WO2000066738A1 - Procede de production d'insuline recombinee a partir d'une nouvelle proteine fusionnee - Google Patents

Procede de production d'insuline recombinee a partir d'une nouvelle proteine fusionnee Download PDF

Info

Publication number
WO2000066738A1
WO2000066738A1 PCT/JP2000/002736 JP0002736W WO0066738A1 WO 2000066738 A1 WO2000066738 A1 WO 2000066738A1 JP 0002736 W JP0002736 W JP 0002736W WO 0066738 A1 WO0066738 A1 WO 0066738A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
amino acid
chain
insulin
sequence
Prior art date
Application number
PCT/JP2000/002736
Other languages
English (en)
French (fr)
Inventor
Shusaku Oka
Seiji Sato
Naohiko Higashikuni
Masaaki Kondo
Toshiyuki Kudo
Shigeaki Watanabe
Yoshihiro Waki
Hirotaka Yuki
Original Assignee
Itoham Foods Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoham Foods Inc. filed Critical Itoham Foods Inc.
Priority to DE60037508T priority Critical patent/DE60037508T2/de
Priority to DK00921035T priority patent/DK1179593T3/da
Priority to EA200101161A priority patent/EA005586B1/ru
Priority to AU41425/00A priority patent/AU775471B2/en
Priority to CA002372221A priority patent/CA2372221A1/en
Priority to EP00921035A priority patent/EP1179593B1/en
Priority to US09/959,548 priority patent/US6841361B1/en
Publication of WO2000066738A1 publication Critical patent/WO2000066738A1/ja
Priority to HK02103154.4A priority patent/HK1042113A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to DNA encoding a novel fusion protein for producing a recombinant insulin, and more specifically, thrombin and carboxypeptidase B from a fusion protein obtained through its expression.
  • the use of said DNA in the production of insulin is not limited to DNA encoding a novel fusion protein for producing a recombinant insulin, and more specifically, thrombin and carboxypeptidase B from a fusion protein obtained through its expression.
  • Insulin is secreted by B cells in the islets of Langerhans when ingested and is the most important hormone in storing or utilizing sugars, amino acids and fatty acids, and maintaining blood glucose homeostasis.
  • Blood sugar, or glucose in the blood is an indispensable energy source for the living body, but if the blood sugar level is not maintained, serious symptoms may occur in the living body.
  • urinary sugar appears and leads to glucose loss, resulting in so-called glucoseuria. If this condition persists for a long time, it causes complications in the tissues of the living body.
  • a drop in blood sugar levels cuts off energy sources and is therefore life-threatening.
  • Blood glucose is maintained at homeostasis by factors that act to increase blood glucose (glucagon, growth hormone, cortidol, catecholamines) and factors that lower blood glucose.
  • Insulin is the only hormone that lowers blood sugar. Therefore, insulin-dependent diabetes mellitus (IDDM) occurs when insulin secretion is reduced for any reason and insulin cannot be supplied sufficiently. Insulin is an indispensable medicine for treating such patients.
  • Human insulin is a polypeptide consisting of an A chain consisting of 21 amino acids and a B chain consisting of 30 amino acids, one in the A chain and two disulfates between the A and B chains. It has an id bond.
  • Insulin is a B cell in the islet Langerhans islet, a signal peptide (SP) consisting of 24 amino acids, a B chain (B), and a C-peptide consisting of 31 amino acids.
  • SP signal peptide
  • B B chain
  • C-peptide consisting of 31 amino acids.
  • C and A chain (A) are first biosynthesized by intracellular ribosomes as pre-bubular insulin (SP-B-C-A)), which is linearly arranged in this order.
  • proinsulin When insulin enters the endoplasmic reticulum, the signal peptide is cleaved off to form proinsulin (B-C-A). Proinsulin takes a three-dimensional structure in the endoplasmic reticulum through the formation of disulfide bonds. The PC bond is then cleaved by PC1 / 3 of the prohormone converting enzyme, and the CA bond is cleaved by PC2. Finally, the two basic amino acids at the N-terminus of the C peptide remaining at the C-terminus of the B chain upon cleavage of PC 1/3 are cleaved by carboxypeptidase H to produce insulin.
  • Eli Lilly uses a method of expressing the A and B chains separately using Escherichia coli and mixing them in vitro to form disulfide bonds and link the A and B chains. -No. 18960), but the production efficiency was not good.
  • the company developed a method to express proinsulin, create a disulfide bond in vitro, and then excise the C peptide with trypsin and carboxypeptidase B to produce insulin (Japanese Patent Publication No. 48278, Patent No. 2634176).
  • Novo Nordisk has developed a method in which miniproinsulin, in which the B and A chains are linked by two basic amino acids, is expressed in yeast and trypsinized in vitro to obtain insulin. 7-121226, Japanese Patent Publication No. 8-8871, and Japanese Patent No. 2553326). This method had an advantage that a disulfide bond was formed during the expression and secretion of miniproinsulin. Furthermore, the protein was secreted into the medium, so that separation and purification were easy. Development of new methods for producing recombinant insulin has been actively pursued since then.
  • Hoechst expresses a novel insulin derivative, or pre-bub insulin, in Escherichia coli, forms disulfide bonds in vitro, and treats it with lysyl endopeptidase or clostripain and carboxypeptidase B to convert insulin.
  • JP-A-2-195896, JP-A-2-225498, JP-A-2-233698, JP-A-3-169895, JP-A-4-258296, JP-A-6- 228191, JP-A-7-265092 Recently, B10-TECHNOLOGY GENERAL CORP.
  • An object of the present invention is to provide an efficient and high-yield production system that is at least equivalent to the existing recombinant insulin production system. Is to find an expression system and a production method with high expression. That is, to find a novel method for conversion to insulin, an environment where disulfide bonds required for the activity of insulin can be formed, and an expression system with a high production amount.
  • the present invention provides, in one embodiment, a leader peptide sequence ( ⁇ ) comprising one or more amino acid residues for expression and secretion of a protein, an amino acid sequence (Xl) used for enzymatic or chemical cleavage, ⁇ chain amino acid sequence (B-chain), amino acid sequence used for enzymatic cleavage (X2), linker sequence consisting of one or more amino acid residues (Linker), amino acid sequence used for enzymatic cleavage (X3), wherein the amino acid sequence (A-chain) of the A chain of insulin is linked in this order:
  • the present invention provides an amino acid sequence of the B chain of insulin (B-chain), an amino acid sequence (X2) used for enzymatic cleavage, and a linker sequence comprising one or more amino acid residues (Linker ),
  • the amino acid sequence used for enzymatic cleavage (X3), and the amino acid sequence of the A chain of insulin (A-chain) are linked in this order in the following formula II:
  • the amino acid sequence XI, X2 or X3 used for enzymatic cleavage of the fusion protein is a sequence cleavable by thrombin.
  • the amino acid sequence cleavable by thrombin is a sequence cleavable by thrombin.
  • X 1 GlySerLeuGlnProArg (SEQ ID NO: 1)
  • X 2 ArgGlyHisArgPro (SEQ ID NO: 2), or
  • the amino acid sequence of the linker is aLeuGluGlySerLeuGln (SEQ ID NO: 3)
  • the leader peptide sequence comprises 9 amino acid residues from the N-terminus of MWP (middle wall protein) protein, one of cell wall proteins (CWP) of Bacillus spp. From position 1 to 9) to It becomes.
  • the signal peptide of CWP may be linked to the 5 'end of the DNA.
  • -A specific example of the DNA of the present invention is a DNA having a base sequence encoding the amino acid sequence shown in SEQ ID NO: 21 in the sequence listing, as described in Examples below. More specifically, the DNA has the nucleotide sequence shown in SEQ ID NO: 20 in the sequence listing.
  • the present invention relates to a DNA sequence containing a promoter region necessary for expression of a recombinant protein in a prokaryote or a eukaryote, which is linked to the 5 ′ end of the above-defined DNA.
  • Provide DNA a DNA sequence containing a promoter region necessary for expression of a recombinant protein in a prokaryote or a eukaryote, which is linked to the 5 ′ end of the above-defined DNA.
  • the DNA sequence containing the promoter region is from a Bacillus bacterium, preferably from the Bacillus bacterium CWP.
  • the present invention provides, in still another aspect, a vector comprising the above-described DNA of the present invention.
  • the present invention also provides a host cell transformed with the above vector.
  • a preferred example of a host cell is a Bacillus bacterium, for example, Bacillus brevis.
  • the present invention provides a method for preparing a host cell or bacterium as described above, comprising culturing the host cell or the bacterium in a medium, expressing the DNA of interest, collecting the fusion protein encoded by the DNA, and then enzymatically transforming the fusion protein.
  • a method for producing insulin comprising isolating insulin by cleavage.
  • a specific example of the DNA is a DNA having the base sequence shown in SEQ ID NO: 21 in the sequence listing
  • a specific example of the fusion protein is a protein having the amino acid sequence shown in SEQ ID NO: 22.
  • the expressed fusion protein is separated and purified from a host cell or a bacterium or from a culture medium obtained by culturing.
  • the enzymatic cleavage treatment can be performed with thrombin and carboxypeptidase B.
  • FIG. 1 is a schematic diagram of conversion of the fusion protein, MWPmp9-GSLQPR-Bchain-RGHRP-Linker-PR-Achain, into insulin.
  • FIG. 2 shows the amino acid sequence of the fusion Psp-hidden P-immediate 9-GSLQPR-Bchain-RGHRP-Linker-PR-Achain and the nucleotide sequence encoding it.
  • FIG. 3 is a schematic diagram of integrating the fusion DNA into a Bacillus brevis expression vector (PNU211R2L5).
  • FIG. 4 is an electrophoresis photograph of the culture medium after the culture of the transformant.
  • the samples were the marker peptide (lane 1), the negative control (transformant containing only plasmid pNU 211R2L5 without foreign protein: lane 2), and the transformant MWPsp- ⁇ Pmp9-GSLQPR-Bchain-RGHRP-Linker- PR-Achain (lane 3).
  • FIG. 5 is a chromatogram showing the separation and purification of the fusion protein MWP immediately 9-GSLQPR-Bchain-RGHRP-Linker-PR-Achain by XL mouth chromatography.
  • FIG. 6 is a chromatogram showing separation and purification of the fusion protein MWPmp9-GSLQPR-Bchain-RGHRP-Linker-PR-Achain by HPLC.
  • FIG. 7 shows peptide mapping of ITOHAM insulin (the present invention) and Novolin (a commercially available insulin, Noporin 40 from Noponor Disk Pharma).
  • FIG. 8 shows the elution pattern of ITOHAM insulin (the present invention) and Novolin by HPLC.
  • FIG. 9 shows the time course of the plasma glucose concentration after administration of the ITOHAM insulin (the present invention) and Novolin.
  • FIG. 10 shows the time course of the plasma insulin concentration after administration of ITOHAM insulin (the present invention) and Novolin. Detailed description
  • the DNA of the present invention has a structure represented by the above formula I or II. That is, the DNA of formula I is composed of a leader-peptide sequence (Y) consisting of one or more amino acid residues for protein expression and secretion, an amino acid sequence (X1) used for enzymatic or chemical cleavage, and insulin. ⁇ ⁇ ⁇ ⁇ chain amino acid sequence (B-chain), amino acid sequence used for enzymatic cleavage (X2), linker sequence consisting of one or more amino acid residues (Linker), used for enzymatic cleavage Amino acid sequence (X3), Insulin A chain amino acid sequence (A-c hain) are concatenated in this order.
  • the DNA of formula II contains the amino acid sequence of the B chain of insulin (B-chain), the amino acid sequence used for enzymatic cleavage (X2), and a linker sequence consisting of one or more amino acid residues (Linker).
  • the amino acid sequence (X3) used for enzymatic cleavage and the amino acid sequence (A-chain) of the A chain of insulin are linked in this order.
  • the expression product is secreted out of the host cell by the presence of the leader-peptide sequence, whereas in the absence of such a sequence, the expression product remains in the host cell.
  • An artificial fusion protein was designed in which a thrombin cleavage site, an insulin B chain, a thrombin cleavage site, a linker peptide, a thrombin cleavage site, and an insulin A chain were linearly linked in this order.
  • a DNA encoding the corresponding fusion protein is prepared, inserted into an appropriate expression vector, introduced into an appropriate host cell, and the host is cultured for expression of the DNA to obtain the fusion protein.
  • the fusion protein was then enzymatically cleaved with thrombin and carboxypeptidase B to obtain the natural form of insulin having the desired primary structure and biological activity.
  • Leader peptides (Y) consisting of one or more amino acid residues required for protein expression include E. coli MBP (Maina, CV et al., Gene 74: 365-373, 1988), GST (Smith , DB et al., Gene 67: 31-40, 1988), TRX (LaVallie, E.R., et al., Bio / Technology 11: 187-193, 1993), DsbA (Col 1 ins-Racie, LA et.
  • a preferred leader peptide is 9 amino acid residues at the N-terminal of the Bacillus bacterium CWP protein.
  • CWP protein examples include, but are not limited to, Bacillus brevis strain 47 (FERM P-7224: JP-A-60-58074, JP-A-62-201589), HPD31 (FERM BP-1087: Japanese Patent Application Laid-Open No. Hei 27-27991) can be used. Specifically, the sequences exemplified below can be used.
  • the number of amino acid residues from the N-terminus does not necessarily need to be 9 if the fusion protein is expressed.
  • those having a sequence consisting of 1 to 50 amino acid residues from the N-terminus of CWP protein of Bacillus bacterium can be used.
  • the leader peptide is a fusion protein of the fusion protein following the insulin B chain, that is, the B-chain—X2-Linker-X3-A-chain is the 3 ′ end of DNA containing the promoter region of each expression system. It is not always necessary if the expression can be achieved by linking to the gene.
  • CWP particularly MWP
  • Signal peptides generally direct the expressed and translated protein to the membrane and serve to secrete the protein extracellularly.
  • examples of enzymatic cleavage of X1 include those in which the B-chain and A-chain of insulin do not contain a cleavage site of the enzyme, and include Factor Xa, thrombin, and enterokinase.
  • TEV protease may be mentioned.
  • Examples of chemical cleavage include selective cleavage at the C-terminal side of methionine (J. Biol.
  • Linkers consisting of one or more amino acid residues generally exist between functional domains in a protein, and function to link domains without affecting the function of each domain.
  • insulin is placed between the B and A chains of the insulin via enzymatic cleavage, respectively, but it facilitates the disulfide bond between the B and A chains and the expression of the fusion protein.
  • one or more amino acids may be used regardless of the kind of amino acid.
  • such a Linker desirably comprises the C peptide of proinsulin, and According to an embodiment, it consists of the following sequence: aLeuGluGlySerLeuGln (SEQ ID NO: 3).
  • the DNA encoding the fusion protein is expressed by being linked to the 3 'end of the DNA containing the promoter overnight region of each expression system.
  • ApL promoter, T7 promoter, Escherichia coli trp-lac promoter Maniatis, T. et al., Molecular Cloning 2nd ed., AL aboratory Manual, Cold Spring Harbor Laboratory (1989)
  • yeast PRBI promoter overnight BIO / TECHNOLOGY 9: 183-187, 1991
  • GAPDH promoter BIO / TECHNOLOGY
  • the fusion protein is bound to the 3 ′ end of a DNA sequence containing a Bacillus-derived promoter region.
  • MWP motor Japanese Patent Publication No. Hei 11-58950, Japanese Patent Publication No. Hei 7-108224
  • Bacillus * Brevis HPD31-derived HWP promoter Japanese Patent Application Laid-Open Nos. Hei 4-2798091, 6-133782
  • the like but are not limited thereto.
  • the DNA of the present invention can be prepared by combining techniques known in the art. For example, each DNA sequence of the components is individually prepared by chemical synthesis or cloning, and these components are sequentially ligated using ligase, and the desired DNA is produced by combining the polymerase chain reaction (PCR) amplification methods. can do.
  • PCR polymerase chain reaction
  • the specifics can be understood in detail by referring to Examples, but as individual techniques, Maniatis, T. et al., Molecular Cloning 2nd ed., A Laboratory Manual, Cold Spring Harbor Laboratory (1989), Inn General techniques described in is, MA et al., PCR Protocols, A guide to methods and applications, Academic Press (1990), and the like can be used.
  • DNA encoding human proinsulin, including the insulin B-chain, C-peptide and A-chain can be obtained from a commercially available cDNA lst-strand synthesis kit (Pharma (Manufactured by Shia Corporation). Furthermore, if a short-chain DNA that can be used as a primer can be synthesized using a commercially available DNA synthesizer based on a known DNA sequence, a general PCR can be used to encode the desired B-chain, C-peptide, A-chain, etc. The DNA fragment can be amplified.
  • DNA denaturation for example, 94 ° C, 30 seconds to 1 minute
  • annealing with primer for example, about 45 to 60 ° (:, 30 seconds to 1 minute
  • extension reaction for example, 72, 30 seconds
  • the present invention further provides a vector comprising the above DNA of the present invention.
  • Usable vectors are that they have an appropriate insertion site, ie, a restriction enzyme site, into which the DNA of the present invention can be incorporated, that the DNA can be expressed in a host cell, and that the host It must have at least the property that it can be replicated autonomously in the cell.
  • Vectors generally contain a promoter, which is operably linked upstream of the DNA of interest.
  • the vector may contain an origin of replication, a terminator sequence, and may further contain a selection marker such as a drug resistance gene or a gene that complements auxotrophy.
  • the vector of the present invention is a plasmid capable of replicating in Bacillus bacteria.
  • the expression vector pNU-mPINS can be prepared by the construction method shown in FIG.
  • the present invention further provides a host cell transformed with the vector as defined above.
  • the host cell may be either prokaryotic (eg, bacteria) or eukaryotic (eg, fungi, yeast, animal cells, plant cells), but is preferably a Bacillus bacterium.
  • the bacterium belonging to the genus Bacillus as a host is not limited to the following, but, for example, Bacillus brevis strain 47 (FERM P-7224: JP-A-60-58074, JP-A-62-201589) , 47K (JP-A-2-257876), 310K (JP-A-6-296485) and HP D31 (FERM BP-1087; JP-A-4-127909).
  • the expression bacterium Yuichi p The recombinant bacterium obtained by transferring NU-mP INS into the Bacillus brevis 47-7-5 Q strain was obtained from the Institute of Industrial Science and Technology on April 20, 1999 (1999). Deposited under the Budapest Treaty with the National Institute of Technology, Tsukuba 1-chome 1-3, Ibaraki, Japan, and given the accession number FERM BP-6706.
  • the expression vector obtained as described above is transferred to a competent host cell, preferably a bacterium belonging to the genus Bacillus, and the bacterium is cultured in an appropriate medium under conditions capable of expression to produce the recombinant fusion polypeptide of interest. It is produced outside the cells or inside the cells, preferably outside the cells, and the polypeptide is recovered and purified by a conventional method.
  • a transfer method a conventional method such as an election opening method (Methods in Enzymol., 217: 23-33, 1993) can be used.
  • Purification of the fusion polypeptide includes, for example, solvent extraction, ultrafiltration, ammonium sulfate fractionation, HPLC, gel filtration chromatography, ion exchange chromatography, affinity chromatography, hydrophobic interaction chromatography, electrophoresis, etc. It can be carried out by appropriately combining methods such as electrofocusing.
  • the fusion polypeptide obtained above is then treated with a protease and / or a beptidase that enables its enzymatic cleavage, and in a specific example described below, thrombin and carboxypeptidase B to obtain insulin. be able to.
  • thrombin is used between leader peptide (Y) and B—cha in, between B—cha in and Linker, and Linker and A—cha in. Is cut off.
  • Arg remaining at the C-terminal of B-cha in is cut off by carboxypeptidase B to form insulin (see Fig. 1).
  • the amount of enzyme is any amount that can cause cleavage of the fusion protein.
  • insulin can be obtained by culturing the Bacillus bacterium transformed as described above in a medium, accumulating a fusion protein containing an insulin sequence extracellularly, cutting the collected fusion protein, and obtaining insulin. .
  • the recombinant insulin thus obtained is identical to the natural insulin. It has amino acid composition, disulfide bond, and biological activity, and is useful as a therapeutic drug for insulin-dependent diabetes mellitus.
  • MW P sp means a signal peptide of the MW P protein
  • MW P mp 9 means that the number of amino acids from the N-terminus of the M WP mature protein is 9 (that is, amino acid positions 1 to 9).
  • Reverse primer 5 '-AGCTGTAGTAGTTGCTGC-3' (SEQ ID NO: 8)
  • the nucleotide sequence of the MWP protein determined by Yamagata, H, et al. (J. Bacteriol., 169, 1239-1245, 1987) and Tsuboi, ⁇ ⁇ et al. (J. Bac teriol., 170, 935-945, 1988). was chemically synthesized based on the above, and added to a final concentration of 0.1 l_iM.
  • Tris-HCl final concentration of 20 niM, H8), MgC (final concentration of 2.5 mM), and dNTPs (dATP, dGTP, dCTP, and dTTP each having a final concentration of 50 iM) were added.
  • the reaction solution was concentrated with phenol, applied to a 0.8% agarose gel, and subjected to electrophoresis under normal conditions.
  • the fragment MWPsp-MWPmp9 was recovered.
  • the recovered PCR product is extracted with phenol, precipitated with ethanol, dried in vacuo, dissolved in an appropriate amount of distilled water, and blunt-ended using a DNA blunting kit from Takara Shuzo (Kyoto, Japan). It was performed according to the book.
  • a blunt-ended MA fragment proinsulin was obtained according to the same procedure as (1) except for the following.
  • a plasmid vector incorporating human prebroinsulin DNA was used as type I DNA.
  • the plasmid vector incorporating human prebroinsulin DNA was obtained as follows. Human knee cDNA was synthesized from commercially available human II spleen mRNA (manufactured by CLONTECH) using a 1st strand cDNA synthesis kit from Pharmacia according to the instruction manual. Using this cDNA as type III, a forward primer synthesized based on the nucleotide sequence of the human prebroinsulin gene determined by Bell, GI et al.
  • PCR reaction conditions were set as follows (denaturation temperature: 94 ° C-1 min, anneal temperature: 47-1 min, DNA chain elongation temperature: 72 ° C-30 sec, and repeated 25 times).
  • a blunt-ended DNA fragment GSLQPR-Bchain-R was obtained according to the same procedure as in (1), and a phosphorylation reaction was performed (using Futatsu Gene's T4 polynucleotide kinase; The phosphorylated DNA fragment GSLQP R-Bchain-R was obtained.
  • ACACCTG-3 ' (SEQ ID NO: 12), reverse primer, 5'-GCGGGTCTTGGGTGTGTA-3' (SEQ ID NO: 13) were used.
  • NA chain extension temperature repeated 25 times with one cycle of 72 ° C-30 sec).
  • a blunt-ended DNA fragment Linker was obtained in the same manner as in (1) except for the following.
  • PCR reaction conditions were as follows (denaturation temperature: 94 ° C-1 min, anneal temperature: 55 ° C-1 min, DNA chain extension temperature: 72 ° C-30 sec, and repeated 25 times).
  • a blunt-ended DNA fragment GHRP-Linker was obtained according to the same procedure as in (4) except for the following points, and a phosphorylation reaction (using T4 polynucleotide kinase from Futatsu Gene Co., Ltd., according to the instruction manual) ), Phosphorylated DNA fragment GHRP-Link er got.
  • the PCR reaction conditions were as follows (denaturation temperature: 94T-1 min, anneal temperature: 55-1 min, DNA chain elongation temperature: 72 ° C-30 sec, and repeated 25 times).
  • a blunt-ended DNA fragment Achain was obtained in the same manner as in (1) except for the following.
  • the- ⁇ ⁇ DNA 10 ng of the proinsulin PCR product obtained from (2) was used.
  • a forward primer 5′-GGCATTGTGGAACAATGCTGT-3 ′ (SEQ ID NO: 17) and a reverse primer, 5′-CTAGTTGCAGTAGTTCTCCAGCTGGTA-3 ′ (SEQ ID NO: 18) were used.
  • the PCR reaction conditions were as follows (denaturation temperature: 94-1 min, anneal temperature: 55-1 min, DNA chain elongation temperature: 72, repeated 30 times per cycle, and repeated 25 times).
  • a blunt-ended DNA fragment PR-Achain was obtained according to the same procedure as in (6), and a phosphorylation reaction was performed (using T4 polynucleotide kinase from Futatsu Gene Co., Ltd., according to the instruction manual). ) To obtain a phosphorylated DNA fragment PR-Achain.
  • the PCR reaction conditions were as follows (denaturation temperature: 94-1 min, anneal temperature: 55 ° C-1 min, DNA chain extension temperature: 72 ° C-30 sec, and repeated 25 times).
  • a blunt-ended fusion DNA, MWPsp-layer P immediately 9-GSLQPR-BchainR was obtained in the same procedure as in (1) except for the following points.
  • the PCR reaction conditions were set as follows (denaturation temperature: 94 ° C-1 min, anneal temperature: 47 _ 1 min, DNA chain elongation temperature: 72, -30 sec as one cycle, and repeated 25 times).
  • the PCR product was phosphorylated using T4 polynucleotide kinase from Futatsu Gene according to the instruction manual.
  • the phosphorylated PCR product was cut with the restriction enzyme HincII using Takara Shuzo DNA gat ion kit, incorporated into a vector (STRATAGENE, Blue Script SK—), and then cloned into a known method (Molecular Cloning 2nd ed., E. coli DH5 ⁇ was transformed according to A Laboratory Manual, Cold Spring Harbor Laboratory (1989), and plasmid DNA as a vector was purified from the transformant.
  • the base sequence is determined using the forward primer (M13 forward primer) or the reverse primer (M13 reverse primer) for determining the base sequence of the vector, and the Psp- ⁇ Pmp9-GSLQPR-Behain-R fusion DNA is I confirmed that it was done.
  • the vector incorporating MWPsp-MWPmp9-GSLQPR-Bchain-R was used as type I DNA, and a forward primer, 5′-GTCGTTAACAGTGTA TTGCT-3 ′ (SEQ ID NO: 7) and a reverse primer, 5′-GCGGGTCTTGGGTGTGTA-3 (SEQ ID NO: 13) was used to perform a second PCR reaction in the same manner as described above to obtain blunt-ended fusion DNA, MWPsp-MWmp9-GSLQPR-Bchain-R.
  • a vector (pmPINS) incorporating the fusion hidden Psp-MWPmp9-GSLQPR-Bchain-RGHRP-Linker-PR-Achain was obtained according to the same procedure as (8) except for the following.
  • 5'-CTAGTTGCAGTAGTTCTCCAGCTGGTA-3 '(SEQ ID NO: 18) was used as the reverse primer for the first PCR reaction.
  • the fusion protein encoded by the fusion DNA obtained in Example 1 was expressed.
  • the manner in which the fusion DNA is incorporated into the expression vector is shown in FIG.
  • the vector pmPINS into which the above-mentioned fusion DNA was incorporated was treated with restriction enzymes ApaL I and Hind III, and 0.8% agarose electrophoresis was performed to cut out a DNA fragment containing the fusion DNA.
  • An appropriate amount of the excised fusion DNA and the Bacillus brevis expression vector PNU211R2L5 (Japanese Unexamined Patent Publication (Kokai) No. 7-170984) cut with ApaL I and Hind II were mixed in appropriate amounts, and the mixture was heated at 16 ° C30 with DNA ligat ion kit from Takara Shuzo. After the reaction, the fusion DNA was incorporated into the expression vector.
  • Bacillus brevis strain 47-5 (FERM BP-1664) was transformed with these expression vectors according to a known method (Methods in Enzymol., 217: 23-33, 1993), and ⁇ 2 agar medium [polypeptone (1 3 ⁇ 4), meat extract (0.5 3 ⁇ 4), yeast extract (0.2%), Transformants were obtained by seeding on sill (0.1 Dig / ml), glucose (1 3 ⁇ 4) erythromycin (10 / g / ml), and agar (1.5 3 ⁇ 4) H 7].
  • Transformants are cultured in T2 medium (T2 agar medium without agar) at 37 for 1 day, and then cultured by a known method (Molecular Cloning 2nd ed., A Laboratory Manual, Cold Spring Harbor Laboratory (1989)). Plasmid DNA was purified and treated with ApaL I and Hind III to confirm that the fusion DNA had been incorporated. For transformants in which the fusion DNA was confirmed to be integrated, expression and secretion of the fusion protein encoded by the integrated fusion DNA was attempted.
  • the bacterial suspension cultured on T2 medium at 37 ° C for 1 day was added to the medium [polypeptone (3 ⁇ ⁇ ), yeast extract (0.43 ⁇ 4), glucose (3%), MgSO,- 7H 2 0 (0.01%), MnSO ,, 4iL0 (0.001%), erythromycin (10 zg / ml), pH 8], and cultured with shaking at 30 for 4 days.
  • the medium was centrifuged at 15,000 rpm for 2 minutes to obtain a culture supernatant, and the protein was analyzed by electrophoresis using a known method (Lae basket li, UK, Nature, 227, 680-685, (1970)). Went.
  • buffer 1 [125 mM Tris-HCl (pH 6.8), 203 ⁇ 4 glycerol, 43 ⁇ 4 SDS, 10% 2-mercaptoethanol] was added to 18 1 of the culture supernatant, and the mixture was boiled for 5 minutes and buffer 2 [250 mM Add 4 ⁇ l of Tris-HCl (pH 6.5), 50% glycerol, 0.53 ⁇ 4 BPB] and apply it to a commercially available 15/25% SDS polyacrylamide gel (Daiichi Kagaku, Tokyo, Japan).
  • Running buffer 100 mM Tris, 100 mM Tricine, 0.1% SDS).
  • Kumaji staining was performed to examine the presence or absence of expressed secretion. As shown in Fig. 4, a band (arrow) corresponding to the fusion protein was detected in the culture medium of the cells transformed with pNU-mPINS containing the fusion (lane 3). This was not observed in the culture medium containing the vector alone (lane 2).
  • Example 3 Example 3
  • MWPmp9-GSLQPR-Bchain-RGHRP-Linker-PR-AchainBacteria transformed with pNU-mPINS were cultured at 37 ° C for 1 day, and the bacterial suspension 50 ml of medium [polypeptone (3%), yeast extract (0. «), glucose (3%), MgSO.,-7H 2 0 (0. 01%), MnSO, - 4H 2 0 (0. 001%), erythromycin (10 g / ml), placed by adding the H 8] in 500 ml Erlenmeyer flask (total of six) The cells were cultured with shaking at 30 ° C for 4 days. The medium was centrifuged at 9000 rpm for 20 minutes, and the resulting supernatant was centrifuged at 4 ° C at 20 mM Na-PO, 150 mM, pH
  • the fusion protein obtained by drying in the above (1), MWP immediately, 9-GSLQPR-Bcha in- RGHRP-L inker-PR-Achain is dissolved in an appropriate amount of 0.1% TFA, and then 0.1 M Tris.
  • a buffer (pH 8) was added to adjust to 20 nmol / ml.
  • Thrombin was obtained by repurifying thrombin (Itoham, Hyogo, Japan) using Macro Prep CM (BioRad) and Lysine Separose 4B (Pharmacia).
  • the above-mentioned reaction stop solution after the thrombin treatment was purified using Cica-MERCK's Mightysil RP4 ( The mixture was applied to a 20 ⁇ 250 marauder, equilibrated with a solution of 25 acetonitrile and 0.1 TFA, and then eluted with a gradient of a 35% acetonitrile and 0.1% TFA solution. The fraction eluted with 30-31% acetonitrile was concentrated by centrifugation to dryness and subjected to the following experiment.
  • the insulin-Arg obtained by drying was dissolved in an appropriate amount of 0.1% TFA, and then 0.1 M Tris buffer (pH 8) was added to make 1 mg I ml.
  • Substrate: Enzyme 500: 1 (molar ratio)
  • Carboxypeptidase B solution (Sigma, 4.7 mg / ml) was added, treated with 25 for 12 hours, and 10% TFA was adjusted to pH 2
  • the reaction was stopped by adding an appropriate amount to the reaction mixture. From the reaction stopped solution, reverse phase chromatography by HPLC was performed in the same manner as in the purification of insulin-Arg to purify insulin.
  • cysteinic acid was analyzed.
  • About 2 nmole of the insulin obtained in the above (2) was dissolved in formic acid: methanol (5: 1) mixed solution 401 and cooled to -20 ° C.
  • 400 1 of a mixed solution of 99 formic acid: 30% hydrogen peroxide (19: 1) cooled to -20 ° C was added thereto, and the mixture was reacted at -20 ° C for 4 hours.
  • 3 ml of distilled water was added and freeze-dried. This was hydrolyzed in the same manner as above and analyzed.
  • the insulin obtained in the above (2) (hereinafter referred to as ITOHAM insulin) and the commercially available insulin Novoline 40 (hereinafter referred to as Novolin) from Novo Nordisk Pharma Co., Ltd. were added in 0.1 M ammonium bicarbonate in 5 nmole portions.
  • An insulin fraction was obtained from 1.2 ml of Novolin using WakocU-11 5C18 AR Prep (manufactured by Wako Pure Chemical Industries, Ltd., 20 ⁇ 250 marauder) in the same manner as in (2) of Example 3.
  • the insulin fraction of ITOHAM insulin and Novolin obtained in (2) of Example 3 was analyzed with Vydac218TP54 (4.6 x 250 mm, C18 column), and the amount was calculated from the main peak area of insulin so as to be equal. And dried to dryness.
  • Novolin had a sub-peak which appeared to be a multimer, and the level (total peak area) of the sub-peak of Novolin was 1.23 times that of ITOHAM insulin.
  • ITOHAM insulin and Novolin were respectively adjusted to 0.1 unit BSA, 0.9% NaCl, and 0.1 phenol solution so as to have lunit / ml (calculated as 26 unit ts / mg). (Kbs: JW, 2.0-2.5 kg) was given 0.5 m below the back subcutaneously.
  • Blood is collected from the auricular vein over time from the time of administration, and a mixture of 0.05 ml of a glycolytic inhibitor (0.45 ml of blood) (NaF; 12.5 mg I ml, heparin-Na; 125 units / ml, EDTA-2Na; 48 mg) Iml) was added and mixed well, and the mixture was centrifuged at 3,000 rpm for 15 minutes at 5, and the resulting supernatant was used as the sample plasma.
  • a glycolytic inhibitor (0.45 ml of blood)
  • Glucose concentration in plasma was measured using an automatic biochemical analyzer (Express PLUS, manufactured by CIBA-CORNING), and insulin concentration was measured using an EIA kit (GLAZY ME Insulin-EIA TEST, manufactured by Wako Pure Chemical Industries, Ltd.).
  • Fig. 9 shows the time course of the plasma glucose concentration
  • Fig. 10 shows the time course of the plasma insulin concentration.
  • the plasma glucose concentration after administration decreased, confirming the action of lowering the blood glucose level of insulin.
  • the plasma insulin concentration showed a similar transition. The reason why the glucose concentration of No volin was slightly lower than that of ITOHAM insul in and that the insulin concentration was slightly higher was considered to be due to the addition of the secondary peak pointed out by HPLC analysis. .
  • a novel fusion protein capable of being converted to insulin can be highly expressed and secreted in a Bacillus expression system, and the obtained fusion protein can be treated with thrombin and carboxypeptidase B. It is now possible to obtain insulin with the same amino acid composition and biological activity as the natural form. That is, the present invention provides an efficient and highly productive method for producing recombinant insulin. Sequence Listing Free Text
  • SEQ ID NO: 1 shows an amino acid sequence that can be cleaved by thrombin.
  • SEQ ID NO: 2 shows an amino acid sequence cleavable by thrombin.
  • SEQ ID NO: 12 This shows a forward primer for PCR for amplifying DNA fragment encoding GSLQPR-B chain-R.
  • SEQ ID NO: 16 This shows the forward primer for PCR for amplifying DNA fragment encoding GHRP-Linker.
  • SEQ ID NO: 19 shows a forward primer for PCR for amplifying a DNA fragment encoding PR-A chain.
  • SEQ ID NO: 20 This shows the base sequence of DNA encoding MWPsp-MWPmp9-GSLQPR-B chain- RGHRP-Linker-PR-A chain.
  • SEQ ID NO: 21 Shows the amino acid sequence of MWPsp-MWPmp9-GSLQPR-B chain-RGHRP-Linker-PR-A chain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 新規な融合蛋白質からの組み換えィンスリンの製造方法 発明の背景
1 . 技術分野
本発明は、 遺伝子組み換えィンスリンを製造するための新規な融合蛋白質をコ ードする D NA、 より具体的には、 その発現を介して得られた融合蛋白質からのト ロンビンとカルボキシぺプチダーゼ Bによるィンスリン製造への該 D N Aの使用に 関する。
2 . 背景技術
インスリンは食物を摂取したときに膝臓のランゲルハンス島の B細胞から分泌さ れ、 糖、 アミノ酸、 脂肪酸の貯蔵あるいは利用、 そして血糖値の恒常性を保つうえ で最も重要なホルモンである。 血糖、 即ち血液中のグルコースは生体にとって不可 欠なエネルギー源であるが、 血糖値の恒常性が保たれないと、 生体に重篤な症状を 来す。 血糖値が高くなると、 尿糖が出現してグルコースの喪失を招き、 いわゆる糖 尿病となる。 この状態が長期にわたって継続すると、 生体の各組織に合併症を引き 起こす。 一方、 血糖値の低下はエネルギー源を断つことになるため、.生命の危険を もたらす。 血糖値は、 血糖値を上げる方向に働く因子 (グルカゴン、 成長ホルモン 、 コルチヅ一ル、 カテコールアミン) と血糖値を低下させる因子によって恒常性が 保たれている。 インスリンは血糖値を低下させる唯一のホルモンである。 従って、 何らかの原因でィンスリンの分泌機能が低下してィンスリンが十分に供給できなく なると、 インスリン依存性糖尿病 (IDDM) となる。 このような患者の治療には、 ィ ンスリンは欠かせない医薬品である。
ヒ卜のインスリンは、 21個のアミノ酸からなる A鎖と、 30個のアミノ酸からなる B鎖からなるポリペプチドで、 A鎖内に 1個、 A鎖と B鎖との間に 2個のジスルフ イ ド結合をもつ。 インスリンは、 膝臓ランゲルハンス島の B細胞で、 24個のアミノ 酸からなるシグナルペプチド (SP)、 B鎖 (B )、 31個のアミノ酸からなる Cぺプチ ド (C )、 A鎖 (A) がこの順序で直鎖状に並んだプレブ口インスリン (SP— B— C - A ) ) として最初に細胞内のリボゾームで生合成される。 プレブ口インスリン は小胞体に入り込む時に、 シグナルペプチドが切り離されてプロインスリン (B— C - A) となる。 プロインスリンは小胞体内で、 ジスルフイ ド結合が生じて立体構 造をとるようになる。 その後、 プロホルモン変換酵素の PC 1/3によって B— C結合 が切断され、 PC2によって C— A結合が切断される。 最後に、 PC 1/3の切断時に B鎖 の C末に残った Cペプチドの N末の 2個の塩基性アミノ酸がカルボキシぺプチダー ゼ Hにより切り取られてインスリンができあがる。
治療用インスリン生産法の開発の歴史は、 ゥシゃブタなどの動物の膝臓からの抽 出品から始まった。 しかしながら、 ヒトインスリンに比べてゥシ (A鎖に 2力所、 B鎖に 1力所) ゃブ夕 (B鎖に 1力所) のインスリンにはアミノ酸組成に違いがあ り、 治療に用いるとアレルギーなどの副作用を避けられなかった。 その後、 ブ夕の インスリンからトリプシンを用いたペプチド転位反応法を利用してヒトインスリン を半合成する方法が開発されたが、 遺伝子組み換え技術により作り出された遺伝子 組み換えィンスリンが安価な生産コス卜と効率性の良さから主流となった。
遺伝子組み換えインスリンの製法はいくつかの方法が開発された。 まず、 E l i L i l ly社は大腸菌を用いて A鎖と B鎖を別々に発現させ、 in v i t roで混合してジスル フイ ド結合をつくり A鎖と B鎖を連結させる方法 (特公昭 63- 18960号公報) をとつ たが生産効率はよくなかった。 その後、 同社は、 プロインスリンを発現させ、 i n V i t roでジスルフィ ド結合をつくつてからトリプシンとカルボキシぺプチダーゼ Bで Cペプチドを切り出してインスリンを作るという方法 (特公平卜 48278号公報、 特 許第 2634176号公報) へ切り替えた。
Novo Nord i sk社は、 B鎖と A鎖を塩基性のアミノ酸 2個で連結したミニプロイン スリンを酵母で発現させ、 in v i t roでトリプシン処理を行いインスリンを得るとい う方法を開発した (特公平 7- 121226号公報、 特公 平 8-8871号公報、 特許第 255332 6号公報)。 この方法はミニプロインスリンが発現分泌される過程でジスルフィ ド結 合が形成されるというメリットを有していた。 さらに、 培地中に分泌されるために 分離精製が容易であった。 遺伝子組み換えインスリンの新規な製造法の開発はその後も積極的に進められた 。 へキスト社は、 新規インスリン誘導体、 あるいは、 プレブ口インスリンを大腸菌 で発現させ、 in vitroでジスルフイ ド結合を形成させ、 リジルエンドべプチダーゼ 、 あるいは、 クロストリパインとカルボキシぺプチダーゼ Bで処理してインスリン を得る方法を開発した (特開平 2-195896号公報、 特開平 2-225498号公報、 特開平 2- 233698号公報、 特開平 3-169895号公報、 特開平 4- 258296号公報、 特開平 6-228191号 公報、 特開平 7-265092号公報)。 最近では、 B 10- TECHNOLOGY GENERAL CORP.が、 大 腸菌でスーパォキシドデイスム夕ーゼ (SOD) にプロインスリンを連結した融合蛋 白質を発現させることにより、 発現効率と in vitroでのジスルフィ ド結合形成効率 を高めた。 インスリンへの変換は、 トリプシンとカルボキシぺプチダ一ゼ Bで行わ れた (W0 96/20724)。 このように遺伝子組み換えインスリンの製法は複数のァプロ ーチがあり、 発現効率、 ジスルフイ ド結合の形成効率、 インスリンへの変換法の点 で、 更なる改良が行われている。
遺伝子組み換え蛋白質を生産する宿主としては、 微生物、 動物、 植物など広範囲 にわたつている。 この中でも、 とりわけ微生物は扱い易くて工業的生産に向いてい ることから最もよく利用されており、 大腸菌、 酵母がよく知られた宿主である。 近 年枯草菌属のバチルス ·ブレビス Bacilius brevis) を用いた遺伝子組み換え蛋 白質の発現系も知られている (特許第 2082727号、 特開昭 62— 201583号公報、 Yamag ata, H. ら, J. Bacteriol. 169: 1239- 1245 (1987)、 鵜高重三、 日本農芸化学会 誌 61, 669-676 (1987)、 Takao, M. ら, Appl. Microbiol. Biotechnol.30: 75-80
(1989)、 Yamagata, Η· ら , Pro Natl. Acad. Sci. USA 86: 3589-3593 (1989) 本発明の目的は、 既存の遺伝子組み換えィンスリンの生産系と同等以上の効率 的でかつ生産量の高い発現系および生産方法を見出すことである。 即ち、 インスリ ンへの新規な変換法、 インスリンの活性に必要なジスルフィ ド結合ができる環境、 生産量の高い発現系を見出すことである。 発明の概要 本発明は、 一の態様において、 蛋白質の発現分泌のための 1個以上のアミノ酸残 基からなるリーダーペプチド配列 (Υ)、 酵素的もしくは化学的切断に使用される アミノ酸配列 (Xl)、 インスリンの Β鎖のアミノ酸配列 (B-chain)、 酵素的切断 に使用されるアミノ酸配列 (X2)、 1個以上のアミノ酸残基からなるリンカ一配 列 (Linker)、 酵素的切断に使用されるアミノ酸配列 (X3)、 インスリンの A鎖の アミノ酸配列 (A- chain) がこの順序で連結された下記式 I :
[Y] - [X 1] - [B- chain]— [X2] - [Linker] - [X 3] - [A-chain] (式 I )
の融合蛋白質をコードする DN Aを提供する。
本発明は、 別の態様において、 インスリンの B鎖のアミノ酸配列 (B-chain)、 酵 素的切断に使用されるアミノ酸配列 (X2)、 1個以上のアミノ酸残基からなるリ ンカー配列 (Linker)、 酵素的切断に使用されるアミノ酸配列 (X3)、 インスリン の A鎖のアミノ酸配列 (A-chain) がこの順序で連結された下記式 II:
[B-chain]一 [X 2]— [Linker]— [X 3] _ [A-chain] (式 II) の融合蛋白質をコードする DN Aを提供する。
本発明の実施態様において、 融合蛋白質の酵素的切断に使用されるアミノ酸配列 XI、 X 2または X 3は、 トロンビンによって切断可能な配列である。 たとえばト ロンビンによって切断可能なアミノ酸配列は、
X 1 =GlySerLeuGlnProArg (配列番号 1 )、
X 2=ArgGlyHisArgPro (配列番号 2)、 または
X 3-ProArg
である。
本発明の別の実施態様において、 リンカーのアミノ酸配列は、 aLeuGluGlySerLeuGln (配列番号 3 )
である。
本発明のさらに別の実施態様において、 リーダーペプチド配列は、 バチルス属細 菌の細胞壁蛋白質 (CWP) の一つである MWP (middle wall protein) 蛋白質 の N末端から 9個のアミノ酸残基 (すなわちアミノ酸位置 1〜9を意味する) から なるものである。 この場合、 DNAの 5' 末端に、 CWPのシグナルペプチドが連 結されていてもよい。 - 本発明の DNAの具体例は、 後述の実施例に記載されるように、 配列表の配列番 号 2 1に示されるアミノ酸配列をコードする塩基配列を有する DNAである。 さら に具体的には、 該 DNAは配列表の配列番号 20に示される塩基配列を有する。 本発明は、 別の態様において、 上記に定義した DN Aの 5 ' 末端に、 原核生物も しくは真核生物での遺伝子組み換え蛋白質発現に必要なプロモーター領域を含有す る D N A配列が連結されている D N Aを提供する。
本発明の実施態様において、 プロモータ一領域を含有する DN A配列はバチルス 属細菌由来、 好ましくはバチルス属細菌の CWP由来である。
本発明は、 さらに別の態様において、 本発明の上記 DN Aを含むベクターを提供 する。
本発明はまた、 上記ベクターで形質転換された宿主細胞を提供する。 宿主細胞の 好ましい例はバチルス属細菌、 たとえばバチルス ·ブレビス (Mcil!us b re vis) である。
本発明は、 さらに別の態様において、 上記の宿主細胞または細菌を培地中に培養 し、 目的の DNAを発現してその DNAによってコードされる融合蛋白質を回収し た後、 該融合蛋白質を酵素的切断処理してインスリンを単離することを含む、 イン スリンの製造方法を提供する。 ここで該 DNAの具体例は、 配列表の配列番号 21 に示される塩基配列を有する DNAであり、 また該融合蛋白質の具体例は、 配列番 号 22に示されるアミノ酸配列を有する蛋白質である。
上記方法において、 発現された融合蛋白質は、 宿主細胞または細菌から、 あるい は培養して得られた培地から分離精製される。 本発明の実施態様において、 酵素的 切断処理はトロンビンとカルボキシぺプチダーゼ Bで行なうことができる。 図面の簡単な説明
図 1は、 融合蛋白質、 MWPmp9-GSLQPR-Bcha i n-RGHRP-L inke r-PR-Acha i nからイン スリンへの変換の模式図である。 図 2は、 融合体謹 Psp-匿 P即 9- GSLQPR-Bchain-RGHRP-Linker-PR- Achainのアミノ 酸配列およびそれをコードするヌクレオチド配列を示す。
図 3は、 融合 DNAをバチルス ·ブレビスの発現ベクター (PNU211R2L5) に組み込 む概略図である。
図 4は、 形質転換体の培養後の培地の電気泳動写真である。 ここで、 サンプルは マーカーペプチド (レーン 1)、 陰性対照 (外来タンパクを含まないプラスミド pNU 211R2L5だけの形質転換体: レーン 2)、 形質転換体 MWPsp-丽 Pmp9- GSLQPR- Bchain - R GHRP- Linker-PR- Achain (レーン 3) である。
図 5は、 融合蛋白質 MWP即 9- GSLQPR- Bchain- RGHRP- Linker- PR-Achainの X Lク口 マトグラフィ一による分離精製を示すクロマトグラムである。
図 6は、 融合蛋白質 MWPmp9- GSLQPR- Bchain-RGHRP- Linker- PR- Achainの HPLCによ る分離精製を示すクロマトグラムである。
図 7は、 ITOHAM insulin (本発明)、 Novol in (市販のインスリンであるノポノル ディスクファーマ社のノポリン 40)のぺプチドマツピングを示す。
図 8は、 ITOHAM insulin (本発明)、 Novolinの HPLCによる溶出パターンを示す 図 9は、 ITOHAM insulin (本発明)、 Novol in投与後の血漿中グルコース濃度の 経時的変化を示す。
図 10は、 ITOHAM insulin (本発明)、 Novol in投与後の血漿中インスリン濃度の 経時的変化を示す。 詳細な説明
本発明の DNAは、 上記式 Iまたは式 IIで表される構造を有する。 すなわち、 式 Iの DNAは、 蛋白質の発現分泌のための 1個以上のアミノ酸残基からなるリーダ 一ペプチド配列 (Y)、 酵素的もしくは化学的切断に使用されるアミノ酸配列 (X 1)、 インスリンの Β鎖のアミノ酸配列 (B-chain)、 酵素的切断に使用されるアミ ノ酸配列 (X2)、 1個以上のアミノ酸残基からなるリンカ一配列 (Linker), 酵素 的切断に使用されるアミノ酸配列 (X3)、 インスリンの A鎖のアミノ酸配列 (A - c hain) がこの順序で連結されている。 また式 IIの DNAは、 インスリンの B鎖のァ ミノ酸配列 (B- chain)、 酵素的切断に使用されるアミノ酸配列 (X2)、 1個以上 のアミノ酸残基からなるリンカ一配列 (Linker)、 酵素的切断に使用されるァミノ 酸配列 (X3)、 インスリンの A鎖のアミノ酸配列 (A- chain) がこの順序で連結さ れている。 リーダ一ペプチド配列の存在によって発現産物は宿主細胞の外に分泌さ れ、 一方そのような配列がない場合には発現産物は宿主細胞内に滞留する。
後述の実施例においては、 トロンビンとカルボキシぺプチダーゼ Bによるィンス リンへの変換法を完成させるために、 トロンビンによる切断部位をィンスリンの B 鎖とリンカーペプチド、 およびリンカーと A鎖の間に配置した新規な変異型プロイ ンスリンをデザインした。 次に、 この変異型プロインスリンをジスルフイ ド結合が できる環境を提供しかつバチルス *ブレビスでの発現を可能にするために、 変異型 プロインスリンの N末にバチルス ·ブレビスの細胞壁蛋白質の N末の 9個のアミノ 酸をリーダーペプチドとして連結し、 さらにその直後に、 リーダーペプチドから変 異型プロインスリンの切断を可能にする第 3のトロンピン切断部位を連結させて得 られる人工融合蛋白質、 すなわち、 リーダーペプチド、 トロンビン切断部位、 イン スリン B鎖、 トロンビン切断部位、 リンカ一ペプチド、 トロンビン切断部位、 イン スリン A鎖がこの順序で直鎖状に連結した人工融合蛋白質をデザインした。 まず対 応する融合蛋白質をコードする DN Aを作製し適切な発現べクタ一に挿入した後、 適切な宿主細胞中に導入し、 DN Aの発現のために宿主を培養して融合蛋白質を得 、 この融合蛋白質を次にトロンビンとカルボキシぺプチダーゼ Bで酵素的に切断処 理することによって天然型の所望の一次構造と生物活性を有するィンスリンを得る ことができた。
以下に本発明をさらに詳細に説明する。
蛋白質の発現に必要とされる 1個以上のアミノ酸残基からなるリーダーペプチド (Y) としては、 大腸菌の MBP (Maina, C. V. et al., Gene 74:365-373, 1988)、 G ST (Smith, D. B. et al. , Gene 67:31-40, 1988)、 TRX (LaVallie, E. R, et al., Bio/Technology 11:187-193, 1993)、 DsbA (Col 1 ins-Racie, L. A. et al. , BIO/TE CHNOLOGY 13:982-987, 1995)、 LamB (Benson, S. A. et al. , Cell 32:1325-1335, 1983) や酵母の α factor (Brake, A. J. Yeast Genetic Engineering, p269-280, 1989) が知られている。 特に、 大腸菌でペリブラズム内に、 あるいは、 酵母で培 地中に目的蛋白質を分泌させる場合に要求されることが多い。 本発明の実施態様に よれば、 好適なリーダーペプチドはバチルス属細菌の CWP蛋白質の N末端のアミノ酸 残基 9個である。 CWP蛋白質としては、 以下のものに限定されないが、 たとえばバ チルス ·ブレビス株である、 47 (FERM P-7224:特開昭 60— 58074号公報、 特開昭 6 2— 201589号公報)、 HPD31 (FERM BP-1087:特開平 4一 278091号公報) 等に由来のも のを用いることができる。 具体的には、 以下に例示する配列を用いることができる
(括弧内には引用文献も記載した。)。
MWP即 9: AlaGluGluAlaAlaThrThrThrAla
(配列番号 4 ; J. Bacteriol., 169:1239-1245, 1989)
0WP即 9: AlaProLysAspGlylleTyrlleGly
(配列番号 5 ; J. Bacteriol. , 170:176-186, 1988)
HWP即 9: AlaGluAspThrThrThrAlaProLys
(配列番号 6 ; J. Bacteriol. , 172:1312-1320, 1990)
N末端からのアミノ酸の残基数は、 当該融合蛋白質が発現されれば、 必ずしも 9 個である必要はない。 例えばバチルス属細菌の CWP蛋白質の N末端から 1個〜 5 0個のアミノ酸残基からなる配列を有するものが使用できる。 リーダーべプチドは 、 当該融合蛋白質のインスリン B鎖以降の融合蛋白質、 即ち、 B- chain— X 2—Lin ker-X 3—A- chainがそれぞれの発現系のプロモーター領域を含む DNAの 3 '末端に 連結されて発現が可能となれば、 必ずしも必要ではない。 しかし CWP由来のリー ダ一ペプチド配列を含む場合、 その配列の 5 ' 末端に CWP (特に MWP) シグナ ルペプチド配列を含むのが好ましい。 MWPの配列に関する情報は、 Yamagata, H. ら, J. Bacteriol. , 169:1239-1245, 1987または Tsuboi, A.ら, J. Bacteriol. , 17 0:935-945, 1988に記載されており参照可能である。 シグナルペプチドは一般に発 現、 翻訳された蛋白質を膜に導き、 蛋白質を細胞外に分泌させるのに役立つ。 分泌 された蛋白質は非分泌型の蛋白質と比べて単離、 精製が容易であるので有利である 上記融合蛋白質中、 X 1の酵素的切断の例としては、 インスリンの B鎖および A 鎖にその酵素の切断部位を含まないものであり、 ファクター Xa、 トロンビン、 ェン テロキナーゼが挙げられる。 あるいは、 インスリンの B鎖の N末に G や Serが 1個 ついてもインスリンの活性に影響を及ぼさないのであれば、 TEVプロテア一ゼが挙 げられる。 また、 化学的切断の例としては、 メチォニンの C末端側を選択的に切断 する例 (J. Biol. Chem., 237:1856-1860, 1962) やトリブトファンの C末端側で選択的 に切断する例 (Methods in Enzymol. , 91 :318-324, 1983) を挙げることができる。 好適実施態様によれば、 X 1〜Χ 3まで一挙に切断が可能であることから、 そのよ うな酵素はトロンビンであり、 それらのアミノ酸配列は、 X l=GlySerLeuGlnProAr g (配列番号 1)、 X 2=ArgGlyHisArgPro (配列番号 2)、 X 3=ProArg であるが、 トロンビンで目的とする部位が切断ができればこれらの配列に限定されない。 例え ば、 X I, X3の場合、 Ser=Val, Glu, Phe, Asp, Pro, lieu, Gly, Lys, Arg, Al a, Gin, Asn, Leu、 Leu=Arg, Val, Phe, Asp, Gly, Leu, His, lieu, Met, Thr, Lys, Gln=Gln, Phe, Tyr, Gly, lieu, Asn, Ala, Arg, Thr, Ser, Leu, Val, Cys 、 Pro=Ala, Val、 Arg=Lys (Chang, J-Y, Eur. J. Bioc em. , 151:217-224, 1985, Kawabata, S. et al. , Eur. J. Biochem. , 172:17-25, 1988), X 2の場合、 Arg=L ys、 Gly=Thr, lieu, His, Ser, Ala, Phe, Val Asn, Asp, Leu, Pro、 His=Pro, Tr p, Cys, Gin, Thr, Ser, Val, Leu, Ala, Phe, Gly、 Arg=Val, Pro, Glu, Asn, As p, Ser, Met, Lys, Ala, Gin, Gly, Trp, Thr、 Pro=Val, Thr, Leu, Ser, Asp, Gly, Tyr, lieu, Asn, Arg, His, Glu (Chang, J-Y, Eur. J. Biochem. , 151:217- 224, 1985) であっても切断できることが予想される。
1個以上のアミノ酸残基からなる Linkerは一般には蛋白質のなかで機能ドメイン の間に存在しており、 それぞれのドメインの機能に影響を及ぼすことなく ドメイン を連結する働きがある。 本発明では、 インスリンの B鎖と A鎖との間にそれぞれ酵 素的切断を介して配置されているが、 B鎖と A鎖間のジスルフィ ド結合や当該融合 蛋白質の発現を容易にするのに役立っている。 そのような機能を満たすならば、 1 個以上のアミノ酸でよくアミノ酸の種類は問わない。 好適実施態様によれば、 その ような Linkerはプロインスリンの Cペプチドを構成するのが望ましく、 本発明の実 施態様によれば、 下記の配列: aLeuGluGlySerLeuGln (配列番号 3) からなる。
本発明において、 融合蛋白質をコードする DNAはそれぞれの発現系のプローモ 一夕一領域を含む DNAの 3 '末端に連結されて発現されるが、 そのようなプロモ 一夕一としては、 バクテリオファージの ApLプロモーター、 T7プロモーター、 大 腸菌の trp- lacプロモーター (Maniatis、 T. ら、 Molecular Cloning 2nd ed. , A L aboratory Manual, Cold Spring Harbor Laboratory (1989))、 酵母の PRBIプロモ 一夕一 (BIO/TECHNOLOGY 9:183-187, 1991)、 GAPDHプロモーター (BIO/TECHNOLOGY
12:381-384, 1994)、 ウィルスの LTRプロモーター、 SV40プロモーター (Maniatis 、 T. ら、 Molecular Cloning 2nd ed. , A Laboratory Manual, Cold Spring Harbo r Laboratory (1989)) 等が挙げられる。 本発明の実施態様によれば、 当該融合蛋 白質はバチルス属由来のプロモーター領域を含有する DNA配列の 3 '末端に結合 される、 使用し得るプロモ一夕一としては、 バチルス 'ブレビス 47由来の MWPプ 口モーター(特公平 1一 58950号公報、 特公平 7— 108224号公報)、 バチルス *ブレビ ス HPD 3 1由来の HWPプロモーター(特開平 4一 278091号公報、 特開平 6— 13378 2号公報)等を挙げることができるが、 これらに限定されない。
本発明の DN Aは、 当業界で公知の技術を組み合わせて作製することができる。 たとえば、 構成要素の各 D N A配列を化学的合成法またはクローニング法によって 個々に調製し、 これら構成要素をリガーゼを用いて順次連結し、 ポリメラーゼ連鎖 反応 (PCR) 増幅法を組み合わせて目的の DNAを作製することができる。 具体 的には実施例を参照することによってその詳細が理解されるが、 個々の技術として 、 Maniatis、 T. ら、 Molecular Cloning 2nd ed. , A Laboratory Manual, Cold Sp ring Harbor Laboratory (1989)、 Inn is, M. A. ら, PCR Protocols, A guide to me thods and applications, Academic Press (1990)、 等に記載の一般的技術が使用 可能である。
インスリンの B鎖、 Cペプチド、 A鎖を含むヒトプロインスリンをコードする DN Aは、 市販のヒト臈臓の mRNAより市販の cDNAlst- strand合成キット (フアルマ シァ社製) 等を用いて取得することができる。 さらに、 既知の DNA配列に基づい て、 市販の DNAシンセサイザーを用いてプライマ一となる短鎖 DNAを合成でき れば、 一般的な P CRによって B鎖、 Cペプチド、 A鎖などをコードする所望の D NA断片を増幅することができる。 この場合、 DNAの変性 (たとえば 94°C、 3 0秒〜 1分)、 プライマーとのアニーリング (たとえば約 45〜60° (:、 30秒〜 1 分)、 および伸長反応 (たとえば 72 、 30秒以上) を 1サイクルとして 20サ ィクル以上繰り返す。
本発明はさらに、 本発明の上記 DNAを含むベクターを提供する。 使用可能なべク 夕一は、 本発明の DNAを組み込むことのできる適当な挿入部位すなわち制限酵素部 位を有していること、 該 DNAを宿主細胞内で発現可能であること、 さらに該宿主細 胞内で自律的に複製可能であること、 等の性質を少なくとも有している必要がある 。 ベクターは一般にプロモーターを含むが、 プロモーターは目的の DNAの上流に 作動可能に連結される。 ベクターは複製開始点、 ターミネータ一配列を含むことが でき、 さらに薬剤耐性遺伝子、 栄養要求性を相補する遺伝子等の選択マーカーを含 んでもよい。 好ましくは、 本発明のベクターはバチルス属細菌で複製可能なプラス ミドである。 以下のものに限定されないが、 たとえば、 pNU200、 PHY500 (Proc. Na tl. Acad. Sci.USA, 86:3589— 3593, 1989)、 pHY4831 (J. Bacteriol. , 169:1239-1245, 19 87)、 pNUlOO (Appl. Microbiol. Biotechnol. , 30:75-80, 1989) , U211 (J. Biochem. , 112:488-491, 1992) , pNU211R2L5 (特開平 7— 170984号公報)、 HY700 (特開平 4一 2 78091号公報)、 PHT210 (特開平 6— 133782号公報)、 HT110R2L5 (Appl. Microbiol. B iotechnol. , 42:358-363, 1994)が使用可能である。 本発明の具体例では、 図 3に示 すような構築法で発現ベクター pNU-mP INSを作製することができる。
本発明はさらにまた、 上記定義のベクタ一で形質転換された宿主細胞を提供する 。 宿主細胞は原核 (たとえば細菌類) または真核細胞 (たとえば菌類、 酵母、 動物 細胞、 植物細胞) のいずれでもよいが、 好ましくはバチルス属細菌である。 宿主と してのバチルス属細菌としては、 以下のものに限定されないが、 たとえばバチルス •ブレビス株 47 (FERM P-7224:特開昭 60— 58074号公報、 特開昭 62— 201589号公 報)、 47K (特開平 2— 257876号公報)、 31 0K (特開平 6— 296485号公報) および HP D31 (FERM BP- 1087;特開平 4一 278091号公報) 等を挙げることができる。 発現べク 夕一 p NU-mP INSをバチルス · ブレビス 4 7— 5 Q株に移入して得られた組換え細菌 は、 平成 1 1年(1999年) 4月 2 0日付で工業技術院生命工学工業技術研究所 (日本国 茨城県つくば巿東一丁目 1の 3 ) にブダペスト条約下に寄託され、 受託番号 FERM B P— 6706が与えられた。
上記のようにして得られた発現ベクターはコンビテン卜な宿主細胞、 好ましくは バチルス属細菌に移入し、 発現可能な条件下適切な培地にて該細菌を培養して目的 の組換え融合ポリペプチドを菌体外または菌体内、 好ましくは菌体外に産生し、 常 法によりポリペプチドを回収し精製する。 移入方法としては、 エレクト口ポレーシ ヨン (Me thods in Enzymo l. , 217: 23 - 33, 1993) などの慣用方法を使用すること ができる。 また、 融合ポリペプチドの精製は、 たとえば溶媒抽出、 限外濾過、 硫安 分画、 H P L C、 ゲルろ過クロマトグラフィー、 イオン交換クロマトグラフィー、 ァフィ二ティクロマトグラフィー、 疎水性相互作用クロマトグラフィー、 電気泳動 、 等電点電気泳動、 等の方法を適宜組合せて実施することができる。
上記で得られた融合ポリペプチドは、 次いで、 その酵素的切断を可能とするプロ テア一ゼおよび/またはべプチダーゼ、 後述の具体例ではトロンビンとカルボキシ ぺプチダーゼ B、 で処理することによりインスリンを得ることができる。 図 1に示 されるように、 適当な条件下でまずトロンビンでリーダ一ペプチド (Y) と B— ch a inとの間、 B— cha inと Linkerとの間、 L inkerと A— cha inとの間が切断される。 ト ロンビンによる好ましい特異的切断条件は、 pH7. 5〜8. 5 (トリス緩衝液が望ましい ) , 温度 3〜6 °C、 より好ましくは 4 °C、 基質:酵素 = 5 : :!〜 125 : 1 (モル比) 、 より好ましくは 25 : 1、 時間 1〜2 4時間である。 次に、 カルボキシぺプチダー ゼ Bで B— cha inの C末に残った Argが切り離されてィンスリンとなる (図 1参照)。 酵素の量は融合蛋白質の切断を起こし得る任意の量である。
本発明により、 上記のように形質転換されたバチルス属細菌を培地に培養し、 菌 体外にインスリン配列を含む融合蛋白質を蓄積せしめ、 採取された融合蛋白質を切 断し、 インスリンを得ることができる。
このようにして得られた組換えインスリンは天然型のィンスリンと全く同一のァ ミノ酸組成、 ジスルフイ ド結合、 生物活性を有しており、 インスリン依存型糖尿病 の治療用医薬品として有用である。 実施例
以下の実施例により本発明を具体的に説明するが、 これら実施例により本発明が 限定されるものではない。
融合蛋白質をコードする D N Aを作製するにあたっては、 P C R反応で増幅した D N A断片を D N Aリガーゼを用いたライゲ一ション反応で連結する手法をとった 。 本明細書中、 MW P s pとは MW P蛋白質のシグナルペプチドを意味し、 MW P m p 9とは MW P成熟蛋白質の N末端からのアミノ酸の数が 9個 (すなわちァミノ 酸位置 1〜9 ) であることを意味する。 実施例 1
丽 Psp-MWPmp9- GSLQPR- Bchain- RGHRP-Linker- PR- Achain融合 DNAを組み込んだベクタ 一 (pmPINS) の構築
( 1 ) DNA断片 MWPsp- MWPmp9の取得
a.鐯型 DNA
バチルス ·ブレビス (47- 5Q株) より公知の方法 (Molecular Cloning 2nd ed. , A Laboratory Manual, Cold Spring Harbor Laboratory (1989) ) により抽出したゲ ノム DNA 840 ng
b.プライマー
順方向プライマ一: 5' ― GTCGTTAACAGTGTATTGCT― 3' (配列番号 7 )
逆方向プライマー: 5' - AGCTGTAGTAGTTGCTGC - 3' (配列番号 8 )
Yamagata, H, ら (J. Bacteriol. , 169, 1239-1245, 1987) と Tsuboi, Α· ら (J. B ac teriol. , 170, 935-945, 1988) により決定された MWP蛋白質の塩基配列をもとに 化学合成し、 最終濃度 0. l _iMとなるように加えた。
c Taq DNA polymerase
市販の製品 (GIBC0 BRL社製) 5 U加えた。 d.その他
Tris-HCl (最終濃度 20 niM、 H 8)、 MgC (最終濃度 2.5 mM)、 dNTPs (dATP, d GTP, dCTP, dTTPがそれぞれ最終濃度 50 _iM) を加えた。
a〜dを反応液量 100 1として 0.5mlチューブに入れて公知の方法 (Innis, M. A. ら、 PCR Protocols, A guide to methods and applications Academic Press, (1 990)) で PCR反応 (変性温度: 94で _ 1 min、 ァニール温度: 50°C - 1 min、 DNA鎖 伸長温度: 72で - 1 minを 1サイクルとして 30回繰り返す) を行った。 PCR反応終 了後、 反応液をフエノールで濃縮してから 0.8%のァガロースゲルにアプライして通 常条件下で電気泳動を行い、 ミリポア社のウルトラフリ一 C3Hでァガロースゲルか ら PCR産物、 即ち、 DNA断片 MWPsp-MWPmp9を回収した。 回収した PCR産物はフエノー ル抽出後、 エタノール沈殿して真空乾燥し、 適量の蒸留水に溶かして、 平滑末端反 応を宝酒造社 (京都、 日本) の DNA blunting kitを使用し、 方法は取り扱い説明書 に準じて行った。
(2) DNA断片プロインスリンの取得
以下の点以外は (1) と同様な手順に従って平滑末端化した MA断片プロインス リンを取得した。
•銬型 DNAとして、 ヒトプレブロインスリン DNAを組み込んだプラスミドベクター 10ngを用いた。 ヒトプレブロインスリン DNAを組み込んだプラスミドベクターの取 得は次のようにして行った。 市販のヒト II萃臓 mRNA (CLONTECH社製) よりフアルマシ ァ社の 1st strand cDNA synthesis kitを用い、 取り扱い説明書に従ってヒト膝臓 c DNAを合成した。 この cDNAを銬型として、 Bell, G. I.ら (Nature, 282: 525-527, (1979)) により決定されたヒトプレブロインスリン遺伝子の塩基配列をもとに合 成された順方向プライマー、 5'- ATGGCCCTGTGGATGCGCC-3' (配列番号 9)、 逆方向プ ライマー、 5' -CTAGTTGCAGTAGTTCTCC-3' (配列番号 1 0 ) を用いて PCR反応 (条件: 94°C - 1 min, 60°C - 1 min, 72°C - lminを 1サイクルとして 35サイクル繰り返 す) を行い、 得られた PCR産物、 即ち、 ヒトプレブ口インスリン DNAを pGEM-Tベクタ ― (Promega社製) にクローニングした。
• プライマ一として、 順方向プライマ一、 5' ― TTTGTGAACCAACACCTG一 3' (配列 番号 1 1)、 逆方向プライマー、 5'-CTAGTTGCAGTAGTTCTCC-3' (配列番号 10 ) を用 いた。
• PCRの反応条件を (変性温度: 94°C - 1 min、 ァニール温度: 47 - 1 min、 D NA鎖伸長温度: 72°C - 30 secを 1サイクルとして 25回繰り返す) とした。
(3) DNA断片 GSLQPR- Bchain-Rの取得
以下の点以外は (1) と同様な手順に従って平滑末端化した DNA断片 GSLQPR- Bcha in-Rを取得し、 さらにリン酸化反応 (二ツボンジーン社の T4 polynucleotide kina seを使用し、 方法は取り扱い説明書に準じた) を行い、 リン酸化した DNA断片 GSLQP R- Bchain- Rを得た。
-鍩型 DNAとして、 (2) より得られたプロインスリン PCR産物 10 ngを用いた。 •プライマ一として、 順方向プライマー、 5' - GGTTCCTTGCAACCTCGTTTTGTGAACCA
ACACCTG - 3' (配列番号 12)、 逆方向プライマ一、 5'- GCGGGTCTTGGGTGTGTA - 3' (配列番号 13) を用いた。
, PCRの反応条件を (変性温度: 94°C - 1 min、 ァニール温度: 47で - 1 min、 D
NA鎖伸長温度: 72°C - 30 secを 1サイクルとして 25回繰り返す) とした。
(4) DNA断片 Linkerの取得
以下の点以外は (1) と同様な手順に従って平滑末端化した DNA断片 Linkerを取 得した。
-鎵型 DNAとして、 (2) より得られたプロインスリン PCR産物 10 ngを用いた。 • プライマーとして、 順方向プライマ一、 5' - GAGGCAGAGGACCTGCAG - 3' (配列 番号 14)、 逆方向プライマ一、 5 '- CTGCAGGGACCCCTCCAG - 3' (配列番号 1 5) を用いた。
- PCRの反応条件を (変性温度: 94°C - 1 min、 ァニール温度: 55°C - 1 min、 D NA鎖伸長温度: 72°C - 30 secを 1サイクルとして 25回繰り返す) とした。
(5) DNA断片 GHRP- Linkerの取得
以下の点以外は (4) と同様な手順に従って平滑末端化した DNA断片 GHRP-Linker を取得し、 さらにリン酸化反応 (二ツボンジーン社の T4 polynucleotide kinaseを 使用し、 方法は取り扱い説明書に準じた) を行い、 リン酸化した DNA断片 GHRP- Link erを得た。
-錶型 DNAとして、 (4) より得られた DNA断片 Linker PCR産物 10 ngを用いた。 •順方向プライマ一として、 5' - GGTCACCGTCCAGAGGCAGAGGACCTGCAGGTGGGG -3' (配列番号 16) を用いた。
• PCRの反応条件を (変性温度: 94T - 1 min、 ァニール温度: 55で - 1 min、 D NA鎖伸長温度: 72°C - 30 secを 1サイクルとして 25回繰り返す) とした。
(6) DNA断片 Achainの取得
以下の点以外は (1) と同様な手順に従って平滑末端化した DNA断片 Achainを取 得した。
-錶型 DNAとして、 (2) より得られたプロインスリン PCR産物 10 ngを用いた。 • プライマーとして、 順方向プライマー、 5' - GGCATTGTGGAACAATGCTGT - 3' ( 配列番号 17)、 逆方向プライマー、 5'- CTAGTTGCAGTAGTTCTCCAGCTGGTA - 3' (配 列番号 18) を用いた。
• PCRの反応条件を (変性温度: 94 _ 1 min、 ァニール温度: 55 - 1 min、 D NA鎖伸長温度: 72で 一 30 secを 1サイクルとして 25回繰り返す) とした。
(7) DNA断片 PR-Achainの取得
以下の点以外は (6) と同様な手順に従って平滑末端化した DNA断片 PR- Achainを 取得し、 さらにリン酸化反応 (二ツボンジーン社の T4 polynucleotide kinaseを使 用し、 方法は取り扱い説明書に準じた) を行い、 リン酸化した DNA断片 PR-Achainを 得た。
-錶型 DNAとして、 (6) より得られた DNA断片 AchainPCR産物 10 ngを用いた。 -順方向プライマーとして、 5' - CCACGTGGCATTGTGGAACAATGCTGT - 3' (配列番 19) を用いた。
• PCRの反応条件を (変性温度: 94で - 1 min、 ァニール温度: 55°C - 1 min、 D NA鎖伸長温度: 72°C - 30 secを 1サイクルとして 25回繰り返す) とした。
(8) MWPsp-丽 Pmp9- GSLQPR- Bchain- R融合 DNAの取得
以下の点以外は (1) と同様な手順に従って平滑末端化した融合 DNA、 MWPsp-層 P即 9- GSLQPR-Bcha i n-Rを取得した。 •錶型 DMとして、 (1 ) で得られた DNA断片讀 Psp-MWPmp9と (3 ) で得られた DNA 断片 GSLQPR- Bchain- Rを適量ずつ混ぜて宝酒造社の DNA l igat ion ki tで 16° (:、 30分 反応させたものを用いた。
•逆方向プライマ一として、 5' - GCGGGTCTTGGGTGTGTA― 3' (配列番号 1 3 ) を 用いた。
• PCRの反応条件を (変性温度: 94°C - 1 min、 ァニール温度: 47で _ 1 min、 D NA鎖伸長温度: 72で -30 secを 1サイクルとして 25回繰り返す) とした。
その後、 二ツボンジーン社の T4 polynucleot ide kinaseを用いて取り扱い説明書 に従って PCR産物のリン酸化を行った。 リン酸化した PCR産物は、 宝酒造社の DNA Π gat ion ki tを用いて制限酵素 Hinc I Iでカットしベクター (STRATAGENE社製、 Blue Script SK—) に組み込み、 公知の方法 (Molecular Cloning 2nd ed. , A Laborato ry Manual, Cold Spring Harbor Laboratory (1989) ) に従って大腸菌 DH5 αを形質 転換させ、 形質転換体からベクターであるプラスミ ド DNAを精製した。 ベクターの 塩基配列決定用順方向プライマー (M13 forward pr imer) , あるいは逆方向プライ マー (M13 reverse primer) を用いて塩基配列を決定して匿 Psp-丽 Pmp9-GSLQPR - Be hain-R融合 DNAができていることを確認した。 次に、 MWPsp-MWPmp9-GSLQPR-Bchain- Rを組み込んだベクターを铸型 DNAとし、 順方向プライマー、 5' - GTCGTTAACAGTGTA TTGCT - 3' (配列番号 7 ) と逆方向プライマー、 5' - GCGGGTCTTGGGTGTGTA - 3' ( 配列番号 1 3 ) を用いて上記と同様な方法で第 2回目の PCR反応を行い、 平滑末端 化した融合 DNA、 MWPsp-MWmp9- GSLQPR- Bchain-Rを取得した。
( 9 ) MWPsp-丽 Pmp9- GSLQPR-Bchain- RGHRP- Linker融合 DNAの取得
以下の点以外は (8 ) と同様な手順に従って平滑末端化した融合 DNA、 護 Psp -層 P 即 9- GSLQPR- Bchain- RGHRP-L inkerを取得した。
•第 1回目 PCR反応の錶型 DMとして、 ( 8 ) で得られた融合 DNA、 MWPsp-MWP即 9- G SLQPR-Bchain- Rと ( 5 ) で得られた DNA断片 GHRP- Linkerを適量ずつ混ぜて宝酒造社 の DNA l igat ion ki tで 16° (:、 30分反応させたものを使用した。
•逆方向プライマーとして 5' - CTGCAGGGACCCCTCCAG - 3' (配列番号 1 5 ) を使 用した。 (10) MWPsp-MWPmp9-GSLQPR-Bcha i n-RGHRP-L inke r-PR-Acha i n融合 DNAを組み込んだ ベクターの取得
以下の点以外は (8 ) と同様な手順に従って融合体隱 Psp- MWPmp9- GSLQPR- Bchai n - RGHRP- Linker-PR-Achainが組み込まれたベクター (pmPINS) を取得した。
•第 1回目 PCR反応の錶型 DNAとして、 (9 ) で得られた融合 DNA、 MWPsp- MWP即 9-G SLQPR- Bchai n-RGHRP- Linkerと (7 ) で得られた DNA断片 PR-Achainを適量ずつ混ぜ て宝酒造社の DNA l igat ion ki tで 16°C、 30分反応させたものを使用した。
'第 1回目の PCR反応の逆方向プライマ一として、 5' - CTAGTTGCAGTAGTTCTCCAGCT GGTA - 3' (配列番号 1 8 ) を使用した。
• PCRの反応条件を (変性温度: 94°C - 1 min、 ァニール温度: 50 - 1 min、 D NA鎖伸長温度: 72 一 1 minを 1サイクルとして 25回繰り返す) とした。 実施例 2
融合 DNAの発現分泌
( 1 ) 融合体のアミノ酸、 および塩基配列
実施例 1で得られた融合体のアミノ酸、 および塩基配列を図 2に示した。
( 2 ) 融合体の発現分泌
実施例 1で得られた融合 DNAによってコードされる融合蛋白質の発現を行った。 融合 DNAを発現べクタ一に組み込む様式を図 3に示した。
具体的には、 上記の融合 DNAを組み込んだベクタ一 pmPINSを制限酵素 ApaL Iと Hin d I I Iで処理して 0. 8%ァガロース電気泳動を行い、 融合 DNAを含む DNA断片を切り出 した。 切り出した融合 DNAと、 ApaL Iと Hind Π Ιでカツ 卜したバチルス · ブレビス 用発現ベクター PNU211R2L5 (特開平 7 -170984号公報) を適量ずつ混ぜ、 宝酒造社 の DNA l igat ion ki tで 16°C30分反応させることにより融合 DNAを発現ベクターに組 み込んだ。 以上のようにして、 融合 DNAを組み込んだ発現ベクター、 pNU-mPINSを取 得した。 これらの発現ベクターでバチルス 'ブレビスの 47- 5株 (FERM BP- 1664) を 公知の方法 (Methods in Enzymol. , 217: 23- 33, 1993) に従って形質転換して Τ 2寒天培地 [ポリペプトン (1 ¾) , 肉エキス (0. 5 ¾) , 酵母エキス (0. 2 %)、 ゥラ シル (0.1 Dig/ml), グルコース (1 ¾) エリスロマイシン (10/ g/ml)、 寒天 (1.5 ¾) H 7] に播いて、 形質転換体を取得した。
形質転換体は T2培地 (T2寒天培地から寒天を除いたもの) で 37で 1日培養してか ら公知の方法 (Molecular Cloning 2nd ed. , A Laboratory Manual, Cold Spring Harbor Laboratory (1989) ) でプラスミド DNAを精製し、 ApaL Iと Hind IIIで処理し て融合 DNAが組み込まれているのを確認した。 融合 DNAが組み込まれていることが確 認できた形質転換体については、 組み込まれた融合 DNAでコードされる融合蛋白質 の発現分泌を試みた。 即ち、 T2培地で 37°Cで 1日培養した菌懸濁液を 1/1000容の割 合で培地 [ポリペプトン (3 ¾)、 酵母エキス (0.4¾)、 グルコース (3 %)、 MgSO, - 7H20 (0.01 %)、 MnSO,, · 4iL0 (0.001 %)、 エリスロマイシン (10 zg/ml)、 pH 8] に添加して 30でで 4日間振とう培養した。
培養後、 培地を 15, 000 rpm、 2分遠心して培養上清を得て、 公知の方法 (Lae籠 li , U. K. , Nature, 227, 680-685, (1970)) で電気泳動による蛋白質の解析を行つ た。 即ち、 培養上清の 18 1にバッファ 1 [125 mM Tris-HCl (pH 6.8), 20¾ glyce rol, 4¾ SDS, 10% 2-mercaptoethanol] を 2 1加えて 5分間煮沸し、 バッファ 2 [250 mM Tris-HCl (pH 6.5) , 50% glycerol, 0.5¾ BPB] を 4 μ 1加えて市販の 15/ 25%SDSポリアクリルアミドゲル (第一化学社、 東京、日本) にアプライして電気泳 動 (泳動バッファ : 100 mM Tris, 100 mM Tricine, 0.1% SDS) を行った。 電気泳 動後クマジ染色して発現分泌の有無を調べた。 図 4に示されるように、 融合体を含 んだ pNU-mPINSで形質転換された菌の培地には融合蛋白質に相当するバンド (矢印 ) が検出された (レーン 3) が、 融合体を含んでいないベクターのみの培地には認 められなかった (レーン 2)。 実施例 3
ィンスリンへの変換
( 1 ) 融合蛋白質、 MWPmp9- GSLQPR-Bchain-RGHRP-Linker- PR- Achainの分離精製 pNU-mPINSで形質転換された菌を 37°Cで 1日培養し、 その菌懸濁液 50 1を 50 ml の培地 [ポリペプトン (3 %) , 酵母エキス (0.«)、 グルコース (3 %)、 MgSO., - 7H 20 (0. 01 %)、 MnSO, - 4H20 (0. 001 %)、 エリスロマイシン (10 g/ml )、 H 8] に 添加して 500 mlの三角フラスコ (計 6本) に入れて 30°Cで 4日間振とう培養した。 培地を 9, 000 rpm 、 20分遠心して得られた上清を 4 °Cで 20 mM Na-PO,, 150 mM, pH
8のバッファに透析した。 その後、 10, 000 rpm、 20分遠心し、 得られた上清をファ ルマシア社の N i -キレートカラム (5 X 10 cm) にアプライして、 上記のバッファ に 60 mMイミダゾ一ルを加えて目的の融合蛋白質を溶出した。 その溶出画分に EDTA 、 ベンズアミジンをそれぞれ 1 mMとなるように加え、 4 :で保温した。 さらに、 尿 素 (最終濃度 1 Μ)、 システィン (最終濃度 1 mg/ml) を加え、 1 Nの NaOHで pHを 10 . 8に調整して同温度で 1時間撹拌した。 その後、 20 mM Tr i s, 1 mM EDTA, pH 8. 0 に対して透析し、 尿素 (最終濃度 1 M)、 2-プロパノール (最終濃度 20% ) を加え てからフアルマシア社の Q-Sepharose XLカラム (1. 6 x 10 cm) にアプライした。 バッファ (20 mM Tr i s, 1 mM EDTA, 1 M Urea, 20% 2-propanol, pH 8) で充分に平 衡化してから、 同バッファに 1 M NaClを含む溶液でグラジェントをかけて溶出した 。 図 5にその溶出パターンを示した。 160 mM - 200 mM NaClで溶出された画分 (矢 印) を集めて I N HC1で pH 3に調整し、 分画分子量 3, 000の限外ろ過器で濃縮して からサイプレス社の Vydac214TP54 (C4カラム、 4. 6 x 250 mm) にアプライして HPL Cによる精製を行った。 25%ァセトニトリル、 0. 1%TFA溶液で平衡化させてから、 33% ァセトニトリル、 0. 1%TFA溶液でグラジェントをかけて溶出した。 図 6にその溶出 パターンを示した。 30 - 31%ァセトニトリルで溶出された画分 (矢印) を遠心濃縮 して乾固したものを以下の切断実験に供した。
( 2 ) インスリンへの変換と精製
上記 (1 ) で乾固して得られた融合蛋白質、 MWP即 9- GSLQPR- Bcha in- RGHRP-L inke r-PR-Achainを適量の 0. 1%TFAに溶かしてから 0. 1 Mトリス緩衝液 (pH 8) を加えて 2 0 nmo l / mlとしだ。 4 °Cに冷却してから、 基質:酵素 =25: 1 (モル比) のトロン ビン溶液 (250 mol / ml ) を加えて 9時間後に 10%TFAを pH 2となるように適量 加えて反応を停止した。 トロンビンは局方トロンビン (伊藤ハム社製、 兵庫、 日本 ) を Macro Prep CM (B io Rad社製) と Lys ine Sep arose 4B (フアルマシア社製 ) にて再精製したものを用いた。 トロンビンで切断された B鎖の C末に Argをもつインスリン - Argを HPLCによる 逆相クロマトグラフィーで精製するために、 上記のトロンビン処理後の反応停止液 を C ica- MERCK社の Mightys i l RP4 (20 x 250 匪) にアプライし、 25 ァセトニトリ ル、 0. 1 TFA溶液で平衡化させてから、 35%ァセトニトリル、 0. 1%TFA溶液でグラジ ェントをかけて溶出した。 30-31%ァセトニトリルで溶出された画分を遠心濃縮して 乾固したものを以下の実験に供した。
乾固して得られたィンスリン— Argを適量の 0. 1%TFAに溶かしてから 0. 1 Mトリス 緩衝液 (pH 8) を加えて 1 mg I mlとした。 基質:酵素 =500: 1 (モル比) のカルボ キシぺプチダ一ゼ B溶液 (S igma社、 4. 7 mg / ml ) を加えて 25でで 12時間処理し 、 10%TFAを pH 2となるように適量加えて反応を停止した。 反応停止液から、 インス リンを精製するために上記のィンスリンー Argを精製するのと同様に HPLCによる逆 相クロマトグラフィーを行った。
( 3 ) インスリンのアミノ酸分析
まず、 総アミノ酸を分析した。 上記 (2 ) で得られたインスリン約 2 nmoleに 200 lの 6N HC 1と の 5 %フエノールを加えて脱気封管してから 1 10でで 24時間加 水分解した。 その後、 乾固して 0. 01N HC 1 I OO Iに溶かして 0. 2 ΠΙフィルターで ろ過し、 その を日立アミノ酸分析装置 L - 8500型 (日立製作所、 東京、 日本 ) で分析した。
次に、 システィン酸の分析を行った。 上記 (2 ) で得られたインスリン約 2 nmol eをギ酸:メタノール (5 : 1 ) 混液 40 1に溶かして- 20°Cに冷却した。 これに、 - 20°Cに冷却した 99 ギ酸: 30%過酸化水素水 (19 : 1) 混液を 400 1加えて、 - 20°C で 4時間反応させた。 反応後、 蒸留水を 3 ml加えて凍結乾燥した。 これを上記と同 様に加水分解してから分析した。
総アミノ酸分析とシスティン酸分析の Valの分析値を比較して、 システィン酸の 分析値を総アミノ酸のシスティンの分析として換算した。 表 1に示されるように、 インスリン (INS) のアミノ酸比は天然のインスリン (INS) のアミノ酸組成の理論 値とほぼ一致した。 表 1
Figure imgf000024_0001
(4) インスリンのペプチドマッピング
上記 (2) で得られたインスリン (以下、 ITOHAM insulinと記す) と、 市販のィ ンスリンであるノボノルディスクファーマ社のノボリン 40 (以下、 Novolinと記す ) を 5 nmoleずつ 0.1 M 炭酸水素アンモニゥム、 2 mM EDTA溶液 (pH 7.8) 50 1に 溶かし、 V8プロテアーゼ (和光純薬、東京、 日本; 2 g / ml) 水溶液 1.35 を加 えて 25°Cで 24時間反応させた後、 1% TFAを加えて pH 2として反応を停止した。 次に 、 反応停止液を Vydac218TP54 (4.6 X 250 腿、 C18カラム) にアプライし、 5%ァセ トニトリル、 0. TFA溶液で平衡化させてから、 35%ァセトニトリル、 0.1%TFA溶液 でグラジェントをかけて溶出した。 図 7に、 その溶出パターンを示した。 ITOHAM i nsulinと Novolinは同様なパターンを示した。 即ち、 両インスリンのジスルフイ ド 結合様式は同等であると結論された。 実施例 4
ンの生物活性
Novolin 1.2 mlを WakocU - 11 5C18 AR Prep (和光純薬社製、 20 x 250 匪) を 用いて実施例 3の (2) と同様な方法でインスリン画分を得た。 実施例 3の (2) で得られた ITOHAM insulinと Novolinのインスリン画分を Vydac218TP54 (4.6 x 250 mm, C18 カラム) にて分析し、 インスリンの主ピーク面積から計算して同量にな るように分取して乾固した。 図 8に示されるように、 Novolinには多量体とみられ る副ピークがあり、 Novolinの副ピークのレベル (総ピーク面積) は、 ITOHAM insu linの 1.23倍であった。
このようにして得られた ITOHAM insulin, Novol inをそれぞれ 0.1%BSA、 0.9%NaCl 、 0. フエノール溶液に lunit / mlとなるように調整 (26 uni ts / mgとして計算 ) し、 日本白色種ゥサギ (Kbs:JW、 2.0 〜 2.5 kg ) の背部皮下に 0.5 m 殳与した 。 投与時から経時的に耳介静脈から採血し、 血液 0.45 mlに 0.05 mlの解糖阻止剤混 合液 (NaF; 12.5 mg I ml, heparin - Na; 125 units / ml、 EDTA-2Na; 48 mg I ml ) を加えて十分に混合してから、 5でで 3, 000 rpm、 15 min遠心して得られた上清 を試料血漿とした。 血漿中のグルコース濃度は生化学自動分析装置 (CIBA- CORNING 社製、 Express PLUS) を用い、 インスリン濃度は EIAキット (和光純薬社製、 GLAZY ME Insulin-EIA TEST) を用いて測定した。 図 9に、 血漿中グルコース濃度の経時 変化を、 図 10に血漿中インスリン濃度の経時変化を示した。 ITOHAM insulin, Novo linともに、 投与後の血漿中のグルコース濃度は低下し、 インスリンの血糖低下作 用が確認された。 また、 血漿中のインスリン濃度は、 似たような推移を示した。 No volinのグルコース濃度が ITOHAM insul inに較べて若干低く、 また、 インスリン濃 度が若干高く出たのは、 HPLCによる分析で指摘されていた副ピーク分が加算された ためであると考えられた。 産業上の利用可能性
本発明により、 インスリンへの変換が可能である新規な融合蛋白質をバチルス属 の発現系において、 高発現分泌を可能にし、 かつ、 得られた融合蛋白質をトロンビ ンとカルボキシぺプチダーゼ B処理することにより天然型と同じアミノ酸組成と生 物活性を有するインスリンの取得を可能とした。 即ち本発明によって効率的でかつ 高生産性の遺伝子組換えィンスリンの生産法が提供される。 配列表フリーテキス卜
配列番号 1 : トロンビンによって切断可能なアミノ酸配列を示す。
配列番号 2 : トロンビンによって切断可能なアミノ酸配列を示す。
配列番号 1 2 : GSLQPR-B chain- Rをコードする D N A断片を増幅するための P CR用順方向プライマーを示す。
配列番号 1 6 : GHRP-Linkerをコードする DNA断片を増幅するための PCR用 順方向プライマーを示す。
配列番号 1 9 : PR-A chainをコードする DNA断片を増幅するための P C R用 順方向プライマーを示す。
配列番号 20 : MWPsp-MWPmp9-GSLQPR-B chain- RGHRP- Linker- PR- A chainをコー ドする DNAの塩基配列を示す。
配列番号 2 1 : MWPsp-MWPmp9-GSLQPR-B chain-RGHRP-Linker-PR-A chainのアミ ノ酸配列を示す。

Claims

請求の範囲
1. 蛋白質の発現分泌のための 1個以上のアミノ酸残基からなるリーダーべプチ ド配列 (Y)、 酵素的もしくは化学的切断に使用されるアミノ酸配列 (χ ι)、 イン スリンの Β鎖のアミノ酸配列 (B-chain)、 酵素的切断に使用されるアミノ酸配列 ( X2)、 1個以上のアミノ酸残基からなるリンカ一配列 (Linker), 酵素的切断に使 用されるアミノ酸配列 (X3)、 インスリンの A鎖のアミノ酸配列 (A-chain) がこ の順序で連結された下記式 Iの融合蛋白質をコードする DNA。
[Y] - [X 1] - [B-chain] - [X 2] - [Linker] - [X 3] - [A- chain] (式 I )
2. インスリンの B鎖のアミノ酸配列 (B- chain)、 酵素的切断に使用されるアミ ノ酸配列 (X2)、 1個以上のアミノ酸残基からなるリンカ一配列 (Linker)、 酵素 的切断に使用されるアミノ酸配列 (X3)、 インスリンの A鎖のアミノ酸配列 (A-c ha in) がこの順序で連結された下記式 IIの融合蛋白質をコードする DNA。
[B-chain] - [X 2] - [Linker] - [X 3] - [A- chain] (式 II)
3. 融合蛋白質の酵素的切断に使用されるアミノ酸配列 X 1、 X 2または X 3が 、 トロンビンによって切断可能な配列であることを特徴とする請求項 1または 2に 記載の DNA。
4. 融合蛋白質の酵素的切断に使用されるアミノ酸配列 X 1、 X 2または X 3が
X 1 =GlySerLeuGlnProArg (配列番号 1 )、
X 2=ArgGlyHisArgPro (配列番号 2)、 または
X 3=ProArg
であることを特徴とする請求項 1または 2に記載の DNA。
5. リンカ一のアミノ酸配列が、 aLeuGluGlySerLeuGln (配列番号 3)
であることを特徴とする請求項 1または 2に記載の DNA。
6. リーダーペプチド配列がバチルス属細菌の細胞壁蛋白質 (CWP) の一つで ある MWP蛋白質の N末端から 9個のアミノ酸残基からなることを特徴とする請求 項 1に記載の DNA。
7. DNAの 5 ' 末端に、 CWPのシグナルペプチドが連結されていることを特 徴とする請求項 1に記載の DNA。
8. 配列表の配列番号 2 1に示されるアミノ酸配列をコードする塩基配列を有す る DNA。
9. 配列表の配列番号 20に示される塩基配列を有することを特徴とする請求項 8に記載の DNA。
10. 請求項 1、 2および 8のいずれかに記載の DN Aの 5 ' 末端に、 原核生物も しくは真核生物での遺伝子組み換え蛋白質発現に必要なプロモーター領域を含有す る DNA配列が連結されている DNA。
1 1. プロモーター領域を含有する DNA配列がバチルス属細菌由来であることを 特徴とする請求項 10に記載の DNA。
12. プロモーター領域を含有する DNA配列がバチルス属細菌の CWP由来であ ることを特徴とする請求項 1 1に記載の DNA。
13. 請求項 10に記載の DNAを含むベクター。
14. 請求項 1 3に記載のベクターで形質転換された宿主細胞。
1 5. 請求項 13に記載のベクターで形質転換されたバチルス属細菌。
16. バチルス属細菌がバチルス ·ブレビスであることを特徴とする請求項 1 5に 記載の細菌。
1 7. 請求項 14または 1 5に記載の宿主細胞または細菌を培地中に培養し、 目的 の DNAを発現してその DNAによってコードされる融合蛋白質を回収した後、 該 融合蛋白質を酵素的切断処理してィンスリンを単離することを含む、 ィンスリンの 製造方法。
1 8. 融合蛋白質が配列表の配列番号 2 1に示されるアミノ酸配列を有することを 特徴とする請求項 17に記載の方法。
1 9. 発現された融合蛋白質を宿主細胞または細菌から、 あるいは培養して得られ た培地から分離精製することを特徴とする請求項 17に記載の方法。
2 0 . 酵素的切断処理がトロンビンとカルボキシぺプチダーゼ Bで行なわれること を特徴とする請求項 1 7に記載の方法。
2 1 . 配列表の配列番号 2 1に示されるアミノ酸配列を有する融合蛋白質。
PCT/JP2000/002736 1999-04-30 2000-04-26 Procede de production d'insuline recombinee a partir d'une nouvelle proteine fusionnee WO2000066738A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60037508T DE60037508T2 (de) 1999-04-30 2000-04-26 Verfahren zur herstellung von rekombinantem insulin durch fusionsproteine
DK00921035T DK1179593T3 (da) 1999-04-30 2000-04-26 Fremgangsmåde til fremstilling af rekombinant insulin fra nyt fusionsprotein
EA200101161A EA005586B1 (ru) 1999-04-30 2000-04-26 Гибридный белок проинсулина и способ получения из него рекомбинантного инсулина
AU41425/00A AU775471B2 (en) 1999-04-30 2000-04-26 Process for producing recombinant insulin from novel fused protein
CA002372221A CA2372221A1 (en) 1999-04-30 2000-04-26 Methods for producing recombinant insulin from novel fusion proteins
EP00921035A EP1179593B1 (en) 1999-04-30 2000-04-26 Process for producing recombinant insulin from novel fused protein
US09/959,548 US6841361B1 (en) 1999-04-30 2000-04-26 Methods of producing recombinant insulin from novel fused proteins
HK02103154.4A HK1042113A1 (zh) 1999-04-30 2002-04-27 從新的融合蛋白製備重組胰島素的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/124877 1999-04-30
JP12487799A JP3406244B2 (ja) 1999-04-30 1999-04-30 新規な融合蛋白質からの組み換えインスリンの製造方法

Publications (1)

Publication Number Publication Date
WO2000066738A1 true WO2000066738A1 (fr) 2000-11-09

Family

ID=14896314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002736 WO2000066738A1 (fr) 1999-04-30 2000-04-26 Procede de production d'insuline recombinee a partir d'une nouvelle proteine fusionnee

Country Status (14)

Country Link
US (1) US6841361B1 (ja)
EP (1) EP1179593B1 (ja)
JP (1) JP3406244B2 (ja)
KR (1) KR100659671B1 (ja)
CN (1) CN1213146C (ja)
AT (1) ATE381619T1 (ja)
AU (1) AU775471B2 (ja)
CA (1) CA2372221A1 (ja)
DE (1) DE60037508T2 (ja)
DK (1) DK1179593T3 (ja)
EA (1) EA005586B1 (ja)
HK (1) HK1042113A1 (ja)
WO (1) WO2000066738A1 (ja)
ZA (1) ZA200108951B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270730A1 (en) * 2000-03-14 2003-01-02 Itoham Foods Inc. Process for producing polypeptide having disulfide bond

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312192B2 (en) * 2001-09-07 2007-12-25 Biocon Limited Insulin polypeptide-oligomer conjugates, proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
US7795384B2 (en) * 2003-06-03 2010-09-14 Shanghai Centre Of Research & Development Of New Drugs Fusion protein suitable for high efficiency expression and the production method thereof
KR101269540B1 (ko) * 2005-10-13 2013-05-30 바이오콘 리미티드 인슐린 접합체의 제조를 위한 방법
WO2009101672A1 (ja) * 2008-02-12 2009-08-20 Itoham Foods Inc. 高発現分泌インスリン前駆体を含む融合タンパク質、それをコードするdnaおよびインスリンの製造方法
WO2013062029A1 (ja) 2011-10-25 2013-05-02 味の素株式会社 タンパク質の分泌生産法
KR102646845B1 (ko) * 2018-08-08 2024-03-14 주식회사 대웅제약 클로스트리파인을 이용한 지속형 인슐린 아날로그 복합체의 활성형 제조방법
KR102666154B1 (ko) 2018-08-08 2024-05-20 주식회사 대웅제약 지속형 인슐린 아날로그 및 그 복합체
CN113773392B (zh) * 2020-06-09 2023-04-07 宁波鲲鹏生物科技有限公司 一种甘精胰岛素的制备方法
CN113773400B (zh) * 2020-06-09 2023-08-18 宁波鲲鹏生物科技有限公司 一种门冬胰岛素衍生物及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154443A (en) * 1980-03-27 1981-11-30 Lilly Co Eli Manufacture of insulin
US4431740A (en) * 1979-09-12 1984-02-14 The Regents Of The University Of California DNA Transfer vector and transformed microorganism containing human proinsulin and pre-proinsulin genes
JPS62201583A (ja) * 1985-11-07 1987-09-05 Juzo Udaka バチルス・ブレビスを用いる遺伝子の発現方法
JPS6387980A (ja) * 1986-09-30 1988-04-19 Shikishima Boseki Kk プラスミドベクタ−、菌株、及びそれを用いてペプシノ−ゲンを生産する方法
JPH03169895A (ja) * 1989-11-06 1991-07-23 Hoechst Ag 新規インスリン誘導体
EP0600372A1 (de) * 1992-12-02 1994-06-08 Hoechst Aktiengesellschaft Verfahren zur Gewinnung von Proinsulin mit korrekt verbundenen Cystinbrücken
JPH06253862A (ja) * 1993-03-01 1994-09-13 Higeta Shoyu Co Ltd 新規発現ベクタ−、該発現ベクタ−を保有 する微生物、該微生物を用いる有用物質の 製造法
EP0704527A2 (en) * 1994-08-05 1996-04-03 PLIVA, farmaceutska, kemijska, prehrambena i kozmeticka industrija dionicko drustvo DNA sequences encoding biosynthetic insulin precursors and process for prepation of insulin
WO1996032489A1 (fr) * 1995-04-14 1996-10-17 Institut National De La Sante Et De La Recherche Medicale Vecteur viral recombinant inductible par le glucose
JPH11341991A (ja) * 1998-03-31 1999-12-14 Itoham Foods Inc 新規な融合蛋白質をコ―ドするdnaおよびその発現を介する有用ポリペプチドの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ199391A (en) 1981-01-02 1985-12-13 Genentech Inc Chimeric polypeptides comprising a proinsulin sequence,and preparation by recombinant dna technique;production of human insulin
US5426036A (en) * 1987-05-05 1995-06-20 Hoechst Aktiengesellschaft Processes for the preparation of foreign proteins in streptomycetes
JPH04126084A (ja) 1990-05-11 1992-04-27 Hoechst Japan Ltd 蛋白質の製造法
US5378613A (en) * 1991-09-24 1995-01-03 Eli Lilly And Company Method for increased expression of low molecular weight recombinant polypeptides
US6001604A (en) * 1993-12-29 1999-12-14 Bio-Technology General Corp. Refolding of proinsulins without addition of reducing agents
DE4405179A1 (de) 1994-02-18 1995-08-24 Hoechst Ag Verfahren zur Gewinnung von Insulin mit korrekt verbundenen Cystinbrücken
WO1996020724A1 (en) 1994-12-29 1996-07-11 Bio-Technology General Corp. Generation of human insulin
KR0150565B1 (ko) * 1995-02-15 1998-08-17 김정재 유전자 조환에 의한 사람 인슐린 전구체의 제조 및 이를 이용한 인슐린의 제조방법
GB9513967D0 (en) * 1995-07-08 1995-09-06 Univ Leicester Insulin

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431740A (en) * 1979-09-12 1984-02-14 The Regents Of The University Of California DNA Transfer vector and transformed microorganism containing human proinsulin and pre-proinsulin genes
JPS56154443A (en) * 1980-03-27 1981-11-30 Lilly Co Eli Manufacture of insulin
JPS62201583A (ja) * 1985-11-07 1987-09-05 Juzo Udaka バチルス・ブレビスを用いる遺伝子の発現方法
JPS6387980A (ja) * 1986-09-30 1988-04-19 Shikishima Boseki Kk プラスミドベクタ−、菌株、及びそれを用いてペプシノ−ゲンを生産する方法
JPH03169895A (ja) * 1989-11-06 1991-07-23 Hoechst Ag 新規インスリン誘導体
EP0600372A1 (de) * 1992-12-02 1994-06-08 Hoechst Aktiengesellschaft Verfahren zur Gewinnung von Proinsulin mit korrekt verbundenen Cystinbrücken
JPH06253862A (ja) * 1993-03-01 1994-09-13 Higeta Shoyu Co Ltd 新規発現ベクタ−、該発現ベクタ−を保有 する微生物、該微生物を用いる有用物質の 製造法
EP0704527A2 (en) * 1994-08-05 1996-04-03 PLIVA, farmaceutska, kemijska, prehrambena i kozmeticka industrija dionicko drustvo DNA sequences encoding biosynthetic insulin precursors and process for prepation of insulin
WO1996032489A1 (fr) * 1995-04-14 1996-10-17 Institut National De La Sante Et De La Recherche Medicale Vecteur viral recombinant inductible par le glucose
JPH11341991A (ja) * 1998-03-31 1999-12-14 Itoham Foods Inc 新規な融合蛋白質をコ―ドするdnaおよびその発現を介する有用ポリペプチドの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270730A1 (en) * 2000-03-14 2003-01-02 Itoham Foods Inc. Process for producing polypeptide having disulfide bond
EP1270730A4 (en) * 2000-03-14 2003-05-14 Itoham Foods Inc PROCESS FOR THE PREPARATION OF A POLYPEPTIDE COMPRISING A DISULFIDE BINDING
US7037684B2 (en) 2000-03-14 2006-05-02 Itoham Foods Inc. Process for producing polypeptide having disulfide bond

Also Published As

Publication number Publication date
JP3406244B2 (ja) 2003-05-12
KR100659671B1 (ko) 2006-12-21
EP1179593A4 (en) 2003-04-16
ZA200108951B (en) 2002-10-30
US6841361B1 (en) 2005-01-11
JP2000316579A (ja) 2000-11-21
DK1179593T3 (da) 2008-04-28
AU4142500A (en) 2000-11-17
DE60037508D1 (de) 2008-01-31
EP1179593A1 (en) 2002-02-13
EA200101161A1 (ru) 2002-06-27
DE60037508T2 (de) 2008-12-11
EA005586B1 (ru) 2005-04-28
CN1213146C (zh) 2005-08-03
AU775471B2 (en) 2004-08-05
EP1179593B1 (en) 2007-12-19
CA2372221A1 (en) 2000-11-09
ATE381619T1 (de) 2008-01-15
CN1350584A (zh) 2002-05-22
KR20020018192A (ko) 2002-03-07
HK1042113A1 (zh) 2002-08-02

Similar Documents

Publication Publication Date Title
US5962267A (en) Proinsulin derivative and process for producing human insulin
JPH05501799A (ja) 融合タンパク質、その調製及び用途
US8410048B2 (en) Method for producing insulin analogs having a dibasic B chain terminus
AU1550095A (en) Generation of human insulin
US10000544B2 (en) Process for production of insulin and insulin analogues
WO2000066738A1 (fr) Procede de production d'insuline recombinee a partir d'une nouvelle proteine fusionnee
WO1995017510A1 (en) A method of producing glucagon-like peptide 1
US7037684B2 (en) Process for producing polypeptide having disulfide bond
US20110092424A1 (en) Production of glucagon like peptide 2 and analogs
JP4314332B1 (ja) 高発現分泌インスリン前駆体を含む融合タンパク質、それをコードするdnaおよびインスリンの製造方法
RU2144957C1 (ru) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pPINS07, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН ЧЕЛОВЕКА, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН ЧЕЛОВЕКА
CN113801236A (zh) 一种赖脯胰岛素的制备方法
JP2003079379A (ja) 成長ホルモンの高発現用dnaおよびその使用
WO2004007740A1 (en) Biological method for producing t-20 peptide
AU8076491A (en) A novel vector to produce biologically important peptides
WO1991019805A1 (en) A novel vector to produce biologically important peptides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806934.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2372221

Country of ref document: CA

Ref document number: 2372221

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001/08951

Country of ref document: ZA

Ref document number: 200108951

Country of ref document: ZA

Ref document number: 1020017013921

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/01035/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000921035

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200101161

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 09959548

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000921035

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017013921

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017013921

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000921035

Country of ref document: EP