WO2001023397A1 - Procede de preparation d'hexasaccharide - Google Patents

Procede de preparation d'hexasaccharide Download PDF

Info

Publication number
WO2001023397A1
WO2001023397A1 PCT/CN2000/000225 CN0000225W WO0123397A1 WO 2001023397 A1 WO2001023397 A1 WO 2001023397A1 CN 0000225 W CN0000225 W CN 0000225W WO 0123397 A1 WO0123397 A1 WO 0123397A1
Authority
WO
WIPO (PCT)
Prior art keywords
trisaccharide
donor
acceptor
glycosyl
hexasaccharide
Prior art date
Application number
PCT/CN2000/000225
Other languages
English (en)
French (fr)
Inventor
Fanzuo Kong
Jun Ning
Original Assignee
Beijing Zhong Ke Zhi Chuang Science & Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhong Ke Zhi Chuang Science & Technology Ltd. filed Critical Beijing Zhong Ke Zhi Chuang Science & Technology Ltd.
Priority to AU64241/00A priority Critical patent/AU6424100A/en
Publication of WO2001023397A1 publication Critical patent/WO2001023397A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H9/00Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
    • C07H9/02Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing only oxygen as ring hetero atoms
    • C07H9/04Cyclic acetals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages

Definitions

  • the present invention relates to a method for preparing an oligosaccharide, in particular to a method for preparing an oligosaccharide having biological activity and capable of being used as an activator of a plant self-defense system, and more particularly to a plant self having a function as a pesticide Method for preparing defense system activator hexasaccharide. Background technique
  • Oligosaccharides can be used as an activator of plant self-defense system (Elicitor), which was discovered by American Albersheim in 84 years [JK Sharp, B. Valent, P. Albersheim, J. Biol. Chem., 1984, 259, 1 13 12.]
  • oligosaccharide activators can increase the metabolism of phenylpropylase, and this enzyme can catalyze the biosynthesis of Phytoalexin in legumes.
  • Oligosaccharide activators are a class of molecules that regulate special metabolism and gene expression at the level of DNA transcription. Fungal pathogens V g ⁇ Phytophthora megasperma f. Heptasaccharide ⁇ glucose mycelia wall sp.
  • the purpose of the present invention is to adopt a new idea based on the synthetic oligosaccharides [China Patent Application Nos. 97125788.4, 98103241.1, 98103242.7] that we invented in the past, that is, 1,2: 5,6-di-0-isopropylidene
  • glucosyl provides a method for preparing hexasaccharide, which is a simple, time-saving, labor-saving, low-cost, and industrially-available, industrially-available plant self-defense system activator.
  • the object of the present invention is achieved by using trichloroacetimide ester or halide 1 of acyl glucose as a glycosyl donor, and 1,2: 5,6-di-0-isopropylidene Glucose 2 is a glycosyl acceptor.
  • trichloroacetimide ester or halide 1 of acyl glucose as a glycosyl donor
  • Glucose 2 is a glycosyl acceptor.
  • the glycosyl donor 1 is coupled with the glycosyl acceptor 4 to obtain the trisaccharide 5, the 5 is hydrolyzed under acidic conditions to obtain 6, and then acetylated to obtain 7, and then the acetyl group at the 1-position is selectively removed to obtain 8, 8 was activated, and trisaccharide donor 9 was obtained.
  • a similar method is used to synthesize a trisaccharide acceptor of glucose at the 6-position as a free hydroxyl group, couple the trisaccharide donor with the trisaccharide acceptor, and then deprotect to obtain the desired hexasaccharide.
  • the present invention relates to a method for preparing a hexasaccharide of the following formula 16.
  • the method includes:
  • a trichloroacetimide ester or halide of a glucosyl acyl glucose as a glycosyl donor, and using 1, 2: 5: 6-di-0-isopropylidene-protected glucose as a glycosyl acceptor
  • the glycosyl donor and the glycosyl acceptor are separately dissolved in a substituted alkane, and then the two are mixed and reacted in the presence of a Lewis acid catalyst to prepare a 1 ⁇ 3 j8 linked sugar, which is selectively hydrolyzed to 5 , 6-0-Isopropylidene group to obtain a disaccharide with a free hydroxyl group at position 5.6 as a glycosyl acceptor, and a monosaccharide glycosyl donor and a disaccharide glycosyl acceptor are carried out in the presence of a Lewis acid catalyst
  • the coupling reaction obtains a trisaccharide, and then the trisaccharide is hydrolyzed under acid
  • Glucose donors with different acyl groups at the 6 and 2, 3, and 4 positions are used as glycosyl donors to perform the coupling reaction with the above-mentioned disaccharide acceptor in the presence of a Lewis acid catalyst to obtain the corresponding trisaccharides, and to selectively hydrolyze them Remove the acyl group at position 6 to obtain a trisaccharide receptor;
  • the above-prepared trisaccharide donor and trisaccharide acceptor were subjected to a coupling reaction in the presence of a Lewis acid catalyst to obtain a partially protected hexasaccharide, and the isopropylidene group of the hexasaccharide was hydrolyzed to expand at the same time to obtain only 1 and 2 positions. It is a free hexasaccharide, and then acylation reaction is performed on the 1-position and 2-position, and then all the acyl groups are removed with a base to obtain the free hexasaccharide 16.
  • the halogenated alkane may be dichloromethane, dichloroethane, or the like.
  • acyl glucose 1 as the glycosyl donor
  • 1,2: 5,6-di-0-isopropylidene-protected glucose 2 as the glycosyl acceptor
  • the base acceptors were separately dissolved in dichloromethane, and then the two were mixed, and reacted under Lewis acid catalysis and stirred at room temperature for 2-4 hours to prepare 1,3- ⁇ -linked disaccharide 3.
  • the 5,6-0-isopropylidene group is selectively hydrolyzed to obtain a disaccharide 4 having a free hydroxyl group at the 5 and 6 positions, and the equimolar ratio of the glycosyl donor 1 and the glycosyl acceptor 4 is catalyzed by Lewis acid. Coupling at room temperature with stirring to obtain trisaccharide 5, hydrolyzing 5 under acidic conditions to obtain 6, then acetylating to obtain 7, and then selectively removing the acetyl group at position 1 to obtain 8, 8 reacting with trichloroacetonitrile, The trisaccharide sugar donor 9 was obtained. As shown below:
  • R CH 3 CO- (acetyl) or PhCO- (benzoyl)
  • a similar method is used to synthesize a glucose trisaccharide acceptor with a free hydroxyl group at the 6-position, that is, a sugar with 6-0-nonbenzoyl-2,3,4-tri-0-benzoyl- ⁇ -D-glucose.
  • Donor or 6-0-non-acetyl-2, 3, 4-tri-0-acetyl-aD-glucose glycosyl donor
  • the corresponding trisaccharide 11 is obtained by coupling under stirring at room temperature, and the non-benzoyl group at position 6 is selectively hydrolyzed to obtain the trisaccharide acceptor 12, as shown in the figure below:
  • X Br or CI or an ester group such as CCl 3 C (NH) 0- 0
  • the R group is acetyl or benzoyl
  • X is bromine, chlorine or an ester group such as trichloroacetimide ester.
  • the R group when the R group is benzoyl, the R group is acetyl or chloroacetyl or tribenzyl; when the R group is acetyl, the R is chloroacetyl or Trimethyl, X is bromo, chloro or trichloroacetimide.
  • the R group is acetyl or benzoyl.
  • the Lewis acid is a silver salt such as silver carbonate, silver triflate, or boron trifluoride,
  • the reaction steps of the hexasaccharide have been greatly simplified.
  • the present invention omits a dozen reaction steps, and the reagents used are cheap and easy to use. Therefore, the preparation cost of the hexasaccharide is greatly reduced, so that its industrialized production becomes possible.
  • the hexasaccharide prepared by the present invention has not been mass-produced or scale-produced in the world so far.
  • the preparation method of the hexasaccharide according to the present invention has now achieved industrialized production, which is the first in the world.
  • Benzoyl glucose trichloroacetimide ester 1 (5.6 g, 7.56 mmol) was dissolved in 40 ml of dichloromethane to obtain solution A
  • 1,2: 5,6-diisopropylidene glucose 2 (2.8 g (10.77. Mmol) was dissolved in 20 ml of dichloromethane to obtain solution B.
  • B and A were mixed to obtain solution C
  • TMSOTF trimethylsilyl triflate
  • the reaction solution was diluted with 100 ml of dichloromethane, diluted with 0.5% HC1 / CH 3 0H solution and stirred for 1 hour, and the 5,6-0-isopropylidene group was selectively hydrolyzed, and triethylamine was neutralized.
  • the solvent was distilled off under pressure, and the residue was purified by silica gel column chromatography. Ethyl acetate / petroleum ether (1/2) was used as the eluent, and the corresponding components were collected. Disaccharide 4 (5.43 g) was obtained, yield: 90%.
  • Benzoyl glucose trichloroacetimide ester 1 (3.7 g, 5.01 mmol) was dissolved in 30 ml of dichloromethane to obtain solution A
  • disaccharide 4 (4.0 g, 5.01 mmol) was dissolved in 30 ml of dichloromethane
  • solution B mix B and A to obtain solution C.
  • TMSOTF 0.05 mmol to C under ice-salt bath cooling, and then naturally return to room temperature. After reacting at room temperature for 3 hours, thin layer chromatography analysis shows that the reaction is complete. .
  • the reaction solution was neutralized with triethylamine, washed with water, and the aqueous phase was discarded. The dried product was vacuum-dried under vacuum.
  • the crude product was purified by silica gel column chromatography, and ethyl acetate / petroleum ether (1/1) was used. As the eluent, collect the corresponding components to obtain pure trisaccharide 5 (5.86 g). Yield: 85%.
  • Trisaccharide 5 (6.0 g, 436 mmol) was dissolved in 50 ml of 80% acetic acid aqueous solution, 10 ml of 1 M sulfuric acid was added, and the mixture was hydrolyzed with stirring at 60 ° C. The reaction was detected by thin layer chromatography. After the reaction was completed, the reaction solution was Evaporate to dryness under reduced pressure. The crude product is purified by silica gel column chromatography, washed with ethyl acetate / petroleum ether (1/1) as eluent, and the corresponding components are collected to obtain pure trisaccharide 6 ( 5 . 24 g) yield: 90%, 6 to a conventional manner using acetic anhydride / pyridine quantitatively acetylated, acylated to give full trisaccharide 7. (4) Preparation of trisaccharide donor 9:
  • Trisaccharide 7 (5.5 g, 3.76 mg molecules) was dissolved in 30 ml of dimethylformamide, and NH 4 HC0 3 3 g was added. The reaction was performed at room temperature, and the reaction was detected by thin layer chromatography. After the reaction was completed, the pressure was reduced. The solvent was evaporated to dryness, and the crude product was purified by silica gel column chromatography. Ethyl acetate / petroleic acid (1/1) was used as the eluent, and the corresponding components were collected to obtain pure trisaccharide 8 (4.8 g).
  • the 6-0- acetyl _ 2, 3, 4 _ tri-O-benzoyl-glucose -CC-D- trichloroacetimidate 10 (5 g, 6.26 mmole) and disaccharides receptor 4 (4.86 G, 6.89 mg molecules) were dissolved in 50 ml of dichloromethane, TMSOTf (0.08 mmol) was added under cooling in an ice-salt bath, and then naturally returned to room temperature. The reaction was carried out under nitrogen protection at room temperature under stirring, and analyzed by thin layer After detection, after the reaction is completed, the product is post-processed by conventional methods.
  • the crude product is purified by silica gel column chromatography, washed with ethyl acetate / petroleum ether (1/1) as the eluent, and the corresponding components are collected to obtain trisaccharide 11 (6.99 G), yield: 85%.
  • Dissolve 11 (8 g, 6.09 mg molecules) in a methanol solution containing 0.5% dry hydrogen chloride, react at room temperature with stirring, and detect by thin layer analysis. When the detection shows that the acetyl group has been selectively removed, The reaction product was neutralized by adding sodium carbonate, and the solvent was evaporated to dryness under reduced pressure.
  • Trisaccharide 12 (6.97 g), yield: 90%.
  • the crude product was purified by silica gel column chromatography, and ethyl acetate / Petroleum ether (2/1) was rinsed as an eluent, and the corresponding components were collected to obtain hexasaccharide 13 (4.11 g) with a yield of 80%. 13 (3.5 g, 1.31 mmol) was dissolved in 40 ml of a 80% aqueous acetic acid solution at 60 ° C. C was hydrolyzed under stirring, and the reaction was detected by thin layer chromatography. After the reaction was completed, the reaction solution was evaporated to dryness under reduced pressure.
  • the preparation method of the hexaose according to the present invention adopts a completely new idea, that is, using 1,2: 5,6-di-0-isopropylidene glucose as a starting material.
  • the preparation method is in line with the existing Compared with the preparation method, the method has the advantages of simple steps, time saving, labor saving, low cost, and mass production, etc. Therefore, the present invention provides a newest electrode for producing oligosaccharide activator hexasaccharide which is biologically active and can be used as a pesticide. Preparation method with industrial application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Description

一种六糖的制备方法 技术领域
本发明涉及一种寡糖的制备方法, 特别是涉及一种具有生物活 性的能作为植物自我防卫系统的激活剂的寡糖的制备方法, 更具体 是涉及一种具有可用作农药的植物自我防卫系统激活剂六糖的制备 方法。 背景技术
寡糖能作为植物自我防卫系统的激活剂 (Elicitor)是美国 Albersheim 在 84年发现的[ J. K. Sharp, B. Valent, P. Albersheim, J. Biol. Chem., 1984, 259, 1 13 12.], 在豆类植物中, 寡糖激活剂能增加苯丙基酶的代谢, 而该 酶能催化豆类植物中植保素 (Phytoalexin)的生物合成。 寡糖激活剂是一 类能在 DNA 转录水平上调节特殊代谢、 基因表达的分子。 真菌病原 V g{Phytophthora megasperma f. sp. gfycz'w 的菌丝体壁上的 β连接的葡 萄七糖是首次被发现的寡糖激活剂, 10ng ( lxlO-8克) 应用于 1 克植物 组织即能产生足够的植保素, 迄今为止它是已发现植保素激活剂中效率 最高的。 由于 1→3β, 1→6β连接的葡聚糖存在于很多病原真菌中, 因此 寡糖激活剂作为农药使用能抑制多种微生物。 研究还表明, 寡糖激活剂 的作用虽然首先是在大豆中发现的, 但它能够适用于多种高等植物 [S. Aldington, S.C. Fry, Adv. Bot. Res., 1992, 19, 1-101.]。 但由于 Pmg的菌丝 体壁只占菌丝体的 3%, 部分酸解后, 实际能够得到的有活性的寡糖很 少, 例如由 10克的菌丝体壁经部分酸解、 分离后, 活性最高 (1800单 位 /微克) 的七糖仅有 0.1 毫克, 且分离步骤繁瑣, 需用 贵的固定相进 行高效液相色谱的分离, 仅能作为研究, 不能大量制备。 以后的研究表 明 [J丄 Cheong, M.G. Hahn, Plant Cell, 1991 , 3, 127- 147.] , 还原端少一个 葡萄糖单元的六糖有类似于七糖的功能。 这一重要发现引起了有机化学家的浓厚兴趣, 几个有名的实验室都 先后进行了寡糖激活剂的合成研究, 如瑞典的 Lindberg[J. K. Sharp, P. Albersheim, B. Lindberg, J. Biol. Chem" 1984, 259, 1 1341.] , 曰本的 Ogawa[N. Hong, T. Ogawa, Tetrahedron Lett, 1990, 31 , 3 179.], 美国的
Nicolaou[K. C. Nicolaou, N. Winssinger, J. Pastor, F. Derosse, J. Am. Chem. Soc, 1997, 1 19, 449.] 都先后报道了寡糖激活剂的合成, 但由于所用的试 剂昂贵、 反应步骤繁多, 仅能用于结构、 活性关系的验证研究, 很难批 量制备, 国外尚未见作为农药用的寡糖激活剂的生产报道。
我们最近亦发表了合成寡糖激活剂的一种新的、 有效的方法 [王为 孔繁祚 Tetrahedron Lett" 1998, 39, 1937.], 和已经发表了的方法相 比, 这是迄今为止最有效、 最简单的方法, 但距批量生产, 仍有相当距 离
^明的公开
本发明的目的在于在我们过去发明的合成寡糖 [中国专利申请号 97125788.4, 98103241.1 , 98103242.7]的基础上, 采用全新的思路, 即 以 1,2:5,6-二 -0-异丙叉基葡萄糖为起始物,提供一种步驟简单、 省时、 省 力、 成本低廉的且可工业化生产的可用作农药用的、 植物自我防卫系统 激活剂六糖的制备方法。
简单说来本发明的目的是这样实现的: 以酰基葡萄糖的三氯乙酰亚 胺酯或卤代物 1为糖基供体, 以 1 ,2:5,6-二 - 0 -异丙叉基的葡萄糖 2为糖 基受体, 首先得到 1, 3-β-连接的双糖 3, 选择性地水解掉 5,6- 0 -异丙 叉基, 得到 5,6位为游离羟基的双糖 4, 再使糖基供体 1 与糖基受体 4 偶联, 得到三糖 5, 将 5在酸性条件下水解得到 6、 接着乙酰化得到 7、 再选择性地脱掉 1位的乙酰基得到 8, 对 8进行活化, 得到三糖供体 9。 用类似的方法合成 6位为游离羟基的葡萄糖的三糖受体, 将三糖供体与 三糖受体偶联, 再去保护即得到所需六糖。 本发明涉及一种用于制备下式 16的六糖的方法
Figure imgf000005_0001
该方法包括:
1) 制备三糖供体:
将具有一个葡萄糖基的酰基葡萄糖的三氯乙酰亚胺酯或卤代物作为 糖基供体, 以 1, 2:5:6-二 -0-异丙叉基保护的葡萄糖作为糖基受体, 将 所述的糖基供体与糖基受体分别溶于 代烷烃中, 然后将二者混合, 在 路易斯酸催化剂存在下进行反应制备出 l→3 j8连接的 糖, 选择性地水 解掉 5,6-0-异丙叉基, 得到 5.6位为游离羟基的双糖, 其作为糖基受体, 将一糖的糖基供体与双糖的糖基受体在路易斯酸催化剂存在下进行偶联 反应得到三糖, 然后将该三糖在酸性条件下水解, 对 1 位、 2 位进行酰 化反应, 选择性地脱掉 1位的酰基, 再将其 化制得三糖供体;
2) 制备三糖受体:
用 6位与 2, 3, 4位上具有不同酰基的葡萄糖作为糖基供体, 使其与上述的双糖受体在路易斯酸催化剂存在下进行偶联反应得到 相应的三糖, 选择性水解掉 6位上的酰基, 得到三糖受体;
3) 制备六糖:
将上述制备的三糖供体和三糖受体在路易斯酸催化剂存在下进 行偶联反应得到部分保护的六糖, 水解掉该六糖的异丙叉基同时扩 环得仅 1位、 2位为游离羟基的六糖, 再对 1位 2位进行酰化反应, 然后用碱脱掉全部酰基即得到游离的六糖 16。
上述方法中, 所述的卤代烷烃可为二氯甲烷、 二氯乙烷等。
本发明所述的六糖的制备方法更具体描述如下: 1)制备三糖供体:
以 1摩尔的酰基葡萄糖 1为糖基供体, 以 1.2摩尔的 1,2:5,6-二 -0- 异丙叉基保护的葡萄糖 2 为糖基受体, 将糖基供体与糖基受体分别溶于 二氯甲烷中, 然后将二者混合, 在路易斯酸催化, 室温搅拌下, 反应 2- 4小时, 制备出 1, 3-β-连接的双糖 3。 选择性地水解掉 5,6-0-异丙叉基, 得到 5,6位为游离羟基的双糖 4, 再使等摩尔比的糖基供体 1 与糖基受 体 4在路易斯酸催化, 室温搅拌下偶联, 得到三糖 5, 将 5在酸性条件 下水解得到 6、 接着乙酰化得到 7、 再选择性地脱掉 1位的乙酰基得到 8, 8与三氯乙睛反应, 得到三糖的糖基供体 9。 如下图所示:
Figure imgf000006_0001
6 7
Figure imgf000006_0002
式中: R = CH3CO- (乙酰基) 或 PhCO- (苯甲酰基)
X = Br或 C1 或酯基如 CC13C(NH)0- (三氯乙酰亚胺基) 2)制备三糖受体:
用类似的方法合成 6位为游离羟基的葡萄糖的三糖受体, 即用 6-0- 非苯甲酰基 -2, 3, 4-三 -0-苯甲酰基 -α-D-葡萄糖的糖基供体 (或 6-0-非 乙酰基 -2, 3, 4-三 -0-乙酰基 -a-D-葡萄糖的糖基供体) 10, 使其与双糖 受体 4在路易斯酸催化下, 室温搅拌下偶联得到相应的三糖 11, 选择性 地水解掉 6位的非苯甲酰基, 即得到三糖受体 12, 如下图所示:
Figure imgf000007_0001
式中: R = PhC0- 时 R, = CH3CO- 或 ClCH2CO- 或 Ph3C-,
R = CH3C0- 时 R, = ClCH2CO- 或 Ph3C-,
X = Br或 CI 或酯基如 CCl3C(NH)0-0
3) 制备六糖:
将等摩尔比的 三糖供体 9与三糖受体 12在路易斯酸催化下, 室温 搅拌下偶联,得到部分保护的六糖 13,水解掉异丙叉基同时扩环得到 14, 将 14乙酰化, 然后用硷脱掉酰基, 即得到游离的六糖 16。 如下图所示:
Figure imgf000008_0001
Figure imgf000008_0002
式中: R = CH3CO- 或 PhCO- X = Br 或 CI 或酯基如
CC13C(=NH)0- 在所述的三糖供体制备中, R基为乙酰基或笨甲酰基, X 为溴、 氯 或酯基如三氯乙酰亚胺酯。
在所述的三糖受体制备中, R基为苯甲酰基时, R,基为乙酰基或氯 乙酰基或三笨甲基; R基为乙酰基时, R,基为氯乙酰基或三笨甲基, X 为溴、 氯或三氯乙酰亚胺酯。
在所述的保护的六糖中, R基为乙酰基或苯甲酰基。
在所述的路易斯酸为银盐如碳酸银、 三氟甲磺酸银, 或为三氟化硼,
6 或为三氟甲磺酸三甲基硅酯。
在本发明所述六糖的制备方法中, 已大为简化了该六糖的反应步 骤, 与现有的制备方法相比, 本发明省略了十几个反应步骤, 且所用试 剂价廉、 易得, 使该六糖的制备成本大为降低, 致使其工业化生产成为 可能。
本发明所制备的六糖, 到目前为止在世界上尚没有进行批量生产或 规模化生产。 而本发明所述的六糖的制备方法, 现已实现工业化生产, 此为世界首创。 实现本 明的聂佳方式
下面结合实施例对本发明进行详细地说明。
实施例
1. 三糖供体 9的制备:
( 1 ) 双糖 3的制备
Figure imgf000009_0001
笨甲酰基葡萄糖三氯乙酰亚胺酯 1 (5.6克, 7.56 毫摩尔) 溶于 40 毫升二氯甲烷中, 得溶液 A, 1,2 : 5,6-二 异丙叉基葡萄糖 2 (2.8克, 10.77.毫摩尔) 溶于 20毫升二氯甲烷中, 得溶液 B, 将 B与 A混合得溶 液 C, 向 C中加入三氟甲磺酸三甲基硅酯 (TMSOTF, 0.08毫摩尔) , 在室温反应二小时后, 薄层色谱分析表明反应完成。 将反应液以 100 毫 升二氯甲烷稀释, 用 0.5%的 HC1/CH30H溶液稀释并搅拌 1 小时, 选择 性地水解掉 5,6-0-异丙叉基, 三乙胺中和, 减压蒸掉溶剂, 用硅胶柱层 析法精制, 用乙酸乙酯 /石油醚 (1/2 ) 作为淋洗液淋洗, 收集相应组分, 得到双糖 4(5.43克) , 产率: 90%。
(2) 三糖 5的制备:
Figure imgf000010_0001
苯甲酰基葡萄糖三氯乙酰亚胺酯 1 (3.7克, 5.01 毫摩尔) 溶于 30 毫升二氯甲烷中, 得溶液 A, 双糖 4 (4.0克, 5.01 毫摩尔) 溶于 30毫 升二氯甲烷, 得溶液 B, 将 B与 A混合得溶液 C, 在冰盐浴冷却下, 向 C中加入 TMSOTF 0.05毫摩尔, 然后自然恢复至室温, 在室温反应 3小 时后, 薄层色谱分析表明反应完成。 将反应液以三乙胺中和, 用水洗涤, 弃去水相, 有^ ^目在真空下抽干, 粗产物用硅胶柱层析法精制, 用乙酸 乙酯 /石油醚(1/1 )作为淋洗液淋洗,收集相应组分,得到纯的三糖 5 (5.86 克) , 产率: 85%。
(3 ) 三糖 7的制备:
Figure imgf000010_0002
三糖 5 (6.0克, 436毫摩尔) 溶于 50毫升 80%乙酸水溶液中, 加 入 10毫升 1M硫酸, 在 60 °C搅拌下水解, 用薄层色谱分析检测反应, 反应完成后, 将反应液在减压下蒸干, 粗产物用硅胶柱层析法精制, 用 乙酸乙酯 /石油醚 (1/1 ) 作为淋洗液淋洗, 收集相应组分, 得到纯的三 糖 6(5.24克) 产率: 90%, 将 6按常规方法用乙酸酐 /吡啶定量乙酰化, 得到全酰化的三糖 7。 (4) 三糖供体 9的制备:
Figure imgf000011_0001
三糖 7 (5.5克, 3.76毫克分子) 溶于 30毫升二甲基甲酰胺中, 加 入 NH4HC03 3 克, 反应在室温下进行, 并用薄层色谱分析检测反应, 反应完成后, 减压蒸干溶剂, 粗产物用硅胶柱层析法精制, 用乙酸乙酯 / 石油酸 ( 1/1 )作为淋洗液淋洗, 收集相应组分, 得到纯的三糖 8(4.8克), 产率: 90%, 将 8 (6克, 4.2毫克分子) 溶于 40毫升二氯甲烷中, 加入 三氯乙睛 3 毫升, 碳酸钟 3克, 室温下搅 23 小时, 薄层分析表明反应 完成, 用常规方法进行后处理, 粗产物用硅胶柱层析法精制, 用乙酸乙 酯 /石油醚( 1/1 )作为淋洗液淋洗,收集相应组分,得到纯的三糖供体 9(6.01 克), 产率: 91%。
2. 三糖受体 12的制备:
Figure imgf000011_0002
将 6-0-乙酰基 _2, 3, 4_三 -0-苯甲酰基 -CC-D-葡萄糖三氯乙酰亚胺酯 10 (5克, 6.26毫克分子) 及双糖受体 4(4.86克, 6.89毫克分子)溶于 50 毫升二氯甲烷中, 在冰盐浴冷却下加入 TMSOTf (0.08毫摩尔), 然后自 然恢复至室温, 在氮气保护, 室温、 搅拌下进行反应, 用薄层分析检测, 反应完成后, 用常规方法后处理, 粗产物用硅胶柱层析法精制, 用乙酸 乙酯 /石油醚 (1/1 ) 作为淋洗液淋洗, 收集相应组分, 得到三糖 11(6.99 克) , 产率 :85%。 将 11 (8 克,. 6.09 毫克分子) 溶于含有 0.5%的干燥 氯化氢的甲醇溶液, 在室温、 搅拌下反应, 并以薄层分析检测, 当检测 表明乙酰基已被选择性移除时, 加碳酸钠中和反应物, 减压下蒸干溶剂, 粗产物用硅胶柱层析法精制, 用乙酸乙酯 /石油醚 (1/1 ) 作为淋洗液淋 洗, 收集相应组分, 得到三糖 12 (6.97克) , 产率: 90%。
3. 六糖 16的制备
Figure imgf000012_0001
将三糖供体 9 (3克, 1.92亳克分子) 与三糖受体 12 (2.44克, 1.92 毫克分子)溶于 40毫升二氯甲烷中, 在冰盐浴冷却下加入 TMSOTf (0.02 毫摩尔), 然后自然恢复至室温, 在氮气保护、 室温、 搅拌下进行反应, 用薄层分析检测, 反应完成后, 用常规方法后处理, 粗产物用硅胶柱层 析法精制, 用乙酸乙酯 /石油醚 (2/1 ) 作为淋洗液淋洗, 收集相应组分, 得到六糖 13 (4.11克) , 产率 80%。 将 13 (3.5克, 1.31毫摩尔) 溶于 40毫升 80%乙酸水溶液中, 在 60。C搅拌下水解, 用薄层色谱分析检测 反应, 反应完成后, 将反应液在减压下蒸干, 粗产物用硅胶柱层析法精 制, 用乙酸乙酯 /石油醚 (2/1 ) 作为淋洗液淋洗, 收集相应组分, 将其 按常规方法用乙酸酐 /吡啶定量乙酰化, 得到全酰化的六糖 15 (3.25克)。 产率 90%。 将 15 (2克, 0.72毫克分子) 溶于 40毫升甲醇中, 用氨饱 和, 室温过夜, 用薄层分析检测反应, 反应完成后, 减压蒸干溶剂, 用 二氯甲烷洗涤, 弃掉洗涤液,得到粉末装产物 16 (681毫克),产率 95%。 工业应用 4生
本发明所述的六糖的制备方法,是采用全新的思路,即以 1,2:5,6-二 -0- 异丙叉基葡萄糖为起始原料,所述的制备方法与现有的制备方法相比较具 有步骤筒单、 省时、 省力、 成本低廉并能进行批量生产等优点.因此,本 发明为生产具有生物活性、 可作为农药的寡糖激活剂六糖提供一种最新 的极具工业应用价值的制备方法.

Claims

权利要求
1. 一种用于制备下式 16的六糖的方法
其特征在于, 该方法包括:
Figure imgf000014_0001
1)制备三糖供体:
将具有一个葡萄糖基的酰基葡萄糖的三氯已酰亚胺酯或 1¾代物作为 糖供体,以 1,2:5 :6-二 -0-异丙叉基保护的葡萄糖作为糖基受体,将所述的糖 基供体与糖基受体分别溶于 ι¾代烷烃中, 然后将二者混合,在路易斯酸催 化剂存在下,进行反应制备出 1→3 )8连接的双糖,选择性地水解掉 5,6-0- 异丙叉基,得到 5,6位为游离羟基的双糖, 其作为糖基受体,将一糖的糖基 供体与双糖的糖基受体在路易斯酸催化剂存在下进行偶糖反应得到三糖, 然后将该三糖在酸性条件下水解,对 1位, 2位进行酰化反应,选择性地脱 掉 1位的酰基, 再将其 化制得三糖供体;
2)制备三糖受体:
用 6位与 2, 3, 4位上具有不同酰基的 2-D-葡萄糖作为糖基供体,使 其与上述的双糖受体在路易斯酸催化剂存在下进行偶联反应,得到相应的 三糖,选择性水解掉 6位上的酰基,得到三糖受体;
3)制备六糖:
将上述制备的三糖供体和三糖受体在路易斯酸催化剂存在下进行偶 联反应得到部分保护的六糖,水解掉该六糖的异丙叉基同时扩环得仅 1 位、 2位为游离羟基的六糖,再对 1位 2位进行酰化反应,然后用碱脱掉全 部酰基即得到游离的六糖 16。
2. 根据要求 1所述的方法, 其特征在于, 所述的三糖供体按下述步骤制备:
以 1摩尔的酰基葡萄糖 1为糖基供体, 以 1.2摩尔的 1,2:5,6-二 -0- 异丙叉基保护的葡萄糖 2 为糖基受体, 将糖基供体与糖基受体分别溶于 二氯甲烷中, 然后将二者混合, 在路易斯酸催化, 室温搅拌下, 反应 2- 4小时, 制备出 1, 3-β-连接的双糖 3, 选择性地水解掉 5,6-0-异丙叉基, 得到 5,6位为游离羟基的双糖 4, 再使等摩尔比的糖基供体 1 与糖基受 体 4在路易斯酸催化, 室温搅拌下偶联, 得到三糖 5, 将 5在酸性条件 下水解得到 6, 接着乙酰化得到 7, 再选择性地脱掉 1位的乙酰基得到 8, 8与三氯乙睛反应, 得到三糖的糖基供体 9,如下图所示:
Figure imgf000015_0001
8 9 式中:
R = CH3CO-或 PhCO- ,
X = Br或 CI 或 CC13C(NH)0- 。
3. 根据权利要求 1所述的方法,
其特征在于, 所述的三糖受体按下述步骤制备:
用类似的方法合成 6位为游离羟基的葡萄糖的三糖受体, 即用 6-0- 非苯甲酰基 -2, 3, 4-三 -0-苯甲酰基 -ot-D-葡萄糖的糖基供体或 6-0-非乙 酰基 -2, 3, 4-三 -0-乙酰基 -0C-D-葡萄糖的糖基供体 10, 使其与双糖受体 4在路易斯酸催化下, 室温搅拌下偶联得到相应的三糖 11, 选择性地水 解掉 6位的非苯甲酰基, 即得到三糖受体 12, 如下图所示:
Figure imgf000016_0001
式中:
当1 = ?11(:0- 时, R, = CH3C0- 、 C1CH2C0- 或 Ph3C- 当 R = CH3C0- 时, R, = C1CH2C0- 或 Ph3C- ,
X = Br、 CI 或 CC13C(NH)0- 。
4. 根据权利要求 1所述的方法,
其特征在于, 所述的六糖按下述步骤制备:
将等摩尔比的 三糖供体 9与三糖受体 12在路易斯酸催化下, 室温 搅拌下偶联,得到部分保护的六糖 13,水解掉异丙叉基同时扩环得到 14, 将 14乙酰化, 然后用硷脱掉酰基, 即得到游离的六糖 16,如下图所示:
Figure imgf000017_0001
式中: R = CH3CO-或 PhCO-
X = Br或 CI 或 CC13C(=NH)0-
5. 权利要求 1所述的方法,
其特征在于, 所述的路易斯酸为银盐、 三氟化硼或三氟甲磺酸三甲基 硅酯。
6. 权利要求 5所述的方法,
其特征在于, 所述的银盐为碳酸银或三氟甲磺酸银。
PCT/CN2000/000225 1999-09-30 2000-08-07 Procede de preparation d'hexasaccharide WO2001023397A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU64241/00A AU6424100A (en) 1999-09-30 2000-08-07 A method for preparation of hexasaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB991197577A CN1136223C (zh) 1999-09-30 1999-09-30 植物自我防卫系统激活剂六糖的简易合成
CN99119757.7 1999-09-30

Publications (1)

Publication Number Publication Date
WO2001023397A1 true WO2001023397A1 (fr) 2001-04-05

Family

ID=5281083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000225 WO2001023397A1 (fr) 1999-09-30 2000-08-07 Procede de preparation d'hexasaccharide

Country Status (3)

Country Link
CN (1) CN1136223C (zh)
AU (1) AU6424100A (zh)
WO (1) WO2001023397A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892740B (zh) * 2018-06-19 2022-01-25 艾立斯特(合肥)生物科技有限公司 一种3,6位支化葡聚六糖的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188770A (zh) * 1997-12-30 1998-07-29 中国科学院生态环境研究中心 一种以糖的原酸酯为关键中间体的区选及立体选择性合成寡糖的方法
CN1242372A (zh) * 1998-07-17 2000-01-26 中国科学院生态环境研究中心 二糖及三糖原酸酯及其合成方法
CN1242371A (zh) * 1998-07-17 2000-01-26 中国科学院生态环境研究中心 以三糖原酸酯为关键中间体的植物免疫系统激活剂六糖和七糖的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188770A (zh) * 1997-12-30 1998-07-29 中国科学院生态环境研究中心 一种以糖的原酸酯为关键中间体的区选及立体选择性合成寡糖的方法
CN1242372A (zh) * 1998-07-17 2000-01-26 中国科学院生态环境研究中心 二糖及三糖原酸酯及其合成方法
CN1242371A (zh) * 1998-07-17 2000-01-26 中国科学院生态环境研究中心 以三糖原酸酯为关键中间体的植物免疫系统激活剂六糖和七糖的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARBOHYDRATE RESEARCH, vol. 315, 1999, pages 117 - 127 *
TETRAHEDRON LETTERS, vol. 39, 1998, pages 1937 - 1940 *

Also Published As

Publication number Publication date
CN1136223C (zh) 2004-01-28
CN1290706A (zh) 2001-04-11
AU6424100A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
JPH01180894A (ja) アミノ糖誘導体の新規な製造法
JP3231765B2 (ja) デメチルエピポドフィロトキシンの製造方法
AU2010250802B2 (en) A chemo-enzymatic approach to the synthesis of pimecrolimus
CN108610386B (zh) 一种取代苄基或取代苯基β-D-己糖醛酸糖苷的制备方法
WO2001023397A1 (fr) Procede de preparation d'hexasaccharide
CN108892740B (zh) 一种3,6位支化葡聚六糖的合成方法
CN103476782A (zh) N-取代的甘露糖胺衍生物及其制备方法和用途
CN108715875A (zh) 酶化学法合成结构明确的硫酸肝素寡糖的方法
WO2008116387A1 (fr) Procédé de fabrication de taxol et de dérivés de taxol
Zhang et al. An Efficient and Concise Synthesis of a β-(1→ 6)-linked D-galactofuranosyl Hexasaccharide
Quan et al. The synthesis of amphipathic prodrugs of 1, 2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol
CN1072676C (zh) 以三糖原酸酯为关键中间体的植物免疫系统激活剂六糖和七糖的合成方法
JPH093088A (ja) アミノ二糖及びキチン又はその類似多糖類の製造方法
CN107964029B (zh) 4,7-二甲氧基-n-乙酰神经氨酸-荧光素及其中间体的新合成方法
Tiwari et al. Synthesis of photolabile group protected anomeric acetals and its application in carbohydrate synthesis with the assistance of continuous flow photo-reactor
Ma et al. Synthesis of two oligosaccharides, the GPI anchor glycans from S. cerevesiae and A. fumigatus
US7605255B2 (en) Non-animal based lactose
US4301276A (en) Synthesis of daunosamine hydrochloride and intermediates used in its preparation
Vyplel et al. Synthesis of fluorinated analogues of lipid A
Zhang et al. Synthesis of an xylosylated rhamnose pentasaccharide, the repeating unit of the O-chain polysaccharide of the lipopolysaccharide of Xanthomonas campestris pv. begoniae GSPB 525
Joshi et al. A convenient stereoselective synthesis of beta-d-glucopyranosides
CN112538507B (zh) 复杂序列壳二糖的制备方法
JP2000502068A (ja) 固相有機合成
Sakairi et al. Synthesis of a 4′-amino-4′, 6′-dideoxymaltose derivative as a synthon of an α-d-glucosidase inhibitor
JPH03264595A (ja) 新規なグリコシル化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP