WO2000077916A1 - Sistema de distribucion electrica de tension dual - Google Patents

Sistema de distribucion electrica de tension dual Download PDF

Info

Publication number
WO2000077916A1
WO2000077916A1 PCT/ES1999/000173 ES9900173W WO0077916A1 WO 2000077916 A1 WO2000077916 A1 WO 2000077916A1 ES 9900173 W ES9900173 W ES 9900173W WO 0077916 A1 WO0077916 A1 WO 0077916A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
input
output
voltage level
Prior art date
Application number
PCT/ES1999/000173
Other languages
English (en)
French (fr)
Inventor
Carles Borrego Bel
Jordi Bigorra Vives
Jordi Giro Roca
Luís MARTINEZ-SALAMERO
Javier Maixe Altes
Hugo Valderrama Blavi
Joan Fontanilles Piñas
Original Assignee
Lear Automotive (Eeds) Spain, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lear Automotive (Eeds) Spain, S.L. filed Critical Lear Automotive (Eeds) Spain, S.L.
Priority to PCT/ES1999/000173 priority Critical patent/WO2000077916A1/es
Priority to EP99923610A priority patent/EP1458083B1/en
Priority to US09/980,709 priority patent/US6507506B1/en
Publication of WO2000077916A1 publication Critical patent/WO2000077916A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention concerns a dual voltage electrical distribution system applicable to vehicles that have two network sectors and loads prepared to operate at two different voltage levels, for example at 42 V and 14 V, generated by at least two batteries, one of them at a first voltage level for eg 36 V, and another at a second, lower voltage level, for example 12 V whose two network sectors are associated with at least one voltage converter.
  • the present invention is useful in the automotive industry.
  • Said dual voltage system can be achieved basically in two ways: either with a single 42 V battery and a C.C./C.C converter. unidirectional from 42 to 14 V; or with two batteries, 14 and 42 V respectively, and a two-way converter C.C./C.C. from 14 to 42 V or vice versa.
  • the converter is a key part of the new system.
  • An example of the utility of having a dual voltage system in vehicles The patent is WO 97/28366, which describes an ignition system for internal combustion engines that uses a dual voltage power supply, with a higher voltage to cause a high intensity electric arc and a lower voltage to cause a ionization
  • a signal controller analyzes the ionization signal to determine a series of parameters concerning the correct operation of the ignition.
  • WO 95/13470 discloses another ignition system for internal combustion engines powered by dual voltage supplied by a single power supply and subsequently dualized by a C.C./C.C converter.
  • EP-A-0892486 describes a unidirectional converter device for supplying a dual voltage from a single power source.
  • the implementation of the new dual voltage system architecture in motor vehicles entails an increase in the complexity of electrical networks.
  • the system includes, as stated, one or two accumulators or batteries, a converter and one or more distribution boxes in which electronic signal and power control means are centralized, including a microcontroller and electrical protection means .
  • the vehicle also comprises an electric generator, usually an alternator, which by means of a rectifier supplies current to the accumulator or accumulators, and which also directly feeds most components when the vehicle is running.
  • the dual voltage electrical distribution system is It will implement using a bidirectional voltage converter, with its galvanically isolated input and output stages, and including in each of said stages a switching device, whose bi-directional converter has said batteries connected to said inputs and outputs at a first voltage level and a second voltage level, so that said bi-directional converter circuit provides two modes of energy transfer that constitute a first voltage reduction mode and a second voltage elevation mode, the passive components having been chosen, that is the magnetic components and capacitances of said stages to provide identical transient behavior in both modes when either a disturbance in the load or in the input voltage enters the regulation system.
  • the proposed bidirectional converter is a galvanically isolated version in C.C. of a Cuk topology converter circuit, symmetrical with respect to the isolation region, which has said batteries connected to their input and output at a first voltage level and a second voltage level respectively, with a capacitance in parallel with each of said voltage sources, in addition to the typical storage capacitance of the topology, in series with the inductances of the input and output circuit, said switching device being arranged in the input and output stages of the converter, on each side of said insulation galvanic.
  • the main differences between the basic, unidirectional converter circuit and the proposed converter are: a) bidirectional power flow; b) no change in output voltage polarity; c) simplification of the control design of the converter.
  • the converter has been located somewhere in the electrical networks separated from the distribution box or boxes.
  • this provision has several drawbacks such as: an increase in interconnection wiring that, on the one hand, leads to a greater voltage drop and, on the other, has an impact on the manufacturing cost, the weight of the vehicle and, for consequently, in fuel consumption; greater volume occupancy within the already limited space of the engine compartment; increase of the points of fixation of components to the vehicle with a greater complexity of assembly; an increase in electrical components exposed to vibrations, which reduces reliability of the system; a redundancy of systems, for example, a microcontroller for the converter and a microcontroller for the distribution box; greater difficulty for thermal dissipation of components arranged in separate boxes; greater difficulty in achieving electromagnetic compatibility due to the incorporation of cables that provide high frequency emissions that produce interference in the components of the distribution box.
  • the invention also proposes incorporating said voltage converter, bidirectional in an electrical distribution box of the vehicle, together with electronic centralized signal and power control means, including a microcontroller and electrical protection means.
  • Fig. 1 is a schematic drawing of a unidirectional voltage converter, according to the state of the art, specifically corresponding to the exemplary embodiment of Fig. 10 of US-A. - 4,184,197, cited;
  • Fig. 2 illustrates the principle of the dual voltage electrical distribution system according to this invention;
  • Fig. 3 illustrates an example of possible execution of a bidirectional converter circuit, according to this invention, with schematic indication of the voltage switching source,
  • Fig. 4 corresponds to a scheme of the double loop control used for circuit management bidirectional converter according to Fig. 3;
  • Fig. 1 is a schematic drawing of a unidirectional voltage converter, according to the state of the art, specifically corresponding to the exemplary embodiment of Fig. 10 of US-A. - 4,184,197, cited;
  • Fig. 2 illustrates the principle of the dual voltage electrical distribution system according to this invention;
  • Fig. 3 illustrates an example of possible execution of a bidirectional converter circuit, according to this invention, with schematic indication of the voltage switching source
  • FIG. 5 is an illustrative schematic drawing of the current flows in a dual voltage electrical system of a vehicle that integrates an electrical distribution box with a bidirectional converter, according to the invention, in combination with a second electrical distribution box that it includes a unidirectional converter, corresponding to a decentralized distribution, that is, with a voltage conversion distributed in several areas of the vehicle;
  • Fig. 6, is equivalent to the previous one but illustrates a centralized assembly, where only one electrical distribution box includes said bidirectional converter;
  • Fig. 7 shows an example of possible organization on a system vehicle proposed, decentralized, involving several electrical distribution boxes, including converters in at least two of them, being one of said bidirectional converters; and
  • Figs. 8, 9 and 10 are graphs of examples of simulations in the average current control mode of the bidirectional converter according to the invention.
  • a galvanically isolated converter circuit is illustrated in Fig. 1 by the transformer 8 corresponding to the Example in Fig. 10 of US-A-4,184,197, that is to say with an inductance 2 in series with the voltage source of input and other inductance 5 in series with the load 11.
  • the transformer 8 of transformation ratio N is decoupled from the direct voltage by means of the capacitors 3, 4.
  • the input source has been indicated by numeral 1 and the source of voltage switching by reference 6.
  • Other components are transistor 7, associated with switching device 6 and diode 10 and capacitor 9 in the output sector of the converter, according to said topology well known in the state of the art.
  • an alternator A and at least a first battery B36 or 36V DC accumulator have been represented, which together constitute a generator set of power for a vehicle.
  • the joint action of the alternator A and said first battery B36 provides the 42 V of the first R42 network.
  • the system foresees the use of a second B 12 battery or 12 V battery
  • a two-way voltage conversion block 20 a two-way voltage conversion block is provided.
  • Each of the networks feeds their own loads that have been indicated here with the reference numbers 21 and 22, which will be connected by appropriate means, schematized here by corresponding switches 23, 24.
  • the scheme of said Fig. 2 also includes a MA starter motor, controlled by a corresponding connection switch 25
  • the Cuk topology converter with galvanic isolation consists
  • the switch 33 implemented by a MOS FET transistor, for example
  • the switch 34 will switch with a duty cycle D and the switch 34 will be permanently open.
  • the switch 34 will switch with a 1-D duty cycle and the switch 33 will be permanently open.
  • SUBSTITUTE SHEET (RULE 26) and charge Lef, fed by the high capacity capacitor Cob of the output.
  • the switch 34 in this case conducts the sum of the input current Iib and that of the primary N P B of the transformer 8, the diode 35 remaining in open circuit.
  • the Cuk converter is a system with no minimum non-linear phase. These characteristics make control design difficult if a good dynamic response, robustness and stability must be ensured for a wide range of operating points (many different load and line conditions).
  • the position of the complex conjugated open-loop poles of the converter is fully dependent on the working ratio D of the control signal of the converter U (t).
  • f P ⁇ are the fast poles and determine the dynamics of energy transfer, while the f p2 poles are slow and depend on the design conditions of the ripple of the output voltage. Finally, f z are the zeros of the converter.
  • a possible control of the bidirectional converter is represented by a double loop, of the type known as "Control in Average Current Mode" involving an internal current loop and an external voltage loop that guarantee the regulation of line and load with own protection of switching transitions.
  • said control system of the bi-directional converter 50 comprises a block 51 controlling the input current by pulse width modulation PWM, with an outlet 52 from said input, whose block 51 applies the switching functions to the first and second stages of the bidirectional converter circuit 50, illustrated in Fig. 3 and an output voltage control block 53, to which a reference voltage 56 is applied and with a voltage outlet 55 from said output, whose second block 53 it provides the first 51, through said inner loop 54, with a reference current.
  • FIG. 5 a first example of the electrical distribution system according to the invention is illustrated, organized in a decentralized manner, that is to say with the conversion of voltage distributed in various parts of the vehicle.
  • an electrical distribution box 61 integrates a bidirectional converter 62 schematized by means of two converter blocks 62a, 62b, to generate a dual voltage and the system includes in combination a second distribution box 63 including another unidirectional converter 64.
  • the alternator A together with the first 36V DC battery B36, supplies 42V current to the box 61 through a power switch 65.
  • the numerical references 67 and 68 are indicative of a set that includes electronic means for centralized signal and power control, including a microcontroller and electrical protection means.
  • an ignition relay has been indicated, which only supplies power to said converters 62, 64 or control assemblies 67, 68 in the event that the car ignition switch is closed.
  • the various loads that can be connected to both boxes 61, 63, in the case of 69a and 69c, also controlled by said ignition relay 66, are indicated by 69a to 69c.
  • FIG. 6 A variant of the electrical distribution system according to a centralized organization is illustrated in Fig. 6, which only differs from the example illustrated in Fig. 5 because the second distribution box 63 does not include a converter, of In this way, its management and control set 68 is fed from the first set 67 with two differentiated voltages through the networks R42 and R14.
  • a vehicle is schematically illustrated in Fig. 7 in which a dual voltage electrical distribution system has been implemented, in accordance with the above, where three centralized electrical distribution boxes 61, 63, 71 are provided in the engine compartment , passenger compartment and trunk, respectively.
  • the first box 61 includes a power management and control assembly 67 and a bi-directional converter 67, associated with a B36 battery.
  • the box 36 is connected by a wiring or bus R42 (high voltage level) and by a second bus R14 (low voltage level) to the first box 61.
  • the third box 71 is generally connected to the first, 61 as a the second 63 and also has a second B12 battery associated.
  • Network 72 relates boxes 61 and 71.
  • Figs. 8 to 10 show a simulation of the "Average Current Mode Control" strategy.
  • Fig. 8 is a transient load simulation for the voltage reduction mode
  • Fig. 9 is a transient simulation for the voltage rise mode
  • Fig. 10 shows a line transient in the reduction mode tensile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Para vehículos con dos redes eléctricas y correspondientes cargas a dos niveles de tensión diferenciados, con dos baterías a un primer y a un segundo nivel de tensión respectivamente, a cuyas dos redes se halla asociado un convertidor de tensión bidireccional, con sus etapas de entrada y salida aisladas galvánicamente, incluyendo cada una un dispositivo conmutador, a cuyas entrada y salida están conectadas dichas baterías a un primer y a un segundo nivel de tensión, de manera que dicho convertidor bidireccional proporciona un primer modo de reducción de tensión y un segundo modo de elevación de tensión, habiéndose elegido los componentes pasivos, es decir los componentes magnéticos y capacitancias, de las citadas etapas para proporcionar un comportamiento transitorio idéntico en ambos modos cuando en el sistema de regulación entra una perturbación ya sea en la carga o en la tensión de entrada.

Description

SISTEMA DE DISTRIBUCIÓN ELÉCTRICA DE TENSIÓN DUAL
Campo de la Invención
La presente invención concierne a un sistema de distribución eléctrica de tensión dual aplicable a vehículos que poseen dos sectores de red y cargas preparados para operar a dos niveles de tensión diferenciados, por ejemplo a 42 V y a 14 V, generados por al menos dos baterías, una de ellas a un primer nivel de tensión por Ej. 36 V, y otra a un segundo nivel de tensión, inferior, de por Ej. 12 V a cuyos dos sectores de red se halla asociado al menos un convertidor de tensión. La presente invención es útil en la industria de la automoción.
Antecedentes de la Invención
En los vehículos modernos existe una tendencia al aumento de los equipamientos eléctricos y electrónicos que repercute en un consumo creciente de energía eléctrica. Esto aconseja aumentar hasta tres veces la actual tensión nominal del sistema eléctrico del vehículo, es decir, pasar de los 14 V C.C. actuales a 42 V C.C. Sin embargo, debido a las actuales infraestructuras de fabricación e instalación de los sistemas eléctricos ya existentes en la industria de la automoción, convenientemente calculados y diseñados, hacen muy difícil una transición brusca de una a otra tensión.
Para evitar dicha transición brusca se ha propuesto una solución que consiste en implementar una arquitectura del sistema de distribución eléctrica y electrónica del vehículo que utiliza redes operando a dos niveles de tensión diferentes, que se ha dado en llamar "sistema de tensión dual". Así, algunos componentes seguirán funcionando a 14 V, como hasta ahora, con lo que no hará falta introducir cambios en sus redes de control y distribución eléctrica, mientras que otros componentes pasarán a funcionar a 42 V, con un rendimiento y/u optimización más adecuado de sus prestaciones.
Dicho sistema de tensión dual puede conseguirse básicamente de dos maneras: o bien con una única batería de 42 V y un convertidor C.C./C.C. unidireccional de 42 a 14 V; o con dos baterías, de 14 y 42 V respectivamente, y un convertidor bidireccional C.C./C.C. de 14 a 42 V o viceversa.
En cualquiera de las soluciones el convertidor es una pieza clave del nuevo sistema. Un ejemplo de la utilidad de disponer de un sistema de tensión dual en vehículos automóviles es la patente WO 97/28366, que describe un sistema de ignición para motores de combustión interna que utiliza una alimentación eléctrica de tensión dual, con una tensión más elevada para provocar un arco eléctrico de alta intensidad y una tensión más baja para causar una ionización. Un controlador de señales analiza la señal de ionización para determinar una serie de parámetros referentes al correcto funcionamiento de la ignición.
La patente WO 95/13470 describe otro sistema de ignición para motores de combustión interna alimentado por tensión dual suministrada por una única fuente de alimentación y posteriormente dualizada por un convertidor C.C./C.C.
La patente EP-A-0892486 describe un dispositivo convertidor unidireccional para suministrar una tensión dual a partir de una única fuente de alimentación.
La implantación de la nueva arquitectura del sistema de tensión dual en vehículos automóviles comporta un aumento en la complejidad de las redes eléctricas. El sistema incluye, como se ha dicho, uno o dos acumuladores o baterías, un convertidor y una o más cajas de distribución en la que se encuentran centralizados unos medios electrónicos de control de señal y de potencia, incluyendo un microcontrolador y medios de protección eléctrica. El vehículo comprende además un generador eléctrico, usualmente un alternador, que por medio de un rectificador suministra corriente al acumulador o acumuladores, y que además alimenta directamente la mayoría de componentes cuando el vehículo está en marcha.
Incrementar la tensión (Volts) tres veces (42 V) implica la reducción de corriente (A) para la misma cantidad de potencia. Menos amperios significan menor sección de cable conductor necesaria para suministrar corriente, con un consiguiente menor peso, e inferior consumo eléctrico.
Referencias al tema y objetivos a los que apunta esta invención se encuentran también en diversas publicaciones pudiendo citar entre otras las siguientes: J.G Kassakian "Challenges of the new 42 N architecture and progress on its international acceptance". VDI 98 Baden- Baden; Intersociety Energy Conversión Engineering Conference (IECEC) "Múltiple Voltage Electrical Power Distribution System for Automotive Applications". 3181.. Washington 96; Draft specification for 42 N battery in a 2-voltage vehicle electrical system for BMW and Daimler-Benz SICAΝ" 29.6.98; MIT Auto-Consortium - 42 V net Research Unit #1 "DC/DC converters for Dual Noltage Electrical Systems".
Breve exposición de la Invención
Conforme a la invención el sistema de distribución eléctrica de tensión dual se implementará utilizando un convertidor de tensión bidireccional, con sus etapas de entrada y salida aisladas galvánicamente, e incluyendo en cada una de dichas etapas un dispositivo conmutador, cuyo convertidor bidireccional tiene conectadas a dichas entradas y salidas las citadas baterías a un primer nivel de tensión y a un segundo nivel de tensión, de manera que el citado circuito convertidor bidireccional proporciona dos modos de transferencia de energía que constituyen un primer modo de reducción de tensión y un segundo modo de elevación de tensión, habiéndose elegido los componentes pasivos, es decir los componentes magnéticos y capacitancias de las citadas etapas para proporcionar un comportamiento transitorio idéntico en ambos modos cuando ya sea una perturbación en la carga o en la tensión de entrada entra en el sistema de regulación.
Más en particular, el convertidor bidireccional que se propone es una versión aislada galvánicamente en C.C. de un circuito convertidor de topología Cuk, simétrico respecto a la región de aislamiento, el cual tiene conectadas a su entrada y salida dichas baterías a un primer nivel de tensión y a un segundo nivel de tensión respectivamente, con una capacitancia en paralelo con cada una de dichas fuentes de tensión, además de la capacitancia de almacenamiento típica de la topología, en serie con las inductancias del circuito de entrada y salida, disponiéndose el citado dispositivo de conmutación en las etapas de entrada y salida del convertidor, a cada lado del referido aislamiento galvánico.
Las principales diferencias entre el circuito convertidor básico, unidireccional y el convertidor que se propone son: a) flujo de potencia bidireccional; b) no cambio de polaridad de tensión de salida; c) simplificación del diseño del control del convertidor.
La invención se entenderá mejor a partir de la siguiente descripción realizada en conexión con los dibujos adjuntos.
Por otro lado hasta ahora, el convertidor se ha situado en algún lugar de las redes eléctricas separado de la caja o cajas de distribución. Sin embargo, esta disposición presenta varios inconvenientes tales como: un incremento en el cableado de interconexión que, por un lado, comporta una mayor caída de tensión y, por otro, repercute en el coste de fabricación, en el peso del vehículo y, por consiguiente, en el consumo de combustible; una mayor ocupación de volumen dentro del ya de por sí escaso espacio del compartimiento del motor; aumento de los puntos de fijación de componentes al vehículo con una mayor complejidad de montaje; un incremento de los componentes eléctricos expuestos a vibraciones, lo que reduce la fiabilidad del sistema; una redundancia de sistemas, por ejemplo, un microcontrolador para el convertidor y un microcontrolador para la caja de distribución; mayor dificultad para la disipación térmica de componentes dispuestos en cajas separadas; mayor dificultad para conseguir una compatibilidad electromagnética debido a la incorporación de cables que proporcionan emisiones de alta frecuencia que producen interferencias en los componentes de la caja de distribución.
La invención también propone incorporar el citado convertidor de tensión, bidireccional en una caja de distribución eléctrica del vehículo, junto a unos medios electrónicos de control centralizado de señal y de potencia, incluyendo un microcontrolador y medios de protección eléctrica.
La invención se entenderá mejor en la descripción que sigue de unos ejemplos de implementación, con referencia a unos dibujos ilustrativos.
Breve descripción de los dibujos En dichos dibujos: la Fig. 1 es un dibujo esquemático de un convertidor de tensión, unidireccional, según el estado de la técnica, en concreto correspondiente al ejemplo de ejecución de la Fig. 10 de la patente US-A- 4.184.197, citada; la Fig. 2 ilustra el principio del sistema de distribución eléctrica de tensión dual según esta invención; la Fig. 3 ilustra un ejemplo de posible ejecución de un circuito convertidor bidireccional, conforme a esta invención, con indicación esquemática de la fuente de conmutación de tensión, la Fig. 4 corresponde a un esquema del control de doble lazo utilizado para gestión del circuito convertidor bidireccional según la Fig. 3; la Fig. 5 es un dibujo esquemático ilustrativo de los flujos de corriente en un sistema eléctrico de tensión dual de un vehículo que integra una caja de distribución eléctrica con un convertidor bidireccional, según la invención, en combinación con una segunda caja de distribución eléctrica que incluye un convertidor unidireccional, correspondiendo a una distribución descentralizada, es decir, con una conversión de tensión distribuida en varias zonas del vehículo; la Fig. 6, es equivalente a la anterior pero ilustra a un montaje centralizado, en donde únicamente una caja de distribución eléctrica incluye el citado convertidor bidireccional; la Fig. 7 muestra un ejemplo de posible organización sobre un vehículo del sistema propuesto, descentralizado, comportando varias cajas de distribución eléctrica, incluyendo convertidores en al menos dos de ellas, siendo uno de dichos convertidores bidireccional; y las Figs. 8, 9 y 10 son gráficas de unos ejemplos de simulaciones en el modo de control de corriente promediada del convertidor bidireccional según la invención. Descripción detallada de unos ejemplos de realización
En la Fig. 1 se ilustra un circuito convertidor aislado galvánicamente por el transformador 8 que corresponde al Ejemplo de la Fig. 10 de la patente US-A-4.184.197, es decir con una inductancia 2 en serie con la fuente de tensión de entrada y otra inductancia 5 en serie con la carga 11. En ese convertidor el transformador 8 de relación de transformación N está desacoplado de la tensión continua mediante los condensadores 3, 4. La fuente de entrada se ha indicado por el numeral 1 y la fuente de conmutación de tensión por la referencia 6. Otros componentes son el transistor 7, asociado al dispositivo conmutador 6 y el diodo 10 y condensador 9 en el sector de salida del convertidor, conforme a dicha topología bien conocida en el estado de la técnica. En el esquema de la Fig. 2, que pretende ilustrar el principio del sistema de distribución eléctrica según la invención se han representado un alternador A y al menos una primera batería B36 o acumulador de 36 V de C.C., que constituyen en combinación un conjunto generador de potencia para un vehículo. La acción conjunta del alternador A y dicha primera batería B36 proporciona los 42 V de la primera red R42. El sistema prevé la utilización de una segunda batería B 12 o acumulador de 12 V de
C.C., constitutivo de un segundo generador de potencia apto para alimentar una segunda red R14, conjuntamente con el alternador A, a 14 V. Como interfaz entre ambas redes se ha previsto un bloque de conversión de tensión 20, bidireccional. Cada una de las redes alimenta sus propias cargas que aquí se han indicado con las referencias numéricas 21 y 22, que se conectarán por unos medios oportunos, esquematizados aquí mediante unos correspondientes interruptores 23, 24. El esquema de dicha Fig. 2 incluye asimismo un motor de arranque MA, controlado mediante un correspondiente interruptor 25 de conexión
Con relación a la Fig. 3, el convertidor de topología Cuk con aislamiento galvánico consta
de un transformador de relación — — = — — , dos interruptores 33 y 34 ambos controlados
^sF - NpB por una fuente de conmutación de señal 51 (ver también la Fig. 4), que aplicará las funciones de corriente U(t) y U(t) con ciclos de trabajo D y 1-D respectivamente, y dos diodos
HOJA SUSTITUTORIA (REGLA 26) 35 y 36. En este convertidor, el transformador 8 de relación de transformación N está desacoplado de la tensión continua mediante los condensadores Ca y Cb. Si se desea la misma polaridad de tensión a la entrada y a la salida, el devanado del primario debe ser inverso al del secundario. La relación N se diseñará de tal manera que, siendo Vi la tensión de entrada y Vo
la tensión de salida del convertidor se cumpla — — = — — , donde D' = 1-D. Los valores
N^ NpB ' mínimos de los inductores Lef y Leb y de los condensadores Ca y Cb se escogerán en función del máximo rizado de corriente y tensión que se precise respectivamente.
Modos de funcionamiento Modo de reducción de tensión: Vi -^ cargas 38 (conexión a través del interruptor 32)
En este modo de funcionamiento el interruptor 33, implementable por un transistor MOS FET, por ejemplo) conmutará con un ciclo de trabajo D y el interruptor 34 estará permanentemente abierto.
Durante el intervalo D'xTs, cuando el interruptor 33 está abierto, la corriente a la entrada lia carga el inductor Lef y el condensador Ca, y la corriente reflejada del secundario NsF del transformador 8 carga el condensador Cb. La inductancia Leb de la salida se descarga sobre la carga 38 y el diodo 36 conduce la suma de la corriente de secundario y la de salida.
Durante el intervalo DxTs, cuando el interruptor 33 está cerrado, la corriente de entrada lia carga Lef, la corriente reflejada en el secundario de la descarga de Ca descarga Cb y carga Leb, alimentada por el condensador de alta capacidad Cof de la salida. El interruptor 33 conduce en este caso la suma de la corriente de entrada lia y la del primario NPF del transformador 8, quedando el diodo 36 en circuito abierto. Modo de elevación de tensión: Vo -^ cargas 37 (conectadas por el interruptor 31)
En este modo de funcionamiento el interruptor 34 conmutará con un ciclo de trabajo 1-D y el interruptor 33 estará permanentemente abierto.
Durante el intervalo DxTs, cuando el interruptor 34 está abierto, la corriente a la entrada Iib carga el inductor Leb y el condensador Cb, y la corriente reflejada del secundario NsB del transformador 8 carga el condensador Ca. La inductancia Lef de la salida se descarga sobre la carga 37 y el diodo 35 conduce Ja suma de la corriente de secundario y la de salida. Durante el intervalo DxTs, cuando el interruptor 34 está cerrado, la corriente de entrada Iib carga Leb, la corriente reflejada en el secundario de la descarga de Cb descarga Ca
HOJA SUSTITUTORIA (REGLA 26) y carga Lef, alimentada por el condensador de alta capacidad Cob de la salida. El interruptor 34 conduce en este caso la suma de la corriente de entrada Iib y la del primario NPB del transformador 8, quedando el diodo 35 en circuito abierto.
Análisis del convertidor, régimen estacionario y dinámica
La función de transferencia en régimen estacionario en cada modo de funcionamiento, es decir, en modo de elevación de tensión y en modo de reducción de tensión, es la siguiente:
Vo 1 D a) Modo de reducción (Vi = 42 -> Vo = 14)
Vi N 1 - D
Vo 1- D b) Modo de elevación (Vi = 14 - Vo = 42) = N •
Vi D
donde D es la relación de trabajo de la señal de control U(t), y N es la relación de espiras del transformador.
Tal como se ha mencionado anteriormente, El convertidor de Cuk es un sistema sin fase mínima no lineal. Estas características dificultan el diseño de control si se debe asegurar una buena respuesta dinámica, robusteza y estabilidad para un amplio intervalo de puntos de funcionamiento (muchas condiciones de carga y de línea diferentes).
En particular, la posición de los polos conjugados complejos de lazo abierto del convertidor es plenamente dependiente de la relación de trabajo D de la señal de control del convertidor U(t).
Puesto que el convertidor es bidireccional, han de controlarse dos convertidores diferentes con un único panel de control.
Usando el modelo de pequeña señal derivado del modelo promediado de espacio de estado del convertidor, y suponiendo unas dinámicas separables, las dinámicas en lazo abierto para ambos modos son:
a) Modo de reducción (Vi = 42 -> Vo = 14)
Figure imgf000009_0001
Figure imgf000010_0001
2π /LeebbC'-of
Figure imgf000010_0002
b) Modo de elevación (Vi = 14 - Vo = 42)
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0005
donde fPι son los polos rápidos y determinan las dinámicas de transferencia de energía, mientras que los polos fp2 son lentos y dependen de las condiciones de diseño de la ondulación de la tensión de salida. Por último, los fz son los ceros del convertidor.
Compromisos de diseño
La condición de separabilidad de los polos implica que los polos lentos deben situarse lo más lejos posible de los polos rápidos. Por consiguiente:
fpld = 1° - f P2d fplu = 1°- fp2u
Para simplificar el diseño de los lazos de control es obligatorio un comportamiento dinámico del convertidor igual en ambos modos de funcionamiento, y como resultado se obtiene un punto de funcionamiento en el que se necesita que D = 1-D. Por lo tanto, la relación de trabajo debe ser D = 0,5. Esta relación de trabajo es ligeramente diferente de la relación de conmutación de utilización óptima, la cual, en el convertidor de Cuk, lleva a un D = 0,33, véase S. Cuk, "Switching DC to DC converter with zero input or output current ripple" in Proc. IEEE Industry Appl. Soc. Annual Meet, Toronto, Ont., Canadá, 1978 pp 1131-1146.
Al fijarse la relación de trabajo del punto de trabajo nominal en D = 0,5, la relación de reducción y de elevación en régimen estacionario depende sólo de la relación de espiras N del transformador, que en consecuencia debe ser N = 3 para conseguir la transformación 42 -^ 14 (y viceversa).
Habiéndose fijado los valores de la relación de trabajo D, la relación de espiras del transformador N, y fijando las condiciones de igualdad dinámica (fPi = fpiu, fp d = fp2u, fzd = fái) las relaciones entre los diferentes elementos de almacenamiento de energía será la siguiente:
Lef = N2 Leb
Cof = N2 - ob
cb = N2 Ca
En la Fig. 4 se ha representado un posible control del convertidor bidireccional mediante un doble lazo, del tipo conocido como "Control en Modo de Corriente Promediado" comportando un lazo interior de corriente y un lazo exterior de tensión que garantizan la regulación de línea y de carga con protección propia de las transiciones de conmutación. Así, dicho sistema de control del convertidor bidireccional 50, comprende un bloque 51 controlador de la corriente de entrada por modulación de anchura de impulsos PWM, con una toma de corriente 52 desde dicha entrada, cuyo bloque 51 aplica las funciones de conmutación a la primera y segunda etapas del circuito convertidor bidireccional 50, ilustrado en la Fig. 3 y un bloque 53 de control de tensión de salida, al que se aplica una tensión de referencia 56 y con una toma de tensión 55 desde dicha salida, cuyo segundo bloque 53 proporciona al primero 51, a través del citado lazo interior 54, una corriente de referencia. Se ha indicado en este caso por 57 la carga sobre la que opera el convertidor 37 y 38 en la Fig. 3. Con referencia ahora al esquema de la Fig. 5, en la misma sólo se han representado algunos de los flujos de corriente entre los bloques componentes enlazados esquemáticamente en potencia, distinguiendo una red R42 que opera a 42 V de C.C. y una red R14 que opera a 14 V de C.C. En dicha Fig. 5, se ilustra un primer ejemplo del sistema de distribución eléctrica según la invención , organizado en forma descentralizada, es decir con la conversión de tensión distribuida en varias partes del vehículo. En dicho dibujo una caja 61 de distribución eléctrica integra un convertidor bidireccional 62 esquematizado mediante dos bloques convertidores 62a, 62b, para generar una tensión dual y el sistema incluye en combinación una segunda caja 63 de distribución incluyendo otro convertidor 64, unidireccional. En este ejemplo, el alternador A, junto con la primera batería B36 de 36 V de C.C. suministran corriente a 42 V a la caja 61 a través de un conmutador de potencia 65. Las referencias numéricas 67 y 68 son indicativas de unos conjuntos que incluyen unos medios electrónicos de control centralizado de señal y de potencia, incluyendo un microcontrolador y medios de protección eléctrica. Con la referencia numérica 66 se ha indicado un relé de ignición, que únicamente proporciona alimentación hacia los citados convertidores 62, 64 o conjuntos de control 67, 68 en caso de estar cerrado el interruptor de encendido del automóvil. Mediante 69a a 69c se indican las diversas cargas conexionables a una y otra caja 61, 63, en el caso de 69a y 69c asimismo controladas por el referido relé de encendido 66.
En la Fig. 6 se ilustra una variante del sistema de distribución eléctrica conforme a una organización centralizada, el cual únicamente difiere del ejemplo ilustrado en la Fig. 5 por el hecho de que la segunda caja de distribución 63, no incluye un convertidor, de manera su conjunto de gestión y control 68 es alimentado a partir del primer conjunto 67 con dos tensiones diferenciadas a través de las redes R42 y R14. Se han utilizado en dicha segunda Fig. las mismas referencias que en la Fig. anterior. En la Fig. 7 se ilustra esquemáticamente un vehículo en el que se ha implementado un sistema de distribución eléctrica de tensión dual, conforme a lo expuesto, en donde se han previsto tres cajas de distribución eléctrica centralizada 61, 63, 71 en el compartimento motor, habitáculo y maletero, respectivamente. La primera caja 61 incluye un conjunto 67 de gestión y control de potencia y un convertidor bidireccional 67, asociados a una batería B36. La caja 36 está conectada por un cableado o bus R42 (nivel de tensión alto) y por un segundo bus R14 (nivel de tensión bajo) a la primera caja 61. La tercera caja 71 está conectada en general a la primera, 61 como a la segunda 63 y también tiene asociada una segunda batería B12. La red 72 relaciona las cajas 61 y 71. Las Figs. 8 a 10 muestran una simulación de la estrategia de "Control en Modo de Corriente Promediada". La Fig. 8 es una simulación transitoria de carga para el modo de reducción de tensión, la Fig. 9 es una simulación transitoria para el modo de elevación de tensión y por último la Fig. 10 muestra un transitorio de línea en el modo de reducción de tensión.
Es evidente que otras simulaciones para estrategias de simulación alternativas serían posibles, por ejemplo el "control en Modo de Corriente de Histéresis".

Claims

REΓVTNDICACIQNES
1.- Sistema de distribución eléctrica de tensión dual aplicable a vehículos con dos sectores de red y cargas preparados para operar a dos niveles de tensión diferenciados, generados por al menos dos baterías a un primer nivel de tensión, y a un segundo nivel de tensión, inferior, a cuyos dos sectores de red se halla asociado al menos un convertidor de tensión, caracterizado porque dicho convertidor de tensión es un convertidor bidireccional, con sus etapas de entrada y salida aisladas galvánicamente, e incluyendo en cada una de dichas etapas un dispositivo conmutador, cuyo convertidor bidireccional tiene conectadas a dichas entradas y salidas las citadas baterías a un primer nivel de tensión y a un segundo nivel de tensión, de manera que el citado circuito convertidor bidireccional proporciona dos modos de transferencia de energía que constituyen un primer modo de reducción de tensión y un segundo modo de elevación de tensión, habiéndose elegido los componentes pasivos, es decir los componentes magnéticos y capacitancias de las citadas etapas para proporcionar un comportamiento transitorio idéntico en ambos modos cuando en el sistema de regulación entra una perturbación ya sea en la carga o en la tensión de entrada.
2.- Sistema, según la reivindicación 1, caracterizado porque el citado convertidor comprende una versión aislada galvánicamente en C.C. de un circuito convertidor de topología Cuk, simétrico respecto a la región de aislamiento, el cual tiene conectadas a su entrada y salida dichas baterías a un primer nivel de tensión y a un segundo nivel de tensión respectivamente, con una capacitancia en paralelo con cada una de dichas fuentes de tensión, además de la capacitancia de almacenamiento típica de la topología, en serie con las inductancias del circuito de entrada y salida, disponiéndose el citado dispositivo de conmutación en las etapas de entrada y salida del convertidor, a cada lado del referido aislamiento galvánico.
3.- Sistema, según la reivindicación 2, caracterizado porque la citada capacitancia en paralelo con una correspondiente fuente de tensión en la etapa de entrada y salida del circuito convertidor es de un valor elevado, sensiblemente superior a las capacitancias de almacenamiento propias de la topología.
4 - Sistema, según la reivindicación 2, caracterizado porque incluye un sistema de control de dos lazos comportando un lazo interior de corriente y un lazo exterior de tensión que garantizan la regulación de línea y de carga con protección propia de las transiciones de conmutación.
5.- Sistema, según la reivindicación 4, caracterizado porque dicho sistema de control comprende un bloque controlador de la corriente de entrada por modulación de anchura de impulsos PWM, con una toma de corriente desde dicha entrada, cuyo bloque aplica las funciones de conmutación a la primera y segunda etapas del circuito convertidor bidireccional, y un bloque de control de tensión de salida, al que se aplica una tensión de referencia y con una toma de tensión desde dicha salida, cuyos segundo bloque proporciona al primero, a través del citado lazo interior, una corriente de referencia.
6.- Sistema, según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque el citado convertidor bidireccional se halla integrado en el interior de una caja de distribución eléctrica para vehículos, comprendiendo un microcontrolador, medios de protección eléctrica y medios electrónicos de control centralizado de señal y de potencia.
7.- Sistema, según la reivindicación 6, caracterizado porque un único microcontrolador realiza el control del convertidor y dicho control centralizado de señal y potencia, con eliminación de componentes redundantes y posibles fuentes de interferencia.
8.- Sistema, según la reivindicación 6, caracterizado porque se han previsto además unos medios de apantallado electromagnético del citado convertidor bidireccional dentro de la carcasa de la citada caja de distribución y unos medios de disipación térmica de una placa soporte del convertidor.
9.- Sistema, según la reivindicación 8, caracterizado porque comprende una única masa de toma de tierra común para la placa soporte del convertidor y la placa o placas de los medios electrónicos de control, de manera que se facilita la alimentación de cargas por parte del convertidor.
10.- Sistema, según la reivindicación 6, caracterizado porque comprende unas protecciones envolventes de material plástico para el convertidor, provistas de unas ventanas de aireación, sobre cuyas protecciones está dispuesta una capa de deposición metálica o un enrejado metálico, respetando dichas ventanas, constituyendo parte de dichos medios de apantallado electromagnético del convertidor por las partes superior y laterales.
11.- Sistema, según la reivindicación 6, caracterizado porque unas pistas conductoras de potencia de la placa de circuito impreso sobre la que está dispuesto el convertidor tienen un grosor de al menos 400 μm apto para una conducción de corriente de potencia, constituyendo además parte de unos medios de disipación térmica.
12.- Sistema, según la reivindicación 11, caracterizado porque dichas pistas conductoras de potencia están suficientemente separadas y recubiertas de una película aislante para evitar el salto de arcos eléctricos.
13.- Sistema, según la reivindicación 6 caracterizado porque comprende además unos medios de control de temperatura del entorno, específicos de dicha zona del interior de la carcasa ocupada por el convertidor.
PCT/ES1999/000173 1999-06-09 1999-06-09 Sistema de distribucion electrica de tension dual WO2000077916A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES1999/000173 WO2000077916A1 (es) 1999-06-09 1999-06-09 Sistema de distribucion electrica de tension dual
EP99923610A EP1458083B1 (en) 1999-06-09 1999-06-09 Dual voltage electrical distribution system
US09/980,709 US6507506B1 (en) 1999-06-09 1999-06-09 Dual voltage electrical distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1999/000173 WO2000077916A1 (es) 1999-06-09 1999-06-09 Sistema de distribucion electrica de tension dual

Publications (1)

Publication Number Publication Date
WO2000077916A1 true WO2000077916A1 (es) 2000-12-21

Family

ID=8307102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000173 WO2000077916A1 (es) 1999-06-09 1999-06-09 Sistema de distribucion electrica de tension dual

Country Status (3)

Country Link
US (1) US6507506B1 (es)
EP (1) EP1458083B1 (es)
WO (1) WO2000077916A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053746A1 (es) * 2001-11-27 2003-07-03 Lear Automotive (Eeds) Spain,S.L. Sistema y método de protección contra cortocircuitos en arquitecturas de distribución de energía eléctrica a dos niveles de tensión
WO2003056682A1 (es) * 2001-12-31 2003-07-10 Lear Automotive (Eeds) Spain S.L. Sistema y método para una transferencia de energía controlada en redes con sectores alimentados desde dos baterías distintas
EP1244191A3 (de) * 2001-03-23 2005-05-25 GmbH & Co. KG Intedis Kraftfahrzeug mit zwei Bordnetzen
CN111137231A (zh) * 2018-11-06 2020-05-12 北京宝沃汽车有限公司 供电系统和车辆

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2181606B1 (es) * 2001-08-08 2004-08-16 Lear Automotive (Eeds) Spain, S.L. Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension.
JP3625789B2 (ja) * 2001-08-10 2005-03-02 本田技研工業株式会社 車両の電源装置
US6812656B2 (en) * 2002-02-27 2004-11-02 Railpower Technologies Corp. Sequenced pulse width modulation method and apparatus for controlling and powering a plurality of direct current motors
DE10231379B3 (de) * 2002-05-24 2004-01-15 Daimlerchrysler Ag Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Maschine
JP2005528876A (ja) * 2002-06-03 2005-09-22 インターナショナル レクティファイアー コーポレイション 異なる電圧で駆動される電気装置用の薄型のdc−dcコンバータ
WO2004040956A2 (en) * 2002-11-01 2004-05-21 Rudy Kraus Apparatus for providing high quality power
CA2411132A1 (en) * 2002-11-05 2004-05-05 Railpower Technologies Corp. Direct turbogenerator
WO2004055963A1 (ja) * 2002-12-16 2004-07-01 Mitsubishi Denki Kabushiki Kaisha 自動車用電力装置
US6909201B2 (en) * 2003-01-06 2005-06-21 General Motors Corporation Dual voltage architecture for automotive electrical systems
US7102331B2 (en) * 2003-01-17 2006-09-05 Black & Decker Inc. Generator with dual cycloconverter for 120/240 VAC operation
US7614381B2 (en) * 2003-03-28 2009-11-10 Caterpillar Inc. Power system with an integrated lubrication circuit
US20040217732A1 (en) * 2003-04-29 2004-11-04 Ballard Power Systems Inc. Power converter architecture and method for integrated fuel cell based power supplies
US7999408B2 (en) * 2003-05-16 2011-08-16 Continental Automotive Systems, Inc. Power and communication architecture for a vehicle
US6954100B2 (en) * 2003-09-12 2005-10-11 Freescale Semiconductor, Inc. Level shifter
US7064507B2 (en) * 2004-02-17 2006-06-20 Railpower Technologies Corp. Managing wheel skid in a locomotive
WO2005084335A2 (en) * 2004-03-01 2005-09-15 Railpower Technologies Corp. Cabless hybrid locomotive
EP1723018A4 (en) * 2004-03-08 2008-08-13 Railpower Technologies Corp CONFIGURATION OF HYBRID LOCOMOTIVE
US7349797B2 (en) * 2004-03-30 2008-03-25 Railpower Technologies Corp Emission management for a hybrid locomotive
WO2005114810A1 (en) * 2004-05-17 2005-12-01 Railpower Technologies Corp. Automated battery cell shunt pypass
US7116003B2 (en) * 2004-07-14 2006-10-03 Hamilton Sundstrand Corporation Aircraft starter/generator electrical system with mixed power architecture
US7940016B2 (en) * 2004-08-09 2011-05-10 Railpower, Llc Regenerative braking methods for a hybrid locomotive
WO2006020667A2 (en) * 2004-08-09 2006-02-23 Railpower Technologies Corp. Locomotive power train architecture
US7565867B2 (en) * 2004-09-03 2009-07-28 Frank Wegner Donnelly Multiple engine locomotive configuration
US7492057B2 (en) * 2004-11-10 2009-02-17 Baldwin Mark H High reliability DC power distribution system
US8203828B2 (en) 2005-01-27 2012-06-19 Production Resource Group Llc Portable power and signal distribution system for a controllable system including multiple devices
CA2544910C (en) * 2005-04-25 2013-07-09 Railpower Technologies Corp. Multiple prime power source locomotive control
FR2886780B1 (fr) * 2005-06-02 2007-09-14 Peugeot Citroen Automobiles Sa Installation electrique de bord pour vehicule automobile
US7661370B2 (en) * 2005-10-19 2010-02-16 Railpower, Llc Design of a large low maintenance battery pack for a hybrid locomotive
JP4449940B2 (ja) * 2006-05-16 2010-04-14 トヨタ自動車株式会社 車両用二電源システム
US7541784B2 (en) * 2006-05-26 2009-06-02 Endurance Wind Power Dual voltage switching in power generation
JP4812529B2 (ja) * 2006-06-14 2011-11-09 トヨタ自動車株式会社 電源装置および車両
US7591653B2 (en) * 2006-09-08 2009-09-22 Aees, Inc. Modular power distribution center
FR2909233B1 (fr) * 2006-11-23 2011-03-04 Hispano Suiza Sa Alimentation d'un aeronef en energie electrique
US7576443B2 (en) * 2006-12-15 2009-08-18 General Electric Company Method and apparatus for generating electric power
US20080288132A1 (en) 2007-05-16 2008-11-20 General Electric Company Method of operating vehicle and associated system
FR2916914A1 (fr) 2007-06-04 2008-12-05 Peugeot Citroen Automobiles Sa Dispositif d'inferface de compensation de tension a base de stockage de l'energie sous forme capacitive et reseau electrique comprenant ce dispositif.
US20090033155A1 (en) * 2007-06-08 2009-02-05 Renesas Technology Corp. Semiconductor integrated circuits
US9005785B2 (en) * 2007-09-24 2015-04-14 GM Global Technology Operations LLC Open-loop system and method for fuel cell stack start-up with low-voltage source
DE102007048342B4 (de) * 2007-10-09 2012-02-23 Continental Automotive Gmbh Bordnetz für ein Kraftfahrzeug
DE102007062955B4 (de) * 2007-12-21 2011-06-01 Catem Develec Gmbh & Co. Kg Schaltung zur Spannungsstabilisierung eines Bordnetzes
US7945370B2 (en) * 2008-02-07 2011-05-17 Caterpillar Inc. Configuring an engine control module
US20090200864A1 (en) * 2008-02-12 2009-08-13 Josef Maier Chip on bus bar
US8076797B2 (en) * 2008-05-15 2011-12-13 Indy Power Systems Llc Energy transfer circuit and method
US8080980B2 (en) * 2009-03-11 2011-12-20 Remy Technologies, L.L.C. Alternator regulator with automatic regulation dependent on system voltage
DE102009018011A1 (de) 2009-04-18 2010-10-21 Daimler Ag Vorrichtung zur Verteilung von elektrischer Energie in einem Fahrzeug
CN102753379B (zh) * 2010-02-09 2015-12-09 丰田自动车株式会社 电动车辆的电源系统及其控制方法
JP5432761B2 (ja) * 2010-02-12 2014-03-05 株式会社マキタ 複数のバッテリパックを電源とする電動工具
JP5461221B2 (ja) * 2010-02-12 2014-04-02 株式会社マキタ 複数のバッテリパックを電源とする電動工具
US8981710B2 (en) 2010-09-20 2015-03-17 Indy Power Systems Llc Energy management system
US8766648B2 (en) * 2010-11-01 2014-07-01 Ford Global Technologies, Llc Method and system for determining an operating characteristic associated with an inductor in a power converter system
JP2013074779A (ja) * 2011-09-29 2013-04-22 Fujitsu Telecom Networks Ltd 絶縁型双方向Cukコンバータとその駆動方法
FR2986120B1 (fr) * 2012-01-23 2015-08-21 Commissariat Energie Atomique Gestion combinee de deux sources de tension
JP6073663B2 (ja) * 2012-02-24 2017-02-01 Necトーキン株式会社 受電装置及び電子機器
DE102012008687B4 (de) * 2012-04-28 2017-02-09 Audi Ag Kraftwagen mit einem Hochvolt-Energieversorgungssystem
US9260068B2 (en) * 2012-10-29 2016-02-16 Sanyo Electric Co., Ltd. In-vehicle battery system
WO2014112608A1 (en) * 2013-01-21 2014-07-24 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, secondary battery module, method for charging the secondary battery and the secondary battery module, method for discharging the secondary battery and the secondary battery module, method for operating the secondary battery and the secondary battery module, power storage system, and method for operating the power storage system
KR20140102490A (ko) * 2013-02-14 2014-08-22 콘티넨탈 오토모티브 시스템 주식회사 Lpg를 연료로 사용하는 isg 적용 차량의 이그니션 장치
US20140265560A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation System and method for using voltage bus levels to signal system conditions
US9812949B2 (en) 2013-10-10 2017-11-07 Indy Power Systems Llc Poly-phase inverter with independent phase control
DE102014012154A1 (de) * 2014-08-14 2016-02-18 Man Truck & Bus Ag Bordnetz für ein Kraftfahrzeug, insbesondere für ein Nutzfahrzeug
JP6358134B2 (ja) * 2015-03-10 2018-07-18 オムロン株式会社 絶縁型双方向dc−dcコンバータ、および電力変換システム
US9780591B2 (en) * 2015-04-03 2017-10-03 Schneider Electric It Corporation Adaptive battery pack
DE102016103829A1 (de) * 2016-03-03 2017-09-07 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungseinheit und Energieversorgungssystem für ein Fahrzeug
CA3032333C (en) * 2016-07-29 2019-07-16 Nissan Motor Co., Ltd. Vehicle system
HUE051164T2 (hu) * 2017-02-09 2021-03-01 Samsung Sdi Co Ltd Kettõs tápellátó rendszer
JP6790965B2 (ja) * 2017-03-31 2020-11-25 株式会社デンソー 車両用電源システム
EP4039523B1 (en) 2021-02-04 2024-10-09 Volvo Truck Corporation An electromobility system for a vehicle
CN115071430A (zh) * 2022-08-23 2022-09-20 江苏智能无人装备产业创新中心有限公司 一种基于双向电源的预充继电器冗余控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186437A (en) * 1978-05-03 1980-01-29 California Institute Of Technology Push-pull switching power amplifier
US4723105A (en) * 1986-10-30 1988-02-02 General Motors Corporation Dual voltage motor vehicle electrical system
US5164655A (en) * 1991-08-05 1992-11-17 Dimensions Unlimited, Inc. 12-24 volt power system
EP0722211A1 (fr) * 1995-01-13 1996-07-17 SEXTANT AVIONIQUE (Société Anonyme) Convertisseurs de tension bidirectionnels de type continu-continu et capteur de courant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182807B1 (en) * 1995-02-21 2001-02-06 Hitachi, Ltd. Device and method for supplying power to a vehicle, semi-conductor circuit device for use in the same and collective wiring device for a vehicle or an automobile
JPH1111261A (ja) * 1997-06-18 1999-01-19 Asmo Co Ltd ワイパブレードラバー
JP3515402B2 (ja) * 1998-12-18 2004-04-05 株式会社日立製作所 電源ネットワーク装置
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186437A (en) * 1978-05-03 1980-01-29 California Institute Of Technology Push-pull switching power amplifier
US4723105A (en) * 1986-10-30 1988-02-02 General Motors Corporation Dual voltage motor vehicle electrical system
US5164655A (en) * 1991-08-05 1992-11-17 Dimensions Unlimited, Inc. 12-24 volt power system
EP0722211A1 (fr) * 1995-01-13 1996-07-17 SEXTANT AVIONIQUE (Société Anonyme) Convertisseurs de tension bidirectionnels de type continu-continu et capteur de courant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BISWAJIT RAY: "BIDIRECTIONAL DC/DC POWER CONVERSION USING CONSTANT-FREQUENCY QUASI-RESONANT TOPOLOGY", PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS. (ISCS),US,NEW YORK, IEEE, vol. -, 1993, pages 2347 - 2350, XP000379683, ISBN: 0-7803-1281-3 *
CARICCHI F ET AL: "EXPERIMENTAL STUDY OF A BIDIRECTIONAL DC-DC CONVERTER FOR THE DC LINK VOLTAGE CONTROL AND THE REGENERATIVE BRAKING IN PM MOTOR DRIVES DEVOTED TO ELECTRICAL VEHICLES", PROCEEDINGS OF THE ANNUAL APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC),US,NEW YORK, IEEE, vol. CONF. 9, 1994, pages 381 - 386, XP000467342 *
KAZIMIERCZUK M K ET AL: "TOPOLOGIES OF BIDIRECTIONAL PWM DC-DC POWER CONVERTERS", PROCEEDINGS OF THE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE. (NAECON),US,NEW YORK, IEEE, vol. -, 1993, pages 435 - 441, XP000419442 *
MAJO J ET AL: "NONLINEAR CONTINUOUS TIME CONTROL OF A BIDIRECTIONAL COUPLED-INDUCTOR CUK CONVERTER", IEICE TRANSACTIONS ON COMMUNICATIONS,JP,INSTITUTE OF ELECTRONICS INFORMATION AND COMM. ENG. TOKYO, vol. E75 - B, no. 11, 1 November 1992 (1992-11-01), pages 1134 - 1141, XP000336069, ISSN: 0916-8516 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244191A3 (de) * 2001-03-23 2005-05-25 GmbH & Co. KG Intedis Kraftfahrzeug mit zwei Bordnetzen
WO2003053746A1 (es) * 2001-11-27 2003-07-03 Lear Automotive (Eeds) Spain,S.L. Sistema y método de protección contra cortocircuitos en arquitecturas de distribución de energía eléctrica a dos niveles de tensión
WO2003056682A1 (es) * 2001-12-31 2003-07-10 Lear Automotive (Eeds) Spain S.L. Sistema y método para una transferencia de energía controlada en redes con sectores alimentados desde dos baterías distintas
ES2192467A1 (es) * 2001-12-31 2003-10-01 Lear Automotive Eeds Spain Sistema y metodo para una transferencia de energia controlada en redes con sectores alimentados desde dos baterias distintas.
CN111137231A (zh) * 2018-11-06 2020-05-12 北京宝沃汽车有限公司 供电系统和车辆

Also Published As

Publication number Publication date
EP1458083A1 (en) 2004-09-15
EP1458083B1 (en) 2012-04-04
US6507506B1 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
WO2000077916A1 (es) Sistema de distribucion electrica de tension dual
JP4163875B2 (ja) 乗物内で電力を生成し負荷に分配する装置
US6320358B2 (en) Bidirectional energy management system independent of voltage and polarity
JP6749442B2 (ja) 一体型電源ボックス
man Dwari et al. A novel high efficiency high power interleaved coupled-inductor boost DC-DC converter for hybrid and fuel cell electric vehicle
US6587356B2 (en) Start-up circuit and control for high power isolated boost DC/DC converters
JP5611345B2 (ja) 車載システム用の回路装置
ES2659223T3 (es) Disposición de conmutadores en red de a bordo de vehículo de motor
US20120193913A1 (en) control device for an electric machine and method for the operation thereof
KR20030077625A (ko) 자동차 전기 시스템
Hasan et al. Features and challenges for Auxiliary Power Module (APM) design for hybrid/electric vehicle applications
JPH11121690A (ja) 電力用回路モジュール
US20180019680A1 (en) Battery unit
US10388460B2 (en) Low inductance capacitor
US20100025134A1 (en) Electric power supply system
KR20210102435A (ko) 전력 공급 네트워크 및 하이브리드 자동차
US20050135124A1 (en) DC-to-DC converter for a car electrical system object of the invention
KR101508180B1 (ko) 마일드 하이브리드 전기자동차용 충전장치
KR101602818B1 (ko) 마일드 하이브리드 차량용 토크 보조 장치
US20230134085A1 (en) Energy system for an electric vehicle
Cacciato et al. Digital controlled bidirectional DC/DC converter for electrical and hybrid vehicles
de Freitas et al. Low-volume and high-efficiency converter solution for interfacing a Hybrid Energy Storage System (HESS)
KR20170047838A (ko) 48v―12v 통합 전원 장치
US20190044347A1 (en) Multiple output battery system
JP4802793B2 (ja) 2電源方式の車両用電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999923610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09980709

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999923610

Country of ref document: EP