WO2001011612A1 - Plateau de transport d'une tete magnetique destinee a un disque magnetique - Google Patents

Plateau de transport d'une tete magnetique destinee a un disque magnetique Download PDF

Info

Publication number
WO2001011612A1
WO2001011612A1 PCT/JP2000/005257 JP0005257W WO0111612A1 WO 2001011612 A1 WO2001011612 A1 WO 2001011612A1 JP 0005257 W JP0005257 W JP 0005257W WO 0111612 A1 WO0111612 A1 WO 0111612A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
magnetic
head
magnetic disk
less
Prior art date
Application number
PCT/JP2000/005257
Other languages
English (en)
French (fr)
Inventor
Shigeru Tanaka
Etuji Asano
Tomohiko Tanaka
Koichi Sagisaka
Original Assignee
Mitsubishi Chemical Corporation
Alps Electric Co., Ltd.
Yukadenshi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27553993&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001011612(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2000067484A external-priority patent/JP4239347B2/ja
Priority claimed from JP2000067486A external-priority patent/JP4239349B2/ja
Priority claimed from JP2000067485A external-priority patent/JP4239348B2/ja
Application filed by Mitsubishi Chemical Corporation, Alps Electric Co., Ltd., Yukadenshi Co., Ltd. filed Critical Mitsubishi Chemical Corporation
Priority to US09/806,992 priority Critical patent/US6780490B1/en
Publication of WO2001011612A1 publication Critical patent/WO2001011612A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0008Anti-static agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2508Magnetic discs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a tray on which a magnetic head for a hard disk drive is mounted and which performs processing, cleaning, transfer, storage, etc., and in particular, to transport a magnetoresistive head (MR head).
  • MR head magnetoresistive head
  • the present invention relates to a magnetic head transport tray suitable for magnetic disks. Background art
  • a magnetic head tray has been manufactured by molding a conductive thermoplastic resin composition in which an antistatic agent, a carbon black and other conductive components are mixed and dispersed in an ABS resin or the like.
  • an antistatic agent when blended, it is affected by the environmental humidity due to the ionic conduction of the conductive mechanism; the antistatic agent flows out due to washing and long-term use, and the antistatic property is reduced; When added in a large amount, it has disadvantages such as impairing heat resistance.
  • carbon black when carbon black is blended, it is not affected by humidity, washing, etc., but a large amount of addition is required to express conductivity, As a result, the surface of the molded article is weak against scratching and abrasion, so that there is a disadvantage that abrasion powder and carbon particles (ie, particles) are likely to fall off.
  • the magnetic head generally has an arm component, a head chip attached to a tip of the arm component, and a lead wire connected to the head chip.
  • the MR head uses an MR element (magnetic resistance element) as this head chip.
  • MR element magnetic resistance element
  • a tray made of a material using carbon fiber as the conductive filler has less particles falling off than a tray filled with carbon black, but the tray for MR heads has a further reduction in the dropped particles. Is being requested. This is because not only is the MR head itself delicate to the conductive particles, but also in actual use, the clearance between the head and the magnetic disk has become extremely small, and disk crashes due to particles have occurred. This is also due to the fact that it is becoming more likely to occur.
  • the fibers themselves fall off from the tray surface or the resin component between the fibers peels off from the tray of the magnetic head for hard disks in the process of ultrasonic cleaning of the head with pure water, etc. This generates particles.
  • Such shedding of particles not only contaminates and damages the head, but also may cause a head crash as a foreign matter between the head and the hard disk when the hard disk drive is used.
  • the conventional thin-film head detects a signal by the current generated when the signal magnetic field approaches the coil, whereas the MR head sends a weak sense current to the MR element and reduces the signal magnetic field. This is detected by the resistance value of the current. Therefore, the MR head has a high risk of damaging the MR element even when a weak noise current flows. For this reason, electrostatic discharge caused by the potential difference between the magnetic head and the tray and contact current generated by contact between the head and the tray are far more delicate than conventional integrated magnetic head ICs. It is one.
  • a lead wire is connected to the head chip, and the arm component is assembled to the gimbal via the head chip.
  • the lead (metal wire) is coated with polyimide, but the contact portion is always electrically separated and electrically unstable due to the contact potential difference between the polyimide and the metal wire.
  • the surface resistance of the tray tends to be particularly low. If the amount of carbon fiber added is reduced to increase the surface resistance, the contact state between the carbon fibers inside the tray becomes unstable, and a uniform resistance cannot be obtained.
  • conventional trays for magnetic head transport trays use a material in which carbon fibers for imparting conductivity to polycarbonate are used, and a magnetic head composed of such a conductive polycarbonate resin composition is used.
  • the surface of the pad transport tray is exposed to carbon fibers, and is extremely rough due to fine flow unevenness on the surface during molding.
  • a conventional thin-film head detects a signal by the current generated when a signal magnetic field approaches the coil
  • this MR head sends a weak sense current to the MR element to reduce the signal magnetic field.
  • the detection is based on the resistance value of the current.
  • GMR heads with even higher capacities have been used. These MR heads and GMR heads are extremely delicate with respect to contaminants such as trace amounts of corrosive gases and minute noise currents. For this reason, the required performance of various handling parts and jigs, such as trays for transporting these heads, is becoming stricter so as not to contaminate the heads.
  • Some conventional magnetic head transport trays are manufactured by molding a resin composition obtained by blending a carbon fiber with a polycarbonate resin.
  • the transfer tray of the magnetic head for a magnetic disk includes an arm component, a head chip attached to a tip of the arm component, and a lead connected to the head chip.
  • a tray for conveying a magnetic head for a magnetic disk having a wire the tray being formed by molding a conductive thermoplastic resin composition, and having a tray in 500 ml of pure water.
  • the number of particles with a particle diameter of 1 m or more that fall off the surface of the tray when ultrasonic waves of 40 kHz are applied for 60 seconds is 500 pcs per unit surface area of the tray. / cm 2 or less. Further, if the surface resistivity 1 0 3 ⁇ 1 0 12 ⁇ , on can obtain sufficient antistatic properties, because the excessive contact current in contact with the tray can be prevented, the magnetic Electrical damage to the head can be prevented.
  • the tray When the tray is immersed in 500 ml of pure water and ultrasonic waves of 40 kHz are applied for 60 seconds, the number of particles having a particle size of 1 ⁇ m or more that fall off from the surface of the tray ( In the following, this value is referred to as “particle generation amount.” If the tray has excellent surface uniformity and stability such that the particle amount is less than 500 pcs / cm 2 , scratching, abrasion, and cleaning will occur. This prevents physical or chemical contamination or damage of the magnetic head due to particles falling off.
  • thermoplastic resin composition one or two or more conductive fillers selected from the group consisting of a polyether polymer antistatic agent, a conductive filler and carbon fibril are added to the thermoplastic resin. It is preferable to mix them, and as the thermoplastic resin, one or more selected from the group consisting of polycarbonate, polybutylene terephthalate, polyethylene terephthalate and polypropylene can be used.
  • the tray for transporting a magnetic head for a magnetic disk according to the second aspect of the present invention is obtained by injection-molding a conductive polycarbonate resin composition, and has a surface roughness of a force. ⁇ ⁇ ⁇ ⁇ It satisfies the following item (1) or item (2) in the measurement with a toe-off wavelength of 2.5 mm.
  • Load length ratio (tp) is 1% or more, and peak count (Pc) of ⁇ 0.1 ⁇ m or more from the center line per measurement length lcm (0 or more) 100 or less
  • a transport tray for a magnetic head for a magnetic disk includes an arm component, a head chip attached to a tip of the arm component, and a lead connected to the head chip.
  • the tray is formed by molding a polycarbonate resin composition containing 0.25 to 50% by weight of a conductive filler. made Te is good and in the measurement by Tsu dos base one scan gas chromatogram to the said tray, the heating temperature 8 5 ° C, chlorinated hydrocarbons from the surface area 1 2. 6 cm 2 was measured under the conditions of equilibration time 1 6 hr It is better if the amount of hydrogen generated is less than 0.1 joi g / g.
  • a transport tray for a magnetic head for a magnetic disk according to a fourth aspect of the present invention includes an arm part, a head chip attached to a tip of the arm part, and a lead connected to the head chip.
  • the transport tray of the magnetic head for a magnetic disk includes an arm component, a head chip attached to a tip of the arm component, and a lead connected to the head chip.
  • a tray for transferring a magnetic head for a magnetic disk having a wire wherein the tray is formed by molding a conductive thermoplastic resin composition, and has a surface resistance of 1 ⁇ 10 3 to 1 ⁇ . 1 is a 0 12 Omega, surface roughness, in the measurement of Chikara'-off wave length 2. 5 mm, the cutting level 10% load length ratio (tp) of head to the magnetic magnetic disk is less than 4% This is a transfer tray. According to such a tray, occurrence of damage can be excluded.
  • FIG. 1 is a perspective view showing a tray for transporting magnetic heads manufactured in Examples and Comparative Examples.
  • FIG. 2 (a) is a plan view of the tray shown in FIG. 1, and FIG. 2 (b) is a cross-sectional view taken along line BB of FIG. 2 (a).
  • FIG. 3 is a cross-sectional view illustrating a damage test method in Examples and Comparative Examples.
  • 1 is the tray main body
  • 2 is the positioning rib
  • 3 is the positioning boss
  • 4 is the magnetic head
  • 1 is the tray material
  • 1 is the wiring board
  • 1 is the rubber sheet
  • 1 is the load.
  • Reference numeral 111 denotes an arm
  • 112 denotes a head tip
  • 113 denotes a lead wire
  • 114 denotes a hole.
  • a tray for transporting a magnetic head for a magnetic disk includes a tray body 1, positioning ribs 2, and positioning bosses 3.
  • the transfer tray of the magnetic head for a magnetic disk of the present invention is not limited to the embodiment shown in FIG.
  • the magnetic disk magnetic head (4 in FIG. 1), which is mounted, processed, washed, transported, and stored by the magnetic disk magnetic head transport tray of the present invention, is composed of an arm part 111 and an arm part 111. It has a head chip (MR element) 112 and a lead wire 113 connected to the head chip.
  • MR element head chip
  • the method of attaching the magnetic head to the transfer tray of the magnetic head for a magnetic disk of the present invention is as follows.
  • the holes 114 provided in the magnetic head 4 are inserted into the positioning boss 3. At this time, the direction of the arm of the magnetic head is corrected by the positioning rib 2.
  • one or more magnetic heads are mounted on the magnetic disk magnetic head transfer tray of the present invention, and the magnetic heads are transferred.
  • thermoplastic resin composition used as a molding material of the magnetic head tray for a magnetic disk of the present invention will be described.
  • the conductive thermoplastic resin composition used in the present invention contains a thermoplastic resin and a conductive filler.
  • Examples of the conductive filler used in the conductive thermoplastic resin composition include a polymer type antistatic agent, a conductive filler, and carbon fibrils.
  • Examples of the polymer-type antistatic agent include a polymer in which conductive units such as polyether, quaternary ammonium salt, and sulfonate are incorporated in a block or at random, and a method disclosed in Japanese Patent Application Laid-Open No. A polymer charge transfer type conjugate having a boron atom in the molecule as described in the gazette can be used.
  • the amount of the polymer type antistatic agent to be added is in the range of 1 to 100 parts by weight, particularly 5 to 60 parts by weight, especially 5 to 40 parts by weight based on 100 parts by weight of the thermoplastic resin component. Good. If the addition amount is less than the above range, the surface resistance value tends to be larger than 10 12 ⁇ , and the antistatic performance is inferior. On the other hand, if the amount is larger than the above range, mechanical properties such as flexural modulus and tensile strength and heat resistance are inferior.
  • the conductive filler examples include conductive fibers and metal oxides such as titanium oxide, zinc oxide, tin oxide, and indium oxide.
  • metal oxides such as titanium oxide, zinc oxide, tin oxide, and indium oxide.
  • a dopant having an increased conductivity by adding a dopant may be used.
  • aluminum is used for zinc oxide, antimony for tin oxide, tin for indium oxide, and the like.
  • the conductive filler is preferably a conductive fiber having a fiber diameter of 5 m or less, preferably 2 m or less, and a fiber length / diameter ratio (aspect ratio) of 5 or more, preferably 10 or more.
  • metal fibers such as stainless steel fiber, copper fiber, and nickel fiber; conductive whiskers such as carbon whiskers, titanium oxide whiskers, and silicon carbide whiskers; Composite conductive dice that has a conductive carbon film or conductive tin oxide film formed on the surface of conductive viscous force. Of these, in particular, aluminum borate power Those having a conductive film formed thereon are desirable.
  • the fiber diameter and length of the conductive fiber are average values measured at five points by microscopic observation.
  • those having a DBP oil absorption of 100 cc / 100 g or more are preferred for the following reasons, preferably 250 cc / 100 g or more, and more preferably 400 cc / 100 g. The above is good.
  • the tray has a moderately stable surface resistance value (or conductivity).
  • the present invention uses a conductive filler having a larger DB DB oil absorption as described above. It is preferably used.
  • the above-mentioned metal filler or carbon fiber as the conductive filler is usually treated with an organic surface treatment agent such as a silane coupling agent to supplement the affinity with the polycarbonate resin. You.
  • this surface treatment agent has many low molecular weight compounds, which may contribute to an increase in outgas generated from the obtained tray.
  • the carbon fibrils have a graphite outer layer that is deposited substantially concentrically along the cylindrical axis of the fibrils, and the fiber central axis is not linear, but undulates. Due to its twisted tubular shape, it does not fall off easily from the polycarbonate tray.
  • the fiber diameter of carbon fibrils depends on the manufacturing method and has a distribution, but the fiber diameter here refers to the average value measured at five points by microscopic observation. If the fiber diameter of the carbon fibrils is greater than 100 nm, the fibrils in the resin will be in insufficient contact with each other, and it will be difficult to obtain a stable resistance value. Therefore, carbon fibrils having a fiber diameter of 100 nm or less are preferable.
  • the fibril aggregates having a diameter larger than about 50 ⁇ m, preferably 10 10, as measured on an area basis, are contained in the resin composition as a raw material. Desirably, it does not contain fipril aggregates having a diameter larger than 2 m.
  • the addition amount of carbon fibrils is preferably 0.25 to 9 parts by weight, particularly preferably 0.5 to 6 parts by weight, based on 100 parts by weight of the thermoplastic resin component. If the addition amount is smaller than this, the conductivity is hardly developed, whereas if the addition amount is larger than this, the effect corresponding to the increase is not improved. In addition, the moldability also decreases.
  • One of the above various conductive fillers may be used alone, or two or more of them may be used in combination.
  • thermoplastic resin examples include aliphatic polyolefins such as polyethylene, polypropylene, polybutene, and polypentene, alicyclic polyolefins, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and various polyamides (nylons). 6, 66, Nylon 610, Nylon MXD 6, etc.), Polyesterimide, Polysulfone, Polyethersulfone Non-refined resins, such as polystyrene, polyester ether ketone, acrylic resin, styrene resin, modified polyphenylene ether, and liquid crystalline polyester.
  • aliphatic polyolefins such as polyethylene, polypropylene, polybutene, and polypentene
  • alicyclic polyolefins polycarbonate
  • polybutylene terephthalate polyethylene terephthalate
  • polyphenylene sulfide examples include various polyamides
  • thermoplastic resins heat distortion temperature
  • polypropylene should be 110 ° C or more, especially polypropylene, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and modified polyphenylene ether. It is preferable in terms of sex and cost. Further, polycarbonate, polybutylene terephthalate, and polyethylene terephthalate are preferred in terms of dimensional accuracy such as warpage, and particularly preferred is polycarbonate.
  • polycarbonate resin Commercially available products can be used as such a polycarbonate resin.
  • "Toughlon” and “Lexan” manufactured by GE Plastics can be used.
  • these polycarbonate resins those whose melt flow rate (MFR) measured at 280 ° C and 2.16 kg is 3 g / 10 min or more, especially 6 g / 10 min or more However, it is desirable to control the surface roughness of the magnetic head tray.
  • thermoplastic resin composition Various additional components can be added to the thermoplastic resin composition, if necessary, as long as the object of the present invention is not impaired.
  • organic fibrous reinforcing materials such as glass fiber, silica fiber, silica / alumina fiber, potassium titanate fiber, aluminum borate fiber, etc.
  • organic fibrous reinforcing materials such as aramide fiber, polyimide fiber, fluororesin fiber, and talc , Calcium carbonate, My power, inorganic fillers such as glass beads, glass powder, glass balane, etc .
  • solid lubricants such as fluororesin powder, molybdenum disulfide
  • plasticizers such as paraffin oil; antioxidants; heat stabilizers , Light stabilizers, ultraviolet absorbers, neutralizers, lubricants, compatibilizers, antifogging agents, antiblocking agents, slip agents, dispersants, coloring agents, antibacterial agents, fluorescent brighteners, etc.
  • Compounding agent Can be.
  • Injection molding methods include, besides general injection molding methods, integral molding with metal parts and other parts by insert injection molding, two-color injection molding, core-back injection molding, and sandwich injection molding.
  • Various molding methods such as an injection press molding method can be used.
  • injection molding the surface resistance of the tray obtained varies depending on the resin temperature, mold temperature, and molding pressure, so it is necessary to set appropriate conditions according to the purpose.
  • the tray of the present invention has a particle diameter of 1 ⁇ m that falls off the surface of the tray when the tray is immersed in 500 ml of pure water and a supersonic wave of 40 kHz is applied for 60 seconds. It is preferable that the number of the above particles is less than 500 pcs / cm 2 . If the amount of generated particles exceeds 500 pcs / cm 2 , there is a risk of catching and rubbing, and when cleaning the tray, there is a problem of contamination and damage due to the dropped particles. In the present invention, the particle generation amount is preferably 350 pcs / cm 2 or less, and more preferably 100 pcs / cm 2 or less.
  • the amount of chlorion eluted from the tray per unit surface area (cm 2 ) of the tray is increased.
  • a range of 0.01 g / cm 2 or less is preferred. If the chloride ion elution amount exceeds 0.0 l ⁇ g / cm 2 , there is a problem that corrosion occurs due to the chloride ions that elute variously when the tray is washed, and foreign substances are generated when the tray is used.
  • the elution amount of chloride ion be within 0.005 g / cm 2 .
  • the amount of nonvolatile organic matter eluted from the tray as measured by the method for measuring the amount of nonvolatile organic substance eluted described below is 0.5 g / unit surface area of the tray.
  • the tray of the present invention is preferably made of polycarbonate having a chlorinated hydrocarbon generation amount of 0.1 or less measured by a head space gas chromatogram, for example, by the following measurement method.
  • Analytical sample (22 mm (length) x 10 mm (width) x 3 mm (thickness)) cut out from the tray, 2 pieces (total surface area 12.6 cm 2 ) in a 22 mL vial (Vial) Then, add 10 ⁇ L of n-octane as an internal standard, extract gas under the conditions of heating temperature of 85 ° C and equilibration time of 16 hours, measure by gas chromatogram (GC), and measure by ion chromatogram. The amount of generation is calculated from the area ratio with n-octane.
  • GC gas chromatogram
  • the total surface area of the analysis samples may be converted to 12.6 cm 2 .
  • the amount of chlorinated hydrocarbons generated is 0.1 g / g or less, the adverse effect on the head is extremely small.
  • the amount of chlorinated hydrocarbon generated is desirably 0.02 g / g or less.
  • the total outgassing amount is below, especially 0.5 ⁇ ⁇ g / g or less, the methylene chloride generation amount is 0.or less, and the hydrocarbon generation amount is 0.5 ⁇ g / g or less In particular, the range of 0.2 g / g or less is good.
  • this hydrocarbon is n-hexane, n-hexane, cyclohexane, benzene, toluene, etc. used in the production of a polycarbonate resin described below.
  • a polycarbonate resin composition containing a conductive filler is molded A method for obtaining such a gas generation amount tray by performing the above will be described below.
  • the polycarbonate resin a general resin produced by reacting a divalent phenol compound with phosgene by a solution method such as an interfacial polymerization method, a pyridine method, and a chromate format method can be used.
  • a solution method such as an interfacial polymerization method, a pyridine method, and a chromate format method
  • chlorinated hydrocarbons such as methylene chloride used as a polymerization solvent, which are volatile components from the tray, from remaining on the obtained tray
  • the following methods (A), (C), (D) the following methods (A), (C), (D) ).
  • a method using a polycarbonate resin produced by a method without using a solvent as shown in (B) below is also effective.
  • a polycarbonate resin obtained by a polymerization method without using a polymerization solvent (for example, a polycarbonate resin disclosed in Japanese Patent Application Laid-Open No. H10-316266) is used.
  • (C) Vacuum degassing for melt kneading or melt molding.
  • the solvent is removed by supplying the polycarbonate resin obtained by the ordinary purification method or the above-mentioned method (A) or (B) to an extruder equipped with a vent, and degassing from the vent under vacuum.
  • the annealing treatment is preferably performed at a temperature of 80 ° C. or more for 30 minutes or more. If the annealing temperature exceeds 140 ° C, dimensional changes and deformation of the tray may occur, and even if the annealing time exceeds 20 hours, the effect of removing volatile components cannot be improved.
  • the treatment is preferably performed at 80 to 140 ° C for 30 minutes to 20 hours.
  • chlorinated hydrocarbons can be reduced, but there is a high possibility that poor solvent components such as n-heptane remain. Although n-heptane does not corrode the head, the danger of minute deposits on the head element surface is a problem with recent higher density MR elements. Therefore, as described above, it is desired to minimize the amount of generated hydrocarbons such as n-heptane.
  • the solvent removal method by vacuum degassing of the method (C) is particularly desirable.
  • the vacuum deaeration by the extruder of the method (C) may be performed when the conductive filler is compounded by melt-kneading, or may be performed before or after the kneading.
  • the transfer tray of the magnetic head for a magnetic disk of the present invention preferably has a surface roughness that satisfies the following (1) or (2) when measured at a power-off wavelength of 2.5 mm.
  • the ten-point average roughness (Rz) is the average of the absolute values of the altitudes of the highest to fifth peaks measured in the direction of the vertical magnification from the average line of the roughness curve, and Calculated from the sum of the absolute values of the altitudes of the 5th valley bottom from the lowest valley and the average value. C Therefore, the smaller the value of Rz, the smoother the surface.
  • the load length ratio (tp) at a cutting level of 10% is obtained by extracting the reference length from the roughness curve, cutting it 10% lower from the highest peak, and cutting it parallel to the average line.
  • the ratio of the sum of the cut lengths (load length) to the reference length expressed as a percentage (JISB0601) o
  • a peak count (P c) of ⁇ 0.1 ⁇ m or more is defined as a line parallel to the average line of the roughness curve at a height and depth of ⁇ 0.1 / m from the average line of the roughness curve. It counts the number of irregularities that cross in the vertical direction within the reference length.
  • the magnetic head such as polyimide coating will not be easily damaged.
  • Rz ten-point average roughness
  • the value of Rz is 0.1 0111 to 5 ⁇ m. The range is good, 0. l ⁇ m ⁇ 4 ⁇ m the better, 0.1 / ⁇ ! It is particularly good if it is in the range of 3 to 3 m.
  • the load length ratio (tp) at a power-setting level of 10% is 1% or more, and the peak count (Pc) is If it is less than 100 per cm, preferably less than 80, the magnetic head is less damaged and good.
  • the surface of a tray made of an injection molded product of a resin composition in which a conductive filler is blended with a non-crystalline polycarbonate resin having a relatively high melt viscosity is difficult to transfer the mold surface, and the fluidity and the filler Surface roughness is formed by uneven flow near the surface and exposure of the filler due to the shape, shrinkage, molding conditions, etc.
  • the surface roughness can be controlled by using a polycarbonate resin composition having improved transferability of the mold surface or by changing the mold surface.
  • the surface roughness of the part of the magnetic head tray where the magnetic head is mounted is 10% average roughness (Rz) of 5 ⁇ 50m or less and a cutting level of 10%.
  • the load length ratio (tp) is 1% or more, and the peak count (Pc) is (0 or more) 100 or less, preferably (0 or more) 80 or less.
  • Purified water 500 m 1, (in the embodiment • Comparative Examples of the present invention, the total surface area 420. 8 cm 2) of the tray total area 1 00 ⁇ 1000 cm 2 were immersed one, ultrasound (4 kH z , 0.5 W / cm 2 ) for 60 seconds. After that, the extracted pure water was sucked in the liquid particle counter in the liquid, and the quantity of dust particles having a particle diameter of 1 m or more was measured. At the time of measurement, as a pretreatment, the tray was ultrasonically cleaned with pure water for 8 minutes, and then dried in an oven at 100 ° C for 30 minutes. All work was performed in a clean room. In all cases, glass containers were used for sample immersion.
  • the gas generated in the vial was measured by gas chromatogram (GC / MS). The measurement conditions at this time are as shown below.
  • the main components were n-heptane, acetone, 1-propene, 2-propanol, and other minor components.
  • the surface roughness was measured at a cutoff wavelength of 2.5 mm, a measurement length of 5 mm, and a measurement speed of 0.3 mm ZS.
  • the measurement was performed at any five locations in the shaded area in Fig. 2 (a) where the magnetic head contacts, and the average value of each parameter was calculated. Also, double the value of 0 to 1. It was converted to a numerical value per m.
  • a flexible printed wiring board (FPC) using polyimide as the base material (10 mm wide) is pressed with a load (100 g, diameter 40 mm) 14 with the rubber sheet 13 attached to it, and the span is After sliding back and forth at 80 mm for 10 reciprocations, the surface of the wiring board 12 after the test was observed with an optical microscope at a magnification of 50 to 100 times, and judged according to the following criteria. All samples for damage test 11 were washed with pure water in advance to remove dust adhering to the surface. All pre-cleaning and damage tests were performed in a clean room.
  • PCM45 twin-screw kneading extruder
  • the details of the materials used are as follows. Among the following materials, the mixing and kneading of carbon fibrils were carried out by using a carbon fibril masterbatch dispersed in advance in an addition amount of 15% by weight so as to have a predetermined content.
  • Polycarbonate 1 "NOVAREX", Mitsubishi Engineering-Plastics Corporation
  • Polyester ester amide Toray “P AS—40 T”
  • Conductive whisker Tin oxide-coated aluminum borate, manufactured by Mitsubishi Metals Corp. Pastoran (Pastoran) 5 1 10 (fiber diameter 0.8 zm, Astaku!: Dori 35)
  • Acetylene black Denka Black manufactured by Electrochemical Co., Ltd. (DBP oil absorption
  • Carbon fiber Toho rayon PAN-based carbon fiber "BESFIGHT" C 6 _SR S ”(Fiber diameter 7 ⁇ m, surface treated with epoxy resin) Using this pellet, a tray with the shape and dimensions shown in Figs. 1 and 2 was formed, and the physical properties and properties were evaluated. The results are shown in Table 2.
  • the cylinder temperature was 300 ° C
  • the mold temperature was 90 ° C
  • the surface roughness of the mold surface corresponding to the shaded area in Fig. 2 (a) was Rmax 15 ⁇ m.
  • Table 2 shows that if the particle generation is 5000 pcs / cm 2 or less, head damage is unlikely to occur, and if the particle generation is 3500 pc s / cm 2 , damage occurs It can be seen that this can be effectively prevented.
  • the tray of the present invention generates a very small amount of methylene chloride and the like, has little risk of corrosion of the head tip, and hardly damages the head due to friction.
  • Example 5 the magnetic head element was corroded. This is because they did not degas. In the tray of Example 5, if degassing was performed (since the generation of art gas was also suppressed), no corrosion occurred in the magnetic head element, and a good tray could be obtained.
  • Carbon black Denki Black manufactured by Denki Kagaku (DBP oil absorption 190 c c
  • Example 10 A tray was molded in the same manner as in Example 8 except that the molding temperature was changed to 310 ° C, the surface resistance or surface roughness was measured, and a damage test was performed. The results are shown in Table 4. .
  • Example 10 A tray was molded in the same manner as in Example 8 except that the molding temperature was changed to 310 ° C, the surface resistance or surface roughness was measured, and a damage test was performed. The results are shown in Table 4. .
  • the polycarbonate resin composition was changed to polycarbonate resin composition B, and the surface of the mold corresponding to the shaded area in FIG. TP value at 5 ⁇ m, 10% cutting level 1.4%, peak count (Pc) of ⁇ 0.1 ⁇ m or more Finished to 35 surface roughness per cm of measurement length, injection molding temperature 280 A tray was molded in the same manner as in Example 8 except that injection molding was performed at 90 ° C and a mold temperature of 90 ° C. The surface resistance and surface roughness were measured and a damage test was performed. The results are shown in Table 4. Indicated.
  • Example 1 1
  • Example 1 2 A tray was formed in the same manner as in Example 8 except that the polycarbonate resin composition was changed to the polycarbonate resin composition D, and injection molding was performed at a molding temperature of 290 ° C, and measurement and damage of the surface resistance value and the surface roughness were performed. The test was performed and the results are shown in Table 4.
  • Example 12 the tray was molded in the same manner except that the mold was used as the mold surface as in Example 10 and injection molding was performed at a molding temperature of 300 ° C., and measurement of the surface resistance value and surface roughness was performed. A damage test was performed and the results are shown in Table 4.
  • Example 14
  • Example 10 the tray was molded in the same manner except that the polycarbonate resin composition was changed to the polycarbonate resin composition F and injection molding was performed at a molding temperature of 280 ° C, and the measurement and damage of the surface resistance value and the surface roughness were performed. The test was performed and the results are shown in Table 4. Comparative Example 3
  • Example 10 the mold surface was subjected to electric discharge machining to obtain Rzl 9.2 / m, a tp value of 0.5% at a cutting level of 10%, and a peak count (Pc) of ⁇ 0.1 ⁇ m or more.
  • a tray was formed in the same manner except that the surface was finished to a surface roughness of 101 cm per measurement length, and the surface resistance and surface roughness were measured and a damage test was conducted. The results are shown in Table 4.
  • Example 15 Example 15
  • Example 16 A tray was molded in the same manner as in Example 8 except that the polycarbonate resin composition was changed to the polycarbonate resin composition G, the surface resistance and the surface roughness were measured, and the damage test was performed. The results are shown in Table 4. Indicated. Example 16
  • Example 17 A tray was molded in the same manner as in Example 8 except that the polycarbonate resin composition was changed to the polycarbonate resin composition H, and the surface resistance and surface roughness were measured and a damage test was performed. The results are shown in Table 4. Indicated. Example 17
  • a tray was molded in the same manner as in Example 8 except that the polycarbonate resin composition was changed to the polycarbonate resin composition I, the surface resistance and the surface roughness were measured, and the damage test was performed. The results are shown in Table 4. Indicated.
  • Table 4 shows that the tray of the present invention has almost no problem of head damage due to friction, has a moderately stable surface resistance value, and has little electrical damage to the head.
  • the ten-point average roughness (Rz) is 5 ⁇ m or less, or the cutting level 10%
  • the load length ratio (tp) is 1% or more, and ⁇ 0. L ⁇ m or more from the center line. If the peak count (Pc) is 100 or less per 1 cm of the measurement length, no damage occurs.
  • the particle generation amount is 5000 pcs / cm 2 or less, it is understood that the head is unlikely to be damaged.If the particle generation amount is 3500 pcs / cm 2 or less, it is more effective that the damage is generated. It can be seen that if the amount of generated particles is 1 000 pcs / cm 2 or less, damage can be particularly prevented.
  • Table 4 shows that the tray of the present invention generates very little methylene chloride and the like, has little risk of corrosion of the head chip, and has little problem of head contamination and damage due to it. Understand.
  • outgas was generated and the magnetic head was corroded. This is because no degassing was performed.
  • outgassing could be suppressed if degassing was performed, and that the magnetic head did not corrode.
  • the present invention will be described more specifically with reference to Examples 18 to 22 and Comparative Examples 5 and 6.
  • a methylene chloride solution of a polycarbonate resin produced from bisphenol A was purified to give a solution having a resin concentration of 20% by weight.
  • To 200 liters of this resin solution add 40 liters of n-heptane and mix uniformly. And crushed.
  • the liquid temperature in the vessel during the dropping was adjusted to 40 ° (:, the internal pressure was adjusted to 0.1 kg / cm 2 .
  • Polycarbonate resin powder was prepared in the same manner as in Example 18, and the mixture was extruded at a temperature of 300 ° C with a screw rotation speed of 200 RPM and a discharge rate of 20 kg /
  • the pellet was obtained by kneading under the conditions of h. 18% by weight of acetylene black (Denka Black DBP oil absorption: 300 cc / 100 g, manufactured by Denki Kagaku Co., Ltd.) was added to this pellet with a twin screw extruder at 280 ° C with the vent open.
  • the mixture was kneaded at a screw rotation speed of 200 RPM and a discharge rate of 3 Ok g / h to obtain a pellet of a polycarbonate resin composition.
  • Example 20 To 100 parts by weight of the polycarbonate resin powder prepared in the same manner as in Example 18, 1 part by weight of pure water was added, and the pressure of the vent was reduced to 20 Torr by a twin-screw kneading extruder. The mixture was kneaded at a temperature of 200 rpm at a screw rotation speed of 200 RPM and a discharge rate of 20 kg / h to obtain a pellet.
  • Example 22 Same as Example 3 except that in Example 20, the polycarbonate resin pellet was changed to “MHL_1110—111” manufactured by GE Plastics as a polycarbonate produced by a production method without using a polymerization solvent. A pellet of the polycarbonate resin composition was manufactured in the same manner as above, and a tray was similarly molded and evaluated. The results of the surface resistance value, the corrosion test, and the analysis of the generated gas are shown in Table 5.
  • a methylene chloride solution of the polycarbonate resin produced from bisphenol A was purified to give a solution having a resin concentration of 20% by weight.
  • the resin solution was sprayed into steam at 100 ° C. to remove the solvent, and a wet polycarbonate powder was directly obtained.
  • the wet powder was dried at 140 ° C. to obtain a polycarbonate resin powder.
  • Example 20 4.3% by weight of the same carbon fibril as used in Example 20 was blended into the obtained polycarbonate powder, and the vent was reduced to 20 T rr by a twin-screw kneading extruder. While kneading at a temperature of 280 ° C. and a screw rotation speed of 200 RPM and a discharge rate of 2 O kg / h, a pellet of a polycarbonate resin composition was obtained.
  • a tray was molded at a molding temperature of 300 ° C by an injection molding machine, and then annealed at 130 ° C for 10 hours in an oven.
  • Example 18 20% by weight of the carbon fiber used in Example 18 was blended with the polycarbonate resin powder obtained in Example 22 in the composition. The mixture was kneaded under the conditions of RPM and a discharge rate of 30 kg / h to obtain a pellet of a polycarbonate resin composition.
  • Comparative Example 5 the pellet production, tray molding and evaluation were performed in the same manner as in Comparative Example 5 except that 4.3% by weight of carbon fiber was used instead of the carbon fibrils used in Example 3.
  • Table 5 shows the results of surface resistance, corrosion test, and evolved gas analysis.
  • the tray of the present invention has a very low generation of methylene chloride, etc., has a low risk of corrosion of the head chip, and has a moderately stable surface resistance value. It can be seen that there is little electrical damage.
  • the particle generation amount is 5000 pcs / cm 2 or less, it is understood that the damage of the head is unlikely to occur, and if the particle generation amount is 1000 pcs / cm 2 or less, it is particularly effective to cause the damage. It can be seen that it can be prevented.
  • Example 19 many particles were generated. This is due to the use of carbon black as the conductive filler. In Example 19, the amount of iron gas was small, the corrosion of the magnetic head did not occur, and the damage did not occur much. Industrial applicability
  • a tray for transporting magnetic heads for magnetic disks such as MR heads for magnetic disk drives, will be provided.

Description

明 細 書 磁気ディスク用磁気へッ ドの搬送用トレイ 技術分野
本発明は、 ハードディスク ドライブ用の磁気ヘッ ドを搭載し、 加工、 洗浄、 移 送、 保管等を行う トレイに係り、 特に、 磁気抵抗効果型へッ ド(M Rへッ ド) を搬 送するのに好適な磁気ディスク用磁気へッ ドの搬送用トレイに関する。 背景技術
従来、 磁気ヘッ ド用トレイは、 A B S樹脂等に、 帯電防止剤、 カーボンブラッ ク等の導電性付与成分を配合分散させた導電性熱可塑性樹脂組成物を成形するこ とにより製造されている。
しかし、 帯電防止剤を配合する場合、 導電機構がイオン伝導であることに起因 して環境湿度の影響を受ける ;洗浄や長時間の使用により帯電防止剤が流出し帯 電防止性が低下する;大量に添加すると耐熱性を損なうなどの欠点があり、 また、 カーボンブラックを配合した場合、 湿度、 洗浄等の影響は受けないものの、 導電 性を発現させるためには多量の添加量を要し、 その結果、 成形品表面がひっかき や摩耗に対して弱くなるため、 摩耗粉やカーボン粒子 (すなわちパーティクル) の脱落が生じ易いという欠点がある。
これらの問題を解決するために、 従来、 ハードディスク用磁気ヘッ ドのトレイ においては、 例えばポリカーボネートに力一ボン繊維を添加した材料が使用され ている。 カーボン繊維であれば、 カーボンブラックに比べて、 パーティクルの脱 落を少なくすることができる。
なお、 磁気ヘッ ドは、 一般に、 アーム部品と、 該アーム部品の先端に取り付け られたヘッ ドチップと、 該ヘッ ドチップに結線されたリード線とを有する。 M R ヘッ ドは、 このヘッ ドチップとして M R素子 (磁気抵抗素子) を用いたものであ る。 しかしながら、 近年、 ヘッ ドの高密度化のために、 従来の薄膜ヘッ ドに代わり
M R (磁気抵抗効果) ヘッ ドが主流になりつつあるなかで、 カーボン繊維を用い た材料でも十分な要求特性を満たさなくなつてきている。
即ち、 導電性充填材としてカーボン繊維を用いた材料よりなる トレィは、 カー ボンブラックを充填したものに比べてパーティクルの脱落が少ないが、 M Rへッ ド用トレイにおいては脱落パーティクルの更なる低減が要求されてきている。 これは、 M Rへヅ ドそのものが導電性パ一ティクルに対してデリケ一トである だけでなく、 実使用において、 ヘッ ドと磁気ディスクのクリアランスが極めて小 さくなつてきており、 パーティクルによるディスククラッシュが生じやすくなつ てきていることにも由来している。
即ち、 ハードティスク用磁気ヘッ ドのトレイからは、 ヘッ ドを純水により超音 波洗浄する工程等において、 トレィ表面から繊維自体が脱落したり、 繊維間の樹 脂成分が剥がれ落ちたりすることでパーティクルが発生する。 このようなパ一テ ィクルの脱落はヘッ ドを汚染、 損傷させるだけでなく、 ハードディスク ドライブ の使用時にへッ ドとハードディスク間の異物としてへッ ドクラッシュを引き起こ す危険性があった。
ところで、 従来の薄膜ヘッ ドは、 信号磁界がコイルに接近する際に発生する電 流によって信号を検知するのに対し、 M Rヘッ ドは、 M R素子に微弱なセンス電 流を流し、 信号磁界を電流の抵抗値によって検出するものである。 従って、 M R へッドでは、 微弱なノイズ電流が流れた場合でも M R素子を損傷させてしまう危 険性が大きい。 このため、 磁気ヘッ ドのトレイとの電位差に起因する静電気放電 や、 ヘッ ドとトレイとの接触により生じる接触電流に対して、 従来の集積型磁気 へヅドゃ I Cに比べて遙かにデリケ一トである。
即ち、 M Rヘッ ドの組み付け工程においては、 ヘッ ドチップにリード線が結線 され、 このヘッ ドチップを介してアーム部品がジンバルに組み付けられる。 この リード線 (金属線) にはポリイミ ドが被覆されているが、 ポリイミドとの金属線 との接触電位差に起因して接触部は常に電荷分離した、 電気的に不安定な状態に ある。 この結果、 リード線先端が磁気ヘッ ドのトレィ等に接触した際、 接触部に おける電荷のやりとりがより生じ易くなり、 損傷の危険性が高くなる。
従来の磁気へッ ド用トレイの表面抵抗値は 1 O 1 1 0 2 Ω /[]程度であり、 静 電気放電によるへッ ドの損傷の危険性はないものの、 トレイの表面抵抗が低すぎ ることによる、 ヘッ ドとトレィ間、 または周辺部品とトレィ間の過度な接触電流 による損傷が深刻な問題となっている。
しかも、 導電性充填材としてカーボン繊維を添加したものでは、 トレイの表面 抵抗値は特に低くなりやすい。 表面抵抗値を増大させるために、 カーボン繊維の 添加量を減らすと、 トレィ内部の力一ボン繊維同士の接触状態が不安定になり、 均一な抵抗値が得られなくなる。
また、 カーボン繊維を用いたものでは、 カーボン繊維中に含まれる不純物であ るクロルイオンが、 純水洗浄時に純水中に流出し、 これにより磁気ヘッ ドに腐食 が発生したり、 このクロルイオンがヘッ ドとディスク間の異物となる問題も発生 している。
磁気ヘッ ドは、 トレィ上に直接接触した状態で搭載されて、 組立て、 洗浄、 搬 送、 取り出しを経るが、 その際、 何度も トレイより脱着されるため、 トレィ表面 と磁気へッ ドとの接触で摩擦が生じる。
一方、 従来の磁気ヘッ ド搬送用トレィ用トレイは、 ポリカーボネートに導電性 を付与するための炭素繊維が配合された材料が使用され、 このような導電性ポリ カーボネート樹脂組成物で構成される磁気へッ ド搬送用トレイの表面は、 炭素繊 維が露出しており、 更に成形時の表面での微細な流れムラによって、 極めて粗い 状態になっている。
このため、 この表面粗さに起因して、 磁気ヘッ ドとの接触や摩擦時に、 磁気気 へッ ドのポリイミ ド皮膜やリード線が損傷する問題が生じている。
従来の薄膜へッ ドが信号磁界がコイルに接近する際に発生する電流によって信 号を検知するのに対して、 この M Rヘッ ドは、 M R素子に微弱なセンス電流を流 し、 信号磁界を電流の抵抗値によって検出するものであり、 その機構により、 検 出感度が飛躍的に向上し、 メディァの狭トラック化で大容量化が可能とされる。 最近ではさらに大容量化を狙った G M Rへッ ドも用いられている。 この M Rヘッ ドや G M Rヘッ ドは、 微量の腐食性ガスや、 微少のノイズ電流な どのコン夕ミネ一シヨンに対して極めてデリケレートである。 このため、 これら のへッ ドを搬送するためのトレィをはじめとして、 各種の取り扱い用部品や治具 についても、 へッ ドを汚染させないための要求性能が厳しくなってきている。 従来の磁気へッ ド搬送用トレイには、 ポリカーボネート樹脂に炭素繊維を配合 してなる樹脂組成物を成形することにより製造されているものがある。
ここで使用されるポリカーボネート樹脂は、 通常、 二価フエノールのアルカリ 水溶液と、 ホスゲンとを有機溶媒の存在下にて反応させる溶液法により製造され ており、 かかる方法によれば、 ポリカーボネート樹脂はその有機溶媒溶液として 得られる。 この有機溶媒としては、 塩化メチレン、 クロ口ホルム、 四塩化炭素な どの塩素化脂肪族炭化水素、 クロ口ベンゼン、 クロ口トルエンなどの塩素化芳香 族炭化水素が使用されており、 中でも塩化メチレンが最も一般的に使用されてい る。
ポリカーボネート樹脂は、 得られたポリカーボネート樹脂溶液から、 溶媒相を 蒸発除去して分離精製することにより得られるが、 この際、 塩化メチレンに代表 される有機溶媒がポリ力一ボネ一トとの親和力に優れるため、 微量ではあるが樹 脂中に残留することとなる。 そして、 樹脂中に残留した塩化メチレンは、 成形加 ェを経て最終成形品である磁気へッ ド搬送用トレィとしての使用時に揮発成分と して発生する。
従来の磁気へッ ド搬送用トレイにおいて腐食性揮発成分として懸念されていた 物質は、 主に塩酸やクロルイオンなどのイオン性物質であつたが、 M R素子、 G M R素子など腐食に対して極めて敏感な素子を有した磁気へッ ドの搬送用トレィ においては、 塩化メチレンのようなクロルィォンの前駆体であっても問題が生じ るようになってきている。
また、 アルコール、 ケトン類などのその他の揮発性成分に関しても磁気ヘッ ド チップに対する安全性は必ずしも確認されておらず、 このため磁気へッ ド搬送用 トレイに対しては、総ァゥトガス量そのものも少ないことが要求されてきている。 本発明は上記従来の実情に鑑みてなされたものであって、 上記問題点の少なく とも 1つ以上を解決した磁気ディスク用磁気へッ ドの搬送用トレィを提供するこ とを目的とする。 発明の開示
本出願の第一の発明態様の磁気ディスク用磁気へッ ドの搬送用トレイは、 ァー ム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該ヘッ ドチッ プに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬送するための トレイにおいて、 該トレイは、 導電性熱可塑性樹脂組成物を成形してなるもので あり、 純水 5 0 0 m 1中に、 トレィを浸漬し、 4 0 k H zの超音波を 6 0秒間印 加したときに、 該トレイの表面から脱落する粒径 1 m以上のパーティクルの数 が該トレイの単位表面積当り 5 0 0 0 p c s / c m2以下であるものである。 さらに、 表面抵抗値が 1 0 3〜 1 0 12 Ωであれば、 十分な帯電防止性を得ること ができる上、 トレイとの接触における過大な接触電流を防止することができるた め、 磁気へッ ドの電気的損傷を防止できる。
純水 5 0 0 m l中に、 トレィを浸漬し、 4 0 k H zの超音波を 6 0秒間印加し たときに、 該トレイの表面から脱落する粒径 1〃m以上のパーティクルの数 (以 下、 この値を 「パーティクル発生量」 と称す。) が 5 0 0 0 p c s / c m2以下で あるような、 表面の均一性、 安定性に優れたトレイであれば、 ひっかきや摩耗、 洗浄により脱落するパーティクルによる磁気へッ ドの物理的ないし化学的な汚染 や損傷を防止することができる。
導電性熱可塑性樹脂組成物としては、 熱可塑性樹脂にポリエーテル系高分子型 帯電防止剤、 導電性フィラー及び炭素フィブリルよりなる群から選ばれた 1種又 は 2種以上の導電性充填材を配合してなるものが好ましく、 熱可塑性樹脂として はポリカーボネート、 ポリブチレンテレフ夕レート、 ポリエチレンテレフ夕レー ト及びポリプロピレンよりなる群から選ばれた 1種又は 2種以上を用いることが できる。
本出願の第二の発明態様の磁気ディスク用磁気へッ ドの搬送用トレィは、 導電 性ポリカーボネート樹脂組成物を射出成形してなるものであり、 表面粗さが、 力 ヅ トオフ波長 2. 5 mmの測定において、 下記①又は②を満足するものである。
① 十点平均粗さ (R z ) が 5〃m以下
② カッテングレベル 1 0 %負荷長さ率(t p) が 1 %以上で、 中心線より ± 0. 1〃m以上のピークカウント (P c) が測定長 l c m当たり ( 0以上) 1 0 0以 下
表面粗さが上記①又は②を満たすものであれば、 磁気へッ ドとの接触や摩擦に よる磁気へッ ドの損傷を防止することができる。
本出願の第三の発明態様の磁気ディスク用磁気へッ ドの搬送用トレィは、 ァ一 ム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該ヘッ ドチッ プに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬送するための 卜レイにおいて、 該卜レイは、 導電性充填材 0. 2 5〜 5 0重量%を含有するポ リカーボネート樹脂組成物を成形してなるものが良く、 該トレイのへッ ドスべ一 スガスクロマトグラムによる測定における、 加熱温度 8 5°C、 平衡時間 1 6時間 の条件で測定した表面積 1 2. 6 cm2からの塩素化炭化水素発生量が 0. 1 joi g /g以下であるものが良いのである。
ヘッ ドスペースガスクロマトグラムによる測定における、 加熱温度 8 5°C、 平 衡時間 1 6時間の条件で測定した表面積 1 2. 6 c m2からの塩素化炭化水素発生 量 (以下単に 「塩素化炭化水素発生量」 と記す。) が 0. 以下であるよ うな、 揮発成分の発生量の少ないトレイであれば、 磁気ヘッ ドの腐食による損傷 の問題を排除することができる。
本出願の第 4の発明態様の磁気ディスク用磁気へッ ドの搬送用トレィは、 ァ一 ム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該ヘッ ドチッ プに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬送するための トレイにおいて、 トレィは、 導電性熱可塑性樹脂組成物を成形してなるものであ つて、 表面抵抗値が 1 X 1 05〜 1 X 1 012Ωであり、 純水 5 0 0 m l中に、 トレ ィを浸潰し、 4 0 kH zの超音波を 6 0秒間印加したときに、 該トレイの表面か ら脱落する粒径 1〃m以上のパーティクルの数が 3 5 0 0 p c s/cm2以下で あることを特徴とする磁気ディスク用磁気へッ ドの搬送用トレイである。 かかる トレイであれば、 損傷を発生するという問題を排除できる。
本出願の第五の発明態様の磁気ディスク用磁気へッ ドの搬送用トレィは、 ァー ム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該ヘッ ドチッ プに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬送するための トレイにおいて、 トレィは、 導電性熱可塑性樹脂組成物を成形してなるものであ つて、 表面抵抗値が 1 X 103〜 1 X 1 012Ωであり、 純水 500ml中に、 トレ ィを浸漬し、 40 kH zの超音波を 60秒間印加したときに、 該トレイの表面か ら脱落する粒径 1〃m以上のパ一ティクルの数が 5000 p c s /cm2以下、か つ、 表面粗さがカッ トオフ波長 2. 5 mmの測定において、 十点平均粗さ (R z) が 5〃m以下であり、 かつ、 該トレイのヘッ ドスペースガスクロマトグラムによ る測定における、 加熱温度 85°C、 平衡時間 1 6時間の条件で測定した表面積 1 2. 6 cm2からの塩素化炭化水素発生量が 0. l〃g/g以下であることを特徴 とする磁気ディスク用磁気へッ ドの搬送用トレイである。 かかるトレーによれば 損傷が発生することを排除できる。
本出願の第六の発明態様の磁気ディスク用磁気へッ ドの搬送用トレィは、 ァー ム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該ヘッ ドチッ プに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬送するための トレイにおいて、 トレィは、 導電性熱可塑性樹脂組成物を成形してなるものであ つて、 表面抵抗値が 1 X 103~ 1 X 1 012Ωであり、 表面粗さが、 力ッ トオフ波 長 2. 5 mmの測定において、 カッティングレベル 10 %負荷長さ率 ( t p ) が 4%未満である磁気ディスク用磁気へッ ドの搬送用トレイである。 かかるトレィ によれば損傷が発生することを排除しうる。 図面の簡単な説明
図 1は、 実施例及び比較例において製造した磁気へッ ド搬送用の卜レイを示す 斜視図である。
図 2 (a) は、 図 1に示すトレイの平面図、 図 2 (b) は、 図 2 (a) の B— B線に沿う断面図である。 図 3は、 実施例及び比較例における損傷性試験方法を示す断面図である。
なお、 図中の符号、 1はトレイ本体、 2は位置決めリブ、 3は位置決めボス、 4は磁気ヘッ ド、 1 1はトレィ材、 1 2は配線基板、 1 3はゴムシート、 1 4は 荷重、 1 1 1はアーム部、 1 1 2はヘッ ドチップ、 1 1 3はリード線、 1 1 4は 穴である。 発明を実施するための最良の形態
以下に本発明の実施の形態を詳細に説明する。
本発明の第一の実施の形態である磁気ディスク用磁気へッ ドの搬送用トレ一は、 図 1に示すように、 トレィ本体 1、 位置決めリブ 2、 位置決めボス 3とからなる。 なお、 本発明の磁気ディスク用磁気ヘッ ドの搬送用トレ一は、 第 1図に示され る実施の形態のものに限定されるものではない。
本発明の磁気ディスク用磁気ヘッ ドの搬送用トレーにより、 搭載し、 加工、 洗 浄、 移送、 保管等を行われる磁気ディスク用磁気ヘッ ド (図 1の 4 ) は、 アーム 部品 1 1 1とヘッ ドチップ (M R素子) 1 1 2と、 ヘッ ドチップに結線されたリ ード線 1 1 3とを具備する。
本発明の磁気ディスク用磁気へッ ドの搬送用トレイへの磁気へッ ドの取り付け 方法は以下の通りである。
まず、 位置決めボス 3に磁気へッ ド 4に設けられた穴 1 1 4を差し込む。 この 際磁気へッ ドのアーム部の方向は、 位置決めリブ 2によって修正される。
このようにして本発明の磁気ディスク用磁気へッ ドの搬送用トレイに 1又は複 数の磁気へッ ドを搭載し、 磁気へッ ドを搬送等する。
以下に本発明の磁気ディスク用磁気へッ ドトレイの成形材料となる導電性熱可 塑性樹脂組成物について説明する。
本発明に用いられる導電性熱可塑性樹脂組成物は熱可塑性樹脂と導電性充填材 料とを含む。
この導電性熱可塑性樹脂組成物に用いられる導電性充填材としては、 高分子型 帯電防止剤、 導電性フィラー、 炭素フィブリルが挙げられる。 高分子型の帯電防止剤としては、 ポリエーテル、 4級アンモニゥム塩、 スルホ ン酸塩等の導電性単位をブロックもしくはランダムに組み込んだ高分子や、 特開 平 1— 2 5 9 0 5 1号公報に記載されているような、 ホウ素原子を分子中に有す る高分子電荷移動型結合体などが使用できる。
これらの中でも、 ポリエーテル系高分子帯電防止剤が樹脂との溶融混練による 複合化における耐熱性の点で望ましく、 具体的には、 ポリエチレンォキシド、 ポ リエ一テルエステルアミ ド、 ポリエ一テルアミ ドイミ ド、 エチレンォキシドーェ ビハロヒドリン共重合体、 メ トキシポリエチレングリコール (メタ) ァクリレ一 ト共重合体、 好ましくはポリエーテルエステルアミ ド、 ポリエーテルアミ ドイミ ド、 より好ましくはポリエーテルエステルアミ ドを用いることができる。
高分子型帯電防止剤の添加量としては、 熱可塑性樹脂成分 1 0 0重量部に対し て 1〜 1 0 0重量部、 特に 5〜 6 0重量部、 とりわけ 5〜4 0重量部の範囲が良 い。 添加量が上記範囲より少ないと表面抵抗値が 1 0 12 Ωより大きくなりやすく、 帯電防止性能に劣るものとなる。 また、 添加量が上記範囲よりも多いと曲げ弾性 率、 引っ張り強度等の機械的性質や耐熱性に劣るものとなる。
導電性フイラ一としては、 導電性繊維や、 酸化チタン、 酸化亜鉛、 酸化スズ、 酸化インジウム等の金属酸化物系のものが挙げられる。 なお金属酸化物系フイラ 一のなかでも格子欠陥の存在により余剰電子が生成して導電性を示すものの場合 には、 ドーパン トを添加して導電性を増加させたものを用いてもよい。 例えば、 酸化亜鉛にはアルミニウム、 酸化スズにはアンチモン、 酸化インジウムにはスズ 等がそれそれド一パン トとして用いられる。
導電性フィラーとしては、 特に、 繊維径 5〃m以下、 望ましくは 2〃m以下で、 繊維長さ/径比 (アスペク ト比) 5以上、 望ましくは 1 0以上の導電性繊維が好 ましく、 具体的には、 ステンレス繊維、 銅繊維、 ニッケル繊維などの金属繊維、 カーボンウイスカ、 酸化チタンウイスカ、 炭化珪素ウイスカなどの導電性ゥイス 力や、 チタン酸力リゥムゥイス力やホウ酸アルミニウムウイスカ等の絶縁性ウイ ス力の表面に導電性カーボン皮膜や導電性酸化スズ皮膜を形成した複合系導電性 ゥイス力が挙げられる。 これらのうち、 特に、 ホウ酸アルミニウムゥイス力に、 導電性皮膜を形成したものが望ましい。 なお、 ここで導電性繊維の繊維径、 長さ は、 顕微鏡観察により 5点測定した平均値である。
上記導電性充填材の中でも、 以下の理由から、 D B P吸油量が 100 c c/ 1 00 g以上のものが良く、 好ましくは 250 c c/100 g以上のもの、 より好 ましくは 400 c c/100 g以上のものがよい。
即ち、 D BP吸油量が大きいほど充填材の表面積が大きいことを表しており、 従って、 一般に D B P吸油量の数値が大きいものほど微細な形状なものとなる。 一方、 導電性充填材の配合による樹脂の導電性の発現は、 導電性充填材同士の連 続的な接触による導電経路の形成により、 導電性充填材間の距離が 10〜3 OA 程度離れた不完全な接触状態においては、 充填材間に電子のホッビングによる電 気伝導が生じる。 このホッピングによる導電性は導電性充填材の内部での導電性 に比較して低い。 ところで、 トレイには、 後述の如く、 表面抵抗値 (或いは導電 性) が中位に安定していることが望まれる。 従って、 樹脂内部に導電性充填材の 不完全な接触状態を多数形成することにより、 樹脂組成物の導電性を中位 (例え ば 106Ω) に安定して得ることが望ましい。 DB Ρ吸油量が大きく微細な形状の 充填材ほど、 このような不完全な接触状態が形成される確率が高いため、 本発明 では、 上述のような DB Ρ吸油量の大きい導電性充填材を用いるのが好ましい。 ところで、 前述の導電性充填材としての金属フイラ一や、 炭素繊維などは、 ポ リカーボネート樹脂との親和性を補うために、 通常はシランカップリング剤など の有機性の表面処理剤によって処理される。 しかし、 この表面処理剤は低分子量 化合物が多く、 そのため、 得られたトレイから発生するアウトガスの増加に寄与 する場合がある。 これに対して、 DB Ρ吸油量が 1 00 c c/100 g以上の力 一ボンブラック等の炭素系導電性充填材の表面は、 一般に極めて活性に富み、 表 面処理なしでポリ力一ボネ一ト樹脂とよく親和して良好な分散性を示す。従って、 表面処理剤に由来するァゥトガスが発生することがない点においても、 DB P吸 油量の大きい導電性充填材が好適である。
なお、 ァゥトガスが少ないと好適である理由については後に詳述する。
このような DB P吸油量を満足する導電性充填材としては、 具体的にはファー ネスブラック、 アセチレンブラック、 ケヅチェンブラック等の力一ボンブラック などの炭素系導電性物質が挙げられる。
これらの導電性フィラーの添加量は、熱可塑性樹脂成分 1 0 0重量部に対して、 5〜 1 0 0重量部、 特に 1 5〜6 0重量部とするのが好ましい。 添加量が上記範 囲より少ないと表面抵抗値が 1 0 12 Ωより大きくなりやすく、 帯電防止性能に劣 るものとなる。 また、 添加量が上記範囲よりも多いと成形性が損なわれたり、 パ 一ティクル発生量の増加を引き起こす。
炭素フィプリルとしては、 繊維径が 1 0 0 n m以下の炭素フィブリルが好まし く、 例えば特表平 8— 5 0 8 5 3 4号公報に記載されているものを使用すること ができる。
即ち、 炭素フィブリルは、 当該フィブリルの円柱状軸に実質的に同心的に沿つ て沈着されているグラフアイ ト外層を有し、 その繊維中心軸は直線状でなく、 う ねうねと曲がり くねった管状の形態を有するため、 ポリカーボネート トレイから の脱落が少ない。
なお、 炭素フィブリルの繊維径は製法に依存し、 分布のあるものであるが、 こ こで言う繊維径とは顕微鏡観察して 5点測定した平均値を指す。 炭素フィブリル の繊維径が 1 0 0 n mより大きいと、 樹脂中でのフィブリル同士の接触が不十分 となり、 安定した抵抗値が得られにくレ、。 従って、 炭素フィブリルとしては繊維 径 1 0 0 n m以下のものが好ましい。
特に、 炭素フィブリルの繊維径が 2 0 n m以下であると、 万が一炭素フイブリ ルがトレイの表面から脱落し、 ヘッ ド等に付着した場合であっても、 作動時のへ ッ ドとハードディスクとのクリアランスは繊維径より比較的大きい ( 5 0〃m程 度) ため、 ディスククラッシュの危険性が低下するので好ましい。
一方、 炭素フィブリルの繊維径は、 0 . l n m以上、 特に 0 . 5 n m以上であ ることが好ましい。 繊維径がこれより小さいと、 製造が著しく困難である。
また、 炭素フィブリルは、 長さと径の比 (長さ/径比、 即ちアスペク ト比) が 5以上のものが好ましく、 特に 1 0 0以上、 とりわけ 1 0 0 0以上の長さ/径比 を有するものが好ましい。 ただし、 あまりにアスペク ト比が大きなものは成形が 困難であり、 かつトレィ成形にはむかないため、 長さと径の比は、 1 , 0 0 0 , 0 0 0以下が好ましく、 1 0 0, 0 0 0以下が好ましい。 なお、 この炭素フイブ リルの長さ/径比は、 透過型電子顕微鏡での観察において、 5点の実測値の平均 値によって得られる。
また、 微細な管状の形態を有する炭素フィブリルの壁厚み(管状体の壁厚) は、 通常 3 . 5〜7 5 n m程度である。 これは、 通常、 炭素フィブリルの外径の約 0 . 1〜0 . 4倍に相当する。
炭素フィブリルはその少なくとも一部分が凝集体の形態である場合、 原料とな る樹脂組成物中に、 面積ベースで測定して約 5 0〃mより大きい径を有するフィ ブリル凝集体、 望ましくは 1 0 2 mよりも大きい径を有するフィプリル凝集体を 含有していないことが望ましい。
このような炭素フィブリルは、 市販品を使用することができ、 例えば、 ハイべ リオン力タリシスインターナショナル社 (HYPERION CATALYSI S INTERNATIONAL, INC)の 「B N」 が使用可能である。
炭素フィブリルの添加量は、 熱可塑性樹脂成分 1 0 0重量部に対して 0 . 2 5 〜9重量部、 特に 0 . 5 ~ 6重量部とするのが好ましい。 この添加量がこれより も少ないと導電性が発現しにく く、 一方これより多く添加しても増量に見合う効 果の向上は認められず、 むしろトレイからのパーティクルの発生が見られると共 に成形性も低下することとなる。
上述の各種導電性充填材は、 1種類を単独で使用しても、 2種以上のものを組 み合わせて使用しても良い。
上述の高分子型帯電防止剤、 導電性フィラー、 炭素フィブリルの中でも、 炭素 フィブリルがパーティクルの発生やイオンコンタミの少ない点で望ましい。
熱可塑性樹脂としては、 ポリエチレン、 ポリプロピレン、 ポリブテン、 ポリメ チルペンテンなどの脂肪族ポリオレフィンゃ脂環族ポリオレフィン、 ポリカーボ ネート、 ポリプチレンテレフ夕レート、 ポリエレンテレフ夕レート、 ポリフエ二 レンサルフアイ ド、 各種ポリアミ ド (ナイロン 6、 6 6、 ナイロン 6 1 0、 ナイ ロン M X D 6等)、 ポリェ一テルイミ ド、 ポリサルフォン、 ポリエーテルサルフォ ン、 ポリエ一テルエ一テルケトン、 アクリル系樹脂、 スチレン系樹脂、 変性ポリ フエ二レンエーテル、 液晶性ポリエステル等の非才レフィン系樹脂などが挙げら れる。
上記の熱可塑性樹脂のなかでも、 乾燥工程における耐熱性の点で、 熱変形温度
( A S T M D 6 8 4 4 . 6 K g荷重)が 1 1 0 °C以上であるものが望ましく、 特に、 ポリプロピレン、 ポリカーボネート、 ポリエチレンテレフ夕レート、 ポリ ブチレンテレフ夕レート、 変性ポリフエ二レンェ一テルが耐熱性、 コス トの面で 好ましい。 更に、 ポリカーボネート、 ポリブチレンテレフ夕レート、 ポリエチレ ンテレフ夕レートが、 そり等の寸法精度の点で好適であり、 とりわけポリカーボ ネートが好ましい。
このようなポリカーボネート樹脂としては、 市販品を使用することができ、 例 えば、三菱エンジニアリングプラスチック社製の「ノバレックス(N0VAREX)」、「ュ 一ピロン (Iupulon)」、 帝人化成社製の [夕フロン (Toughlon)」、 G Eプラスチ ヅク社製の 「レキサン (Lexan)」 などが使用できる。 これらのポリカーボネート 樹脂の中でも、 2 8 0 °C、 2 . 1 6 k gにて測定したメルトフローレ一ト (M F R ) が 3 g / 1 0分以上、 特に 6 g/ 1 0分以上の範囲のものが、 磁気ヘッ ド用 トレイの表面粗さをコントロールしゃすい点で望ましい。
これらの樹脂は、 1種を単独で、 或いは 2種以上を組み合わせて使用すること ができる。
この熱可塑性樹脂組成物には、 必要に応じて、 本発明の目的を損なわない範囲 で各種の添加成分を配合することができる。 例えば、 ガラス繊維、 シリカ繊維、 シリカ ·アルミナ繊維、 チタン酸カリウム繊維、 ほう酸アルミニウム繊維等の無 機繊維状強化材、 ァラミ ド繊維、 ポリイミ ド繊維、 フッ素樹脂繊維等の有機繊維 状強化材、 タルク、 炭酸カルシウム、 マイ力、 ガラスビーズ、 ガラスパウダー、 ガラスバレーン等の無機充填材、 フッ素樹脂パウダー、 二硫化モリブデン等の固 体潤滑剤、 パラフィ ンオイル等の可塑剤、 酸化防止剤、 熱安定剤、 光安定剤、 紫 外線吸収剤、 中和剤、 滑剤、 相溶化剤、 防曇剤、 アンチブロッキング剤、 スリツ プ剤、 分散剤、 着色剤、 防菌剤、 蛍光増白剤等といった各種添加剤を配合するこ とができる。
本発明のトレイの製造方法は、 選定したマトリックス樹脂に適した方法であれ ば、 特に制限はなく、 通常の熱可塑性樹脂の加工方法で製造できる。 例えば、 熱 可塑性樹脂に導電性充填材を予め混合した後、 バンバリ一ミキサー、 ロール、 ブ ラベンダー、 単軸混練押し出し機、 二軸混練押し出し機、 ニーダーなどで溶融混 練することによって熱可塑性樹脂組成物を製造することができ、 その後、 各種の 溶融成形法により、 この樹脂組成物を所定形状に成形してトレィを得ることがで きる。 この成形法としては、 具体的には、 プレス成形、 押し出し成形、 真空成形、 ブロー成形、 射出成形などを挙げることができる。 これらの成形法の中でも、 特 に射出成形法、 真空成形法が望ましい。
射出成形法としては、 一般的な射出成形法の他に、 インサート射出成形法によ る金属部品その他の部品との一体成形や、 二色射出成形法、 コアバック射出成形 法、 サンドイッチ射出成形法、 インジェクションプレス成形法等の各種成形法を 用いることができる。 射出成形においては、 樹脂温度、 金型温度、 成形圧力によ つて得られるトレイの表面抵抗値が変化するので、 目的に応じて適切な条件を設 定する必要がある。
本発明のトレィは、 純水 5 0 0 m l中に、 トレィを浸潰し、 4 0 k H zの超音 波を 6 0秒間印加したときに、 該トレイの表面から脱落する粒径 1〃m以上のパ —ティクルの数が 5 0 0 0 p c s / c m2以下の範囲が良い。このパーティクル発 生量が、 5 0 0 0 p c s / c m2を越えると、 ひっかつきや摩擦が発生し、 また、 トレィを洗浄する際には、脱落したパーティクルによる汚染や損傷の問題がある。 本発明では、 該パーティクル発生量が、 3 5 0 0 p c s / c m2以下、 特に 1 0 0 0 p c s / c m2以下の範囲が良い。
本発明のトレィは、 純水 5 0 m l中にトレィを浸潰して 6 0 °Cで 6 0分間撹拌 したときに、 トレイから溶出する、 トレイの単位表面積 (c m2) 当りのクロルイ オン量が 0 . 0 1〃 g/ c m2以下の範囲が良い。 このクロルイオン溶出量が 0 . 0 l〃 g/ c m2を越えると、 トレィを洗浄氏多彩に溶出するクロルイオンによる 腐食や、 トレィ使用に異物が発生するという問題がある。 本発明では、 特に、 該 クロルイオン溶出量が 0. 005〃g/cm2以下の範囲が良い。
なお、 導電性充填材として炭素繊維を用いたトレイにあっては、 炭素繊維の表 面処理剤である有機性成分が磁気へッ ドに付着して磁気へッ ドを汚染、 損傷した り、 磁気ヘッ ドとディスク間の異物となる問題が懸念される。 この問題を防止す るために、 本発明では、 後述の不揮発性有機物溶出量の測定方法で測定したとき のトレイからの不揮発性有機物の溶出量がトレイの単位表面積あたり 0. 5〃 g
/cm2の範囲が良い。
本発明のトレィは、 ヘッ ドスペースガスクロマトグラムにより、 例えば、 下記 測定方法で測定した塩素化炭化水素発生量が 0. 1 以下のポリカーボネ ート製のものが良い。
<発生ガス量測定方法 >
トレイより切り出した分析サンプル (22 mm (長さ) x 1 0mm (幅) x 3 mm (厚さ)) 2ピース (総表面積 1 2. 6 c m2) を、 容量 22 mLのバイャル (Vial ) 中で、 内標として n—オクタンを 10〃L添加して、 加熱温度 85 °C、 平衡時間 1 6時間の条件でガスを抽出した後、 ガスクロマトグラム (GC) にて 測定し、 イオンクロマトグラムにおける n—オクタンとの面積比より発生量を算 出する。
ただし、 分析サンプルの総表面積が異なる場合には、 総表面積を 12. 6 cm2 に換算すれば良い。
この塩素化炭化水素発生量が 0 · 1 g/g以下であればへッ ドへの悪影響は 極めて少ない。 塩素化炭化水素発生量は、 望ましくは 0. 02〃g/g以下が良 い。
また、 ヘッ ドへの悪影響を考慮した場合、 総アウトガス量は 以下、 特に 0. 5〃g/g以下、 塩化メチレン発生量は 0. 以下、 炭化水素 発生量は 0. 5〃g/g以下、 特に 0. 2 g/g以下の範囲が良い。 なお、 こ の炭化水素とは、 後述のポリカーボネート樹脂の製造において使用される n—へ プ夕ンや、 n—へキサン、 シクロへキサン、 ベンゼン、 トルエン等である。
本発明において、 導電性充填材を含有するポリカーボネート樹脂組成物を成形 することにより、 このようなガス発生量のトレィを得る方法について、 以下に説 明する。
このポリカーボネート樹脂としては、 例えば界面重合法、 ピリジン法、 クロ口 ホーメート法などの溶液法により、 二価フエノール系化合物をホスゲンと反応さ せることによって製造される一般的なものを使用できる。 この場合、 トレイから の揮発成分となる、 重合溶媒として用いた塩化メチレンなどの塩素化炭化水素等 を、得られるトレイに残留させない方法としては、例えば以下の(A ),(C ),(D ) の方法が挙げられる。 また、 下記 (B ) の如く、 溶媒を用いない方法で製造され たポリカーボネート樹脂を用いる方法も有効である。
( A ) 塩素化炭化水素溶媒として得られたポリカーボネート樹脂を精製するに 当り、 ポリカーボネート樹脂の水懸濁液を得、 これを濾過や遠心分離等により湿 潤粉末を得る。 例えば、 ポリカーボネートの塩化メチレン溶液に、 n—ヘプタン などのポリカーボネート樹脂の貧溶媒 (ポリカーボネートが溶解しないか、 溶解 しても僅かな溶媒) を沈殿が生じない程度添加してなる樹脂液を、 温水中に滴下 し、 適宜湿式粉砕を行いながら貧溶媒を留去する (以下、 この方法を 「温水滴下 精製」 と記す。)。 このとき、 8 0〜 1 0 0 °Cに加熱しながら貧溶媒を留去する際、 腐食性の揮発性ガスの原因となる塩化メチレン等の塩素化炭化水素が効率よく除 去される。
( B ) 重合溶媒を使用しない重合方法により得られたポリカーボネート樹脂(例 えば、 特開平 4一 1 0 3 6 2 6号公報等に開示されたポリカーボネート樹脂) を 使用する。
( C ) 溶融混練又は溶融成形に当り、 真空脱気する。 例えば、 通常の精製方法、 或いは上記 (A ) 法又は (B ) 法により得られたポリカーボネート樹脂をベント 付き押し出し機に供給して、 ベントより真空脱気することにより、 溶媒を除去す る。 この際、 特開平 9 _ 2 9 7 3 8号公報に記載されるように、 原料粉末或いは 溶融状態の樹脂に水を添加すると、 残存溶媒の除去の点で好適である。
( D ) 通常の精製方法或いは、 上記 (A ) 〜 (C ) の方法より得られたポリ力 —ボネート樹脂を使用した樹脂組成物を用いて成形したトレィを、 ァニールする ことによって揮発成分を除去する。 この場合、 ァニール処理は、 80°C以上の温 度で 30分以上行うのが好ましい。 このァニール処理温度が 140°Cを超えると トレイの寸法変化や変形を引き起こす可能性があり、 また、 ァニール処理時間が 20時間を超えても揮発成分の除去効果の向上は望めないことから、 ァニール処 理は 80〜 140°Cで 30分〜 20時間とするのが好ましい。
なお、 上記 (A) 〜 (D) の方法のうち、 (A)法では、 塩素化炭化水素は低減 できるものの、 n—ヘプタンなどの貧溶媒成分が残留する可能性が高い。 n—へ ブタンはへッ ドを腐食することはないものの、 最近のより高密度化された MR素 子においては、 へッ ド素子表面への微少なデポジッ 卜の危険性が問題とされるこ とから、 前述の如く、 n—ヘプタン等の炭化水素発生量についても、 極力抑える ことが望まれる。
このような n—ヘプタンや、 オリゴマー、 その他の低分子量揮発成分も効率的 に除去する点からは、 特に、 (C)法の真空脱気による溶媒除去法が望ましい。 こ の (C) 法の押し出し機での真空脱気は、 導電性充填材を溶融混練により複合化 する際に行っても良いし、 この混練前又は混練後に行っても良い。
また、 本発明の磁気ディスク用磁気ヘッ ドの搬送用トレイは、 表面粗さが、 力 ットオフ波長 2. 5mmの測定において、 下記①又は②を満足するものが良い。
① 十点平均粗さ (Rz) が 5〃m以下
② カツティングレベル 10%負荷長さ率 (t p) が 1%以上で、 中心線より ±0. 1 zm以上のピークカウント (P c) が測定長 1 cm当たり (0以上) 1 00以下
ここで、 十点平均粗さ (Rz) とは、 粗さ曲線の平均線から縦倍率の方向に測 定した、 最も高い山頂から 5番目までの山頂の標高の絶対値の平均値と、 最も低 い谷底から 5番目までの谷底の標高の絶対値の平均値との和より算出して求める c 従って、 Rzの数値は、 小さいほど平滑な表面であることを示す。
なお、 極めて平滑な表面の場合、 山及び谷が測定範囲内に 5個以上存在しない と算出が不可能である。 そのような場合には、 本発明では最大山と最大谷の和、 すなわち R maxで置き換えることが出来る。 一方、 カツティングレベル 10%の負荷長さ率 (t p) とは、 粗さ曲線から基 準長さだけ抜き取り、 最も高い山頂から 10%低いレベルで、 平均線と平行に切 断したときに得られる切断長さの和 (負荷長さ) の基準長さに対する比を百分率 で表したものをいう ( J I S B 060 1 )o
また、 ±0. 1〃m以上のピークカウント (P c) とは粗さ曲線の平均線から ±0. 1 /mの高さ及び深さに平均線と平行に線を引き、 その線を縦方向に横切 る凹凸が、 基準長さ内にいくつあるかをカウントしたものである。
十点平均粗さ (R z) が 5 zm以下の平滑度の高い表面粗さであれば、 ポリイ ミ ド被覆材などの磁気ヘッ ドへの傷付き性は少ない。 なお、 R zが 0. l〃m以 下のトレィは製造が困難であり、 これを得ようとするとコス トがかかるので、 R zの値としては、 0. 1〃111〜 5〃mの範囲がよく、 0. l〃m~4〃mの範囲 であればより良く、 0. 1 /π!〜 3〃mの範囲であれば特によい。
また、 +点平均粗さ (R z ) が 5〃mを超えても、 力ッティングレベル 1 0 % の負荷長さ率 ( t p) が 1 %以上で、 かつ前記ピークカウント (P c) が 1 cm あたり 100以下、 望ましくは 80以下であると、 磁気へッ ドへの傷付きが少な く良好となる。
逆に、 十点平均粗さ (Rz) が 5 mを超え、 カッティングレベル 10 %の負 荷長さ率 (t p) が 1%より小さいと、 突起の先端が鋭利になり、 磁気ヘッ ドへ の損傷が大きくなる。 また、 十点平均粗さ (R z) が 5〃mを超え、 カッテイン グレベル 1 0%の負荷長さ率 (t p) が 1 %以上でピークカウント (P c) 値が 100を超える表面粗さであると、 磁気へッ ドへの損傷が大きくなる。
ところで、 非結晶性で比較的溶融粘度の高いポリカーボネート樹脂に導電性充 填材を配合した樹脂組成物の射出成形品よりなるトレイの表面は、 金型表面を転 写し難く、 流動性、 充填材の形状、 収縮及び成形条件等に起因する表面付近での 流れムラや充填材の露出によって表面粗さが形成される。
かかる状態での表面粗さは、 P c値で表される凹凸の数が上記の範囲以下であ れば山と谷の傾斜がなだらかになり、 山の頂点が緩やかになる。 このことによつ て磁気へッ ドとの摩擦において "引つ接き" の効果が減少する。 逆に P c値が 1 00を超えると個々の山が鋭利な突起となり、磁気へッ ドへの損傷を引き起こす。 ピークカウント (P c) は 0以上 80以下において特に磁気ヘッ ドの損傷性が少 なくなる。
放電加工、 エッチング、 サンドブラストなどによる処理を金型表面に施すこと により金型表面を変化させることができる。
上記の表面粗さは、 金型表面の転写性を改良したポリカーボネート樹脂組成物 を用いたり、 金型表面を変化させることにより制御するとが可能となる。
磁気ヘッ ドをトレイに搭載した状態にて水中洗浄及びその後の乾燥工程を行う 場合、 磁気ヘッ ドと接触する部位のトレィ表面の十点平均粗さ (R z) が小さい と、 その間に浸透した洗浄水の乾燥性が低下し、 乾燥効率を低下させるという問 題が生じることがある。 更に、 磁気ヘッ ド用トレイの場合、 磁気ヘッ ドの目視検 査において、 トレイの表面の平滑性が良すぎると、 光の反射率が大きくなり、 検 査に支障をきたす。
かかる観点から、 磁気へッ ド用トレイの磁気へッ ドの搭載される部位の表面粗 さは、 十点平均粗さ (R z) が 5〃m以上 50〃m以下でカッティングレベル 1 0%の負荷長さ率 (t p) が 1%以上、 かつピークカウント (P c) が (0以上) 100以下、 好ましくは (0以上) 80以下の範囲が良い。 実施例
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
なお、 以下の実施例及び比較例において、 成形には 75 t o n射出成形機を用 い、 図 1 (斜視図) 及び図 2 (a) (平面図)、 (b) (図 2 (a) の B— B線に沿 う断面図) に示す形状及び寸法のトレィを成形した。 図中、 1はトレイ本体、 2 は位置決めリブ、 3は位置決めボス、 4は磁気ヘッ ドをそれぞれ示す。
実施例および比較例における各種の物性ないし特性の評価方法は次の通りであ る。
<表面抵抗値 >
図 2 (a) の斜線を付した範囲の任意の 5ケ所で、 2探針プローブで、 プロ一 プ先端 : 2mm0、 プローブ中心間距離: 20 mmにて下記プローブ間印可電圧 にて測定し、 平均値を算出した。
表面抵抗値が 103Ω以上 1 09Ω未満の場合: 10 V
表面抵抗値が 109Ω以上の場合 : 100V
ただし、 表面抵抗値 1 08Ω以上の測定には、 プローブ先端を 5 mm0として、 さらに厚み 2mm、 直径 5mm0、 1 0 Ω c m以下の導電性シリコンゴムをァセ ンブリして、 サンプル表面との密着が安定するようにして測定した。
また、 測定機としては次のものを用いた。
表面抵抗値 1 02Ω以上、 1 04Ω未満の場合: ァドバンテスト社製 「高抵抗計 R 8340」
表面抵抗値 1 04Ω以上の場合: ダイヤィンスツルメント社製 「ハイレス夕 (Η iresta) A P」
<パーティクル発生量 >
純水 500 m 1に、総面積が 1 00〜 1000 cm2のトレイ (本発明の実施例 •比較例においては、 総表面積 420. 8 cm2) 1枚を浸漬し、 超音波 (4 kH z、 0. 5 W/cm2) を 60秒間印加した。 その後、 抽出した純水を液中パーテ ィクルカウン夕一にて吸引し、 粉塵粒子径 1〃m以上の数量を測定した。 なお、 測定に際しては、 前処理として、 トレィを純水により 8分間超音波洗浄した後、 100°Cのオーブン中にて 30分乾燥を行った。 作業は全てクリーンルーム内で 行った。 また、 サンプル浸潰の際には全てガラス製容器を用いた。
<クロルイオン溶出量 >
純水 480mlに、総面積が 1 00〜: L O O O cm2のトレイ 2枚をポリプロピ レン容器中で浸潰し、 60°Cのウォー夕一バス中で 60分撹拌した。 その後、 ィ オンを抽出した純水中のクロルイオンをイオンクロマドグラフィ法にて分析した <不揮発性有機物溶出量 >
旭ガラス社製フロン系洗浄剤 「アサヒクリン AK— 225」 500 mlに、 ト レイを浸漬し、 超音波 (40 kH z、 0. 5 W/cm2) を 60秒間印加した。 抽 出液をアルミパン上で 1 00°Cにて揮発させて、 残留分の重量を測定した。 ぐ磁気へッ ドの腐食試験 >
トレイに MRヘッ ドを 1 2個搭載して、 ガラス製の容器 (容量 20 1. 5 mL ) 中で、 80°C、 90%、 9 5時間放置した。 その後、 MRヘッ ドをトレイから 取り出し、 100倍の顕微鏡にて MR素子部の腐食の有無を観察し、 下記基準で 評価を行った。
〇…磁気へッ ド (素子) に、 腐食は見られなかった。
X…全ての磁気ヘッ ド (素子) のパーマロイにより構成されている部位に腐食 が発生した。
<ガス発生量の測定 >
別に、 トレイより分析サンプルとして 22 mm (長さ) x 1 0mm (幅) x 3 mm (厚さ) のサンプルを 2ピース (総表面積 12. 6 cm2) 切り出して、 内標 として n—オクタンを 10〃L添加した容量 22 mLのバイャル (Vial ) 中で、 加熱温度 85°C、 平衡時間 1 6時間の条件でガスを抽出した。
バイャル (Vial ) 中に発生したガスをガスクロマトグラム (GC/MS) にて 測定した。 このときの測定条件は以下に示す通りである。
装置 :島津製作所社製 「GC/MS QP 5050」
カラム : CHROMPAK P OR AP L 0 E Q
0. 32 mmx 25m
カラム温度: 35〜240°C ( 10 °C/m i n)
注入口温度: 320°C
ィン夕ーフェース温度: 280°C
トレイガス :ヘリウム
注入口圧力 : 100 K P a s
全流量 : 60 mL/m i n
注入量 : 2mL
発生ガスの定性分析の結果、 主成分は n—ヘプタン、 アセトン、 1一プロペン 、 2—プロパノール、 及びその他の微量成分であった。
総アウトガス量、 塩化メチレン発生量、 n—ヘプタン発生量をそれそれ以下の 式により算出し、 結果を表 1に示した。
総ァゥ トガス量 ( g/g) =
(サンプル総ピーク面積—ブランク総ピーク面積)
(n—オクタンのビーク面積/ n—オクタンの重量 (g)) (サンプル重量 (g))
塩化メチレン発生量 (〃g/g) =
(塩化メチレンピーク面積) 1
X
(n—オクタンのピーク面積/ n—オクタンの重量 (g)) (サンプル重量 (g))
ヘプタン発生量 (〃g/g) =
(ヘプタンピーク面積)
X
(n—オクタンのピーク面積/ n—オクタンの重量 (g)) (サンプル重量 (g))
<表面粗さ >
東京精密社製 表面粗さ計 「サーフコム (surfcom)」 を使用して、 測定条件: カッ トオフ波長 2. 5mm、 測定長 5mm、 測定スピード 0. 3mmZSにて、 表面粗さを測定した。
測定は、 磁気ヘッ ドが接触する図 2 (a) の斜線を付した範囲の任意の 5ケ所 について行い、 各パラメ一夕の平均値を算出した。 また、 0値は2倍して 1 。 m当たりの数値に換算した。
<損傷性試験 >
磁気ヘッ ドの損傷性評価として、 図 3に示す方法にて、 磁気ヘッ ドが接触する 図 2 (a) の斜線を付した範囲から採取したトレィ材 (サンプル) 1 1に対して 、 磁気へッ ドのリード線として使用される。 基材にポリイミ ドを使用したフレキ シプルプリント配線基板 (F P C) (幅 10mm) 1 2を、 ゴムシート 13を取り 付けた荷重 ( 1 00 g、 直径 40 mm) 14で押し付け、 スパン (span) 80m mで 10往復摺動させて、 試験後の配線基板 1 2の表面を光学顕微鏡にて 50〜 100倍で観察し、 以下の基準で判定した。 なお、 損傷試験用サンプル 1 1は事前に全て純水洗浄を行い、 表面に付着した ゴミを取り除いた。 また、 事前洗浄及び損傷性試験は全てクリーンルーム内で行 つた。
◎:傷が全く観察されない。
〇:傷が 6本未満で、 傷深さが銅配線へ達していない。
:傷が 6本以上で、 傷深さが銅配線へ達している。 実施例 1〜7、 比較例 1、 2
表 1に示す配合及び混練条件で、 2軸混練押し出し機 (池貝鉄工社製 PCM4 5、 スクリュ長 L/スクリュ径 D = 32) で溶融混練して、 ポリカーボネート樹 脂組成物のペレッ トを得た。 なお、 用いた材料の詳細は次の通りである。 下記材 料のうち、 炭素フィブリルの配合混練は、 予め 15重量%の添加量で分散させた 炭素フィブリルマスターバッチを使用して、 所定の含有量となるように添加して 行った。
ポリ力一ボネ一ト 1 :三菱エンジニアリングプラスチック (株)「ノバレックス
(N0VAREX) 7022 A」
ポリカーボネート 2 :三菱エンジニアリングプラスチック (株) 「ュ一ピロン
(lupulon) S 2000」
ポリエ一テルエステルアミ ド :東レ社製 「P AS— 40 T」
導電性ウイスカ :三菱金属 (株) 製酸化スズコートホウ酸アルミニウムゥイス 力 「パストラン (Pastoran) 5 1 10」 (繊維径 0. 8 zm、 ァスぺク ト!:匕 35)
アセチレンブラック :電気化学 (株) 製 「デンカブラック」 (DBP吸油量
1 90 c c/g)
炭素フィブリル:ハイペリオン力夕リシスィン夕一ナショナル社 (HYPERION
CATALYSIS INTERNATIONAL, INC)製 「BNタイプ」 (繊維径 10 nm、 アスペク ト比 1 00以上)
炭素繊維 :東邦レーヨン社製 PAN系炭素繊維 「ベスフアイ ト (BESFIGHT) C 6 _SR S」 (繊維径 7〃m、 エポキシ樹脂表面処理品) このペレッ トを用いて図 1、 2に示す形状及び寸法のトレィを成形し、 物性及 び特性の評価を行い、 結果を表 2に示した。
なお、 シリンダ温度は 300°C、 金型温度は 90°Cであり、 図 2 (a) の斜線 部に対応する金型面の表面粗さは Rm ax 1 5〃mであった。
実施例 比較例 例
1 2 3 4 5 6 7 1 2
+±4 ポリ力一ポネート"! 1 uu 1 nn 11 n unu 11 n unu l uu I uu 11 n unu I uu 脂 ポリカーボネート 2 1 nn
成 炭素フィブリル
配 ポリエーテルエステルアミド D 1 Π 導電性ウイスカ 25
アセチレンブラック 20 部
炭素繊維 25 混練温度 (°c) 300 260 320 260 300 320 320 280 300 スクリュ回転数(RPM) 100 100 100 100 100 300 300 200 100 条 吐出量 (kgZh) 30 30 30 30 30 20 20 30 40 件
ベント (kPa) ぐ 10 <10 ぐ 10 ぐ 10 開放 <10 <10 <10 開放
表 2
Figure imgf000028_0001
※ :+点平均粗さ(jtim)
tp10 :カッティングレベル 100/o負荷長さ率
Pc(/cm) :中心線より ±0. 1〃m以上のピークカウント(測定長 Z1cm当し J)
ND :検出されず
表 2よりパ一ティクル発生量が 5000 p c s/ cm2以下であれば、へッ ドの 損傷が発生しにくいことがわかり、パ一ティクル発生量が 3500pc s/cm2 であれば損傷が発生することを有効に防止できることがわかる。 また、 本発明の トレィは、 塩化メチレン等の発生量が極めて少なく、 ヘッ ドチップの腐食による 危険性が少ないこと、 摩擦によるヘッ ドの損傷がほとんどないことがわかる。 ま た、 十点平均粗さ (Rz) が 5〃m以下であるか、 又はカッティングレベル 10 %負荷長さ率 (tp) が 1%以上で、 中心線より ±0. l /m以上のピークカウ ント (P c) が測定長 1 cm当たり 100以下であれば損傷が発生しないことが わかる。
実施例 5では、 磁気ヘッ ド素子が腐食してしまっている。 これは、 脱気しなか つたことによる。 実施例 5のトレィは、 脱気していれば (ァゥトガスの発生も抑 制できたので) 磁気ヘッ ド素子に腐食が発生せず、 良好なトレィを得ることがで きる。
実施例 8〜 17及び比較例 3〜 4において用いたポリカーボネート樹脂組成物 の調製方法は次の通りである。
<ポリカーボネート樹脂組成物の調製方法 >
下記のポリカーボネート樹脂 1A、 2 A又は 3 Aに導電性充填材 (組成物 A〜 E、 G〜I) 又は帯電防止剤 (組成物 F) を表 3に示す割合で配合し、 池貝鉄鋼 社製 2軸混練押出機 P CM45 (スクリュ長 L/スクリュ径 D = 32) で表 3の 条件にて溶融混練して組成物 A〜Iのペレッ トを得た。 ただし、 炭素フィブリル の配合混練は、 予め 15重量%の添加量で分散させた炭素フィブリルマスターバ ツチを使用して、 所定の含有量となるように添加した。
用いた材料の詳細は次の通りである。
ポリカーボネート樹脂 1 :三菱エンジニアリングプラスチック社製 「ノバレツ クス (NOVAREX) 7022」 (MFR= 13 g/10分 280 °C 2. 16kg)
ポリカーボネート樹脂 2 :三菱エンジニアリングプラスチック社製 「ノバレツ クス (NOVAREX) 7 0 2 5」 (MF R= 8 g/ 1 0分 2 8 0 °C 2. 1 6 k g)
ポリカーボネート樹脂 3 :三菱エンジニアリングプラスチック社製 「ュ一ピロ ン (Iupulon) S 2 0 0 0」 (MFR= 1 2 g/ 1 0分 2 8 0 °C 2. 1 6 k )
炭素繊維: PAN系炭素繊維 (繊維径 7〃m、 繊維長 6 mm (エポキシサイジ ング))
導電性ウイスカ :三菱金属社製 酸化錫コートホウ酸アルミニウムウイスカ 「パス トラン (Pastoran) 5 1 1 0」 (平均繊維径 0. 8〃m、 平均繊維長 2 4 j m)
カーボンブラック :電気化学社製「デン力ブラック」(DB P吸油量 1 9 0 c c
/ 1 0 0 g)
炭素フィブリル : ハイペリオン力タ リシスィン夕一ナショナル社 (HYPERION
CATALYSIS INTERNATIONAL, INC)製 「B N」 (D B P吸油量 7 0 0 c c/ 1 0 0 g、 平均繊維径 1 0 nm、 平均繊維長 1〃m以上) 高分子型帯電防止剤:東レ社製ポリエーテルエステルアミ ド
「P A S - 4 0 T」
なお、 各ポリカーボネート樹脂組成物について、 J I S Κ 7 2 0 3に準拠し て測定した曲げ弾性率は表 3に示す通りである。
表 3
ポリカーボネート樹脂組成物 No. A B C D E F G H I ポリカーボネート樹脂 1 90 80 82 80 95J 95.7 配 ポリカーボネート樹脂 2 95.7 80
割 ポリカーボネート樹脂 3 95.7 炭素繊維 10 20
番 導電性ウイスカ 20
% カーボンブラック 18
炭素フィブリル 4.3 4.3 4.3 4.3 高分子型帯電防止剤 20
ΐ 混練温度 (°c) 300 320 280 320 300 260 300 320 320 練 1 スクリュ回転数(RPM) 100 100 200 300 100 100 100 300 300 条
吐出量 (kgZh) 40 30 30 20 40 30 30 20 20 件
ベント (kPa) < 10 ぐ 10 < 10 ぐ 10 開放 ぐ 10 開放 < 10 ぐ 10 曲げ弾性率 (kgZcm2) 65000 42000 25800 24900 120000 20500 24800 25200 25100
実施例 8
ポリカーボネート樹脂組成物 A (表 3参照) を用いて、 7 5 t o n射出成形機 にて図 1、 2に示すトレィをシリンダ温度 290°C、 金型温度 90°Cにて射出成 形した。 得られたトレイについて、 表面抵抗値及び表面粗さの測定と損傷性試験 を行い、 結果を表 4に示した。 なお、 磁気ヘッ ドが接触する図 2 (a) の斜線部 に相当する金型表面の粗さは Rm ax 1. 5〃mであった。 実施例 9
実施例 8において、 成形温度を 3 1 0°Cに変えたこと以外は同様にしてトレィ を成形し、 表面抵抗値又は表面粗さの測定と損傷性試験を行い、 結果を表 4に示 した。 実施例 1 0
ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物 Bに変え、 また、 磁気ヘッドが接触する図 2 (a) の斜線部に相当する部分の金型面をエッチング にて表面をシボ加工し、 Rz l 8. 5〃m、 カッティングレベル 10%での t p 値 1. 4%、 ±0. 1〃m以上のピークカウント (P c) が測定長 1 cm当たり 35の表面粗さに仕上げて、 射出成形温度 280°C、 金型温度 90°Cにて射出成 形したこと以外は実施例 8と同様にしてトレィを成形し、 表面抵抗値及び表面粗 さの測定と損傷試験を行い、 結果を表 4に示した。 実施例 1 1
実施例 8において、 ポリカーボネ一ト樹脂組成物をポリカーボネート樹脂組成 物 Cに変え、 成形温度 300°Cで射出成形したこと以外は同様にしてトレィを成 形し、 表面抵抗値及び表面粗さの測定と損傷性試験を行い、 結果を表 4に示した
実施例 1 2 実施例 8において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組成 物 Dに変え、 成形温度 290 °Cで射出成形したこと以外は同様にしてトレィを成 形し、 表面抵抗値及び表面粗さの測定と損傷性試験を行い、 結果を表 4に示した
実施例 13
実施例 12において、 金型を実施例 10と同様な金型表面とし、 成形温度 30 0°Cで射出成形したこと以外は同様にしてトレィを成形し、 表面抵抗値及び表面 粗さの測定と損傷性試験を行い、 結果を表 4に示した。 実施例 14
実施例 10において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組 成物 Fに変え、 成形温度 280°Cで射出成形したこと以外は同様にしてトレィを 成形し、 表面抵抗値及び表面粗さの測定と損傷性試験を行い、 結果を表 4に示し た。 比較例 3
実施例 8において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組成 物 Eに変えたこと以外は同様にしてトレィを成形し、 表面抵抗値及び表面粗さの 測定と損傷性試験を行い、 結果を表 4に示した。 比較例 4
実施例 10において、 金型表面を放電加工により、 Rz l 9. 2 /m、 カッテ イングレベル 10 %での t p値 0. 5%、 ±0. 1〃m以上のピークカウント ( P c) が測定長 1 cm当たり 101の表面粗さに仕上げたこと以外は同様にして トレィを成形し、 表面抵抗値及び表面粗さの測定と損傷性試験を行い、 結果を表 4に示した。 実施例 1 5
実施例 8において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組成 物 Gに変えたこと以外は同様にしてトレィを成形し、 表面抵抗値及び表面粗さの 測定と損傷性試験を行い、 結果を表 4に示した。 実施例 1 6
実施例 8において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組成 物 Hに変えたこと以外は同様にしてトレィを成形し、 表面抵抗値及び表面粗さの 測定と損傷性試験を行い、 結果を表 4に示した。 実施例 1 7
実施例 8において、 ポリカーボネート樹脂組成物をポリカーボネート樹脂組成 物 Iに変えたこと以外は同様にしてトレィを成形し、 表面抵抗値及び表面粗さの 測定と損傷性試験を行い、 結果を表 4に示した。
表 4
Figure imgf000035_0001
※ Rz 十点平均粗さ(ji m)
tp 10 カッティングレベル 1 0%負荷長さ率
Pc(/cm) 中心線より ± 0. 1〃 m以上のピークカウント(測定長 1 c m当り)
ND :検出されず
表 4より、 本発明のトレィは、 摩擦によるヘッ ドの損傷の問題が殆どなく、 ま た表面抵抗値が中位に安定しており、 へッ ドへの電気的な損傷も少ないことがわ かる。 すなわち、 十点平均粗さ (R z) が 5〃m以下であるか、 又はカッテイン グレベル 1 0%負荷長さ率 (t p) が 1 %以上で、 中心線より ±0. l〃m以上 のピークカウント (P c) が測定長 1 cm当たり 1 00以下であれば損傷が発生 しないことがわかる。また、 パーティクル発生量が 5000 p c s/cm2以下で あれば、 ヘッ ドの損傷が発生しにくいことがわかり、 パーティクル発生量が 35 00 p c s/cm2以下であれば損傷が発生することをより有効に防止でき 一 ティクル発生量が 1 000 p c s/cm2以下であれば損傷が発生することを特 に防止できることがわかる。
また、 表 4より本発明のトレィは、 塩化メチレン等の発生量が極めて少なく、 へッ ドチップの腐食の危険性が少ない上に、 へッ ドの汚染及びそれによる損傷の 問題が殆どないことがわかる。 なお、 実施例 1 5では、 アウトガスが発生し、 磁 気ヘッ ドが腐食している。 これは、 脱気を施さなかったことに由来する。 実施例 15において、 もし脱気をしていればアウトガスが発生することを抑制でき、 し かも磁気へッ ドが腐食しなかったものと考えられる。 以下に実施例 18~22及び比較例 5〜6を挙げて本発明をより具体的に説明 する。
なお、 以下の実施例 18〜 22及び比較例 5〜6において、 二軸混練押し出し 機としては、 池貝鉄鋼社製 「P CM45」 L/D= 32 (L ;スクリユー長、 D ;スクリュー径) を用い、 バレルは、 先端より 4. 4Dから 5. 8 Dの部分にベ ント開口部を有する形状とした。 実施例 18
ビスフヱノール Aより製造したポリカーボネート樹脂の塩化メチレン溶液を精 製し、 樹脂濃度 20重量%の溶液とした。 この樹脂溶液 200リッ トルに、 n— ヘプタン 40リッ トルを加え均一に混合した後、 温水中に滴下しつつ湿式粉碎器 で粉砕した。 この温水滴下精製における滴下中の容器内の液温度は 40° (:、 内圧 は 0. 1 k g/cm2に調整した。
滴下終了後、 容器内温度を 100°Cまで昇温し、 約 15分間で溶媒を蒸発除去 し、 得られたポリカーボネート樹脂の水スラリー液を取り出し、 濾過、 水切りを した後、 140°Cにて乾燥を行い、 ポリ力一ネート樹脂の粉末を得た。
得られたポリカーボネート樹脂に、 平均繊維径 7〃 m、 平均繊維径 6 mmのェ ポキシ表面処理された PAN系炭素繊維を組成物中に 10重量%配合して、 二軸 混練押し出し機によりベント開放状態にて 300°Cの温度でスクリュー回転数 1 00RPM、 吐出量 30 k g/hの条件で混練して樹脂組成物ペレツ トを得た。 得られたペレツ トを射出成型機にて、 300°Cの成形温度にて成形して図示の 磁気ヘッ ド搬送用トレイ (総表面積 420. 8 cm2) を得た (金型温度 90°C) 得られたトレイの表面抵抗値を下記の方法で測定し、 結果を表 5に示した。 な お、 表面抵抗値は、 図 2 (a) の斜線を付した範囲の任意の 5ケ所で測定し、 平 均値を算出した。 実施例 19
実施例 18と同様にしてポリカーボネート樹脂粉末を調製し、 これを二軸混練 押し出し機にてベントを 20To rrに減圧しながら、 300°Cの温度でスクリ ユー回転数 200 RPM、 吐出量 20 k g/hの条件で混練して、 ペレッ トを得 た。 このペレッ トにアセチレンブラック (電気化学 (株) 製 「デンカブラック」 D BP吸油量 300 c c/100 g) 18重量%を二軸混練押し出し機にてベン ト開放状態にて 280°Cの温度でスクリユー回転数 200 RPM、 吐出量 3 Ok g/hの条件で混練して、 ポリカーボネート樹脂組成物のペレツ トを得た。
このペレツ トを用いて実施例 18と同様にしてトレィを成形し、 評価を行い、 表面抵抗値、 腐食試験及び発生ガス分析の結果を表 5に示した。 実施例 20 実施例 18と同様にして調製したポリカーネート樹脂粉末 1 00重量部に対し て 1重量部の純水を添加し、 二軸混練押し出し機にてベントを 20 T o r rに減 圧しながら、 300°Cの温度でスクリユー回転数 200 RPM、 吐出量 20 kg /hの条件で混練して、 ペレッ トを得た。 このペレッ トに炭素フィブリル (ハイ ペリオン力タリシスイン夕一ナショナル社 (HYPERION CATALYSIS INTERNATIONAL , INC)製 「タイプ BN」 D BP吸油量 700 c c/100 g) 4. 3重量%を配 合し、 二軸混練押し出し機にてベントを 20 T 0 r rに減圧しながら、 280 °C の温度でスクリュ一回転数 200 RPM、 吐出量 20 k g/hの条件で混練して 、 ポリカーボネート樹脂組成物のペレッ トを得た。 なお炭素フィブリルの配合混 練は、 予め 15重量%の添加量で分散させた炭素フィブリルマスターバッチを使 用して、 所定の含有量となるように添加した。
このペレッ トを用いて実施例 1 8と同様にしてトレイを成形し、 評価を行い、 表面抵抗値、 腐食試験及び発生ガス分析の結果を表 5に示した。 実施例 2 1
実施例 20において、 ポリカーボネート樹脂ペレッ トを、 重合溶媒を使用しな い製造方法によるポリカーボネートとして、 GEプラスチック社製 「MHL_ 1 1 10— 1 1 1」 に変えたこと以外は、 実施例 3と同様にしてポリカーボネ一ト 樹脂組成物のペレッ トを製造し、 同様にトレィを成形し、 評価を行って、 表面抵 抗値、 腐食試験及び発生ガス分析の結果を表 5に示した。 実施例 22
ビスフエノール Aより製造したポリカーボネート樹脂の塩化メチレン溶液を精 製し、 樹脂濃度 20重量%の溶液とした。 この樹脂溶液を 1 00°Cの水蒸気中に 噴霧して溶媒を除去し、 直接ポリカーボネートの湿潤粉末を得、 これを 140°C で乾燥してポリカーボネート樹脂粉末を得た。
得られたポリカーボネート粉末に実施例 20で使用したと同様の炭素フィプリ ルを 4. 3重量%配合し、 二軸混練押し出し機でベントを 20 T 0 r rに減圧し ながら、 280°Cの温度でスクリユー回転数 200 RPM、 吐出量 2 O k g/h の条件で混練して、 ポリカーボネート樹脂組成物のペレツ トを得た。
得られたペレツ トを用い、 射出成型機にて、 300°Cの成形温度にてトレィを 成形した後、 オーブン中で 1 30°Cにて 10時間ァニールした。
得られたトレイについて実施例 18と同様にして評価を行い、 表面抵抗値、 腐 食試験及び発生ガス分析の結果を表 5に示した。 比較例 5
実施例 22で得られたポリカーボネート樹脂粉末に、 実施例 1 8で使用した炭 素繊維を組成物中に 20重量%配合して、 ベント開放状態にて 300°Cの温度で スクリュ一回転数 100 RPM、 吐出量 30 k g/hの条件で混練してポリ力一 ボネート樹脂組成物のペレツ トを得た。
このペレッ トを用いて、 実施例 18と同様にしてトレイの成形及び評価を行い 、 表面抵抗値、 腐食試験及び発生ガス分析の結果を表 5に示した。 比較例 6
比較例 5において、 炭素繊維を実施例 3で使用したと同様の炭素フィブリルに 変えて 4. 3重量%添加したこと以外は比較例 5と同様にしてペレツ 卜の製造、 トレイの成形及び評価を行い、 表面抵抗値、 腐食試験及び発生ガス分析の結果を 表 5に示した。
Figure imgf000040_0001
※ Rz :十点平均粗さ( m)
tp10 :カッティングレベル 10%負荷長さ率
Pc(c/cm):中心線より ±0. 1〃m以上のピークカウント(測定長 1cm当り)
ND :検出されず
表 5より、 本発明のトレィは、 塩化メチレン等の発生量が極めて少なく、 へッ ドチップの腐食の危険性が少ない上に、 表面抵抗値が中位に安定しており、 へッ ドチップへの電気的な損傷も少ないことがわかる。 また、 パーティクル発生量が 5000 p c s/cm2以下であれば、へヅ ドの損傷が発生しにくいことがわかり、 パーティクル発生量が 1000 p c s/cm2以下であれば損傷が発生すること を特に有効に防止できることがわかる。
また、 十点平均粗さ (R z) が 5〃m以下であるか、 又はカッティングレベル 10%負荷長さ率 ( t p) が 1 %以上で、 中心線より ±0. l〃m以上のピーク カウント (P c) が測定長 1 cm当たり 100以下であれば損傷が発生しないこ とがわかる。
また、 表 5より本発明のトレィは、 ヘッ ドの汚染及びそれによる損傷の問題が 殆どなく、 また、 摩擦によるヘッ ドの損傷の問題が殆どないことがわかる。
なお、 実施例 1 9ではパーティクルが多く発生している。 これは、 導電性充填物 として、 カーボンブラックを用いたこと等に由来している。 実施例 19は、 ァゥ トガスが少なく磁気へッ ドの腐食が起きていないし、 また損傷もそれほど起きて いない。 産業上の利用可能性
以上詳述した通り、 本発明によれば、 静電気放電や過度の接触電流の導通等に よる電気的損傷やパーティクルの脱落や、 イオンコン夕ミネーシヨンによる物理 的化学的な汚染や損傷等の問題のない磁気ディスク ドライブ用の MRへッ ド等の 磁気ディスク用磁気へッ ドの搬送用トレィが提供される。

Claims

請 求 の 範 囲
1 . アーム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレイにおいて、
該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであり、 純水 5 0 0 m l中にトレィを浸潰し、 4 0 k H zの超音波を 6 0秒間印加した ときに、 該トレイの表面から脱落する粒径 1 Ai m以上のパーティクルの数が 5 0 0 0 p c s / c m2以下であることを特徴とする磁気ディスク用磁気へッ ドの搬 送用トレイ。
2 . 請求の範囲第 1項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
該導電性熱可塑性樹脂組成物は、 熱可塑性樹脂と導電性充填材を含み、 該導電性充填材は、 ポリエーテル系高分子型帯電防止剤、 導電性フィラー及び 炭素フィブリルよりなる群より選ばれた 1種又は 2種以上のものである磁気ディ スク用磁気へッ ドの搬送用トレイ。
3 . 請求の範囲第 2項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
該熱可塑性樹脂が、 ポリカーボネート、 ポリブチレンテレフ夕レート、 ポリエ チレンテレフ夕レート及びポリプロピレンよりなる群から選ばれた 1種又は 2種 以上である磁気ディスク用磁気へッ ドの搬送用トレイ。
4 . 請求の範囲第 2項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
該導電性充填材が、 直径が l O O n m以下で、 長さ/径比が 5以上の炭素フィ ブリルである磁気ディスク用磁気へッ ドの搬送用トレイ。
5. 請求の範囲第 1項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
純水 50ml中に該トレィを浸潰して 60°Cで 60分間撹拌したときに、 該ト レイから溶出する該トレイの単位表面積 (cm2) 当りのクロルイオン量が 0. 0 1 L g/c m2以下である
磁気ディスク用磁気へッ ドの搬送用トレイ。
6. 請求の範囲第 1項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
該トレイの表面抵抗値が 1 03〜 1012 Ωである磁気ディスク用磁気へッ ドの搬 送用トレイ。
7. アーム部品と、 該アーム部品の先端に取り付けられたヘッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレイにおいて、
該トレイは、 導電性ポリカーボネート樹脂組成物を射出成形してなるものであ り、
該トレイの表面粗さについて、 カッ トオフ波長 2. 5 mmの測定による十点平 均粗さ (R z) が、 5 m以下であることを特徴とする
磁気ディスク用磁気へッ ドの搬送用トレイ。
8. アーム部品と、 該アーム部品の先端に取り付けられたヘッドチップと、 該ヘッ ドチップに結線されたリード線とを有する磁気ディスク用磁気ヘッ ドを搬 送するためのトレィにおいて、
該トレイは、 導電性ポリカーボネート樹脂組成物を射出成形してなるものであ り、
該トレイの表面抵抗値が 1 x 103〜 1 x 1 012 Ωであり、 かつ、 該トレイの表面粗さが、 カッ トオフ波長 2. 5 mmの測定において、 カツ ティングレベル 10 %負荷長さ率 ( t p) が 1 %以上で、 中心線より ± 0. 1〃 m以上のピークカウント (P c) が測定長 1 cm当たり 100以下であることを 特徴とする
磁気ディスク用磁気へッ ドの搬送用トレイ。
9. 請求の範囲第 8項に記載の磁気ディスク用磁気へッ ドの搬送用トレイに おいて、
カッ トオフ波長 2. 5mmの測定において、 十点平均粗さ (R z) が 5〜50 zmである磁気ディスク用磁気へッ ドの搬送用トレイ。
10. 請求の範囲第 7項又は第 8項に記載の磁気ディスク用磁気へッ ドの搬 送用トレイにおいて、 該導電性ポリカーボネート樹脂組成物が、 繊維径 5〃m以 下の導電性繊維及び/又は D BP吸油量が 1 00 c c/100 g以上の炭素系導 電性充填材を含有する磁気ディスク用磁気へッ ドの搬送用トレイ。
1 1. 請求の範囲第 7項に記載の磁気ディスク用磁気へッ ドの搬送用トレィ において、 該導電性ポリカーボネート樹脂組成物が、 繊維径 l O O nm以下で、 長さ/径比が 5以上の炭素フィブリルを含有する磁気ディスク用磁気へッ ドの搬 送用トレイ。
12. 請求の範囲第 7項に記載の磁気ディスク用磁気へッ ドの搬送用トレイ において、 該トレイの表面抵抗値が 1 03〜 1 012Ωである磁気ディスク用磁気へ ッドの搬送用トレイ。
13. アーム部品と、該アーム部品の先端に取り付けられたへッ ドチヅプと、 該へッ ドチップに結線されたリ一ド線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレィにおいて、 該トレイは、 導電性充填材 0. 25〜50重量%を含有するポリカーボネート 樹脂組成物を成形してなるものであり、
加熱温度 85°C、 平衡時間 1 6時間の条件でへッ ドスペースガスクロマトグラ ムにより測定した、 該トレイの表面積 12. 6 cm2からの塩素化炭化水素発生量 が 0. 以下であることを特徴とする
磁気ディスク用磁気へッ ドの搬送用トレイ。
14. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、
該トレイのへッ ドスペースガスクロマトグラムによる測定における、 加熱温度 85°C、 平衡時間 1 6時間の条件で測定した表面積 12. 6 cm2からの総ァゥト ガス量が 1 /g/g以下で、 塩化メチレン発生量が 0. 以下でかつ炭 化水素発生量が 0. 5〃g/g以下である磁気ディスク用磁気へッ ドの搬送用ト レイ。
15. 請求の範囲第 1 3項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 該導電性充填材が、 08?吸油量100 c c/100 g以上の炭素 系導電性物質である磁気ディスク用磁気へッ ドの搬送用トレイ。
16. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 該導電性充填材が、 直径 l O O nm以下で、 長さ/径比が 5以上の 炭素フィブリルである磁気ディスク用磁気へッ ドの搬送用トレイ。
17. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 該トレイの表面抵抗値が 1 03〜 1012Ωである磁気ディスク用磁気 へッドの搬送用トレイ。
18. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 ポリカーボネート樹脂として、 温水滴下精製されたポリ力一ボネ一 ト樹脂を用いた磁気ディスク用磁気へッ ドの搬送用トレイ。
1 9. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 ポリカーボネート樹脂として、 無溶媒重合法により得られたポリ力 ーボネート樹脂を用いた磁気ディスク用磁気へッ ドの搬送用トレイ。
20. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 ポリカーボネート樹脂組成物の溶融混練時又は溶融成形時に、 真空 脱気を行った磁気ディスク用磁気へッ ドの搬送用トレイ。
2 1. 請求の範囲第 13項に記載の磁気ディスク用磁気へッ ドの搬送用トレ ィにおいて、 成形後に 80〜 140°Cの温度で 30分〜 20時間ァニールした磁 気ディスク用磁気へッ ドの搬送用トレイ。
22. アーム部品と、該アーム部品の先端に取り付けられたへッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレイにおいて、 以下の ( 1) 〜 (3) の少なくとも一つ以上を満 たす磁気ディスク用磁気へッ ドの搬送用トレイ。
( 1 ) 該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであって、 表面抵抗値が 1 X 103〜: 1 X 1 012Ωであり、
純水 500ml中に、 トレィを浸漬し、 40 kH zの超音波を 60秒間印加し たときに、 該トレイの表面から脱落する粒径 1〃m以上のパーティクルの数が 5 000 p c s/cm2以下、
(2) 表面粗さが、 カッ トオフ波長 2. 5mmの測定において、 カッティング レベル 10%負荷長さ率 (t p) が 1 %以上で、 中心線より ± 0. l〃m以上の ピークカウント (P c) が測定長 1 cm当たり 100以下、
( 3 ) 該トレイのヘッ ドスペースガスクロマトグラムによる測定における、 カロ 熱温度 85 °C、 平衡時間 1 6時間の条件で測定した表面積 1 2. 6 c m2からの塩 素化炭化水素発生量が 0. 以下。
23. アーム部品と、該アーム部品の先端に取り付けられたへッ ドチップと、 該ヘッ ドチップに結線されたリード線とを有する磁気ディスク用磁気ヘッ ドを搬 送するためのトレイにおいて、
該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであり、 該トレイの表面抵抗値が、 1 X 1 03〜 1 X 1012Ωであって、
純水 500 ml中に、 トレィを浸潰し、 40 kH zの超音波を 60秒間印加し たときに、 該トレイの表面から脱落する粒径 1〃m以上のパ一ティクルの数が 5 000 p c s/c m2以下、
又は、表面粗さがカツ トオフ波長 2. 5 mmの測定において、十点平均粗さ(R z ) が 5〃m以下である、
又は、 該トレイのヘッ ドスペースガスクロマトグラムによる測定における、 カロ 熱温度 85 °C、 平衡時間 1 6時間の条件で測定した表面積 1 2. 6 c m2からの塩 素化炭化水素発生量が 0. 以下
であることを特徴とする磁気ディスク用磁気へッ ドの搬送用トレイ。
2 . アーム部品と、該アーム部品の先端に取り付けられたへッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレイにおいて、
該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであって、 表面抵 抗値が 1 X 105〜: L X 1 012Ωであり、
純水 500ml中に、 トレィを浸潰し、 40 kH zの超音波を 60秒間印加し たときに、 該トレイの表面から脱落する粒径 1 m以上のパ一ティクルの数が 3 500 p c s/cm2以下であることを特徴とする磁気ディスク用磁気へッ ドの 搬送用トレイ。
25. アーム部品と、該アーム部品の先端に取り付けられたへッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレイにおいて、
該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであって、 表面抵 抗値が 1 X 103〜 1 X 1012Ωであり、
純水 500ml中に、 トレィを浸潰し、 40 kH zの超音波を 60秒間印加し たときに、 該トレイの表面から脱落する粒径 1〃m以上のパーティクルの数が 5 000 p c s/cm2以下、
かつ、表面粗さがカツ トオフ波長 2. 5 mmの測定において、十点平均粗さ(R z ) が 5 m以下であり、
かつ、 該トレイのヘッ ドスペースガスクロマトグラムによる測定における、 加 熱温度 85°C、 平衡時間 1 6時間の条件で測定した表面積 1 2. 6 cm2からの塩 素化炭化水素発生量が 0. 以下
であることを特徴とする磁気ディスク用磁気へッ ドの搬送用トレイ。
26. アーム部品と、該アーム部品の先端に取り付けられたへッ ドチップと、 該へッ ドチップに結線されたリード線とを有する磁気ディスク用磁気へッ ドを搬 送するためのトレィにおいて、
該トレイは、 導電性熱可塑性樹脂組成物を成形してなるものであって、 表面抵 抗値が 1 X 103〜: L X 1012Ωであり、
かつ、 表面粗さが、 カッ トオフ波長 2. 5 mmの測定において、 カッティング レベル 10%負荷長さ率 (t p) が 4%未満である磁気ディスク用磁気へッ ドの 搬送用トレイ。
PCT/JP2000/005257 1999-08-06 2000-08-04 Plateau de transport d'une tete magnetique destinee a un disque magnetique WO2001011612A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/806,992 US6780490B1 (en) 1999-08-06 2000-08-04 Tray for conveying magnetic head for magnetic disk

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP22419299 1999-08-06
JP11/224192 1999-08-06
JP11/224193 1999-08-06
JP22419399 1999-08-06
JP11/224191 1999-08-06
JP22419199 1999-08-06
JP2000/67484 2000-03-10
JP2000067484A JP4239347B2 (ja) 1999-08-06 2000-03-10 磁気ディスク用磁気ヘッドの搬送用トレイ
JP2000/67485 2000-03-10
JP2000067486A JP4239349B2 (ja) 1999-08-06 2000-03-10 磁気ディスク用磁気ヘッドの搬送用トレイ
JP2000067485A JP4239348B2 (ja) 1999-08-06 2000-03-10 磁気ディスク用磁気ヘッドの搬送用トレイ
JP2000/67486 2000-03-10

Publications (1)

Publication Number Publication Date
WO2001011612A1 true WO2001011612A1 (fr) 2001-02-15

Family

ID=27553993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005257 WO2001011612A1 (fr) 1999-08-06 2000-08-04 Plateau de transport d'une tete magnetique destinee a un disque magnetique

Country Status (4)

Country Link
US (1) US6780490B1 (ja)
KR (1) KR100630292B1 (ja)
CN (1) CN1249672C (ja)
WO (1) WO2001011612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489123A4 (en) * 2002-03-28 2006-06-07 Teijin Chemicals Ltd COPOLYCARBONATE AND THE COPOLYMER CONTAINING HEAT-RESISTANT PART
JPWO2018092447A1 (ja) * 2016-11-17 2019-10-17 住友電工プリントサーキット株式会社 フレキシブルプリント配線板の製造方法、板状治具、フレキシブルプリント配線板個片のハンドリング用具及びフレキシブルプリント配線板の製造設備
TWI789882B (zh) * 2020-08-27 2023-01-11 日商秋本製作所股份有限公司 判定容器更換為其他容器的時期之方法以及將容器更換為其他容器的方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502562B1 (ko) * 2003-03-21 2005-07-20 서광석 트레이에 부피전도성을 부여하는 방법
US20050244159A1 (en) * 2004-04-30 2005-11-03 Aref Chowdhury Optical wavelength-conversion
US20060060496A1 (en) * 2004-09-17 2006-03-23 Adams Michael S Universal packaging tray for disk drive assembly
US20060183841A1 (en) * 2005-02-11 2006-08-17 Ashish Aneja Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US20090093403A1 (en) 2007-03-01 2009-04-09 Feng Zhang Systems, methods and compositions for optical stimulation of target cells
US9238150B2 (en) * 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
WO2008086470A1 (en) 2007-01-10 2008-07-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8401609B2 (en) * 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US20080237158A1 (en) * 2007-04-02 2008-10-02 Sae Magnetics (H.K.) Ltd. Cleaning tray for electrical components and carrying tool with the same
CN101286323B (zh) * 2007-04-12 2011-08-17 新科实业有限公司 电子元件的清洗托盘和运载工具
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
ES2608498T3 (es) 2008-04-23 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Sistemas, métodos y composiciones para la estimulación óptica de células diana
EP2294208B1 (en) 2008-05-29 2013-05-08 The Board of Trustees of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
ES2612052T3 (es) 2008-06-17 2017-05-11 The Board Of Trustees Of The Leland Stanford Junior University Dispositivos para la estimulación óptica de células diana, utilizando un elemento de transmisión óptica
SG191604A1 (en) 2008-06-17 2013-07-31 Univ Leland Stanford Junior Apparatus and methods for controlling cellular development
WO2010006049A1 (en) 2008-07-08 2010-01-14 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
NZ602416A (en) 2008-11-14 2014-08-29 Univ Leland Stanford Junior Optically-based stimulation of target cells and modifications thereto
CN101882459B (zh) * 2009-05-07 2014-04-30 新科实业有限公司 磁头折片组合的通用托盘及其通用托盘组合
US20100290159A1 (en) * 2009-05-18 2010-11-18 Sae Magnetics (H.K.) Ltd. Common tray for head gimbal assembly and common tray assembly with the same
EP2547762B1 (en) 2010-03-17 2018-04-25 The Board of Trustees of the Leland Stanford Junior University Light-sensitive ion-passing molecules
EP2635111B1 (en) 2010-11-05 2018-05-23 The Board of Trustees of the Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
CN103313752B (zh) 2010-11-05 2016-10-19 斯坦福大学托管董事会 用于光遗传学方法的光的上转换
EP2635108B1 (en) 2010-11-05 2019-01-23 The Board of Trustees of the Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
AU2011323235B2 (en) 2010-11-05 2015-10-29 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
JP6328424B6 (ja) 2010-11-05 2018-07-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 記憶機能の制御および特性化
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
CN104093833B (zh) 2011-12-16 2017-11-07 斯坦福大学托管董事会 视蛋白多肽及其使用方法
EP2817068B1 (en) 2012-02-21 2017-04-12 The Board of Trustees of the Leland Stanford Junior University Compositions for treating neurogenic disorders of the pelvic floor
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
ES2742492T3 (es) 2013-03-15 2020-02-14 Univ Leland Stanford Junior Control optogenético del estado conductual
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
WO2015023782A1 (en) 2013-08-14 2015-02-19 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
WO2016209654A1 (en) 2015-06-22 2016-12-29 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718170A (ja) * 1993-06-30 1995-01-20 Calp Corp 高比重複合樹脂組成物
JPH07277390A (ja) * 1994-04-07 1995-10-24 Calp Corp 搬送用トレイ及びその製造方法
JPH09110080A (ja) * 1995-10-18 1997-04-28 Dainippon Printing Co Ltd クリ−ン容器
JPH11250418A (ja) * 1998-03-02 1999-09-17 Alps Electric Co Ltd 薄膜磁気ヘッド装置用ケース
JP2000033989A (ja) * 1998-07-22 2000-02-02 Egami Chem Kk ハードディスクドライブヘッド用トレイ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862578B2 (ja) 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド 樹脂組成物
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
US6686009B2 (en) * 1998-10-08 2004-02-03 Yukadenshi Co., Ltd. Tray for carrying magnetoresistive head of magnetic disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718170A (ja) * 1993-06-30 1995-01-20 Calp Corp 高比重複合樹脂組成物
JPH07277390A (ja) * 1994-04-07 1995-10-24 Calp Corp 搬送用トレイ及びその製造方法
JPH09110080A (ja) * 1995-10-18 1997-04-28 Dainippon Printing Co Ltd クリ−ン容器
JPH11250418A (ja) * 1998-03-02 1999-09-17 Alps Electric Co Ltd 薄膜磁気ヘッド装置用ケース
JP2000033989A (ja) * 1998-07-22 2000-02-02 Egami Chem Kk ハードディスクドライブヘッド用トレイ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489123A4 (en) * 2002-03-28 2006-06-07 Teijin Chemicals Ltd COPOLYCARBONATE AND THE COPOLYMER CONTAINING HEAT-RESISTANT PART
JPWO2018092447A1 (ja) * 2016-11-17 2019-10-17 住友電工プリントサーキット株式会社 フレキシブルプリント配線板の製造方法、板状治具、フレキシブルプリント配線板個片のハンドリング用具及びフレキシブルプリント配線板の製造設備
TWI789882B (zh) * 2020-08-27 2023-01-11 日商秋本製作所股份有限公司 判定容器更換為其他容器的時期之方法以及將容器更換為其他容器的方法

Also Published As

Publication number Publication date
CN1249672C (zh) 2006-04-05
KR20010099669A (ko) 2001-11-09
US6780490B1 (en) 2004-08-24
CN1327576A (zh) 2001-12-19
KR100630292B1 (ko) 2006-09-29

Similar Documents

Publication Publication Date Title
WO2001011612A1 (fr) Plateau de transport d&#39;une tete magnetique destinee a un disque magnetique
EP1369452B1 (en) Synthetic resin composition
WO2005078008A1 (en) Stock shape for machining and production process thereof
JPWO2007114056A1 (ja) 樹脂組成物およびその成形品
JP4239349B2 (ja) 磁気ディスク用磁気ヘッドの搬送用トレイ
JP5679635B2 (ja) 導電性樹脂組成物からなる成形品
JP4239347B2 (ja) 磁気ディスク用磁気ヘッドの搬送用トレイ
JP5171609B2 (ja) 複合材料組成物及び当該複合材料組成物の成形体
JP3041071B2 (ja) 静電気拡散性摺動部材用樹脂組成物
JP2001131426A (ja) 導電性樹脂組成物およびその成形品
JP4239348B2 (ja) 磁気ディスク用磁気ヘッドの搬送用トレイ
WO2006073168A1 (ja) ハードディスクドライブ内部部品
JP2008007663A (ja) 樹脂組成物
JP4456916B2 (ja) 低汚染性の射出成形体
JP5252713B2 (ja) 芳香族ポリカーボネート樹脂組成物の成形体
JP4214654B2 (ja) 磁気ヘッド搬送用トレイ
JP3722065B2 (ja) 帯電防止性樹脂成形品
US6686009B2 (en) Tray for carrying magnetoresistive head of magnetic disk
JP2007182990A (ja) トルクリミッタ部品用樹脂組成物、それからなるトルクリミッタ部品
JP4161428B2 (ja) 磁気ディスク用磁気抵抗効果ヘッド搬送トレー
JP2006137938A (ja) 磁気ディスク用磁気ヘッド搬送トレイ用樹脂組成物及び搬送トレイ
KR100646150B1 (ko) 자기디스크용 자기저항효과 헤드반송 트레이
JP4765163B2 (ja) 導電性樹脂組成物及び導電性射出成形品
JP2002053747A (ja) ポリカーボネート樹脂組成物及びそれからなる電気・電子部品搬送用部品
JP2004193381A (ja) ウエハーを含む半導体部材の運搬・保管用容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802177.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

WWE Wipo information: entry into national phase

Ref document number: 1020017004290

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09806992

Country of ref document: US