WO2001020410A1 - Systeme de commande de moyens de production - Google Patents

Systeme de commande de moyens de production Download PDF

Info

Publication number
WO2001020410A1
WO2001020410A1 PCT/JP2000/006362 JP0006362W WO0120410A1 WO 2001020410 A1 WO2001020410 A1 WO 2001020410A1 JP 0006362 W JP0006362 W JP 0006362W WO 0120410 A1 WO0120410 A1 WO 0120410A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
safety
related circuit
unit
high level
Prior art date
Application number
PCT/JP2000/006362
Other languages
English (en)
French (fr)
Inventor
Masayoshi Sakai
Koichi Futsuhara
Original Assignee
The Nippon Signal Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nippon Signal Co., Ltd. filed Critical The Nippon Signal Co., Ltd.
Priority to EP00961064A priority Critical patent/EP1132787A4/en
Publication of WO2001020410A1 publication Critical patent/WO2001020410A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40201Detect contact, collision with human

Definitions

  • the present invention relates to a control system for a production facility having a movable part of a machine, and more particularly to a technique related to safety of the system.
  • the main functions of the system that controls the production equipment are operations related to production efficiency and the quality of products, such as the operating position, speed, and tonnolek of the moving parts.
  • a collision avoidance function is required.
  • the part that realizes the main functions of the system that controls the production equipment is called the non-safety-related circuit part in the sense that it is not necessarily related to safety, and avoids collision between the movable parts of the machine and the human body.
  • the part that realizes the function of performing the function is called a safety-related circuit part.
  • the configuration of the non-safety-related circuits is complicated because they perform extremely advanced operations. Usually under computer control.
  • safety-related circuits are much simpler than non-safety-related circuits.
  • the non-safety-related circuit section and the safety-related circuit section are not separated from each other, and use PLCs (programmable magic controllers, commonly known as sequencers). It was configured as a circuit. Therefore, in order to prove the safety of safety-related circuits, in addition to the safety of the safety-related circuits themselves, it is necessary to prove that failures in non-safety-related circuits do not affect the safety-related circuits. I had to. The functions of the non-safety-related circuits are complicated, and the work of analyzing the effects of this defect is extremely complicated.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a production equipment control system that facilitates system safety evaluation. It is another object of the present invention to provide a production equipment control system that does not affect the safety evaluation of the safety-related circuit section regardless of how the non-safety-related circuit section is changed.
  • the production equipment control system includes a safety-related circuit unit and a non-safety-related circuit unit, and the safety-related circuit unit and the non-safety-related circuit unit are separated from each other in terms of circuit.
  • the safety-related circuit has a function of avoiding collision between the moving parts of the machine and the human body, and generates high-level energy only when itself is normal, and generates low-level energy when self-failure occurs.
  • the non-safety-related circuit section has a function of controlling the operation of the machine movable section, and the safety-related circuit section generates the high-level energy only when the safety-related circuit section generates high-level energy. It is characterized by being associated with the safety-related circuit section so that the operation of the movable section can be controlled.
  • the production equipment control system includes the non-safety-related circuit unit.
  • the non-safety-related circuit unit has a function of controlling operation of the machine movable unit. Therefore, it is possible to perform major operations related to production efficiency and product purchase, such as the operating position, speed, and torque of the moving parts of the machine.
  • the production equipment control system includes a safety-related circuit unit. Since the safety-related circuit has the function of avoiding collision between the machine moving part and the human body, it is possible to prevent the occurrence of a serious disaster due to the collision between the machine moving part and the human body.
  • safety-related circuits generate high-level energy only when they are normal, and generate low-level energy when they fail.
  • Non-safety-related circuits have safety-related circuits. It is associated with safety-related circuitry so that the operation of the machine's moving parts can be controlled only when the part is generating high levels of energy. Therefore, only when the safety-related circuits are operating normally, the non-safety-related circuits can control the operation of the movable parts of the machine. In the event of a failure, the safety-related circuits do not generate high-level energy, so the non-safety-related circuits do not control the operation of the machine's movable parts. Therefore, when a safety-related circuit A collision between the machine movable part and the human body can be reliably avoided.
  • the production equipment control system is characterized in that the safety-related circuit section and the non-safety-related circuit section are separated from each other in terms of circuit. According to a powerful configuration, the safety evaluation of the control system only needs to be performed on the safety-related circuit section, and the safety evaluation becomes extremely easy. Moreover, no matter how the non-safety-related circuit section is changed, it will not affect the safety evaluation of the safety-related circuit section.
  • the safety-related circuit section includes a manual stop operation signal by an operator, a start operation signal based on manual or automatic operation, an absence detection signal indicating absence of an operator in an area where a collision is likely, and a manual operation.
  • An input signal including a driving intention detection signal at the time is supplied. According to this configuration, it is possible to realize the configuration of the collision avoidance portion in consideration of the operation mode of the mechanical equipment.
  • a monitoring unit can be included.
  • the monitoring unit monitors an operation range of the mechanical movable unit and a speed of the mechanical movable unit, and supplies a monitoring signal to the safety-related circuit unit.
  • the operation of the machine movable section can be performed based on the operator's drive intention while confirming the operation state of the machine movable section, so that the safety during manual operation is improved.
  • FIG. 1 is a block diagram showing one embodiment of a production equipment control system according to the present invention.
  • FIG. 2 is a diagram showing a specific circuit configuration of a safety-related circuit section included in the industrial equipment control system according to the present invention.
  • FIG. 3 is a time chart illustrating the operation of the self-holding unit included in the industrial equipment control system according to the present invention.
  • FIG. 4 is a time chart for explaining the operation of the off-delay part and the on-delay part included in the industrial equipment control system according to the present invention.
  • FIG. 5 is a diagram showing a specific example of a circuit of a preprocessing unit included in the industrial equipment control system according to the present invention.
  • FIG. 6 is a block diagram showing a specific example of a monitoring unit added to the preprocessing unit shown in FIG. is there.
  • FIG. 7 is a waveform diagram illustrating the operation of the over-one speed monitoring unit included in the monitoring unit shown in FIG.
  • FIG. 1 is a block diagram showing one embodiment of a production equipment control system according to the present invention.
  • the illustrated production equipment control system 3 includes a safety-related circuit unit 1 and a non-safety-related circuit unit 2.
  • the safety-related circuit section 1 has a function to avoid collision between the machine movable section 4 and the human body (collision avoidance function), and generates high-level energy only when it is normal and low level when it fails. It has the characteristic of generating energy.
  • the final output of the safety-related circuit part 1 is indicated by the contact a of the electromagnetic relay K. When a high level of energy is generated across the coil of electromagnetic relay K, contact a closes. Only when the contact point a of the safety-related circuit section 1 is closed, the operation of the machine movable section 4 by the non-safety-related circuit section 2 becomes possible.
  • the non-safety related circuit section 2 has a function of controlling the operation of the machine movable section 4.
  • the non-safety related circuit section 2 does not take into account collision avoidance between the machine movable section 4 and the human body. Therefore, it is not necessary to prove the safety of the non-safety related circuit part 2, and it is not necessary to re-evaluate the safety when the non-safety related circuit part 2 is changed.
  • the non-safety-related circuit section 2 corresponds to, for example, an inverter servo power supply, and modulates the power supply to operate the output energy of the power source 41 included in the machine movable section 4. The output energy of the power source 41 is supplied to the mechanical load 42.
  • the non-safety-related circuit section 2 is connected to the safety-related circuit section 1 so that the operation of the machine movable section 4 can be controlled only when the safety-related circuit section 1 is generating high-level energy.
  • Associated. is made by the electromagnetic relay K in this embodiment. That is, only when the high level energy is generated at both ends of the coil of the electromagnetic relay K and the contact a is closed, Enables the operation of the mechanical movable section 4 by the.
  • the production equipment control system includes the non-safety-related circuit unit 2.
  • the non-safety related circuit section 2 has a function of controlling the operation of the machine movable section 4. Therefore, it is possible to perform main operations related to the production efficiency and the quality of the product, such as the operation position, speed, and torque of the machine movable section 4.
  • the safety-related circuit section 1 including the safety-related circuit section 1 according to the present invention has a function of avoiding collision between the machine movable section 4 and the human body, the safety related circuit section 1 The occurrence of a serious disaster due to a collision can be prevented.
  • the safety-related circuit unit 1 has a characteristic that it generates high-level energy only when itself is normal, and generates low-level energy when it fails. It is associated with the safety-related circuit section 1 so that the operation of the machine movable section 4 can be controlled only when the safety-related circuit section 1 is generating high-level energy. Therefore, only when the safety-related circuit section 1 is operating normally, the operation control of the machine movable section 4 by the non-safety-related circuit section 2 becomes possible. If the safety-related circuit unit 1 fails, it does not generate high-level energy, so the operation control of the machine movable unit 4 by the non-safety-related circuit unit 2 is not performed.
  • the production equipment control system is characterized in that the safety-related circuit unit 1 and the non-safety-related circuit unit 2 are separated from each other in terms of circuit. According to a powerful configuration, the safety evaluation of the control system only needs to be performed for the safety-related circuit unit 1, and the safety evaluation becomes extremely easy. Moreover, no matter how the non-safety-related circuit unit 2 is changed, it does not affect the safety evaluation of the safety-related circuit unit II.
  • the safety-related circuit unit 1 preferably includes a manual stop operation signal by an operator, a start operation signal based on manual or automatic operation, an absence detection signal indicating absence of an operator in an area where there is a possibility of collision, and a signal during manual operation.
  • An input signal including a driving intention detection signal is supplied, and a high level energy is generated only when the signal included in the input signal is at a high level. According to this configuration, it is possible to realize the configuration of the collision avoidance portion in consideration of the operation mode of the mechanical equipment.
  • the operation of machinery and equipment is usually a one-cycle periodic operation.
  • operation modes such as an operation mode in which cycle operation is performed multiple times continuously, an operation mode in which operation is started by a worker's start operation and stopped in one cycle, and an operation mode in which operation is stopped in one cycle while operation is stopped halfway. is there.
  • the operation mode is various, a part that is subjected to a collision regardless of the operation mode is provided.
  • the configuration is as follows.
  • FIG. 2 is a diagram showing a specific circuit configuration of the safety-related circuit unit 1 included in the industrial equipment control system according to the present invention. The figure shows the preferred example described above.
  • the safety-related circuit unit 1 includes a pre-processing unit 101 and a signal processing unit 102.
  • the preprocessing unit 101 converts the input signals yl to y7 into signals ⁇ 1 to ⁇ 4 and outputs the signals.
  • the contents of the input signals yl to y7 supplied to the preprocessing unit 101 are, for example, as follows.
  • the input signal y1 is a manual stop operation signal.
  • the manual stop operation signal y l is set to a low level L when a stop operation is performed on the machine movable unit 4 and to a high level H otherwise.
  • the input signal y2 is a start operation signal.
  • the start operation signal y2 is at a high level H when a start operation is performed on the machine movable section 4, and is at a low level L when no start operation is performed.
  • the starting operation includes both the starting operation for automatic operation and the starting operation for manual operation.
  • the input signal y3 is a driving intention detection signal.
  • the driving intention detection signal y3 becomes high level H when an operation based on the driver's driving intention is performed.
  • the input signal y4 is an absence detection signal.
  • the absence detection signal y4 becomes high level H when it is detected that no person is within the movable range of the machine movable unit 4.
  • the absence detection signal y 4 becomes low level L when a person is within the movable range of the mechanical movable unit 4.
  • the input signal y5 is an automatic operation signal.
  • the automatic operation signal y5 becomes high level H when an operation for automatic operation is performed.
  • the input signal y6 is a manual operation signal.
  • the manual operation signal y6 becomes high level H when the operation for the manual operation is performed.
  • the automatic operation signal y5 and the manual operation signal y6 are in a relationship such that when one of them is at a high level H, the other is at a low level L.
  • the input signal y7 is a machine-side operation instruction signal.
  • the machine-side operation instruction signal y7 becomes high level H when an instruction for operating the machine movable unit 4 is issued.
  • the preprocessing unit 101 converts the input signals y1 to y7 described above into signals x:! To x4 and outputs the signals.
  • Signal X :! The conditions for generating X4 are as follows.
  • the signal xl goes to a high level H, provided that the manual stop operation signal y1 is at a high level H (no stop operation has been performed).
  • signal X2 goes high H.
  • One is when the automatic operation signal y5 is at the high level H and the absence detection signal y4 is at the high level H (there is no person in the collision area) .
  • the other is when the manual operation signal y6 is at the high level H. This is when it is confirmed that there is no interference with automatic driving.
  • the signal x 3 indicates that the start operation (automatic or manual) is performed normally and the start operation signal y 2 When becomes high level H, it becomes high level H.
  • signal X4 goes high.
  • One is when the manual operation signal y6 is at a high level H and the driving intention detection signal y3 is at a high level H.
  • the other is when the automatic operation signal y5 is at a high level H and the machine-side operation instruction signal y7 is at a high level H.
  • the signal processing unit 102 includes the logical product operation units A 1 and A 2, the self-holding units M 1 and M 2, the amplification units T 1 and T 2, the electromagnetic relays K 1 and K 2, A delay section D 1 and an on-delay part D 2 are provided. Each part is constituted by an electric circuit.
  • the signals X 1 and X 2 are input to the AND operation unit A 1.
  • the AND operation unit A 1 When both the signals X 1 and X 2 are at the high level H 1, the AND operation unit A 1 generates a high-level H logical AND signal z 1.
  • Signal xl is high level H, provided that manual stop operation signal y1 is high level H (no stop operation is performed), and signal X2 is automatic operation signal y5 high level H
  • the absence detection signal y 4 is at the high level H (there is no person in the collision area)
  • the signal goes to the high level H. Therefore, one of the conditions for the AND operator A 1 to generate the AND signal z 1 of the high level H is as follows.
  • the signal x2 becomes high level H when the manual operation signal y6 is high level H and it is confirmed that there is no interference with automatic operation. Therefore, another condition for the AND operation unit A 1 to generate the AND signal z 1 of the high level H is as follows.
  • the self-holding unit Ml is triggered by the condition that the starting operation (automatic or manual) is normally performed and the signal X3 is at the high level H, and is supplied from the AND operation unit A1.
  • the self-held output signal z2 of the high level H is generated by self-holding the logical product signal z1 of the high level H.
  • the condition that the logical product signal z1 becomes the high level H is, as described above, when the condition J1 or the condition J2 is satisfied. Therefore, the self-holding output signal z2 output from the self-holding unit M1 has a high level H when the starting operation (automatic or manual) is normally performed and the condition J1 or the condition J2 is satisfied. become.
  • FIG. 3 is a time chart for explaining the operation of the self-holding unit Ml.
  • the self-holding unit Ml is triggered by the high-level H signal X3 supplied at time t11 (see Fig. 3 (a)), and at time t12, the high-level H logical product signal z1 is generated.
  • the self-holding function is activated and generates a high-level H self-holding output signal z2 (see Fig. 3 (c)).
  • the self-holding output signal z2 maintains the high level H by the self-holding function even when the signal X3 which is the trigger signal becomes the low level L.
  • the self-holding output signal z2 becomes low level at time t13 when the AND signal zl becomes low level L and self-holding is released.
  • the self-holding output signal z2 and the signal X4 are input to the AND operation unit A2.
  • the logical product operation unit A2 When both the self-holding output signal z2 and the signal X4 are at the high level H, the logical product operation unit A2 generates the logical product signal z3 of the high level H.
  • the self-holding output signal z2 becomes high level H when the start operation (automatic or manual) is performed normally and the condition J1 or the condition J2 is satisfied.
  • the signal x4 becomes high level H when the manual operation signal y6 is high level H and the driving intention detection signal y3 is high level H, or when the automatic operation signal y5 is high level H This is when the operation instruction signal y7 is at high level H. Therefore, the condition for the AND operation unit A 2 to generate the AND signal Z 3 of the high level H is as follows.
  • the high-level logical product signal z3 generated by the logical product operation unit A2 is supplied to the hold terminal of the self-holding unit M2.
  • the signal x5 is supplied to the trigger terminal of the self-holding unit M2.
  • the signal x5 is supplied in this embodiment through the series connection of the normally closed contacts bl and b2 of the electromagnetic relay Kl, ⁇ 2.
  • the self-holding unit M2 determines that the signal X5 is at a high level H (contacts bl and b2 are on) and the logical product signal Z3 supplied from the logical product arithmetic unit A2 is at a high level H At this time, it performs a self-holding operation and generates a high-level H self-holding output signal Z0 .
  • the condition that the logical product signal z 3 becomes high level H is, as described above, when the condition J 3 is satisfied.
  • the operation of the self-holding unit M2 is the same as that of the self-holding unit A1, and in the time chart shown in FIG. 3, the signal X3 is the signal X5, the signal Z1 is the signal z3, and the signal z2 is the signal What is necessary is just to replace it with Z0.
  • the self-holding output signal z0 output from the self-holding unit M2 is supplied to an off-delay part D1 and an on-delay part D2.
  • the off-delay section D1 and the on-delay section D2 are commonly connected on the input side, and the output side is individually connected to the amplification sections T1 and T2.
  • FIG. 4 is a time chart for explaining the operation of the off-delay part D1 and the on-delay part D2.
  • the self-holding unit M 2 is turned off and the high-level self-holding output signal z 0 is supplied to the delay unit D 1 and the on-delay unit D 2 (see FIG. 4 (a)). Then, the ON delay part D 1 outputs a high-level H signal z 4 at a time t 21 when the self-holding output signal z 0 is input (see FIG. 4B). A part of the ON delay D 2 is changed to a high level H at a time t 22 delayed by a predetermined on-delay time TD 1 from the time t 21 when the high-level H self-holding output signal Z 0 is supplied. The signal z5 is output (see Fig. 4 (c)).
  • the on-delay section D2 turns low at time t23 when the self-holding output signal z0 goes low. Be It outputs 5 x L signals (see Fig. 4 (c)).
  • the delay unit D1 outputs a low-level L signal z4 at a predetermined off-delay time TD2 at a time t24 delayed at a time t23 when the self-holding output signal z0 becomes low-level L. (See Fig. 4 (b)).
  • the signals z4 and z5 output from the off-delay section D1 and the on-delay section D2 are supplied to the width sections Tl and ⁇ 2.
  • the output signals of the amplifiers Tl and # 2 are supplied to the excitation coils S1 and S2 of the electromagnetic relays Kl and # 2 via the transformers # 1 and # 2, and sequentially excite the electromagnetic relays K1 and K2.
  • the electromagnetic relay Kl, ⁇ 2 When the electromagnetic relay Kl, ⁇ 2 is excited, its contacts a 1 and a 2 are closed, so that the non-safety-related circuit section 2 becomes operable. Power is supplied.
  • the electromagnetic relays Kl and ⁇ 2 are sequentially excited, the contacts b1 and b2 are sequentially opened, and when the contact b1 is opened, the supply of the trigger signal X5 to the self-holding unit M2 is stopped. However, since the self-holding unit M2 continues the self-holding operation as long as the high-level H signal z3 is supplied, the high-level H self-holding output signal z0 is maintained.
  • a self-holding output signal z0 of a high level H is supplied from the self-holding unit M2 to the off-delay unit D1 and the on-delay part D2 (see FIG. 4 (a)).
  • the contact a1 is turned on substantially at time t21 when the self-holding output signal z0 is input (see FIG. 4 (b)).
  • the contact a2 is turned on at the time t22 which is delayed by the on-delay time TD1 of the part D2 of the on-delay (see FIG. 5 (c)).
  • the self-holding output signal z0 becomes low level L
  • the contact a1 turns off at the time t24 which is delayed by the off delay time TD2 of the off-delay part D1 (Fig. 4 (See (b)).
  • the contact a2 is turned off at time t23 when the self-holding output signal Z0 becomes low level L (see FIG. 4 (c)).
  • the power supply to the machine movable part 4 is from time t22 when the contact a2 is turned on to time t23 when the contact a2 is turned off.
  • the amplification unit T l, ⁇ 2 is configured to generate a high-level ⁇ ⁇ when there is an AC input signal and the circuit itself is normal (no self-oscillation). Circuits with such characteristics can be found in, for example, "The Institute of Electrical Engineers of Japan, 1991, No. 43 (March 1991) Kato, Sakai, Hoghara, Mukoden: Felsafe. In addition, in FIG.
  • the illustrated pre-processing 101 includes switches 21, 22, 31, 32, 41, 2. These switches 21 to 42 generate a low-level L signal when the contact is opened (circuit open), and generate a high-level H signal when the contact is closed (circuit short).
  • a switch 21 is a switch that opens a contact when pressed.
  • the switch 21 is responsible for a manual stop operation and generates a manual stop operation signal y1.
  • the switch 21 is always closed and generates a high-level H manual stop operation signal y1.
  • the contacts open, generating a low level H manual stop actuation signal y1.
  • Switches 31 and 32 are switches whose contacts close when pressed. Switches 31 and 32 generate start operation signals y 21 and 22. Switches 3 1 and 3 2 are always open and generate low-level L start operation signals y 2 1 and y 22 .When pressed, the contacts close and high level H start operation signals Generate y 2 1 and y 2 2. Switch 31 is for starting automatic operation, and switch 32 is for starting manual operation. It is for dynamic operation.
  • Switches 41 and 42 are switches that close the contacts when pressed.
  • the switch 41 is used to continue automatic operation.
  • the contact is always open and generates a low-level machine-side operation instruction signal y7.When the switch is pressed, the contact closes and the high-level H Generates the machine-side operation instruction signal y7.
  • Switch 42 is for continuous operation of manual operation.
  • the contact is always open and generates a low level L driving will detection signal y3.
  • the contact closes and the high level H Generates a driving intention detection signal y3.
  • the switch 22 is a switch for generating an automatic operation signal y5 and a manual operation signal y6, and means a switch for switching between automatic and manual operations, and has a configuration in which both are not closed at the same time. That is, when the switch 22 is closed at the position where the automatic operation signal y5 is generated, the switch 22 is always opened at the position where the manual operation signal y6 is generated and conversely closed at the position where the manual operation signal y6 is generated. When the automatic operation signal y5 is generated, it always opens at the position where the automatic operation signal y5 is generated.
  • the switch 22 having such a configuration is already known as a tablet system which permits the train to travel in a single track section of the railway system.
  • the high level H generated by the operation of the switches 21, 22, 31, 31, 32, 41, 42 is given by the voltage value of the power supply E.
  • An ND (logical product gate) 1 receives the automatic operation signal y5 and the absence detection signal y4 as input signals and generates a logical product signal thereof.
  • OR (OR gate) 1 receives the AND signal supplied from AND 1 and the manual operation signal y 6 as input signals, and generates a signal X 2 which is a logical sum signal thereof.
  • OR 2 receives the logical product signal of the automatic operation signal y 5 and the start operation signal y 21 and the logical product signal of the manual operation signal y 6 and the start operation signal y 22 as an input signal, and a signal X which is a logical sum thereof Generates 3.
  • OR 3 is the logical product signal of the automatic operation signal y5 and the machine side operation instruction signal y7, and An AND signal of the driving signal y6 and the driving intention detection signal y3 is used as an input signal, and a signal X4 that is a logical sum thereof is generated.
  • the operation of the switch 22 selects the automatic operation or the manual operation.
  • the automatic operation signal y5 becomes high level H.
  • the automatic operation signal y5 is supplied to AND1, and the logical product of the signal and the absence detection signal y4 is calculated.
  • the high-level AND signal output from AND 1 includes information that automatic S $ is selected and that the absence of an operator has been confirmed. This AND signal is passed through OR1 and taken out as signal x2 (high level).
  • the absence detection signal y4 and AND1 may be omitted and the automatic operation signal y5 may be directly extracted as a signal X2 via ⁇ R1.
  • the absence detection signal y4 is invalidated and the intention of manual operation is confirmed by the manual operation signal y6. That is, the switch 22 is inserted into the manual operation side, and the manual operation signal y6 becomes the high level H.
  • This manual operation signal y 6 is supplied to OR 1, and is extracted via OR 1 as signal x 2 (high level).
  • the signals X :! to X4 generated as described above are supplied to the signal processing unit 102 shown in FIG.
  • a monitoring unit can be included.
  • the monitoring unit monitors the operating range of the machine movable unit 4 and the speed of the machine movable unit 4, and supplies a monitoring signal to the safety-related circuit unit 1.
  • safety during manual operation can be further enhanced.
  • the operator performs the operation on the premise that the machine movable section 4 performs a predetermined operation at a predetermined speed.
  • the operator may not be able to rely on the operator to detect an event in which the machine movable section 4 deviates from a predetermined range or deviates from a predetermined speed while performing an operation. In such a case, it is necessary to have a monitoring function to discover these events on behalf of the worker.
  • the operation of the machine movable section 4 can be performed based on the operator's driving intention while confirming the operation state of the machine movable section 4, thereby ensuring safety during manual operation.
  • the performance is improved.
  • FIG. 6 is a block diagram showing a specific example.
  • the monitoring unit 5 receives the speed signal y11, the origin signal y12, and the position signal y13 as input signals, and outputs a signal X4.
  • the speed signal y 11 is a signal obtained by detecting the rotation speed of the mechanical movable unit 4 (see FIG. 1 and the like) with, for example, an encoder.
  • the position signal y 13 is obtained by the operation of the position switch 6.
  • the position switch 6 detects or confirms the operating range of the machine movable section 4 and includes, for example, a forced separation structure (a switch that opens a contact whenever the sensing section moves). Instead of the position switch 6, an encoder with operation monitoring can be used.
  • the monitoring unit 5 includes a failure monitoring unit 51, an overrun monitoring unit 52, an over-one speed monitoring unit 53, AND2, AND3, and ⁇ R4.
  • the failure monitoring unit 51 receives the speed signal y11 and the origin signal y12 as input signals and monitors the failure of the machine movable unit 4.
  • the overrun monitoring unit 52 detects an overrun when the machine movable unit 4 operates beyond the allowable range, based on the position signal y13 obtained by the operation of the position switch 6.
  • the overspeed monitoring section 53 receives the speed signal y11 as an input signal, and monitors whether the machine movable section 4 is in the over-one-speed state.
  • the speed signal y11, the origin signal y12, and the position signal y13 are normal values, output from the failure monitor 51, overrun monitor 52, and overspeed monitor 53.
  • the signals z 11, z 12 and z 14 are all high level H, and the signal z 15 output from AND 2 is high level H. Therefore, the signal z 16 output from the ND 3 becomes high level H, provided that the driving intention detection signal y 3 is at high level H. If the signal z 16 output from AND 3 is high H, the signal X 4 output from OR 4 will be high.
  • Speed signal y 1 at least one of the origin signal y 1 2 and the position signal y 1 4, if not normal, the signal z 1 5 output from the A ND 2 from goes low L, the output from the AND 3 The signal z 16 also goes low.
  • the machine-side operation instruction signal y7 is at the low level L
  • the signal X4 output from the OR 4 is at the low level L.
  • the speed signal y 1 1 and the origin It is detected that at least one of the signal y12 and the position signal y13 is abnormal.
  • the speed monitoring can be realized by an encoder with function monitoring, in this embodiment, a case where a delay circuit is used will be described. That is, the overspeed monitoring unit 53 shown in the embodiment includes an on-delay circuit 531. A rectifier circuit 532 and a capacitor 533 serving as a fall delay element are provided downstream of the on-delay circuit 53 1.
  • FIG. 7 is a waveform chart for explaining the operation of the overspeed monitoring unit 53 shown in FIG.
  • the speed signal y 11 becomes a pulse train with a period T S 1 as shown in FIG. 7 (a).
  • the pulse width PW1 of the period T S1 is selected so as to be longer than the on-delay time TD3 of the on-delay circuit 531. Therefore, when the machine movable part 4 is operating at the allowable speed, the output of the ON 'delay circuit 531 is turned on from the time when the pulse of the period TS 1 is input as shown in FIG. 7 (b). With a delay of time TD3, a pulse signal z13 occurs. Each time the pulse signal z 13 occurs, the capacitor 533 constituting the fall delay element is charged through the rectifier circuit 5 32. The terminal voltage of the capacitor 533 is supplied to AND 2 as a signal z 14 (see FIG. 7 (c)).
  • the speed signal y 11 becomes a pulse train having a period TS 2 shorter than the period TS 1 as shown in FIG. 7A.
  • the pulse width PW2 of the period TS2 is shorter than the ON delay time TD3 of the ON delay circuit 531, as shown in FIG.
  • the pulse signal z 13 no longer occurs.
  • the charging action on the capacitor 533 is lost, and the signal ⁇ 14, which is the terminal voltage of the capacitor 533, decreases with time, and as shown in FIG. AND 2 threshold V lower than th. Therefore, the signal z 15 output from AND 2 is at a low level, and the signal z 16 output from AND 3 is also at a low level.
  • the present invention has great industrial applicability because the change in the non-safety-related circuit section does not affect the safety evaluation of the safety-related circuit section and can facilitate the system safety evaluation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Safety Devices In Control Systems (AREA)
  • General Factory Administration (AREA)
  • Numerical Control (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Description

糸田
生産設備制御システム
〔技術分野〕
本発明は、 機械可動部を有する生産設備の制御システムに関し、 特に、 システ ムの安全性に係る技術に関する。
〔背景技術〕
機械可動部を有する生産設備において、 この生産設備を制御するシステムの主 要機能は、 機械可動部の動作位置、 速度、 トノレクなど、 生産効率及び生産品の品 質に関わる操作である。 し力 し、 機械可動部と人体の衝突により重大災害を生じ る場合、 衝突回避の機能が必要である。
本明細書では、 生産設備を制御するシステムの主要機能を実現する部分を、 必 ずしも安全に関わらないと言う意味で、 非安全関連回路部と称し、 機械可動部と 人体の衝突回避をする機能を実現する部分を安全関連回路部と称する。 非安全関 連回路部は極めて高度な操作を行うため、 その構成は複雑である。 通常は、 コン ピュータ制御による。 一方、 安全関連回路部は、 非安全関連回路部に比較して格 段に単純である。
この種の生産設備制御システムにおいて、 安全関連回路部が故障すると、 機械 可動部と人体との衝突回避の機能が損なわれることになる。 従って、 安全関連回 路部にはその不具合発生時には、 危険側に誤らないような性質が要求され、 安全 関連回路部の安全性の証明が求められる。
ところが、 従来、 この種の生産設備制御システムでは、 非安全関連回路部と安 全関連回路部とは分離されることなく、 P L C (プログラマブル口ジックコント ローラ、 通称シーケンサ) を用いて、 渾然一体の回路として構成されていた。 このため、 安全関連回路部の安全性を証明するには、 安全関連回路部自体の安 全性の他に、 非安全関連回路部の不具合が安全関連回路部に影響を与えないこと を証明しなければならなかった。 非安全関連回路部の機能は複雑であって、 この 不具合の影響を分析する作業は極めて煩雑である。 また、 非安全関連回路部を変 更する場合、 変更の結果が安全関連回路部に影響を与えないことを変更の度に評 価する必要があり、 その評価作業が極めて煩わしかった。 本発明は上記の事情に鑑みなされたもので、 システムの安全性評価を容易化し た生産設備制御システムを提供することを目的とする。 また、 非安全関連回路部 をどのように変更しても、 安全関連回路部の安全性評価に影響を与えない生産設 備制御システムを提供することを目的とする。
〔発明の開示〕
このため、 本発明に係る生産設備制御システムは、 安全関連回路部と、 非安全 関連回路部とを含み、 前記安全関連回路部と前記非安全関連回路部は、 回路的に 互いに分離されており、 前記安全関連回路部は、 機械可動部と人体の衝突回避に 預かる機能を有し、 自己が正常な場合に限り高レベルのエネルギーを発生し、 自 己の故障時は低レベルのエネルギーを発生する特性を備えており、 前記非安全関 連回路部は、 前記機械可動部の運転を制御する機能を有し、 前記安全関連回路部 が高レベルのエネルギーを発生しているときのみ、 前記機械可動部の運転を制御 することが可能であるように、 前記安全関連回路部に関連付けられていることを 特徴とする。
上述したように、 本発明に係る生産設備制御システムは、 非安全関連回路部を 含む。非安全関連回路部は、機械可動部の運転を制御する機能を有する。従って、 機械可動部の動作位置、 速度、 トルクなど、 生産効率及び生産品の品買に関わる 主要な操作を行うことができる。
また、 本発明に係る生産設備制御システムは、 安全関連回路部を含む。 安全関 連回路部は、 機械可動部と人体の衝突回避に預かる機能を有するから、 機械可動 部と人体の衝突による重大災害の発生を防止することができる。
しかも、 安全関連回路部は、 自己が正常な場合に限り高レベルのエネルギーを 発生し、 自己の故障時は低レベルのエネルギーを発生する特性を備えており、 非 安全関連回路部は安全関連回路部が高レベルのエネルギーを発生しているときの み、 機械可動部の運転を制御することが可能であるように、 安全関連回路部に関 連付けられている。 従って、 安全関連回路部が正常に動作している時のみ、 非安 全関連回路部による機械可動部の運転制御が可能になる。 安全関連回路部は、 故 障した場合は、 高レベルのエネルギーを発生しないから、 非安全関連回路部によ る機械可動部の運転制御は行われない。 従って、 安全関連回路部の故障時に、 機 械可動部と人体との衝突を確実に回避し得る。
本発明に係る生産設備制御システムは、 その特徴として、 安全関連回路部及び 非安全関連回路部は、 回路的に互いに分離されている。 力かる構成によれば、 制 御システムの安全性評価は、 安全関連回路部について行えばよく、 安全性の評価 が極めて容易になる。 しかも、 非安全関連回路部をどのように変更しても、 安全 関連回路部の安全性評価に影響を与えなレ、。
好ましくは、 前記安全関連回路部は、 作業者による手動停止操作信号、 手動ま たは自動運転に基づく起動操作信号、 衝突の可能性のある区域の作業者不在を示 す不在検出信号及び手動運転時の運転意志検出信号を含む入力信号が供給される。 この構成によれば、 機械設備の運転モードを配慮した衝突回避部分の構成を実現 できる。
本発明に係る生産設備制御システムの更に別の態様として、 監視部を含むこと ができる。 前記監視部は、 前記機械可動部の動作範囲及び前記機械可動部の速度 を監視し、 その監視信号を前記安全関連回路部に供給する。
発明の好ましい態様によれば、 機械可動部の動作状態を確認しつつ、 作業者の 運転意志に基づいて、 機械可動部の運転が可能となるため、 手動運転時の安全性 が向上する。
〔図面の簡単な説明〕
図 1は、 本発明に係る生産設備制御システムの一実施例を示すブロック図であ る。
図 2は、 本発明に係る産業設備制御システムに含まれる安全関連回路部の具体 的な回路構成を示す図である。
図 3は、 本発明に係る産業設備制御システムに含まれる自己保持部の動作を説 明するタイムチヤ一トである。
図 4は、 本発明に係る産業設備制御システムに含まれるオフ ·ディレ一部及び オン ·ディレ一部の動作を説明するタイムチヤ一トである。
図 5は、 本発明に係る産業設備制御システムに含まれる前処理部の具体的な回 路例を示す図である。
図 6は、 図 5に示した前処理部に付加する監視部の具体例を示すプロック図で ある。
図 7は、 図 6に示した監視部に含まれるオーバ一スピード監視部の動作を説明 する波形図である。
〔発明を実施するための最良の形態〕
以下に、 本発明に係る生産設備制御システムについて添付図面に基づいて説明 する。
図 1は、 本発明に係る生産設備制御システムの一実施例を示すプロック図であ る。
図示された生産設備制御システム 3は、 安全関連回路部 1と、 非安全関連回路 部 2とを含む。
安全関連回路部 1は、 機械可動部 4と人体の衝突回避に預かる機能 (衝突回避 機能) を有し、 自己が正常な場合に限り高レベルのエネルギーを発生し、 自己の 故障時は低レベルのエネルギーを発生する特性を備えている。 安全関連回路部 1 の最終出力は、 電磁リレ一 Kの接点 aで示してある。 電磁リ レー Kのコイル両端 に高レベルのエネルギーが発生すると、 接点 aが閉じる。 安全関連回路部 1の接 点 aが閉じているときに限り、 非安全関連回路部 2による機械可動部 4の操作が 可能となる。
非安全関連回路部 2は、 機械可動部 4の運転を制御する機能を有する。 非安全 関連回路部 2は、 機械可動部 4と人体の衝突回避に預からない。 従って、 非安全 関連回路部 2に関する安全性の証明は必要なく、 かつ、 非安全関連回路部 2の変 更に際して安全性の再評価も必要ない。 非安全関連回路部 2は、 例えば、 インバ —タゃサーボ電源が相当し、 電源を変調して、 機械可動部 4に含まれる動力源 4 1の出力エネルギーを操作する。 動力源 4 1の出力エネルギーは機械的負荷 4 2 に供給される。
非安全関連回路部 2は、 安全関連回路部 1が高レベルのエネルギーを発生して いるときのみ、 機械可動部 4の運転を制御することが可能であるように、 安全関 連回路部 1に関連付けられている。 このような関連付けは、 この実施例では、 電 磁リレ一Kによって行われる。 即ち、 電磁リレー Kのコイル両端に、 高レベルの エネルギーが発生し、 その接点 aが閉じているときに限り、 非安全関連回路部 2 による機械可動部 4の操作が可能となる。
上述したように、 本発明に係る生産設備制御システムは、 非安全関連回路部 2 を含む。 非安全関連回路部 2は、 機械可動部 4の運転を制御する機能を有する。 従って、 機械可動部 4の動作位置、 速度、 トルクなど、 生産効率及び生産品の品 質に関わる主要な操作を行うことができる。
また、 本発明に係る生産設備制御システムは、 安全関連回路部 1を含む 安全 関連回路部 1は、 機械可動部 4と人体の衝突回避に預かる機能を有するから、 機 械可動部 4と人体の衝突による重大災害の発生を防止することができる。
しかも、 安全関連回路部 1は、 自己が正常な場合に限り高レベルのエネルギー を発生し、 自己の故障時は低レベルのエネルギーを発生する特性を備えており、 非安全関連回路部 2は、 安全関連回路部 1が高レベルのエネルギーを発生してい るときのみ、 機械可動部 4の運転を制御することが可能であるように、 安全関連 回路部 1に関連付けられている。 従って、 安全関連回路部 1が正常に動作してい る時のみ、 非安全関連回路部 2による機械可動部 4の運転制御が可能になる。 安 全関連回路部 1は、 故障した場合は、 高レベルのエネルギーを発生しないから、 非安全関連回路部 2による機械可動部 4の運転制御は行われなレ、。 従って、 安全 関連回路部 1の故障時には、 機械可動部 4と人体との衝突を確実に回避し得る。 本発明に係る生産設備制御システムは、 その特徴として、 安全関連回路部 1及 び非安全関連回路部 2は、回路的に互いに分離されている。力かる構成によれば、 制御システムの安全性評価は、 安全関連回路部 1について行えばよく、 安全性の 評価が極めて容易になる。 しかも、非安全関連回路部 2をどのように変更しても、 安全関連回路部丄の安全性評価に影響を与えない。
安全関連回路部 1は、 好ましくは、 作業者による手動停止操作信号、 手動また は自動運転に基づく起動操作信号、 衝突の可能性のある区域の作業者不在を示す 不在検出信号及び手動運転時の運転意志検出信号を含む入力信号が供給され、 前 記入力信号に含まれる前記信号が高レベルのときのみ、 高レベルのエネルギーを 発生する。 この構成によれば、 機械設備の運転モードを配慮した衝突回避部分の 構成を実現できる。
即ち、 機械設備の運転は、 通常 1サイクルの周期的動作である。 しかし、 1サ ィクルを複数回連続して行う運転モード、 作業者の起動操作で運転を開始し 1サ ィクルで停止する運転モード、 途中で運転を停止しつつ 1サイクル動作する運転 モードなど、 運転モードは多様である。 上述した好ましい構成によれば、 運転開 始指示、運転停止指示、運転継続指示の 3通りの手動操作を備えることによって、 運転モードが多様であっても、 運転モードに依存せず衝突に預かる部分を構成で さる。
特に、 自動運転と手動運転の干渉に注目し、 運転モード切替えに伴う意図しな い起動の防止手段を実現できる。 手動運転では、 機械可動部 4は作業者運転意志 に忠実に従うことが要求される。 すなわち、 手動運転時に作業者の運転意志がな いにも拘わらず、 例えば機械側運転指令により、 誤つて機械可動部 4が動作する ような事象は回避されねばならない。 上述した好ましい態様によれば、 このよう な誤つた事象を回避できる。
図 2は、 本発明に係る産業設備制御システムに含まれる安全関連回路部 1の具 体的な回路構成を示す図である。 図は、 上述した好ましい例を示している。
図 2において、 安全関連回路部 1は、 前処理部 1 0 1、 信号処理部 1 0 2とを 含んでいる。
前処理部 1 0 1は入力された信号 y l〜y 7を、 信号 χ 1〜χ 4に変換して出 力する。 前処理部 1 0 1に供給される入力信号 y l〜y 7の内容は、 例えば、 次 の通りである。
〈入力信号 y 1 )
入力信号 y 1は手動停止操作信号である。 手動停止操作信号 y lは、 機械可動 部 4に対する停止操作がなされたときに低レべノレ L、 それ以外は高レベル Hにな る。
〈入力信号 y 2〉
入力信号 y 2は起動操作信号である。 起動操作信号 y 2は、 機械可動部 4に対 する起動操作がなされたときに高レベル Hになり、 起動操作がなされていないと きは、 低レベル Lである。 起動操作には、 自動運転のための起動操作及び手動運 転のための起動操作の両者が含まれる。
〈入力信号 y 3 ) 入力信号 y 3は運転意志検出信号である。 運転意志検出信号 y 3は、 運転者の 運転意志に基づく操作がなされたときに、 高レベル Hになる。
〈入力信号 y 4〉
入力信号 y 4は不在検出信号である。 不在検出信号 y 4は、 機械可動部 4の可 動範囲内に人がいないことが検出されたときに、 高レベル Hになる。 不在検出信 号 y 4は機械可動部 4の可動範囲内に人がいるときは、 低レベル Lになる。
〈入力信号 y 5〉
入力信号 y 5は自動運転信号である。 自動運転信号 y 5は、 自動運転のための 操作がなされたときに、 高レベル Hになる。
〈入力信号 y 6 )
入力信号 y 6は手動運転信号である。 手動運転信号 y 6は、 手動運転のための 操作がなされたときに、 高レベル Hになる。 自動運転信号 y 5及び手動運転信号 y 6は、 何れか一方が高レベル Hのとき、 他方は低レベル Lになるような関係に ある。
〈入力信号 y 7 >
入力信号 y 7は機械側運転指示信号である。 機械側運転指示信号 y 7は、 機械 可動部 4を運転するための指示がなされたときに、 高レベル Hになる。 前処理部 1 0 1は、上述した入力信号 y l〜y 7を、信号 x :!〜 x 4に変換して出力する。 信号 X :!〜 X 4の生成条件は次の通りである。
〈信号 X 1の生成条件〉
信号 x lは、 手動停止操作信号 y 1が高レベル H (停止操作が行われてないこ と) であることを条件に、 高レベル Hになる。
〈信号 X 2の生成条件〉
信号 X 2が高レベル Hになる場合は 2つある。 一つは、 自動運転信号 y 5が高 レベル Hで、不在検出信号 y 4が高レベル H (衝突区域に人不在〉 のときである。 もう一つは、 手動運転信号 y 6が高レベル Hで、 自動運転の干渉がないことが 確認されるときである。
〈信号 X 3の生成条件〉
信号 x 3は、 起動操作 (自動または手動) が正常に行われ、 起動操作信号 y 2 が高レベル Hになったとき、 高レベル Hになる。
〈信号 X 4の生成条 ί牛〉
信号 X 4が高レベル Ηになる場合は 2つある。 一つは、 手動運転信号 y 6が高 レベル Hで、運転意志検出信号 y 3が高レベル Hであるときである。 もう一つは、 自動運転信号 y 5が高レベル Hで機械側運転指示信号 y 7が高レベル Hのときで ある。
次に、 信号処理部 1 0 2は、 論理積演算部 A 1, A 2、 自己保持部 M 1, M 2、 増幅部 T 1, T 2、 電磁リ レ一 K 1, K 2、 オフ ·ディレー部 D 1、及び、 オン · ディレ一部 D 2を備える。 各部は電気回路によって構成される。
論理積演算部 A 1には、 信号 X 1及び X 2が入力される。 論理積演算部 A 1は 信号 X 1、 X 2の両者が高レベル H 1のとき、 高レベル Hの論理積信号 z 1を生 成する。 信号 x lは、 手動停止操作信号 y 1が高レベル H (停止操作が行われて ないこと) であることを条件に、 高レベル Hになり、 信号 X 2は自動運転信号 y 5が高レベル Hで、 不在検出信号 y 4が高レベル H (衝突区域に人不在) のとき 高レベル Hになる。 従って、 論理積演算部 A 1が高レベル Hの論理積信号 z 1を 生成する条件の一つは
( a ) 停止操作が行われていないこと、 及び
( b ) 自動運転操作が行われ、 かつ、 衝突区域内に人が存在しないことである。 これを、 条件 J 1とする。
また、 信号 x 2は、 手動運転信号 y 6が高レベル Hで、 自動運転の干渉がない ことが確認されるときに、 高レベル Hになる。 従って、 論理積演算部 A 1が高レ ベル Hの論理積信号 z 1を生成する条件のもう一つは、
( c ) 停止操作が行われていないこと、 及び、
( d ) 手動運転操作が行われ、 力つ、 自動運転の干渉がないことが確認されたこ と
である。 これを、 条件 J 2とする
論理積演算部 A 1で生成された高レベル Hの論理積信号 Z 1は、 自己保持部 M 1のホー/レド端子に供給される = 自己保持部 M 1のトリガ端子には、 信号 X 3が 供給される- 信号 x 3は、 起動操作 (自動または手動) が正常に行われ、 起動操 作信号 y 2が高レベル Hになったとき、 高レベル Hになる。
従って、 自己保持部 M lは、 起動操作(自動又は手動) が正常に行われていて、 信号 X 3が高レベル Hになっていることを条件にトリガされ、 論理積演算部 A 1 から供給される高レベル Hの論理積信号 z 1を自己保持し、 高レベル Hの自己保 持出力信号 z 2を生成する。
論理積信号 z 1が高レベル Hになる条件は、 既に述べたように、 条件 J 1また は条件 J 2を満たす場合である。 従って、 自己保持部 M 1から出力される自己保 持出力信号 z 2は、 起動操作 (自動または手動) が正常に行われていて、 条件 J 1または条件 J 2を満たす場合に、 高レベル Hになる。
図 3は自己保持部 M lの動作を説明するタイムチヤ一トである。
自己保持部 M lは、 時刻 t 1 1に供給された高レベル Hの信号 X 3によってト リガ (図 3 ( a ) 参照) され、 時刻 t 1 2に高レベル Hの論理積信号 z 1が入力 (図 3 ( b ) 参照) されたとき、 自己保持機能が働き、 高レベル Hの自己保持出 力信号 z 2 (図 3 ( c ) 参照) を生じる。 自己保持出力信号 z 2は、 トリガ信号 である信号 X 3が低レベル Lになっても、 その自己保持機能により、 高レベル H を維持する。 自己保持出力信号 z 2が低レベル Lになるのは、 論理積信号 z lが 低レベル Lになり、 自己保持が解除される時刻 t 1 3である。
論理積演算部 A 2には、 自己保持出力信号 z 2及び信号 X 4が入力される。 論 理積演算部 A 2は自己保持出力信号 z 2及び信号 X 4の両者が高レベル Hのとき、 高レベル Hの論理積信号 z 3を生成する。
自己保持出力信号 z 2が高レベル Hになるのは、 起動操作 (自動または手動) が正常に行われ、 かつ、 条件 J 1または条件 J 2を満たす場合である。 信号 x 4 が高レベル Hになるのは、 手動運転信号 y 6が高レベル Hで、 運転意志検出信号 y 3が高レベル Hであるとき、 または、 自動運転信号 y 5が高レベル Hで機械側 運転指示信号 y 7が高レベル Hのときである。 従って、 論理積演算部 A 2が高レ ベル Hの論理積信号 Z 3を生成する条件は、
( e ) 起動操作 (自動または手動) が正常に行われ、 つ、 条件 J 1または条件 J 2を満たすこと及び、
( f ) 手動運転信号 y 6が高レベル Hで、 運転意志検出信号 y 3が高レベル Hで あること、 または、 自動運転信号 y 5が高レベル Hで、 機械側運転指示信号 y 7 が高レベル Hであること
である。 これを条件 J 3とする。
論理積演算部 A 2で生成された高レベル Hの論理積信号 z 3は、 自己保持部 M 2のホールド端子に供給される。 自己保持部 M 2のトリガ端子には、 信号 x 5が 供給される。 信号 x 5は、 この実施例では、 電磁リ レー K l, Κ 2の常時閉成接 点 b l、 b 2の直列接続回路を通して供給される。
自己保持部 M 2は、 信号 X 5が高レベル H (接点 b l, b 2がオン) になって いて、 論理積演算部 A 2から供給される論理積信号 Z 3が高レベル Hになったと き、 自己保持動作をし、 高レベル Hの自己保持出力信号 Z 0を生成する。
論理積信号 z 3が高レベル Hになる条件は、 既に述べたように、 条件 J 3を満 たす場合である。 自己保持部 M 2の動作は、 自己保持部 A 1と同じであり、 図 3 に図示されたタイムチャートにおいて、 信号 X 3を信号 X 5、 信号 Z 1を信号 z 3、 信号 z 2を信号 Z 0に置き換えればよい。
自己保持部 M 2から出力された自己保持出力信号 z 0は、 オフ ·ディレ一部 D 1及びオン ·ディレ一部 D 2に供給される。 オフ ·ディレー部 D 1及びオン ·デ ィレー部 D 2は入力側が共通に接続され、 出力側が、 増幅部 T 1 , T 2に個別に 接続されている。
図 4はオフ ·ディレ一部 D 1及びオン ·ディレー部 D 2の動作を説明するタイ ムチヤートである。
時刻 t 2 1に、 自己保持部 M 2カゝらオフ 'ディレー部 D 1及びオン ·ディレー 部 D 2に、 高レベル Hの自己保持出力信号 z 0が供給 (図 4 ( a ) 参照) される と、 オン .ディレ一部 D 1は、 自己保持出力信号 z 0の入力された時刻 t 2 1に 高レベル Hの信号 z 4を出力 (図 4 ( b ) 参照) する。 オン ·ディレ一部 D 2は、 高レベル Hの自己保持出力信号 Z 0が供給された時刻 t 2 1力 ら、 予め定められ たオン遅延時間 T D 1遅れた時刻 t 2 2に、 高レベル Hの信号 z 5を出力 (図 4 ( c ) 参照) する。
次に、 時刻 t 2 3に、 自己保持出力信号 z 0が低レベル Lになると、 オン -デ ィレー部 D 2は、 自己保持出力信号 z 0が低レベル Lになる時刻 t 2 3に低レべ ル Lの信号 x 5を出力 (図 4 (c) 参照) する。 オフ 'ディレー部 D1は、 自己 保持出力信号 z 0が低レベル Lになる時刻 t 23力ゝら、 予め定められたオフ遅延 時間 T D 2遅れた時刻 t 24に低レベル Lの信号 z 4を出力 (図 4 ( b ) 参照) する。
オフ .ディレー部 D 1及びオン .ディレー部 D 2から出力された信号 z 4, z 5は、 增幅部 Tl, Τ 2に供給される。
増幅部 T l, Τ2の出力信号は、 トランス ΤΜΙ, ΤΜ2を介して、 電磁リ レ 一 Kl, Κ2の励磁コイル S l, S 2に供給され、 電磁リ レー K 1, K2を順次 励磁する。 電磁リレ一 Kl, Κ 2が励磁されると、 その接点 a 1, a 2が閉じる ので、 非安全関連回路部 2が運転可能となり、 この非安全関連回路部 2を介して 機械可動部 4に電源が供給される。 電磁リ レー Kl, Κ 2が順次励磁されると、 接点 b 1, b 2が順次オープンになり、 接点 b 1がオープンになった時点で自己 保持部 M 2に対するトリガ信号 X 5の供給が断たれるが、 自己保持部 M 2は、 高 レベル Hの信号 z 3が供給されている限り、 自己保持動作を継続するので、 高レ ベル Hの自己保持出力信号 z 0が維持される。
接点 a l, a 2の動作は、 図 4のタイムチャートに図示されたオフ 'ディレー 部 D 1、 及び、 オン ·ディレー部 D 2の動作に従う。
即ち、 時刻 t 21に、 自己保持部 M 2からオフ ·ディレー部 D 1及びオン ·デ ィレ一部 D 2に、 高レベル Hの自己保持出力信号 z 0が供給 (図 4 (a) 参照) されると、 接点 a 1は、 ほぼ、 自己保持出力信号 z 0の入力された時刻 t 21に オン (図 4 (b) 参照) となる。 接点 a 2はオン 'ディレ一部 D 2のオン遅延時 間 TD1遅れた時刻 t 22にオン (図 5 (c) 参照) となる。
次に、 日寺刻 t 23に、 自己保持出力信号 z 0が低レベル Lになると、 接点 a 1 はオフ'ディレ一部 D 1のオフ遅延時間 TD 2遅れた時刻 t 24にオフ(図 4 (b ) 参照) となる。 接点 a 2は、 自己保持出力信号 Z 0が低レベル Lになる時刻 t 2 3にオフ (図 4 (c) 参照) になる。 機械可動部 4に対する電源供給は、 接点 a 2がオンとなる時刻 t 22から、 接点 a 2がオフとなる時刻 t 23までである。 図 2に示す自己保持部 Ml、 M 2及び論理積演算部 A 1、 A 2は、 入力される 信号が高レベル Hで、 かつ、 回路自身が正常であるとき高レベル Hの出力を生成 するように構成される。 オン ·ディレー部 D 2及びオフ ·ディレー部 D 1は、 入 力される信号が高レベル Hで、 かつ、 回路自身が正常であるとき、 交流の出力を 生成するように構成される。 増幅部 T l、 Τ 2は、 交流の入力信号があって、 回 路自身が正常であるとき、 高レベル Ηを生成するように構成される (自己発振し ない)。 このような特性を備えた回路は、 例えば、 「平成 3年電気学会産業応用全 国大会、 No. 4 3 (1991年 8月) 加藤、 坂井、 蓬原、 向殿:フエ一ルセーフ ·ゥ インドウ · コンパレータ ZAN Dゲートの開発とその応用」 等の文献で公知であ また、 図 2において、 直列 2重系スィッチ O N/O F Fの順序操作は国際特許 公表 WO 9 6 / 3 0 9 2 3号公報で公知であり、 故障時 O N/O F Fの順序機能 が喪失したまま、 スィツチ O Nの操作が行われるような事象を生じない構成を実 現可能である。 図 2ではトランス増幅部を用いているが、 この代わりに連続的に O N側故障を監視する機能を備えた半導体スィツチで駆動してもよい。 このよう な構成も、 国際特許公表 WO 9 6 / 3 0 9 2 3号公報に開示されている c 図 5は前処理 1 0 1の更に具体的な回路例を示す図である。
図示された前処理 1 0 1は、 スィッチ 2 1 , 2 2, 3 1, 3 2, 4 1, 2 を含んでいる。 これらのスィッチ 2 1〜4 2は、 接点を開いた (回路オープン) とき、 低レベル Lの信号を生成し、 接点が閉じた (回路ショート) とき、 高レべ ル Hの信号を生成する。
図において、 スィッチ 2 1は、 押されたとき接点が開くスィッチである。 この スィツチ 2 1は、 手動の停止操作を担い、 手動停止操作信号 y 1を生成するスィ ツチであって、 常時は接点が閉じていて高レベル Hの手動停止操作信号 y 1を生 成し、 押されたとき、 接点が開いて、 低レベル Hの手動停止操作信号 y 1を生成 する。
スィッチ 3 1、 3 2は、 押されたとき接点が閉じるスィッチである。 スィッチ 3 1、 3 2は、 起動操作信号 y 2 1、 2 2を生成する。 スィッチ 3 1、 3 2は、 常時は接点が開いていて、 低レベル Lの起動操作信号 y 2 1、 y 2 2を生成し、 押されたとき接点が閉じて、 高レベル Hの起動操作信号 y 2 1、 y 2 2を生成す る。 スィツチ 3 1は自動運転の起動操作用であり、 スィツチ 3 2は手動運転の起 動操作用である。
スィッチ 4 1、 4 2は、 押されたとき接点が閉じるスィッチである。 スィッチ 4 1は、 自動運転の運転継続用であり、 常時は接点が開いていて、 低レベルしの 機械側運転指示信号 y 7を生成し、 押されたとき接点が閉じて、 高レベル Hの機 械側運転指示信号 y 7を生成する。
スィッチ 4 2は、 手動運転の運転継続用であり、 常時は接点が開いていて、 低 レベル Lの運転意志検出信号 y 3を生成し、 押されたとき、 接点が閉じて、 高レ ベル Hの運転意志検出信号 y 3を生成する。
スィッチ 2 2は、 自動運転信号 y 5及び手動運転信号 y 6を生成するスィッチ であり、 自動と手動の切替えスィッチを意味し、 両方が同時に閉じないような構 成としている。 すなわち、 スィッチ 2 2は、 自動運転信号 y 5を生成する位置で 閉じているとき、 手動運転信号 y 6を生成する位置では必ず開き、 逆に、 手動運 転信号 y 6を生成する位置で閉じているとき、 自動運転信号 y 5を生成する位置 では必ず開く構成としている。 このような構成のスィツチ 2 2は、 鉄道 ί言号シス テム単線区間で列車の進行を許可するタブレツト方式として、 既に公知である。 生産設備の場合、 具体的には、 作業者が手動運転を行う場合、 自動運転 (言号 y 5 を生成する位置からタブレツトを引抜いて、 手動運転信号 y 6を生成する位置に 差し込んで始めて手動運転が可能となり、 自動運転を行う場合は逆の操作を必要 とする構成を意味する。
スィッチ 2 1, 2 2, 3 1, 3 2, 4 1, 4 2の操作によって生じる高レベル Hは電源 Eの電圧値で与えられる。
A N D (論理積ゲ一ト) 1は自動運転信号 y 5と不在検出信号 y 4とを入力信 号とし、 その論理積信号を生成する。 O R (論理和ゲート) 1は A N D 1から供 給される論理積信号と手動運転信号 y 6とを入力信号とし、 その論理和 ί言号であ る信号 X 2を生成するつ
O R 2は自動運転信号 y 5及び起動操作信号 y 2 1の論理積信号と、 手動運転 信号 y 6及び起動操作信号 y 2 2の論理積信号とを入力信号とし、 その論理和で ある信号 X 3を生成する。
O R 3は自動運転信号 y 5及び機械側運転指示信号 y 7の論理積信号と、 手動 運転信号 y 6及び運転意志検出信号 y 3の論理積信号とを入力信号とし、 その論 理和である信号 X 4を生成する。
図 5において、 自動運転が選択される場合、 不在検出信号 y 4による作業者不 在確認を行う。 手動運転が選択される場合、 不在検出信号 y 4を無効化して、 手 動運転信号 y 6によつて手動運転の意志を確認する。
自動運転信号 y 5を生成する位置にタブレツトが差込まれている状態力;、 衝突 区域の作業者不在を示す場合 (例えば、 機械可動部 4を柵で囲いその出入りロド ァを、タブレツトを引抜くことなしには開けることできない場合)、図 5において、 不在検出信号 y 4と A N D 1を省略することができる。
次に図 5に示した回路における信号 X :!〜 X 4の生成について説明する。
まず、 図 5に示した回路構成において、 スィツチ 2 1の停止操作が行われてお らず、 スィツチ 2 1の接点が閉じている場合、 手動停止操作信号 y 1が高レベル Hであり、 従って、 信号 X 1は高レベル Hになる。
この状態で、 スィッチ 2 2の操作により、 自動運転または手動運転の選択操作 がなされる。
〈自動運転の場合〉
スィッチ 2 2が自動運転側に差し込まれた場合、 自動運転信号 y 5が高レベル Hになる。 この自動運転信号 y 5は A N D 1に供給され、 不存検出信号 y 4との 論理積が取られる。 この操作により、 自動運転が選択される場合において、 不在 検出信号 y 4による作業者不在確認が行われる。 従って、 A N D 1から出力され る高レベルの論理積信号は、 自動 S$云が選択されていること、 及び、 作業者不在 確認を行った旨の情報を含むことになる。 この論理積信号は、 O R 1を経て、 信 号 x 2 (高レベル) として取り出される。
自動運転信号 y 5を生成する位置にタブレツトが差込まれている状態が、 衝突 区域の作業者不在を示す場合 (例えば、 機械可動部 4を柵で囲いその出入り口ド ァを、タブレツトを引抜くことなしには開けることできない場合)、図 5において、 不在検出信号 y 4と A N D 1を省略し、 自動運転信号 y 5を〇R 1を介して直接 信号 X 2として取り出してもよい。
次に、 スィッチ 3 1が押され、 接点が閉じられると、 高レベル Hの起動操作信 号 y 2 1が生成される。 この起動操作信号 y 2 1は O R 2を経て、 信号 x 3 (高 レベル) として取り出される。
次に、 スィッチ 4 1が操作され、 接点が閉じられると、 高レベル Hの機械側運 転指示信号 y 7が生成される。この機械側運転指示信号 y 7は〇 R 3を経由して、 信号 x 4 (高レベル) として取り出される。
〈手動運転の場合〉
手動運転が選択される場合は、 不在検出信号 y 4を無効化して、 手動運転信号 y 6によって手動運転の意志を確認する。 即ち、 スィッチ 2 2が手動運転側に差 し込まれ、 手動運転信号 y 6が高レベル Hになる。 この手動運転信号 y 6は O R 1に供給され、 O R 1を経て、 信号 x 2 (高レベル) として取り出される。
次に、 スィッチ 3 2が押され、 接点が閉じられると、 高レベル Hの起動操作信 号 y 2 2が生成される。 この起動操作信号 y 2 2は O R 2を経て、 信号 X 3 (高 レベル) として取り出される。
次に、 スィッチ 4 2が操作され、 接点が閉じられると、 高レベル Hの運転意志 検出信号 y 3が生成される。 この M云意志検出信号 y 3は O R 3を経由して、 信 号 x 4 (高レベル) として取り出される。
上述のようにして生成された信号 X :!〜 X 4は、 図 2に示した信号処理部 1 0 2に供給される。
本発明に係る生産設備制御システムの更に別の態様として、 監視部を含むこと ができる。監視部は、機械可動部 4の動作範囲及び機械可動部 4の速度を監視し、 その監視信号を安全関連回路部 1に供給する。
この好ましい態様によれば、 手動運転時の安全性を更に高めることができる。 手動運転では、 機械可動部 4が予め定めた動作を予め定めた速度で行うことを前 提として、 作業者は操作を行う。 操作を行いつつ、 機械可動部 4が所定の範囲を 逸脱する事象、 あるいは、 所定の速度を逸脱する事象の発見を作業者に依存でき ない場合がある。 このような場合、 作業者に代わってこれら事象を発見するよう な監視機能が必要である。
本発明の好ましい態様によれば、 機械可動部 4の動作状態を確認しつつ作業者 の運転意志に基づレ、て機械可動部 4の運転が可能となるため、 手動運転時の安全 性が向上する。
図 6はその具体例を示すブロック図である。
監視部 5は、 速度信号 y 1 1、 原点信号 y 1 2及び位置信号 y 1 3を入力信号 とし、 信号 X 4を出力する。 速度信号 y 1 1は機械可動部 4 (図 1等参照) の回 転速度を、 例えばエンコーダ等で検出して得られた信号である。
位置信号 y 1 3はポジションスィッチ 6の動作によって得られる。 ポジション スィッチ 6は、 機械可動部 4の動作範囲を検出し、 または、 確認するものであつ て、 例えば、 強制引離し構造 (感知部が移動すれば必ず接点が開くスィッチ) を 備える。 ポジションスィッチ 6の代わりに、 動作監視付きエンコーダを用いるこ ともできる。
監視部 5は、 故障監視部 5 1、 オーバーラン監視部 5 2、 オーバ一スピード監 視部 5 3、 A N D 2、 A N D 3及び〇R 4等を含んでいる。 故障監視部 5 1は、 速度信号 y 1 1及び原点信号 y 1 2を入力信号とし、 機械可動部 4の故障を監視 する。 オーバ一ラン監視部 5 2は、 ポジションスィッチ 6の動作によって得られ る位置信号 y 1 3により、 機械可動部 4が許容範囲を越えて動作した場合のォー バーランを検出する。 オーバースピード監視部 5 3は、 速度信号 y 1 1を入力信 号とし、 機械可動部 4がオーバ一スピード状態にあるか否かを監視する。
速度信号 y 1 1、 原点信号 y 1 2及び位置信号 y 1 3の全てが正常値である場 合は、 故障監視部 5 1、 オーバ一ラン監視部 5 2及びオーバースピード監視部 5 3から出力される信号 z 1 1, z 1 2及び z 1 4は、 全て高レベル Hであり、 A N D 2から出力される信号 z 1 5は高レベル Hである。 従って、 A ND 3から出 力される信号 z 1 6は、運転意志検出信号 y 3が高レベル Hであることを条件に、 高レベル Hになる。 A N D 3から出力される信号 z 1 6が高レベル Hである場合、 O R 4から出力される信号 X 4は高レベルになる。
速度信号 y 1 1、 原点信号 y 1 2及び位置信号 y 1 4の少なくとも 1つが、 正 常でないと、 A ND 2から出力される信号 z 1 5は低レベル Lになるから、 A N D 3から出力される信号 z 1 6も低レベル になる。
動作の途中では、 機械側運転指示信号 y 7は低レベル Lであるから、 O R 4か ら出力される信号 X 4は低レベル Lになる。 これにより、 速度信号 y 1 1、 原点 信号 y 1 2及び位置信号 y 1 3のすくなとも一つが異常であることが検知される。 次に、 ォ一バースピ一ド監視部 53の構成について説明する。
速度監視は機能監視付きェンコーダによつても実現可能であるが、 この実施例 では、 ディレー回路を用いた場合について説明する。 即ち、 実施例に示されたォ —バースピ一ド監視部 53は、 オン ·ディレー回路 53 1を含む。 オン ·ディレ —回路 53 1の後段には、 整流回路 53 2と、 立ち下がり遅れ要素となるコンデ ンサ 53 3が備えられている。
図 7は、 図 6に図示されたォ一バースピード監視部 53の動作を説明する波形 図である。
機械可動部 4が許容速度で動作している場合、 速度信号 y 1 1は、 図 7 (a) に示すように、 周期 T S 1のパルス列となる。 周期 T S 1のパルス幅 PW1は、 オン ·ディレー回路 53 1のオン遅延時間 TD 3よりも長くなるように選定され ている。 従って、 機械可動部 4が許容速度で動作している場合、 オン 'ディレー 回路 53 1の出力側には、 図 7 (b) に示すように、 周期 TS 1のパルスの入力 時から、 オン遅延時間 TD 3だけ遅れて、 パルス信号 z 1 3が生じる。 このパル ス信号 z 1 3が生じる度に、立ち下がり遅れ要素を構成するコンデンサ 533が、 整流回路 5 3 2を通して充電される。 コンデンサ 53 3の端子電圧は、 信号 z 1 4 (図 7 (c) 参照) として、 AND 2に供給される。
コンデンサ 533の端子電圧である信号 z 1 は時間とともに低下するが、 A ND 2のしきい値 V t hよりも低下する前に、 次のパルス信号 z 1 3が発生し、 コンデンサ 53 3が充電される。 従って、 コンデンサ 533の端子電圧である信 号 z 1 4のレベルが AND 2のしきい値 V t hよりも低下することはない。
ところ力;、機械可動部 4がオーバースピード状態になると、速度信号 y 1 1は、 図 7 (a) に示すように、 周期 TS 1よりも短い周期 TS 2のパルス列となる。 周期 TS 2のパルス幅 PW 2力;、 オン■ディレー回路 53 1のオン遅延時間 TD 3よりも短くなると、 図 7 (b) に示すように、 オン 'ディレー回路 53 1の出 力側に、 パルス信号 z 1 3が生じなくなる。 このため、 コンデンサ 53 3に対す る充電作用がなくなり、 コンデンサ 533の端子電圧である信号 τ 1 4は時間と ともに低下し、 図 7 (c) に示すように、 時亥 ij t 4 1に、 AND 2のしきい値 V t hよりも低下してしまう。 従って、 AND 2から出力される信号 z 1 5は低レ ベルになり、 AND 3から出力される信号 z 1 6も低レベルになる。
〔産業上の利用可能性〕
本発明は、 非安全関連回路部の変更が安全関連回路部の安全性評価に影響を与 えず、 システムの安全性評価を容易化できるので、 産業上の利用可能性が大であ る。

Claims

請求の範圍
( 1 ) 安全関連回路部と、 非安全関連回路部とを含む生産設備制御システムであ つて、
前記安全関連回路部及び前記非安全関連回路部は、 回路的に互いに分離されて おり、
前記安全関連回路部は、 機械可動部と人体の衝突回避に預かる機能を有し、 自 己が正常な場合に限り高レベルのエネルギーを発生し、 自己の故障時は低レベル のエネルギーを発生する特性を備えており、
前記非安全関連回路部は、 前記機械可動部の運転を制御する機能を有し、 前記 安全関連回路部が高レベルのエネルギーを発生しているときのみ、 前記機械可動 部の運転を制御することが可能であるように、 前記安全関連回路部に関連付けら れている
生産設備制御システム。
( 2 ) 前記安全関連回路部は、 作業者による手動停止操作信号、 手動または自動 運転に基づく起動操作信号、 衝突の可能性のある区域の作業者不在を示す不在検 出信号及び手動運転時の運転意志検出信号を含む入力信号が供給される構成であ る請求項 1に記載の生産設備制御システム。
( 3 ) 前記機械可動部の動作範困及び前記機械可動部の速度を監視し、 その監視 信号を前記安全関連回路部に供給する監視部を含む請求項 2に記載の生産設備制 御システム
PCT/JP2000/006362 1999-09-16 2000-09-18 Systeme de commande de moyens de production WO2001020410A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00961064A EP1132787A4 (en) 1999-09-16 2000-09-18 PRODUCTION MEANS CONTROL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/262414 1999-09-16
JP26241499A JP2001084014A (ja) 1999-09-16 1999-09-16 生産設備制御システム

Publications (1)

Publication Number Publication Date
WO2001020410A1 true WO2001020410A1 (fr) 2001-03-22

Family

ID=17375464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006362 WO2001020410A1 (fr) 1999-09-16 2000-09-18 Systeme de commande de moyens de production

Country Status (3)

Country Link
EP (1) EP1132787A4 (ja)
JP (1) JP2001084014A (ja)
WO (1) WO2001020410A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396772B1 (en) * 2001-05-31 2008-03-05 Omron Corporation Safety unit, controller system, controller concatenation method, controller system control method, and controller system monitor method
DE60235232D1 (de) 2001-05-31 2010-03-18 Omron Tateisi Electronics Co Sicherheitsnetzwerksystem und sicherheits-slaves und sicherheitssteuerung und kommunikationsverfahren und informationssammelverfahren und überwachungsverfahren in einem sicherheitsnetzwerksystem
CN1259601C (zh) 2001-05-31 2006-06-14 欧姆龙株式会社 从动设备、网络系统、从动设备的处理方法及设备信息收集方法
JP3912378B2 (ja) 2001-06-22 2007-05-09 オムロン株式会社 安全ネットワークシステム及び安全スレーブ並びに安全コントローラ
WO2003001749A1 (fr) 2001-06-22 2003-01-03 Omron Corporation Systeme de reseau securise et esclave securise
WO2003001307A1 (fr) 2001-06-22 2003-01-03 Omron Corporation Systeme de reseau de securite, esclave de securite, et procede de communication
JP4578742B2 (ja) * 2001-09-27 2010-11-10 株式会社森精機製作所 干渉防止装置
JP3774143B2 (ja) * 2001-12-07 2006-05-10 日本制禦機器株式会社 工作機械用ブレーキ装置
JP3988559B2 (ja) 2002-07-18 2007-10-10 オムロン株式会社 通信システム、通信装置及び通信制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557669A (ja) * 1991-09-02 1993-03-09 Hitachi Ltd 自走ロボツト用の安全装置
JPH06226683A (ja) * 1993-01-28 1994-08-16 Fanuc Ltd 走行式産業用ロボットの安全装置
JPH06254794A (ja) * 1993-03-01 1994-09-13 Nissan Motor Co Ltd ロボット自動暴走検知装置
JPH09272096A (ja) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd 生産設備の安全装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE463948B (sv) * 1989-12-13 1991-02-11 Gunnar Widell Saett och anordning foer oevervakning av automatiska produktionsutrustnigar
DE4412653C2 (de) * 1994-04-13 1997-01-09 Schmersal K A Gmbh & Co Überwachungseinrichtung
DE19601660C2 (de) * 1996-01-18 2003-03-06 Leuze Electronic Gmbh & Co Sicherheitsschaltungsanordnung
DE19815147B4 (de) * 1997-04-21 2005-03-17 Leuze Electronic Gmbh & Co Kg Sensoranordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557669A (ja) * 1991-09-02 1993-03-09 Hitachi Ltd 自走ロボツト用の安全装置
JPH06226683A (ja) * 1993-01-28 1994-08-16 Fanuc Ltd 走行式産業用ロボットの安全装置
JPH06254794A (ja) * 1993-03-01 1994-09-13 Nissan Motor Co Ltd ロボット自動暴走検知装置
JPH09272096A (ja) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd 生産設備の安全装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1132787A4 *

Also Published As

Publication number Publication date
EP1132787A4 (en) 2002-10-30
JP2001084014A (ja) 2001-03-30
EP1132787A1 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
US7525273B2 (en) Robot control system
JP5319400B2 (ja) リレー異常検出装置
CN100366402C (zh) 紧急停止电路
CN102208888B (zh) 电动机驱动系统、电动机控制器和安全功能扩展器
JP4063328B2 (ja) 負荷駆動回路
US8860258B2 (en) Control system
JP2005522637A (ja) 電気的負荷のフェールセーフ断路のための装置
WO2001020410A1 (fr) Systeme de commande de moyens de production
JPH10217180A (ja) ロボットの安全装置
EP1403010A2 (en) Robot system comprising an operator detection unit
JPH1071592A (ja) 産業用ロボットの安全装置
EP1147862A2 (en) Control apparatus for robot
KR102505461B1 (ko) 모터 제어 장치
US10049842B2 (en) Relay unit for performing insulation diagnosis and method for controlling same
JP3757208B2 (ja) 非常停止回路
KR102376575B1 (ko) 브레이크 구동 제어 회로와 그 고장 검출 방법
JP7014140B2 (ja) 電磁ブレーキ制御装置及び制御装置
JP4848526B2 (ja) モータ駆動制御回路
JP4395829B2 (ja) 自動機械の動作許可装置
WO1991009354A1 (en) Protection device in automatic production equipments
JP2004330346A (ja) ロボット制御装置
JP2586279Y2 (ja) 電磁弁制御回路の故障検出装置
JP2743515B2 (ja) 負荷時タップ切換装置の異常監視,診断装置
JP3052154B2 (ja) 負荷駆動回路
JP2008236828A (ja) サーボアンプおよびその通電復帰方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09830257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000961064

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000961064

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000961064

Country of ref document: EP