒やパーライ卜の微細化により、 加工性の向上が図れる。 このとき、 フェライ ト結晶粒の細粒化やパーライト組織の微細化の観点からは 200°C/sec以上、 より好ましくは 40(TC/sec以上の冷却速度で冷却することによ り、 格段に優れた加工性を得ることができる。 なお、 冷却速度の上限は特に規定 しないが、 工業的には 200(TC/sec程度が限度である。
また、 熱延鋼帯の材質のばらつきをより好ましいレベルまで低減するためには、 上記の急冷の停止温度を発明の範囲内とするとともに、 急冷後のコイル幅方向や 長手方向等の温度の変動 (最高値—最低値) を 60°C以内にすることが望ましい。 さらに好ましくは、 引張強さの変動を ± «以内とすることにより、 上記の需要 家での性能を格段に向上し得る。 この場合、 上記の急冷の停止温度の変動を 40で 以内とすることにより、 材質のばらつきをこのように狭小化できる。
さらに、 引張強さの変動を 以内とするには、 上記の急冷の停止温度の変動 を 20°C以内とすればよい。 材質の変動の低減は、 これらの温度と引張強さの変動 の関係から割り出すことができる。 なお本発明におけるコイル幅方向の温度は、 温度センサの測定方法も考慮して、コイル幅両エッジから 30MIを除いた範囲を指 す。
急冷 (一次冷却) の能力については、 伝熱係数が 2000kcal/ni2h°Cの冷却を行う ことにより、 上記急冷後の温度の変動を小さくすることができる。 温度の変動の 低減のために、 好ましい伝熱係数は 5000kcal/m2h°C以上、 さらに好ましいレベル は SOOOkca l/n^^以上である。
また、 一次冷却については、 仕上圧延後 0. l secを超え l . Osec未満の時間内で 冷却を開始すれば、 変態後のフェライト結晶粒ゃパ一ライト等の析出物をより微 細化でき、 加工性をより一層向上できる。 さらに、 熱延鋼帯の材質のばらつきを より好ましいレベルにするためには、冷却の開始を仕上圧延後 0. 5sec超とするこ とが望ましい。
一次冷却後は、 巻取り温度調節のため徐冷 (二次冷却) することが望ましい。 特に、二次冷却の冷却速度が 6(TC/sec未満であれば、高い精度の温度制御が可能 となり、 冷却終了温度、 即ち巻取り温度が均一となる。 その結果、 巻き取り後の コイル内の組織をより均一にできるので、 コイル内の機械的性質の均一化のため 鋼帯を 60tVsec未満の冷却速度で二次冷却することが好ましい。
二次冷却後は、 鋼帯を 400〜750 の巻取温度で巻き取る必要があるが、 これは、 400 未満では低温変態相が生成し、 750 を超えると結晶粒などの組織の粗大化 が起こり加工性が劣化するためである。 なお、 高 C材の巻取り温度については、 低温変態相の生成を防止するため 450で以上とすることが望ましい。 また、 最終 製品の材質を均一化する観点からは、 コイル内の巻取温度の差を 80°C以内とする ことが望ましい。
本発明は、 連続铸造後のスラブを、 加熱炉を経ずに直接熱間圧延する直送圧延 プロセスにも適用できる。 また、 コイルボックス等を用いた連続圧延プロセスに 対しても、 効果的である。 また、 仕上圧延直前または仕上圧延中に、 被圧延材を 誘導加熱装置により加熱するとき、 エッジ加熱を行っても効果的である。 こうした得られた熱延コイルを冷延後焼鈍すれば、 加工性と機械的性質の均一 性ともに優れた冷延鋼板が得られる。 このとき、 焼鈍は、 機械的性質の均一性を 図る上で、 連続焼鈍で行うことがより好ましい。 実施例 1
表 1に示す化学成分を有する鋼 No. 1 ~7を溶製した。 いずれの鋼の化学成分も、 本発明の範囲内である。 これらの鋼を、 表 2に示す熱間圧延条件で圧延し、 板厚 3關の熱延コイル No. 1〜14を作製した。なお、本発明例における急冷(一次冷却) の際の伝熱係数は 3000〜4000kcal/m t:である。
熱延コイルのコイル長手方向の 5ケ所から引張試験片を採取し、 平均の引張強 度 (TS)、 全伸び (E l )、 引張強度のばらつき (A TS)、 全伸びのばらつき (△ E l ) を測定した。 また、 一部の熱延コイルについては、 伸びフランジ性を評価するた めに穴広げ率 (λ ) およびそのばらつき (Δ λ ) を測定した。 さらに、 熱延コィ ル No. 4〜7、 No. 1 1〜13については、 酸洗後板厚 0. 8IMまで冷間圧延し、 連続焼鈍 して、 深絞り性を評価するために r 値を測定した。 これらの熱延コイルと冷延焼鈍板の機械的性質の測定結果を表 3に示す。
各成分系における本発明例の鋼板 No. 1〜8 と比較例の鋼板 No. 9〜 を対比し て見れば明らかなように、 いずれの成分系においても本発明例の方が機械的性質 のばらつき Δ TS、 △ Ε 1、 Δ λが小さい。 これに対して、 比較例の鋼板 Νο· 9〜14 においては、 本発明で規定される製造条件が 1つ以上満たされておらず、 同じ化 学成分の本発明例の鋼板 No. 1〜8に対して機械的性質の均一性または加工性が劣 つている。 実施例 2
前述の表 1 に示す化学成分を有する鋼 No. 1〜7を、 表 4に示す熱間圧延条件で 圧延し、 板厚 3mmの熱延コイル No. 15〜28を製造した。 なお、 一次冷却の際の伝 熱係数は、 本発明例 No. 1 5〜22 では 1 2000kca l/m¾°C、 比較例 No. 23〜28 では P
17
1000kca l/m2h°Cである。 これらの熱延コイルの幅方向及び長手方向について、 実施例 1と同様、 機械的 性質のばらつきを調べた。 さらに、 熱延コイル No. 18〜22、 Νο. 26〜28については、 酸洗後板厚 0. 8匪まで冷間圧延し、 連続焼鈍して、 深絞り性を評価するために r 値を測定した。これらの熱延コイルと冷延-焼鈍板の機械的性質の測定結果を表 5 に示す。
この表で、 △ TS, Δ E1はそれぞれ TS, E1の最大値と最小値の差の 1/2である。 また, 引張特性はコイル幅方向の両エッジ 30I 1及びコイル長手方向の両端各 5m を除いた位置より採取したサンプルを用いて調査し, 全ての値の平均値をコイル 内平均値とした。
各成分系における本発明例の鋼板 No. 15〜22と比較例の鋼板 No. 23〜28を対 比して見れば明らかなように、 いずれの成分系においても本発明例の方が機械的 性質のばらつき A TS、 Δ Elが小さい。 これに対して、 比較例の鋼板 No. 23〜28 においては、 本発明で規定される製造条件が 1つ以上満たされておらず、 同じ化 学成分の本発明例の鋼板 No. 15-2.2 に対して機械的性質の均一性または加工性 が劣っている。
本発明例では、 急冷 (1次冷却) 停止温度のコイル内での変動が、 比較法の従 来のラミナ一冷却による物に比べて小さく、 機械的性質の変動がより好ましいレ ベルまで低減されている。 なお、 本発明例における冷却方式は、 多孔噴流タイプ の高い伝熱係数を有する冷却方式である。
このように、 本発明により、 コイル内の機械的性質の均一性に優れ、 熱延コィ ルの Eし λや冷延-焼鈍後の r値も高く、 加工性にも優れた薄鋼板の製造が可能 となる。
Figure imgf000020_0001
表 2
Figure imgf000021_0001
表 3 瞧 No. m 延鋼板の機械的性質 ¾延鋼板 冷延-焼 ti 備考
TS( Pa) ATS( Pa) EKX) ΔΕΙ(Χ) λ (%) 厶 λ (%) 板肜状 の ri¾
1 1 1018 40 16 3 - - 良 一 本発明例
2 2 640 25 25 5 100 20 良 - 本発明例
3 3 505 18 36 6 150 32 良 一 本発明例
4 4 359 12 45 6 良 1.6 本発明例
5 5 201 10 47 5 2.1 本発明例
6 6 355 11 42 4 良 2.1 本発明例
7 6 350 10 3 4 良 2.5 本発明例
0 7 355 9 42 ] 4 良 2.6 本発明例
9 1 1015 70 15 6 良 比 ί 例
10 2 640 51 23 7 90 35 a 比 β例
11 3 457 26 30 9 95 36 比孝 δ例
12 4 361 22 41 8 良 1.3 比 ¾例
13 5 2B0 11 46 6 不良 (耳波大) 2.2 比 例
H 6 349 21 42 G 良 2.4 比較例
表 4
ufiu9 on 太 8日½ Γ 1']1
Bfl Xr1\ Ron ¾ ^ Λ D 4πB t Γ7R1]I
H*1 明例
Figure imgf000023_0001
表 5 鋼板 IR ^延鈉板の機械的性質 ,令延-焼鈍^ fi¾考
No. TS(MPa) 厶 TS(MPa) El(%) 厶 El( ) の rf^
15 1 1015 32 17 2 本発明例
16 2 632 17 26 4 本発明例
17 3 500 13 38 5 本発明例
18 4 354 8 45 m/
5 1.1 ^発明例
19 5 280 7 48 4 2.8 本発明^
20 6 352 6 43 2 2.7 本発明例
21 6 351 7 43 2 2.6 本発明例
22 7 353 8 43 2 2.7 本発明例
23 1 1014 90 13 6 比絞例
24 2 641 55 23 6 比較例
25 3 458 41 30 8 比較例
26 4 360 32 40 7 1.3 比較例
27 5 281 25 43 7 2.1 比铰例
28 6 340 31 41 6 2.2 比较例
最良の形態 2
本発明者等は、 連続铸造スラブを再加熱後、 または直接熱間圧延して製造され るハイテン材を対象に、 伸び一フランジ性、 破断伸び、 及び耐衝撃特性を向上さ せるべく、 鋭意検討を行った。 その結果、 伸び一フランジ性、 破断伸びには板厚 中央部などにおける C, Mnなどが濃化したバンド組織の存在が影響を与え、 ま た、 耐衝撃特性の向上には材料の降伏強度を加工性が損なわれない範囲で高める ことが有効であることを見出した。
本発明はこれらの知見を基に更に検討を加えてなされたもので、 すなわち、 本 発明は
1. 下記の工程を備えたことを特徴とする質量%で、 C : 0. 0 5〜0. 14 %、 S i : 0. 5 %以下、 Mn : 0. 5〜2. 5%、 P : 0. 0 5 %以下、 S : 0. 0 1 %以下、 〇 : 0. 005 %以下、 C a : 0. 0005 %未満を含有する 高強度薄鋼板の製造方法。
( 1 ) 偏析低減処理を行なう連続铸造によりスラブを製造する工程。
(2) 仕上圧延終了温度を A r 3以上とする熱間圧延工程。
( 3 ) 熱間圧延後、 2秒以内に冷却速度 1 00〜 2000 °CZ sの一次冷却を開 始し、 600〜7 50°Cの温度範囲まで冷却する工程。
(4) 一次冷却後、 冷却速度 5 (TCZs未満で二次冷却し、 450〜 650°Cで 巻取る工程。
2. 下記の工程を備えたことを特徴とする質量%で、 C : 0. 05〜0. 1 4 %, S i : 0. 5%以下、 Mn : 0. 5〜2. 5%、 P : 0. 0 5 %以下、 S : 0. 0 1 %以下、 〇 : 0. 005 %以下、 C a : 0. 0005 %未満を含有す る高強度薄鋼板の製造方法。
(1) 偏析低減処理を行なう連続铸造によりスラブを製造する工程。
(2) 熱間圧延前に、 該スラブを再加熱する工程。
(3) 仕上圧延終了温度を A r 3以上とする熱間圧延工程。
(4) 熱間圧延後、 2秒以内に冷却速度 1 00〜2000°CZsの一次冷却を開 始し、 600〜7 50°Cの温度範囲まで冷却する工程。
(5) 一次冷却後、 冷却速度 50°CZs未満で二次冷却し、 450〜 650°Cで 巻取る工程。 3. 更に、 下記の工程の何れかを付与したことを特徴とする 1または 2に記載 の高強度薄鋼板の製造方法。
(1) 酸洗後、 焼鈍する工程。
(2) 酸洗後、 冷延し、 焼鈍する工程。
4. 鋼成分として、 更に T i , Nb, V, Mo, Z r, C rの一種または二種 以上を合計で 0. 0 1〜0. 3%添加する添加する 1乃至 3の何れかに記載の高 強度薄鋼板の製造方法。 本発明では、 その効果を得るため、 成分組成、 製造条件を規定する。 以下にそ れらの限定理由を詳述する。
1. 成分組成
C
Cは鋼板の強度を確保するため添加する。 0. 05%未満の場合、 本発明で対象 とする 34 OMP a以上の強度が得られず、 0. 14 %を超えると加工性の劣化 が著しくなるため、 0. 05%以上、 0. 14%以下とする。
S i
S iは固溶強化元素であり、 鋼板の強化のため添加するが、 0. 5%を超えると 表面性状が劣化するため、 0. 5%以下とする。
Mn
Mnは、 鋼板の靭性を改善し、 固溶強化により強度を向上させるため、 0. 5% 以上添加する。 2. 5 %を超えると加工性の劣化が顕著となるため、 0. 5%以 上、 2. 5 %以下とする。
P
Pは、 鋼板を固溶強化する作用を有するが、 含有量が 0. 05%を超えると偏析 による加工性の劣化が生じるため、 0. 05%以下とする。
S
Sは、 硫化物を生成し、 0. 0 1 %を超えるとその量が増加し、 加工性が劣化す るため、 0. 0 1 %以下とする。
〇は、 連続錶造時のスラブ表面または、 スラブ表層下における割れの発生を抑制 するため、 その含有量を 0. 005 %以下に規制する。
C a
C aは、 溶製時の脱酸に A 1を用いた場合における脱酸生成物であるアルミナ酸 化物を低融点の A 1一 C a—〇系の酸化物とする。 A 1—C a— 0系酸化物は熱 延時に展伸し、 加工性 (伸び—フランジ性) を劣化させるため、 本発明では C a を不可避不純物として扱い、 添加せず、 その含有量を無添加の水準である 0. 0 005 %未満に規制する。 .
本発明では以上を基本成分組成とするが、 更に特性を向上させるため、 T i, Nb, V, Mo, Z r , C rの一種または二種以上を添加することが可能である
T i , Nb, V, Mo, Z r , C r
本発明では、 強度を向上させる場合、 T i, Nb, V, Mo, Z r , C rの一種 または二種以上を合計で 0. 01~0. 3%添加することが可能である。
—尚、 本発明では、 その作用効果を損なわない範囲で上述した以外の元素を含有 することは差し支えなく、 例えば、 Cuを 2%以下、 511を0. 04%以下含有 することが許容される。
2. 製造条件
( 1 ) 偏析低減処理を行なう連続铸造によりスラブを製造する工程
本発明では、 生産コストを低減し、 高歩留まりでスラブを製造するため、 連続錡 造とする。
連続铸造時の C, Mn等の偏析を抑制し、 板厚中央部などでバンド組織が生成 するのを防止し、 後述する仕上圧延後の一次冷却速度の制御と合わせて、 優れた 加工性 (伸び一フランジ性) を得るため、 铸造時、 偏析低減処理を行なう。 偏析 低減処理として、 電磁攪拌、 軽圧下铸造、 スラブ等の铸片冷却速度の増加などが あり、 これらを単独または複合して適用することができる。
(2) 熱間圧延前に、 該スラブを再加熱する工程。
スラブの温度均一性を改善し、 コイル幅方向の機械的性質を均一にし、 加工性を より改善するため、 連続錶造後、 室温まで冷却することなく再加熱し、 粗圧延を 開始することが望ましく、 再加熱温度は 1250°C以下が好ましい。
(3) 仕上圧延終了温度を A r 3以上とする熱間圧延工程。 仕上圧延機での圧延終了温度を A r3以上とし、 変態後のフェライト結晶粒径及 びパーライトを微細化し、 伸び一フランジ性及び耐衝撃特性を向上させる。
(4) 熱間圧延後、 2秒以内に冷却速度 100〜2000°CZsの一次冷却を開 始し、 600〜750°Cの温度範囲まで冷却する工程。
熱間圧延後のランナアウトでの冷却 (一次冷却) は、 変態後のフェライト結晶 粒径及びパーライトを微細化し、 優れた加工性と高い降伏強度による耐衝撃特性 を向上させるため、 仕上圧延後、 2秒以内、 より好ましくは 1秒以内に開始する 。 図 1に一次冷却開始時間が機械的性質に及ぼす影響を示す。 仕上圧延終了後、 2秒以内に冷却を開始した場合、 優れた加工性と高強度が得られる。
一次冷却の冷却速度は、 変態後のフェライト結晶粒径及びパーライ卜の微細化 、 板厚中央部のバンド組織の抑制により伸び—フランジ性を向上させるため、 規 定する。 バンド組織は凝固段階での C, Mnの濃化部に対応し、 通常の 100で /s以下の冷却速度では、 オーステナイ卜からフェライ卜への変態温度が低く、 他の部位と比較して最も遅く変態するため、 パーライトが多く生成し、 伸びーフ ランジ性を劣化させる。
冷却速度を 100°C/s以上とした場合、 C, Mnの濃化部でもフェライト変 態が容易となり、 結果として元素が均質化し、 バンド組織が抑制される。 冷却速 度は早ければ早いほど良いが、 工業的実現可能性の観点より、 2000t:Zsを 上限とする。 冷却速度が本発明範囲外となる比較法の場合、 バンド組織が観察さ れ、 結晶粒径も本発明法によるミクロ組織と比較して、 大きい。
尚、 冷却速度はフェライト結晶粒径及びパーライトの微細化の観点より、 より 好ましくは 200°CZs以上、 更に加工性を向上させる場合は 400°CZs以上 が好ましい。
一次冷却の終了温度は、 750で超えの場合、 フェライトの微細化が困難とな り、 600°C未満では、 第 2相が硬質な低温変態相となるため、 600°C以上、 750°C未満とする。
(5) 一次冷却後、 冷却速度 50°CZs未満で二次冷却し、 450〜 650でで 巻取る工程。
一次冷却に引き続き、 二次冷却を行う。 二次冷却は、 一次冷却停止後、 直ちに 開始しても、 しばらく放冷後を開始しても良く、 特に規定しない。 二次冷却の冷 却速度はオーステナイト組織を適切にパーライト変態させ、 優れた加工性とする ため、 5 0 °C / s以下とする。
巻取温度は、 6 5 0 °C超えの場合、 延性に有害な粗大なパーライトが生成し、 4 5 0 °C未満の場合、 低温変態相を主体とする組織となり加工性が劣化するため 、 4 5 0 °C以上、 6 5 0 °C以下とする。 尚、 より均一な機械的性質を所望する場 合、 冷却制御性が優れる冷却設備の併用などにより、 コイル内の温度差は 5 O : 以内とすることが望ましい。
本発明により、 熱延鋼板を製造後、 酸洗一焼鈍、 または酸洗一冷間圧延一焼鈍 しても、 その効果が損なわれることはない。 更に、 熱延及び冷延下地の、 溶融亜 鉛めつき材としても本発明の効果は損なわれない。
また、 本発明において、 粗圧延後、 仕上圧延前、 または、 仕上圧延のスタンド 間において、 誘導加熱装置などにより、 幅方向エッジ部を加熱することにより、 より均一な機械的性質を得ることが可能となる。 また、 粗圧延後、 粗圧延バーを 溶接し、 仕上げ圧延を連続的に行う連続熱延においても、 本発明の効果が損なわ れることはない。
【実施例】
本発明の化学成分を満足する表 6に示す化学成分の鋼を溶製後、 表 7に示す製 造方法で板厚 2 . 0 mmの熱延板とした。 材料 N o . 1〜 2、 5〜 9は熱延まま での機械的性質を、 材料 N o . 3は、 熱延後、 酸洗し、 冷延後溶融亜鉛メツキし 、 材料 N o . 4は、 熱延後、 酸洗し、 溶融亜鉛メツキし、 機械的性質を調べた。 伸び一フランジ性の評価は穴拡げ率 (λ ) を測定した。 表 7にこれらの評価結果 を合わせて示す。
本発明の化学成分と製造条件を満足する本発明例の材料 N o . 1〜4は、 製造 条件の規定のいずれか一つが本発明の規定外で比較例となる材料 N 0 . 5〜 9と 比較すると、 加工性 (強度一穴拡げバランス) に優れ、 降伏強度も高く、 耐衝撃 特性に優れていることが明らかである。 図 2に本発明例と比較例の引張り強さと 穴拡げ率を合わせて示す。 本発明により、 優れた特性が得られるのは明らかであ る。 6
化学組成 ( 質量% ) 備考
C Si Mn S P 0 N Ca
059 0.01 1.23 0.007 0.013 0.0023 0.0037 本発明例
表 7
Figure imgf000031_0001
注) *印は本発明範囲外であることを示す。
最良の形態 3
本発明者らは、 成分組成、 圧延条件及び圧延後の冷却条件について詳細に検討 を行い、 強度特性の安定化には特に圧延後の冷却条件の影響が大きいことを見出 し、 本発明をなしたものである。 すなわち、 本発明は、
1. 質量%で、 C : 0. 03〜0· 12%、 S i : 1 %以下、 Mn : 0. 5〜 2 %, P : 0. 02 %以下、 S : 0. 01 %以下、 更に N b : 0. 005〜 0.
1 % , V: 0. 005〜0. l %、 T i : 0. 005〜0. 1 %、 の一種または 二種以上を含有する鋼を、 1070で以下において累積圧下率 30%以上で熱間 圧延し、 圧延終了後 6秒以内に、 平均冷却速度 80 :/s以上で、 500で超え 、 700°C以下まで冷却することを特徴とする高張力薄鋼板の製造方法。
2. 質量%で、 C: 0. 03〜0. 12%、 S i : 1 %以下、 Mn : 0. 5〜 2 %, P : 0. 02%以下、 S : 0. 01 %以下、 Mo : 0. 05〜0. 5%を 含有する鋼を、 1070 以下において累積圧下率 30%以上で熱間圧延し、 圧 延終了後 6秒以内に、 平均冷却速度 8 O^Zs以上で、 500 超え、 700°C 以下まで冷却することを特徴とする高張力薄鋼板の製造方法。
3. 鋼成分として更に、 Mo : 0. 05〜0. 5%を含有する 1記載の高張力 薄鋼板の製造方法。 本発明における、 成分組成、 製造条件の限定理由について説明する。
1. 成分組成
C
Cは鋼板の強度を確保するため添加する。 0. 03%未満の場合、 その効果が得 られず、 0. 12%を超えると低温変態相を生成し、 過度に強度が上昇するため 、 0. 03%以上、 0. 12%以下とする。
S i
S iはフェライトの析出を促進し、 YSが過度に上昇することを防止するため添 加する。 1 %を超えて添加すると、 溶接性が劣化するため、 1 %以下とする。
Mn
Mnは、 鋼を固溶強化し、 焼入れ性を向上させ、 強度を向上させるため、 添加す る。 0. 5%未満の場合、 その効果が得られず、 2 %を超えると溶接性および低 温変態相の増加により靭性が劣化するため、 0. 5%以上、 2%以下とする。 P、 S
これらの元素は、 鋼板の靭性を劣化させるため、 Pは、 0. 02%以下、 Sは、 0. 01 %以下とする。
本発明では、 強度を向上させるため、 Nb, V, T i , Moの一種または二種 以上を添加する。
N b, V, T i
Nb, V, T iは、 析出硬化元素であり、 熱延鋼板の組織を微細化して強度を向 上させる。 その効果をえるため、 それぞれ 005 %以上添加する。 過剰な添 加は、 その効果が飽和するとともに溶接性を劣化させるため、 および低温変態相 の増加により靭性を劣化させるため、 0. 1 %を上限とする。
Mo
Moは、 焼入れ性を向上させ、 組織強化し、 強度を向上させる。 その効果をえる ため、 0. 05%以上添加するが、 過剰な添加は、 溶接性および低温変態相が増 加して鋼板の靭性が劣化するため、 0. 5%以下とする。
_尚、 本発明では、 その作用効果を損なわない範囲で上述した以外の元素を含有 することは差し支えなく、 例えば、 A l , Cu, N i , B, C a等を、 八 1は0 . 1 %以下, Cu, Ν άΙ. 0%以下、 Β, 。 3は0. 005 %以下含有する ことが許容される。
2. 圧延条件
再結晶温度域での圧延により熱延組織を均一に微細化させるため、 1070で以 下で累積圧下率 30%以上の圧延を行う。
3. 冷却条件
冷却開始時間
結晶粒を微細化し、 強度および靭性を安定させるため、 圧延終了後、 6秒以内に 冷却を開始する。 細粒化効果により強度および鞑性を向上させるため、 好ましく は 3秒以内とする。
平均冷却速度
冷却速度は、 本発明において最も重要な要素である。 粗大粒を防止し、 均質な微 細結晶粒とするため、 急速冷却とし、 平均冷却速度を 8 (TCZs以上とする。 よ り好ましくは平均冷却速度を 100°CZs以上とする。
冷却停止温度
冷却停止温度が低い場合、 低温変態相が増加し、 YSが大幅に上昇して YRが過 度に上昇するとともに、 靭性が劣化するため、 5 0 0 °C超えとする。 一方、 7 0 0 °Cを超えると強度安定性が得られないため、 冷却停止温度は 5 0 0 °C超え、 7 0 0 °C以下とする。
本発明では、 急速冷却停止後の工程については特に規定しない。 巻き取りによ り、 コイルとする場合、 定法に従い、 空冷またはランナウト冷却により緩冷却し 、 巻き取りを行う。 この場合、 緩冷却により、 低温変態相が低減し、 Y Sの過度 の上昇が抑制されるより好ましい効果があり、 特に、 4 0 t:Z s以下が望ましい また、 本発明の実施において、 連続熱間仕上圧延機の入り側または、 連続熱間 圧延仕上げ圧延機のスタンド間に設けた誘導加熱装置により、 粗バーを加熱する こと、 更に、 連続熱間圧延仕上げ圧延機のスタンド間または仕上圧延機の前工程 にて、 粗バーの幅方向エッジ部を誘導加熱装置により加熱し、 幅方向温度分布を 均一にすることは、 機械的性質をより均一にするものであり、 何ら問題はない。 コィルポックスを用いた連続熱間圧延プロセスに本発明を適用する場合、 粗バ 一の加熱を、 コイルボックスの前後や粗圧延機の前後、 またはコイルボックス後 、 溶接機の前後において行うことも何ら問題はない。
実施例
表 8に示す本発明の化学成分を満足する鋼を用い、 強度特性に及ぼす製造条件 の変動の影響を調査した。 製造条件は一次冷却停止温度を種々変化させたもので 、 表 9にその具体的条件を示す。 表中、 一次冷却は圧延後の急冷で、 二次冷却は 一次冷却停止後、 巻き取りまでの緩冷却を表す。
供試体 1〜 6において、 1 , 6は一次冷却停止温度が本発明範囲である 5 0 0 超え〜 7 0 0 °Cの範囲外で、 比較例となっている。 2〜 5の製造条件は本発明 範囲内において一次冷却停止温度を変化させたもので、 本発明例となっている。 供試体はいずれも板厚 7 mmで、 表 1 0に機械的試験の結果を示す。 また、 図 3 から 7に表 1 0に示す機械的試験結果を図示する。 図 3から図 7におけるものは、 一次冷却速度 1 5 0 °CZ s e c、 二次冷却速度 3 °C/ s e cであった。 尚、 図中、 急速冷却は一次冷却をあらわすものとする。
これらより明らかなように、 本発明範囲内の条件によれば、 製造条件の変動が あっても、 得られる鋼板の強度特性の変化は少なく、 安定した特性が得られてい る。 表 8
Figure imgf000035_0001
表 9
試体 加執 圧延 仕上 冷却開 1次冷 1次冷 2次冷 備者 温度 io7o 温度 始時間 却速度 却停止 却速度 温度
(V) 以下 (V) sec ■C/sec 温度 °C/sec CC)
c)
1 1230 47—7 820 820 * 3 570 比較例 mmt
2 1230 47→7 820 0.6 150 660 3 570 発明例 mmt
3 1230 47→7 820 0.6 150 640 3 570 発明例 mmt
4 1230 47—7 820 0.6 150 570 570 発明例 mmt
5 1230 47—7 820 0.6 150 520 520 発明例 mmt
6 1230 47-*7 820 0.6 150 450 * 450 比較例 mmt 表 1 0
供試体 YS TS El TS · El YR vTrs
( MP a ) ( MP a ) ( ¾ ) (MP a · ¾) ( ¾ ) ( °C )
1 612 652 30 19560 93.9 -105
2 695 800 26.5 21200 86.9 一 115
3 688 795 26 20670 86.5 -105
4 685 797 25.8 20004 85.9 -110
5 699 806 24.2 19650 86 一 100
6 808 836 18.5 15466 96.7 一 85

Claims

請求の範囲
1. 薄鋼板の製造方法は以下の工程を有する: 質量%で、 C含有量が 0.8%以下の連続铸造スラブを、 粗圧延して粗バーを製 造する工程; 前記粗バーを、 (Ar3変態点- 20) 以上の仕上温度で仕上圧延して鋼帯を製造 する工程; 前記仕上圧延後の鋼帯を、 500〜800°Cの温度まで 120t:/secを超える冷却速度 で急冷する工程; 前記急冷後の鋼帯を、 400〜750 の巻取温度で巻き取る工程。
2. 連続铸造スラブが、 質量%で、 C:0.8%以下、 Si :2.5%以下、 Mn:3.0%以下を 含有する請求の範囲 1記載の薄鋼板の製造方法。
3. 連続铸造スラブが、 質量%で、 0.8%以下、 Si:2.5%以下、 Mn:3.0%以下と、 丁 ^), , 0,21",(:1"のグループから選択された少なくともーっを0.01〜0.2%含有 する請求の範囲 1記載の薄鋼板の製造方法。
4. 連続铸造スラブが、 質量%で、 C:0.8%以下、 S 2.5%以下、 Mn:3.0%以下と、 Ca,Bのグループから選択された少なくとも一つを 0.005%以下含有する請求の範 囲 1記載の薄鋼板の製造方法。
5. 連続铸造スラブが、 質量%で、 C:0.8%以下、 Si:2.5%以下、 Mn:3.0%以下と、 Ti,Nb, V. o, Zr,Crのグループから選択された少なくとも一つを 0.01〜0.2%、かつ、 Ca,Bのグループから選択された少なくとも一つを 0.005%以下含有する請求の範 囲 1記載の薄鋼板の製造方法。
6. 該粗圧延が、 連続錶造スラブを、 直接熱間圧延で粗圧延を行うことからなる 請求の範囲 1記載の薄鋼板の製造方法。
7. 該粗圧延が、 連続铸造スラブを、 室温まで冷却する前に 1200 以下の温度に 再加熱して、 粗圧延を行うことからなる請求の範囲 1記載の薄鋼板の製造方法。
8. 仕上圧延直前または仕上圧延中に、 粗バーを誘導加熱装置により加熱するェ 程を有する請求の範囲 1記載の薄鋼板の製造方法。
9. 鋼帯の急冷が、 仕上圧延後、 0. lsecを超え 1 sec未満の時間内に開始される請 求の範囲 1記載の薄鋼板の製造方法。
1 0. 更に、 巻き取られた鋼帯を冷間圧延し、 焼鈍する工程を有する請求の範囲 1記載の薄鋼板の製造方法。
1 1. 前記急冷工程が、 急冷後の鋼帯の幅方向及び長手方向温度の最高値と最低 値の差が 60 以内になるように冷却することからなる請求の範囲 1記載の薄鋼 板の製造方法。
1 2. 前記急冷工程が、 2000kcal/m °C以上の伝熱係数で鋼帯を冷却することか らなる請求の範囲 1記載の薄鋼板の製造方法。
1 3. 請求の範囲 1記載の薄鋼板の製造方法により製造され、 幅方向及び長手方 向における引張強さの変動が、 コイル内の引張強さの平均値の ±8%以内である 薄鋼板。
14. 薄鋼板の製造方法は以下の工程を有する : 質量%で、 C含有量が 0.8%超え 1 %以下の連続铸造スラブを、 粗圧延して粗 バーを製造する工程; 前記粗バーを、 (Acm変態点- 20) °C以上の仕上温度で仕上圧延して鋼帯を製造 する工程; 前記仕上圧延後の鋼帯を、 500〜800 の温度まで 120 / secを超える冷却速度 で急冷する工程; 前記急冷後の鋼帯を、 400〜750での巻取温度で巻き取る工程。
1 5. 該粗圧延が、 連続錶造スラブを、 直接熱間圧延で粗圧延を行うことからな る請求の範囲 14記載の薄鋼板の製造方法。
16. 該粗圧延が、 連続铸造スラブを、 室温まで冷却する前に 1200 以下の温度 に再加熱して、 粗圧延を行うことからなる請求の範囲 14記載の薄鋼板の製造方 法。
1 7. 仕上圧延直前または仕上圧延中に、 粗バーを誘導加熱装置により加熱する 工程を有する請求の範囲 14記載の薄鋼板の製造方法。
18. 鋼帯の急冷が、 仕上圧延後、 0. lsecを超え lsec未満の時間内に開始される 請求の範囲 14記載の薄鋼板の製造方法。
19. 更に、 巻き取られた鋼帯を冷間圧延し、 焼鈍する工程を有する請求の範囲 14記載の薄鋼板の製造方法。
20. 前記急冷工程が、 急冷後の鋼帯の幅方向及び長手方向温度の最高値と最低 値の差を 60で以内とするように冷却することからなる請求の範囲 14記載の薄 鋼板の製造方法。
21. 前記急冷工程が、 2000kcal/m¾t:以上の伝熱係数で冷却することからなる 請求の範囲 14記載の薄鋼板の製造方法。
22. 請求の範囲 14記載の薄鋼板の製造方法により製造され、 幅方向及び長手 方向における引張強さの変動が、コイル内の引張強さの平均値の ±8%以内である 薄 iw板。
23. 薄鋼板の製造方法は以下の工程を有する: 偏析低減処理を行なう連続铸造により、 質量%で、 C : 0. 05〜0. 1 4%、 S i : 0. 5%以下、 Mn : 0. 5〜2. 5%、 P: 0. 05 %以下、 S : 0. 01 %以下、 〇 : 0. 005 %以下、 C a : 0. 0005 %未満を含有する スラブを製造する工程;
A r3以上の仕上圧延終了温度で該スラブを熱間圧延し、熱延板を製造する 工程;
熱間圧延後、 2秒以内に冷却速度 100〜2000°CZsの一次冷却を開 始し、 600〜750°Cの温度範囲まで該熱延板を冷却する工程; 該温度範囲まで冷却後、 該熱延板を冷却速度 50 :/s未満で二次冷却す る工程;
二次冷却された熱延板を 450〜 650 で巻取る工程。
24. 熱間圧延前に、 該スラブを再加熱する工程を有する請求の範囲 23記載の 薄鋼板の製造方法。
25. 更に、 巻取られた熱延板を酸洗し、 焼鈍する工程を有する請求の範囲 23 記載の薄鋼板の製造方法。
26. 更に、 巻取られた熱延板を酸洗し、 冷間圧延し、 焼鈍する工程を有する請 求の範囲 23記載の薄鋼板の製造方法。
27. 該スラブが、 更に T i , Nb, V, Mo, Z r , C rのグループから選択 された少なくとも一つを、 質量%で、 0. 01〜0. 3%含有する請求の範囲 2 3記載の薄鋼板の製造方法。
28. 薄鋼板の製造方法は以下の工程を有する :
質量%で、 C : 0. 03〜0. 12%、 S i : l %以下、 Mn : 0. 5〜 2%、 P : 0. 02%以下、 S : 0. ◦ 1%以下、 更に、 Nb : 0. 005〜 0. 1 %, V: 0. 005〜0. l %、 T i : 0. 005〜0. 1 %のグループ から選択された少なくとも一つを含有する鋼を、 1070°C以下において累積圧 下率 30 %以上で熱間圧延する工程; と 圧延終了後 6秒以内に、 平均冷却速度 80°CZs以上で、 500 超え、 700 以下まで冷却する工程。
29. 該鋼が、 更に、 質量%で、 Mo : 0. 05〜0. 5%を含有する請求の範 囲 28記載の薄鋼板の製造方法。
30. 薄鋼板の製造方法は以下の工程を有する :
質量%で、 C : 0. 03〜0. 12%、 S i : l %以下、 Mn : 0. 5〜 2 %、 P : 0. 02 %以下、 S : 0. 01 %以下、 Mo : 0. 05〜0. 5%を 含有する鋼を、 1070 以下において累積圧下率 30%以上で熱間圧延するェ 程; と
圧延終了後 6秒以内に、 平均冷却速度 8 O^Zs以上で、 500で超 え、 700で以下まで冷却する工程。
PCT/JP2000/006639 1999-09-29 2000-09-27 Sheet steel and method for producing sheet steel WO2001023624A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00962863.7A EP1143019B1 (en) 1999-09-29 2000-09-27 Method for manufacturing a coiled steel sheet
US09/837,435 US6652670B2 (en) 1999-09-29 2001-04-18 Steel sheet and method for manufacturing the same
US10/448,697 US20030196731A1 (en) 1999-09-29 2003-05-30 Method for manufacturing a steel sheet

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP11/275955 1999-09-29
JP27595599 1999-09-29
JP2000/60282 2000-03-06
JP2000060282A JP3864663B2 (ja) 2000-03-06 2000-03-06 高強度薄鋼板の製造方法
JP2000/119887 2000-04-20
JP2000119887A JP2001303129A (ja) 2000-04-20 2000-04-20 高張力薄鋼板の製造方法
JP2000/180903 2000-06-16
JP2000180903 2000-06-16
JP2000/268894 2000-09-05
JP2000268894A JP3879381B2 (ja) 1999-09-29 2000-09-05 薄鋼板および薄鋼板の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/837,435 Continuation US6652670B2 (en) 1999-09-29 2001-04-18 Steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2001023624A1 true WO2001023624A1 (en) 2001-04-05

Family

ID=27530608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006639 WO2001023624A1 (en) 1999-09-29 2000-09-27 Sheet steel and method for producing sheet steel

Country Status (4)

Country Link
US (2) US6652670B2 (ja)
EP (1) EP1143019B1 (ja)
KR (1) KR100401272B1 (ja)
WO (1) WO2001023624A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277846A1 (en) * 2001-06-28 2003-01-22 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
WO2004003247A1 (en) * 2002-06-28 2004-01-08 Posco Super formable high strength steel sheet and method of manufacturing thereof
CN114574685A (zh) * 2020-11-30 2022-06-03 宝山钢铁股份有限公司 一种短流程连铸连轧普碳钢热轧带钢表面及力学性能调控方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420364B1 (en) * 1999-09-13 2002-07-16 Boehringer Ingelheim Pharmaceuticals, Inc. Compound useful as reversible inhibitors of cysteine proteases
WO2001020051A1 (fr) * 1999-09-16 2001-03-22 Nkk Corporation Plaque fine d'acier a resistance elevee et procede de production correspondant
KR100430987B1 (ko) * 1999-09-29 2004-05-12 제이에프이 엔지니어링 가부시키가이샤 박강판 및 박강판의 제조방법
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
US20050106411A1 (en) * 2002-02-07 2005-05-19 Jfe Steel Corporation High strength steel plate and method for production thereof
FR2847908B1 (fr) * 2002-12-03 2006-10-20 Ascometal Sa Piece en acier bainitique, refroidie et revenue, et son procede de fabrication.
US7171114B2 (en) * 2004-07-12 2007-01-30 Milton Curtis A Mirror-mimicking video system
ITMN20060021A1 (it) * 2006-03-23 2007-09-24 Gilcotubi S R L Sistema di produzione di strutture tubolari inossidabili e saldabili con alta resistenza meccanica e relativo prodotto ottenuto
JP5176431B2 (ja) * 2007-08-24 2013-04-03 Jfeスチール株式会社 高強度熱延鋼板の製造方法
KR101150365B1 (ko) * 2008-08-14 2012-06-08 주식회사 포스코 고탄소 열연강판 및 그 제조방법
CN103038381B (zh) * 2010-05-27 2015-11-25 新日铁住金株式会社 钢板及其制造方法
KR101256618B1 (ko) 2010-12-28 2013-05-02 주식회사 포스코 고탄소 열연강판, 냉연강판 및 그 제조방법
MX364430B (es) * 2011-03-18 2019-04-26 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminado en caliente con excelente formabilidad de prensa y metodo de produccion del mismo.
WO2015039763A2 (en) * 2013-09-19 2015-03-26 Tata Steel Ijmuiden B.V. Steel for hot forming
CN106133173B (zh) * 2014-03-31 2018-01-19 杰富意钢铁株式会社 材质均匀性优异的高强度冷轧钢板及其制造方法
RU2591922C1 (ru) * 2015-07-21 2016-07-20 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаного листового проката из низколегированной стали
RU2629420C1 (ru) * 2016-05-30 2017-08-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства высокопрочного проката повышенной хладостойкости
KR101917454B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 고강도 고인성 후강판 및 이의 제조방법
CN113059003B (zh) * 2021-03-01 2023-07-21 首钢京唐钢铁联合有限责任公司 控制冷轧高强钢酸轧边裂的方法
CN114086073A (zh) * 2021-11-19 2022-02-25 安徽工业大学 一种热轧高强结构钢的生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135616A (en) 1978-04-12 1979-10-22 Nippon Steel Corp Manufacture of cold rolled steel plate with superior formability
JPS60243226A (ja) 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
JPH05112831A (ja) 1991-06-24 1993-05-07 Nippon Steel Corp 加工性に優れた深絞り用冷延鋼板の製造方法
JPH06248340A (ja) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd 加工性に優れた熱延鋼板の製造方法
JPH0754051A (ja) * 1993-08-17 1995-02-28 Nisshin Steel Co Ltd 加工性に優れた高強度溶融Znめっき鋼板の製造方法
JP2555436B2 (ja) 1988-12-29 1996-11-20 株式会社神戸製鋼所 加工性の優れた熱延鋼板とその製造法
JPH09143570A (ja) * 1995-11-17 1997-06-03 Kawasaki Steel Corp 極微細組織を有する高張力熱延鋼板の製造方法
JPH1036917A (ja) * 1996-07-25 1998-02-10 Nippon Steel Corp 伸びフランジ性に優れた高強度熱延鋼板の製造方法
JPH11131137A (ja) * 1997-10-27 1999-05-18 Kawasaki Steel Corp 高炭素熱延鋼板の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927370B2 (ja) * 1980-07-05 1984-07-05 新日本製鐵株式会社 プレス加工用高強度冷延鋼板
JPS5871330A (ja) * 1981-10-20 1983-04-28 Kawasaki Steel Corp 材質の均一性にすぐれた熱延鋼帯の製造方法
JPS58123823A (ja) 1981-12-11 1983-07-23 Nippon Steel Corp 極細粒高強度熱延鋼板の製造方法
JPS59140332A (ja) * 1983-01-27 1984-08-11 Nippon Steel Corp 加工用高強度複合組織熱延鋼板の製造方法
JPS59215423A (ja) * 1983-05-18 1984-12-05 Kobe Steel Ltd 冷間加工性にすぐれた熱処理省略型高張力熱延材の製造方法
JPS6115929A (ja) 1984-06-30 1986-01-24 Nippon Jiryoku Senko Kk 製鋼ダスト,スラッジの培焼法
JPS6173829A (ja) 1984-09-17 1986-04-16 Nippon Steel Corp 超微細組織よりなる高張力鋼の製造方法
IT1213487B (it) 1986-09-03 1989-12-20 Afros Spa Apparecchiatura per l'alimentazione ed il dosaggio di liquidi in una testa di miscelazione.
JPH0762178B2 (ja) 1990-07-30 1995-07-05 新日本製鐵株式会社 伸びフランジ性と延性の優れた高強度熱延鋼板の製造方法
JP2842765B2 (ja) 1993-08-18 1999-01-06 日本電気株式会社 光コネクタフェルールの回転止め構造
FR2735498B1 (fr) * 1995-06-15 1997-07-11 Lorraine Laminage Procede de realisation d'une bande de tole d'acier laminee a chaud a haute limite d'elasticite utlisable notamment pour la mise en forme
JP3806176B2 (ja) 1996-03-12 2006-08-09 新日本製鐵株式会社 熱延連続化プロセスによる材質バラツキの小さい熱延鋼板の製造方法
EP1136575A4 (en) * 1999-08-10 2008-04-23 Jfe Steel Corp PROCESS FOR PRODUCING COLD LAMINATED STEEL STRIPS
WO2001020051A1 (fr) * 1999-09-16 2001-03-22 Nkk Corporation Plaque fine d'acier a resistance elevee et procede de production correspondant
WO2001023632A1 (fr) * 1999-09-28 2001-04-05 Nkk Corporation Tole d'acier laminee a chaud et possedant une resistance elevee a la traction, et procede de production associe
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
KR100430987B1 (ko) * 1999-09-29 2004-05-12 제이에프이 엔지니어링 가부시키가이샤 박강판 및 박강판의 제조방법
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
AU2001291505B2 (en) * 2000-09-29 2006-02-02 Nucor Corporation Production of thin steel strip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135616A (en) 1978-04-12 1979-10-22 Nippon Steel Corp Manufacture of cold rolled steel plate with superior formability
JPS60243226A (ja) 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
JP2555436B2 (ja) 1988-12-29 1996-11-20 株式会社神戸製鋼所 加工性の優れた熱延鋼板とその製造法
JPH05112831A (ja) 1991-06-24 1993-05-07 Nippon Steel Corp 加工性に優れた深絞り用冷延鋼板の製造方法
JPH06248340A (ja) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd 加工性に優れた熱延鋼板の製造方法
JPH0754051A (ja) * 1993-08-17 1995-02-28 Nisshin Steel Co Ltd 加工性に優れた高強度溶融Znめっき鋼板の製造方法
JPH09143570A (ja) * 1995-11-17 1997-06-03 Kawasaki Steel Corp 極微細組織を有する高張力熱延鋼板の製造方法
JPH1036917A (ja) * 1996-07-25 1998-02-10 Nippon Steel Corp 伸びフランジ性に優れた高強度熱延鋼板の製造方法
JPH11131137A (ja) * 1997-10-27 1999-05-18 Kawasaki Steel Corp 高炭素熱延鋼板の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277846A1 (en) * 2001-06-28 2003-01-22 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
US6783609B2 (en) 2001-06-28 2004-08-31 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
WO2004003247A1 (en) * 2002-06-28 2004-01-08 Posco Super formable high strength steel sheet and method of manufacturing thereof
US7806998B2 (en) 2002-06-28 2010-10-05 Posco Method of manufacturing super formable high strength steel sheet
CN114574685A (zh) * 2020-11-30 2022-06-03 宝山钢铁股份有限公司 一种短流程连铸连轧普碳钢热轧带钢表面及力学性能调控方法
CN114574685B (zh) * 2020-11-30 2024-04-05 宝山钢铁股份有限公司 一种短流程连铸连轧普碳钢热轧带钢表面及力学性能调控方法

Also Published As

Publication number Publication date
US20010050119A1 (en) 2001-12-13
KR100401272B1 (ko) 2003-10-17
KR20010074870A (ko) 2001-08-09
US20030196731A1 (en) 2003-10-23
EP1143019A4 (en) 2008-04-30
EP1143019A1 (en) 2001-10-10
EP1143019B1 (en) 2014-11-26
US6652670B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
WO2001023624A1 (en) Sheet steel and method for producing sheet steel
EP1143022B1 (en) Method for producing a thin steel plate having high strength
KR100430987B1 (ko) 박강판 및 박강판의 제조방법
EP1969148B1 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
CN107326276B (zh) 一种抗拉强度500~600MPa级热轧高强轻质双相钢及其制造方法
JPS5827329B2 (ja) 延性に優れた低降伏比型高張力熱延鋼板の製造方法
JP3915460B2 (ja) 高強度熱延鋼板およびその製造方法
JP2000063955A (ja) 薄物2相組織熱延鋼帯の製造方法
JP4300793B2 (ja) 材質均一性に優れた熱延鋼板および溶融めっき鋼板の製造方法
JP4788291B2 (ja) 伸びフランジ成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP3864663B2 (ja) 高強度薄鋼板の製造方法
JP3879381B2 (ja) 薄鋼板および薄鋼板の製造方法
JP4273646B2 (ja) 加工性に優れた高強度薄鋼板及びその製造方法
JP2555436B2 (ja) 加工性の優れた熱延鋼板とその製造法
JP2002003997A (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
JPH11193419A (ja) 成形性に優れた合金化溶融亜鉛めっき高強度冷延鋼板の製造方法
JP2001089816A (ja) 高強度熱延鋼板の製造方法
JPH02145747A (ja) 深絞り用熱延鋼板及びその製造方法
JP2669188B2 (ja) 深絞り用高強度冷延鋼板の製造法
JP3873579B2 (ja) 高加工性熱延鋼板の製造方法
JP2003013176A (ja) プレス成形性と歪時効硬化特性に優れた高延性冷延鋼板およびその製造方法
JPH06158175A (ja) 超深絞り用冷延鋼板の製造方法
CN117344215A (zh) 一种590MPa级低成本免酸洗结构钢板及其制造方法
KR100723169B1 (ko) 열간압연성이 우수한 석출강화형 라인파이프용 강재의제조방법
KR100544538B1 (ko) 가공성이 우수한 비시효 소부경화형 냉연고장력강판과 그제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020017002607

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09837435

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2000962863

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2000962863

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000962863

Country of ref document: EP