WO2000064950A1 - Dispositif et methode d'extraction de monomere non reagi d'un latex polymere - Google Patents

Dispositif et methode d'extraction de monomere non reagi d'un latex polymere Download PDF

Info

Publication number
WO2000064950A1
WO2000064950A1 PCT/JP2000/002628 JP0002628W WO0064950A1 WO 2000064950 A1 WO2000064950 A1 WO 2000064950A1 JP 0002628 W JP0002628 W JP 0002628W WO 0064950 A1 WO0064950 A1 WO 0064950A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
shelf
chamber
tower
height
Prior art date
Application number
PCT/JP2000/002628
Other languages
English (en)
French (fr)
Inventor
Yuichi Ito
Etsuro Matsuda
Hideo Nobuhara
Yoshinori Kunikiyo
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to EP00919147A priority Critical patent/EP1097947A4/en
Publication of WO2000064950A1 publication Critical patent/WO2000064950A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/24Treatment of polymer suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/18Fractionating columns in which vapour bubbles through liquid with horizontal bubble plates
    • B01D3/20Bubble caps; Risers for vapour; Discharge pipes for liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/22Fractionating columns in which vapour bubbles through liquid with horizontal sieve plates or grids; Construction of sieve plates or grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention relates to an apparatus and a method used for removing unreacted monomers contained in a polymer latex represented by a vinyl chloride polymer latex from the latex.
  • the present invention relates to a method for preparing unreacted polymer latex containing unreacted monomer.
  • the present invention relates to an apparatus and a method for removing and recovering a monomer. Specifically, the present invention
  • the present invention relates to an apparatus and a method for removing and recovering unreacted monomer from a polymer latex containing an unreacted monomer and contacting a continuously supplied polymer latex with steam.
  • Polymer latex represented by vinyl chloride polymer latex is usually prepared by subjecting a monomer to emulsion polymerization, seed emulsion polymerization or fine suspension polymerization in the presence of a surfactant called an emulsifier and a polymerization initiator.
  • a polymer having a particle diameter of 0.1 to 10; m is present in the latex produced and after the completion of the reaction in the form of an emulsion.
  • the latex is dried in a later step, and is provided as a fine powder in applications such as painting, coating, and paste molding.
  • the polymerization reaction is generally not carried out until the polymerization conversion reaches 100%, and thus the polymer latex after the polymerization reaction contains vinyl chloride monomer. It usually contains unreacted residual monomers mainly composed of.
  • Such unreacted monomers are preferably removed and recovered from the latex from the viewpoint of environmental hygiene and the efficiency of polymer production.
  • the vinyl chloride polymer latex is easily aggregated by mechanical shear or heat, and when recovering the unreacted monomer from the polymer latex, foaming is likely to occur from the latex liquid level, and the foam may cause the product to flow off. So, the addition of antifoam Although it is conceivable, the product obtained by adding it causes problems such as deterioration of thermal stability and incompatibility with foam molding, so the amount used must be kept to a very small amount. Therefore, foaming could not be sufficiently suppressed. In general, in most cases where the vinyl chloride polymer latex is used, the incompatibility due to the addition of the above-mentioned antifoaming agent is almost unfavorable.
  • An object of the present invention is to provide an apparatus and a method for removing unreacted monomers contained in a polymer latex represented by a vinyl chloride polymer latex with high efficiency without aggregating the latex, and a method for removing the unreacted monomer from the latex.
  • the purpose is to provide a method for recovering unreacted monomer.
  • One or more shelves having a number of pores and provided vertically in the tower body
  • a partition wall and an overflow wall provided on the shelf are identical to A partition wall and an overflow wall provided on the shelf,
  • a latex outlet in at least one chamber is a latex outlet in at least one chamber
  • At least one latex inlet provided above the latex outlet;
  • a deaeration port connected to a decompression pump provided outside the tower to reduce the pressure inside the tower body, and provided above the latex introduction port;
  • a water vapor inlet provided under a shelf forming the bottom surface of the chamber provided with the latex outlet;
  • the height of the chamber is 3 to 300 times the height of the overflow wall, and the sectional area of the tower body at the position where the shelf is provided is provided on the shelf
  • An apparatus for removing unreacted monomers from a polymer latex containing unreacted monomers which is 50 to 100 times the total area of the pores.
  • the tower body has a plurality of shelves, a latex outlet provided in a chamber formed on the lowest shelf, and a chamber formed on a shelf above the lowest shelf.
  • the apparatus according to (1) further comprising at least one latex inlet provided in the lower stage, and a downstream portion for flowing the latex from the upper shelf to the lower shelf.
  • the defoaming means is a defoaming liquid addition device, a steam injection device, a foam breaking blade, a defoaming plate or a cyclone.
  • the cross-sectional area of the latex discharge pipe is 1Z10 to 1/1100 of the cross-sectional area of the tower main body, and the total length of the liquid seal portion is 500 to 500. 0 mm (8) (11) At least a part of the liquid seal portion is formed of a U-shaped seal tube.
  • Another part of the liquid seal portion is configured such that an outlet of the latex discharge pipe is located below the surface of the latex liquid stored in the latex extraction tank.
  • One or more shelves having a number of pores and provided vertically in the tower body
  • a partition wall and an overflow wall provided on the shelf are identical to A partition wall and an overflow wall provided on the shelf,
  • a latex outlet in at least one chamber is a latex outlet in at least one chamber
  • At least one latex inlet provided above the latex outlet;
  • a deaeration port connected to a decompression pump provided outside the tower to reduce the pressure inside the tower body, and provided above the latex introduction port;
  • a water vapor inlet provided under a shelf forming the bottom surface of the chamber provided with the latex outlet;
  • the height of the chamber is 3 to 300 times the height of the overflow wall, and the sectional area of the tower body at the position where the shelf is provided is provided on the shelf Using a device that is 50 to 100 times the total area of the pores, the pressure of the chamber for introducing the latex is 0.004 to 0.07 MPa, and the latex on each shelf is Removing the unreacted monomers from the polymer latex containing unreacted monomers, operating the apparatus under conditions such that the total depth of the unreacted monomers is 25-150 mm.
  • the device is operated under conditions such that the temperature of the latex flowing on the shelf just above the chamber provided with the steam inlet is 30 to 90 ° C.
  • the apparatus has a latex discharge pipe connected to a latex discharge port, and the latex flow rate in the latex discharge pipe is 0.01 to 5 mZ seconds.
  • FIG. 1 is a schematic diagram showing a cross section of one embodiment of the apparatus of the present invention used to remove unreacted monomers from a polymer latex.
  • FIG. 2 is a schematic diagram showing a plan view of a shelf in the apparatus shown in FIG. 1, and a partition wall 19 and an overflow wall 20 are provided on the upper surface of the shelf 13.
  • FIGS. 1 and 2 indicate the following parts, respectively.
  • the apparatus of the present invention can be applied, for example, to remove unreacted monomers from a polymer latex obtained by an emulsion polymerization method, a seeded emulsion polymerization method, or a fine suspension polymerization method.
  • PVC latte of vinyl chloride monomer obtained by The case where the monomer is removed from the resin will be described.
  • FIG. 1 shows a cross section of one apparatus of the present invention for removing unreacted monomers from a polymer latex.
  • the apparatus comprises a cylindrical tower body 14, two-stage shelves 13 and 22, each having a large number of pores, provided in a direction perpendicular to the tower body 14, the shelf board and the tower bottom.
  • a latex introduction chamber 10 a latex discharge chamber 11 and a steam introduction chamber 12, and a latex introduction port 1 provided in the latex introduction chamber 10.
  • a lower part (overflow pipe) 23 provided between the shelves so that the latex flows down sequentially from the shelves of the upper chamber to the shelves of the lower chamber, and the latex discharge chamber 11
  • a latex discharge port 28 provided, a steam inlet 37 provided in the steam inlet chamber 12 at the bottom of the tower, and a latex discharge pipe (U-shaped seal pipe provided through the bottom of the tower body 14) 29) and the latex extraction tank 4 connected to the discharge pipe 29. It is composed. Note that the “steam introduction chamber” does not need to have a shelf at the bottom of the chamber.
  • a degassing port 17 is provided in the tower wall above the latex inlet 16 of the tower body and above the latex inlet chamber 10 to eliminate bubbles.
  • each shelf 13 and 22 has a large number of pores 40, and partition walls 19 and 26 are provided on each shelf.
  • the partition walls are arranged on each shelf in such a way that the latex introduced or flowed down forms a 99-fold (or zigzag) flow path between the partition wall and the inner wall of the tower.
  • Latex inlet 16 is connected to latex supply tank 1 via latex supply pipe 3 and pump 2.
  • the defoaming tank 6 incorporates, for example, a defoaming plate 35 as defoaming means, and has a deaeration port 32 at an upper part thereof and a dewatering port 33 at a bottom part thereof.
  • the drain port 33 is connected to a latex introduction chamber 10 in the tower main body via a reflux pipe 34 and a reflux port 18.
  • the deaeration port 32 of the defoaming tank 6 is connected to a decompression pump 9 via a pipe 38, a condenser 7, and a condensed water separation tank 8.
  • An overflow wall 27 is provided on the shelf plate 22 of the latex discharge chamber, and latex overflowing from the latex discharge room 28 has a latex discharge pipe (including a U-shaped seal pipe) 29 from the latex discharge port 28.
  • the sum of the heights of the overflow walls provided on each tray is preferably 25 to 150 mm, more preferably 50 to 500 mm. It is 140 mm, particularly preferably 100 mm to 100 mm. If the total is less than 25 mm, it is difficult to maintain a uniform liquid depth of the latex on the shelf.
  • 30 is a latex discharge pipe outlet.
  • a vacuum pump or a connection pipe and a valve to the latex discharge chamber of the tower body, but they are not shown in the figure.
  • the pressure in the latex discharge tank is reduced to the atmospheric pressure or lower as necessary by using a vacuum pump and these pipings and valves, but basically maintained at a level equal to or lower than the pressure in the latex discharge chamber. .
  • This pressure does not need to be precisely controlled as long as the liquid ring having a length of 500 to 500 mm is maintained in the latex discharge pipe.
  • an extraction port 39 is provided at the bottom of the latex extraction tank 4, so that the latex can be extracted by the latex discharge pump 5.
  • a pressure detector 41 and a pressure controller 36 are provided at the top 15 of the tower body.
  • the pressure inside the tower body is maintained at a predetermined value by adjusting the valve 42 of the bypass pipe connecting the front and rear of the pressure reducing pump 9.
  • 19 and 26 are the partition walls
  • 20 is the overflow wall
  • 21 is the overflow pipe inlet
  • 23 is the overflow pipe
  • 24 is the overflow pipe outlet.
  • the apparatus of the present invention can be easily manufactured, for example, by assembling each shelf having the shelves 13 or 22 as a unit.
  • PVC latex is supplied from the latex supply tank 1 to the latex introduction chamber 10 in the tower at a predetermined flow rate from the latex introduction port 16 through the pipe 3 using a transfer means such as a pump 2 using a transfer means such as a pump 2. Will be introduced.
  • the flow rate of the PVC latex is introduced into the column body 1 4, the area 1 m 2 per 0 shelves 1 3 shown in Figure 2. 0. 1 to 1 0 0 m 3 Z h, preferably 0 1 to 1 O m 3 Z h. It is desirable that the PVC latex introduced into the tower body 14 be preheated. If the latex is preheated, the efficiency of removing unreacted monomers is improved.
  • the defoaming tank 35 in the defoaming tank 6 connected to the deaeration port 17 prevents the foam generated in the latex introduction chamber from entering the condensed water separation tank 8 and the decompression pump 9. Used for
  • Defoaming means may be provided inside the tower body, for example, between the uppermost shelf and the deaeration port. Even in this case, foam can be prevented from entering the condensed water separation tank and the decompression pump.
  • FIG. 1 shows a defoaming plate as the defoaming means
  • the defoaming means may be an antifoaming liquid adding device, a steam injection device, a cyclone, or a foam breaking blade.
  • two trays are provided in the tower main body. The number of the trays is preferably 1 to 4, and more preferably 2 to 4.
  • the temperature of the PVC latex introduced into the tower body is high, the efficiency of removing unreacted monomers is improved, but problems such as latex agglomeration occur, so the temperature of the latex must be adjusted appropriately.
  • the temperature of the latex flowing on the shelf is usually 30 to 90 ° C, preferably 40 to 80 ° C.
  • the temperature is more preferably adjusted to 40 to 75 ° C.
  • the temperature of the latex on the shelf can be adjusted by the temperature and the amount of steam blown from below, and the pressure in the tower body 14.
  • the pressure in the tower body 14, especially in the chamber for introducing the latex is preferably adjusted in the range of 0.004 to 0.07 MPa.
  • the shelves 13 and 22 with a large number of pores are installed inside the tower body 14 and several partition walls 19 and 26 are installed vertically on one side. While being stirred by the water vapor blown from the pores when flowing on the platen, it is opened so that it comes into contact with the water vapor with high efficiency to remove unreacted monomers.
  • the linear velocity of water vapor passing through the pores is preferably from 10 to 10 Om / sec. If this speed is lower than the specified linear speed, the stirring of the PVC latex on the shelf board becomes insufficient, the PVC particles settle, and the contact between the water vapor and the latex becomes insufficient, and the unreacted monomers in the latex become unreacted. Cannot be removed efficiently.
  • the pore size can be selected in the range of 0.5 to 5 mm, but forms the bottom of the chamber
  • the total area of the pores is larger than a predetermined ratio, an excessive amount of water vapor is required to keep the linear velocity of the water vapor passing through the pores in an appropriate range. If too much water vapor is introduced into the tower, the latex foams violently, further increasing the superficial velocity of the water vapor in the tower, and the latex, water vapor, and bubbles formed from unreacted monomers. The space inside is filled, making it difficult to control the pressure inside the tower, and making the equipment inoperable.
  • the PVC particles in the PVC latex will settle or the contact between the water vapor and the latex will be insufficient, and the unreacted monomer in the latex will be efficiently removed. Can not.
  • the partition walls 19 and 26 are for securing a processing passage on the shelf where the PVC latex can flow.
  • the overflow walls 20 and 27 are for holding a certain amount of PVC latex on the shelf. As a result, the PVC latex flows on the platen for a certain period of time, during which time it undergoes a process of removing unreacted monomers by steam.
  • FIG. 2 is a plan view of a shelf in which a partition wall 19 and an overflow wall 20 are provided on the upper surface of a shelf board 13.
  • the latex kept at a certain depth by the overflow wall on the shelf is agitated by the steam blown from the pores, whereby the steam and the latex come into contact with high efficiency, and unreacted monomers are released from the latex. Efficiently removed.
  • the height of the chamber whose bottom is the shelf is 3 to 300 times, preferably 5 to 200 times the height of the overflow wall.
  • the height of the chamber 3 to 300 times the height of the overflow wall, it is possible to secure a sufficient height for holding bubbles in the room.
  • the foamed latex completely fills the room, resists the flow of water vapor that must pass through the pores of the upper shelf, hinders pressure control, and keeps the tower temperature at the specified operating temperature. It is possible to prevent a situation in which the operation of the apparatus becomes higher and becomes impossible.
  • the ventilation opening provided in the upper part of A situation in which a large amount of foam is discharged can be prevented. If the height of the room exceeds 300 times the height of the overflow wall, the height of the room will be 3 to 300 times the height of the overflow wall, despite the increase in equipment manufacturing costs. Only the same effect as in the case of is obtained.
  • Bubbles are generated by water vapor blown from the pores of the tray.
  • These bubbles rise in the liquid at a certain depth formed by the overflow wall, reach a position higher than the overflow wall, and become spherical bubbles containing a large amount of latex.
  • part of the latex that forms the outer wall of the bubble drops off from the bubble due to liquid gravity, forming larger bubbles. 4Furthermore, in the upper part of the chamber, the thickness of the bubble wall becomes very thin, and the bubble wall pops out and bubbles disappear.
  • the lower part of the chamber below the latex introduction chamber is completely filled with the latex foamed by steam, and this latex is placed on the upper shelf.
  • the resistance to the flow of steam that should pass through the pores prevents the pressure control and raises the temperature inside the tower above the specified operating temperature, making the equipment inoperable.
  • the deaeration port is provided above the latex introduction port and at the top of the latex introduction chamber, provided that the foam generated in the latex introduction chamber is provided at a position where a large amount of foam is not discharged from the deaeration port. Often, it does not limit its position.
  • the shape of the processing passage is determined by the way of installation of the partition walls 19, 26.
  • the shape is desirably a ninety-nine fold type (zigzag shape) as shown in Fig. 2, and other shapes such as a spiral type, a wheel type or a star type (radial type) can be selected.
  • the apparatus of the present invention has a steam inlet chamber 12 at the bottom of the tower, and the steam inlet chamber is provided with a steam inlet 37.
  • the steam introduced from the steam inlet 37 is blown into the PVC latex flowing on each of the plates through the pores of the plates.
  • a hot water washing apparatus for washing the inside of the tower, particularly the lower surface of the shelf, may be provided.
  • the PVC latex is supplied from the latex supply tank 1 by the pump 2 to the tower body 14 through the latex inlet 16 through the latex inlet 16, and each of the shelves 1 3 in the latex introduction chamber 10 and the latex discharge chamber 11 in the tower body 14 During the flow over the plate, 22 and the steam introduced from the steam inlet 37 at the bottom of the column, cross-flow contact is made on the plate with high efficiency while stirring, whereby unreacted monomer is latexed.
  • the latex from which unreacted monomer has been removed passes through a latex discharge port 28, a latex discharge pipe (including a U-shaped seal pipe) 29, exits the discharge pipe outlet 30 and enters the latex discharge tank 4 Stored temporarily.
  • the U-shaped seal tube stores the latex in the U-shaped part and forms a liquid seal part.
  • another additional liquid sealing section may be configured. The main role of these liquid seals is to prevent water vapor from entering the latex extraction tank 4 through the latex discharge pipe.
  • Adjust the cross-sectional area of the discharge pipe to 1Z100 to 1Z100, preferably 1/100 to 1Z500 of the cross-sectional area of the tower body, and add the total length of the liquid seal section. Is adjusted to 500 to 500 mm, it is possible to prevent the air bubbles mixed in the latex on the platen from being entrained with the latex in the latex discharge tank. Latex can be stably discharged at a constant flow rate.
  • the flow rate of latex in the latex discharge pipe is low, which tends to cause sedimentation of PVC particles.
  • the ratio is less than 100, the flow rate of the latex is excessively high, and it may be difficult to sufficiently separate bubbles in the latex.
  • the flow rate of latex in the latex discharge pipe is preferably operated in the range of 0.01 to 5 seconds.
  • the apparent specific gravity of the latex varies depending on the amount of bubbles present in the latex
  • the length of the liquid seal portion is shorter than 500 mm, a sufficient liquid seal effect can be obtained. Instead, bubbles in the latex may pass through the liquid seal portion and easily enter the latex extraction tank 4, causing pressure fluctuations in the tower body.
  • the liquid-ring portion exceeds 500 mm, the liquid-ring becomes excessive and there is no advantage.
  • the U-shaped seal pipe is used when a U-shaped seal pipe is used as a part of the latex discharge pipe, the U-shaped seal pipe is used.
  • the length of the liquid seal part composed of the U-shaped part means the distance from the bottom to the top of the U-shaped part (in other words, the height of the U-shaped part).
  • the latex extracted into the latex extraction tank is discharged from the outlet 39 by the pump 5 to the outside.
  • the liquid seal section described above can prevent water vapor from being discharged out of the tower through the latex discharge pipe, so that the amount of water vapor supplied to the shelf becomes constant, and the monomer is removed stably. As a result, it is possible to prevent the latex liquid from leaking from the pores in the tray due to a decrease in the linear velocity of the water vapor passing through the pores due to a temporary fluctuation in the amount of water vapor.
  • the monomer gas removed in the tower body is introduced into the defoaming tank 6 through the degassing port 17, defoamed by the defoaming plate 35, passes through the degassing pipe 38, and passes through the condenser 7 After cooling in, it is sent to the condensed water separation tank 8.
  • the condensed water separation tank In this condensed water separation tank, the condensed water is separated from the gas, and the remaining gas is transferred to the gas liquefaction and recovery step via the decompression pump 9, and the recovered monomer is recycled to the vinyl chloride polymerization step. If the condensed water contains a large amount of vinyl chloride monomer, the condensed water may be introduced again into the tower body to remove the monomer.
  • the apparatus and method of the present invention makes it possible to efficiently reduce the residual unreacted monomer concentration particularly in the vinyl chloride polymer latex to a level of about 1 Oppm.
  • the apparatus and method provided by the present invention are: It is extremely useful in recent and future times when environmental standards are strictly regulated.
  • the polymer latex immediately after the removal of the unreacted monomer was sampled from the latex discharge pipe, and residual vinyl chloride monomer in the latex was removed by the headspace method using a gas chromatograph 9A (trade name) manufactured by Shimadzu Corporation. Measure the concentration and this The residual monomer concentration per resin component was calculated from the monomer concentration and the resin component concentration in the latex separately obtained.
  • the measurement of the monomer concentration in the supplied latex was performed in the same manner by sampling the latex from the outlet of the latex supply pump. The measurement conditions were in accordance with ASTM method D4443, and FID was used for the detection part.
  • the average particle size of the polymer particles in the latex was determined using a laser diffraction / scattering type particle size distribution analyzer (trade name: LA-910) manufactured by HORIBA, Ltd.
  • Vinyl chloride was polymerized by a fine suspension polymerization method. Next, the vinyl chloride polymer latex after the completion of the polymerization reaction was transferred to a blowdown tank, and further transferred to a latex supply tank 1 shown in FIG.
  • Latex in latex supply tank 1 contains 50.0% by weight of water and 48.5% by weight
  • the polymer latex was supplied to an apparatus as shown in FIG. 1 to remove unreacted monomers from the polymer latex.
  • the equipment specifications and operating conditions were as follows.
  • Latex discharge chamber 1 1 Height: 30.0 0 mm
  • Latex discharge pipe 29 A U-shaped seal pipe having a U-shape as shown in Fig. 1 is partially included. This U-shaped part becomes the liquid seal part. The length of the liquid ring (from the bottom to the top of the U-shape) is 2000 mm. The pipe diameter is 20 mm. 9Latex discharge pipe outlet 3 0 position: Latex liquid level in the latex extraction tank 4 Below 200 mm
  • Latex flow velocity in the latex discharge pipe 4.6 cmZ seconds
  • the status of the monomer removing device during operation was as follows.
  • the temperature in the latex discharge chamber 1 1 is kept stable at a predetermined value
  • the polymer latex does not leak into the latex discharge chamber 11 through the pores of the shelf 13 of the latex introduction chamber 10
  • the latex is continuously discharged from the latex discharge chamber 1 At a fixed flow rate
  • the average particle size of the polymer particles in the latex discharged from the latex discharge tank 4 by the latex discharge pump 5 remains unchanged before and after the monomer removal treatment, and is 0.9 // m. Did not exist.
  • the residual vinyl chloride monomer concentration was 20 Oppm on a resin basis.
  • Example 1 In the apparatus shown in FIG. 1, the latex of Example 1 was treated in the same operation procedure as in Example 1 under the following apparatus specifications and operating conditions.
  • Latex discharge chamber 1 1 Height: 30.0 0 mm
  • Latex discharge pipe 29 A U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. The length of the liquid ring (from the bottom to the top of the U-shape) is 2000 mm and the pipe diameter is 20 mm.
  • Latex removal tank 4 Latex liquid level below 200 mm
  • the status of the monomer removing device during operation was as follows.
  • the polymer latex does not leak into the latex discharge chamber 11 through the pores of the latex supply chamber shelf 13.
  • Latex was continuously discharged from the latex discharge chamber 11 into the latex extraction tank 4 at a stable flow rate.
  • the average particle size of the polymer particles in the polymer latex discharged from the latex discharge tank 4 by the latex discharge pump 5 remains unchanged before and after the monomer removal treatment.
  • the residual vinyl chloride monomer concentration was 350 ppm on a resin basis.
  • Example 1 The latex of Example 1 was treated in the same apparatus as in FIG. 1 with the following equipment specifications and operating conditions, except that the number of shelves was three.
  • Latex discharge chamber 1 1 height: 200 mm
  • Latex discharge pipe 29 U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. The length of the liquid ring (from the bottom to the top of the U-shape) is 2000 mm and the pipe diameter is 20 mm.
  • Latex removal tank 4 Latex liquid level below 200 mm
  • the status of the monomer removing device during operation was as follows.
  • the temperature in the latex discharge chamber 1 1 is kept stable at a predetermined set value.
  • Latex is continuously discharged from the latex discharge chamber 1 to the latex removal tank 4 at a stable flow rate
  • the average particle size of the polymer particles in the latex discharged from the latex discharge tank 4 by the latex discharge pump 5 remains unchanged before and after the monomer removal treatment, and remains at 0.9 / m, and there are aggregates in the latex. Did not.
  • the residual vinyl chloride monomer concentration was 20 ppm on a resin basis.
  • Example 1 In the apparatus shown in FIG. 1, the latex of Example 1 was treated in the same operation procedure as in Example 1 under the following apparatus specifications and operating conditions.
  • Latex discharge chamber 1 1 Height: 3 0 0 0 m m
  • Latex discharge pipe 29 U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part.
  • the length of the liquid seal section (from the bottom to the top of the U-shaped section) is 2000 mm, pipe diameter 9Exit of latex discharge pipe 3 0: Latex removal tank 4 Latex liquid level below 200 mm
  • the status of the monomer removing unit during operation was as follows.
  • the temperature in the latex discharge chamber 1 1 is kept stable at a predetermined set value.
  • Latex is continuously discharged from the latex discharge chamber 1 to the latex removal tank 4 at a stable flow rate
  • the average particle size of the polymer particles in the polymer latex discharged from the latex discharge tank 4 by the latex discharge pump 5 remains unchanged before and after the monomer removal treatment.
  • the residual vinyl chloride monomer concentration was 30 ppm on a resin basis.
  • the latex of Example 1 was processed by the same operation procedure as that of the example shown in FIG. 1 with the following equipment specifications and operating conditions, except that the number of the shelf was one.
  • the latex introduction chamber also serves as the latex discharge chamber for one shelf.
  • Latex discharge pipe 29 U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. Liquid ring length
  • the pipe diameter is 20 mm.
  • Latex removal tank 4 Latex liquid level below 200 mm
  • the status of the monomer removing device during operation was as follows.
  • the temperature in the latex discharge chamber 1 1 is kept stable at a predetermined set value.
  • the polymer latex does not leak into the steam introduction chamber through the pores of the shelf plate 13 in the latex introduction chamber.
  • Latex is continuously discharged from the latex discharge chamber, which also serves as the latex introduction chamber, to the latex extraction tank 4 at a stable flow rate, and
  • the polymer discharged from the latex discharge tank 4 by the latex discharge pump 5 The average particle size of the polymer particles in the latex is unchanged at 0.9 / zm before and after the monomer removal treatment, and there are aggregates in the latex Did not.
  • the residual vinyl chloride monomer concentration was 300 ppm on a resin basis.
  • Example 1 In the apparatus shown in FIG. 1, the latex of Example 1 was treated in the same operation procedure as in Example 1 under the following apparatus specifications and operating conditions.
  • Latex discharge pipe 29 A U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. The length of the liquid ring (from the bottom to the top of the U-shape) is 2000 mm and the pipe diameter is 20 mm.
  • Latex removal tank 4 Latex liquid level below 200 mm
  • Latex flow velocity in the latex discharge pipe 4.6 cmZ seconds
  • the status of the monomer removing device during operation was as follows.
  • Example 1 In the apparatus shown in FIG. 1, the latex of Example 1 was treated in the same operation procedure as in Example 1 under the following apparatus specifications and operating conditions.
  • Latex discharge chamber 1 1 Height: 30.0 0 mm
  • Latex discharge pipe 29 A U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. The length of the liquid ring (from the bottom to the top of the U-shape) is 2000 mm and the pipe diameter is 20 mm.
  • Latex removal tank 4 Latex liquid level below 200 mm
  • the status of the monomer removing unit during operation was as follows.
  • Example 1 In the apparatus shown in FIG. 1, the latex of Example 1 was treated in the same operation procedure as in Example 1 under the following apparatus specifications and operating conditions.
  • Latex discharge chamber 1 1 Height: 30.0 0 mm 5 Overflow wall installed on shelf board 13 of latex introduction room 20 Height: 30 O mm
  • Latex discharge pipe 29 A U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. Liquid ring length
  • Latex removal tank 4 Latex liquid level below 200 mm
  • Latex flow velocity in the latex discharge pipe 4.6 cmZ seconds
  • the status of the monomer removing device during operation was as follows.
  • Example 1 In the apparatus of FIG. 1, the latex of Example 1 was treated by the same operating procedure under the following apparatus mode and operating conditions.
  • Latex discharge chamber 1 1 Height: 30.0 0 mm
  • Latex discharge pipe 29 A U-shaped seal pipe with a U-shape as shown in Fig. 1 is partially used. This U-shaped part becomes the liquid seal part. Liquid ring length
  • the pipe diameter is 20 mm.
  • Laterial of the latex discharge chamber 22 Linear velocity of water vapor passing through the pores of 2: 43 mZ seconds
  • Latex flow velocity in the latex discharge pipe 4.6 cmZ seconds
  • the status of the monomer removing unit during operation was as follows.
  • the temperature of the latex on the shelf 22 in the latex discharge chamber 11 further increased to 105 ° C, and the pressure in the tower also increased to 0.123 MPa.
  • Latex quality could not be evaluated after monomer removal because latex was not discharged to the latex extraction tank due to equipment operation failure.
  • Table 1 summarizes the processing conditions and the results obtained in the examples and comparative examples. Table 1—1
  • Example 1 Example 2 Example 3 Example 4 Example 5 Vinyl chloride polymer concentration before treatment (weight 48.5 48.5 48.5 48.5 48.5 Latex throughput (Kg / h) 60 60 60 60 60 60 60 Residual VCM concentration (ppm 32000 32000 32000 32000 32000 Average polymer particle size () 0.9 0.9 0.9 0.9 0.9 Number of trays 2 2 3 2 1 Total length of liquid seal section of latex discharge tube 4000 4000 4000 4000 4000 4000 4000 Latex discharge tube U seal Length of liquid-sealed part of pipe (mm) ⁇ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Latex discharge pipe outlet liquid ffiT position (mm): 2000 2000 2000 2000 2000 2000 With / without defoaming tank Installation None Installation Installation None Tower body inner diameter (mm) 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 Steam supply
  • Chamber height / height 10 15 20 20 Pore diameter (mm) 1.7 1.7 1.7 1.7 Number of pores 110 110 110 138 Total pores ® «250 250 250 312 Cut off Total pores 283 283 283 226 Latex Latex of exit room 'CO 58 57 60 63 55 Latex foam Foam height in ⁇ 100 00 100 100 100 100 90 Foam height in the middle chamber (%) —— 85
  • Residual VCM key after treatment 200 350 20 30 300 Average particle size of latex polymer (m) 0.9 0.9 0.9 0.9 0.9 0.9 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ of latex in coagulation water separation tank ⁇ No Yes No No No No No No No No No No
  • Latex SE ⁇ in SE pump 9 No Yes No No No No No Deposition of 3 ⁇ 4 * 3 ⁇ 43 on shelf 22 No No No No No No No Operating time 30 for 2 hours 30 for £ ( ⁇ 30 for J3 ⁇ 4 ⁇ 30 for J: Table 11-2
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Vinyl chloride polymer concentration before treatment (weight 3 ⁇ 4): 48.5! 48.5 48.5 48.5 Latex throughput (Kg / h) 60 60 60 60 60
  • Chamber height 2 10 10 10 10 Pore diameter 1.7 2.0 1.1 1.7 Number of pores 110 550 65 110 Total pores B «250 1728 62 250 Break S « / Total pores 283 41 1144 283 Latex t Latex S3 ⁇ 4 CC) 59 ⁇ 92 62 ⁇ 95 57 ⁇ 71 102 ⁇ 105 Latex foam height in ⁇ 3 ⁇ 4 (3 ⁇ 4) 100 100 15 100 Foam height in the middle chamber (%)
  • Latex Foam height in room (3 ⁇ 4) 100 100 20 98 Residual VCM release after treatment (ppra / resin) "15000 Samblinky, mouth” Polymer average particle size of latex (urn) Samplinky, mouth "Sampling! 0.9 Sambring coagulation Latex to separation tank Yes Yes No No No No Latex ftA of latex into vacuum pump 9 No No Aggregate accumulation on tray 2 2 Yes (8 Yes (8 Yes (15 Yes (60 Operating hours 1 hour 1 hour 8 hours 1 hour Industrial applicability
  • the apparatus of the present invention can be particularly preferably used for removing residual monomers from a vinyl chloride polymer latex having a high foaming property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

重合体ラテックスから未反応モノマーを除去する装置および方法 技術分野
本発明は、 塩化ビニル重合体ラテックスに代表される重合体ラテックス中に含 まれる未反応モノマーを該ラテックスから除去するために使用する装置および方 法に関する。 また、 本発明は未反応モノマーを含む重合体ラテックスから未反応 明
モノマーを除去し、 回収するための装置および方法に関する。 詳しくは本発明は 田
未反応モノマーを含み、 かつ連続的に供給される重合体ラテックスに水蒸気を接 触させて、 該ラテックスから未反応モノマ一を除去し、 回収する装置および方法 に関する。 景技術
塩化ビニル重合体ラテックスに代表される重合体ラテックスは、 通常、 モノマ 一を乳化剤と呼ばれる界面活性剤と重合開始剤の存在下に乳化重合、 播種乳化重 合あるいは微細懸濁重合させることによつて製造され、 反応終了後のラテックス 中には粒子径が 0 . 1〜 1 0 ; mの重合体が乳濁して存在する。 該ラテックスは 後の工程で乾燥され、 微粒子の粉体として塗装、 被覆、 ペース ト成形等の用途に 供される。
塩化ビニル重合体ラテックスの場合、 重合反応は一般的に重合転化率が 1 0 0 %に到るまで実施されることはなく、 したがつて重合反応後の該重合体ラテック スには塩化ビニルモノマーを主体とする未反応の残留モノマーが含まれているの が普通である。
このような未反応モノマーは環境衛生上、 さらには重合体を生産する効率の観 点から該ラテックスより除去、 回収されることが好ましい。
塩化ビニル重合体ラテックスは機械的剪断や熱により凝集し易く、 さらに、 重 合体ラテックスから未反応モノマーを回収する際に、 ラテックス液面から発泡が 生じやすく、 発泡により製品流失を生じる場合がある。 そこで、 消泡剤の添加も 考えられるが、 これを添加して得られた製品が、 熱安定性の悪化や、 発泡成形に 不適合であるなどの問題点を来すことなどから、 その使用量は微量に留まらざる を得ず、 このため、 充分に発泡を抑制することができなかった。 また、 一般的に 塩化ビニル重合体ラテックスが用いられる用途は、 特に前記消泡剤の添加による 不適合を良しとしないものが殆どである。 そのため、 従来は、 蒸発缶内に重合体 ラテックスを一時的に貯留し、 次いで時間をかけて該ラテックスを穏やかに加熱 することによって未反応モノマーを除去し、 さらに回収する方法が行われている。 また、 特開平 8 - 3 2 5 3 2 1号公報には、 発泡性の高い塩化ビニル重合体ラテ ックスを蒸発缶に供給する際、 ノズルを通して該ラテックスを供給することによ つてラテックスの発泡を抑止しつつ未反応モノマーを蒸発させる方法が開示され ている。 しかしながら、 その効率は決して高くなく、 処理後に残留する未反応モ ノマ一を問題のな 、レベルまで低減するのには多大な時間を費やすか、 または同 一工程を幾度も繰返す必要があった。 このため、 機械的剪断や熱により凝集し易 ぃラテツタスより未反応モノマーを連続的に効率よく除去、 回収する装置および 方法の開発が待望されていた。
発明の開示
本発明の目的は、 塩化ビニル重合体ラテックスに代表される重合体ラテックス 中に含まれている未反応モノマーを、 該ラテックスを凝集させることなく高い効 率で除去する装置および方法と、 該ラテックスから未反応モノマーを回収する方 法を提供することである。
本発明の装置および方法は下記のように要約される。
( 1 ) 筒状の塔本体と、
多数の細孔を有し、 しかも該塔本体内に垂直方向に設けられた一つまたは複数 の棚段と、
該棚段上に設けられた区画壁および溢流壁と、
該棚段を底面としてその上に形成された室と、
少なく とも 1つの室に設けられたラテックス排出口と、
該ラテックス排出口より上部に設けられた少なく とも一つのラテックス導入口 と、
該塔本体内を減圧するために、 塔外部に設けられた減圧ポンプと連結され、 か っ該ラテックス導入口より上部に設けられた脱気口と、
前記ラテックス排出口が設けられた室の底面を形成する棚段の下に設けられた 水蒸気導入口と
を有し、 該室の高さが該溢流壁の高さの 3〜3 0 0倍であり、 しかも棚段が設け られた位置における該塔本体の断面積が該棚段に設けられた該細孔の合計面積の 5 0〜 1 0 0 0倍である、 未反応モノマーを含む重合体ラテックスから未反応モ ノマーを除去する装置。
(2) 該塔本体が複数の棚段と、 最下部の棚段上に形成された室に設けられたラ テックス排出口と、 最下部の棚段より上部の棚段上に形成された室に設けられた 少なくとも一つのラテックス導入口と、 上部の棚段から下部の棚段へラテックス を流下させるための流下部とを有する ( 1) 記載の装置。
(3) 該塔本体内に設けられた棚段の数が 1〜4である ( 1) 記載の装置。
(4) 各棚段上に設けられた該溢流壁の高さの総計が 2 5〜 1 5 0 O mmである ( 1 ) 記載の装置。
( 5 ) 該脱気口と該減圧ポンプとの間および/または該塔本体内に消泡手段を有 する ( 1) 記載の装置。
(6) 該消泡手段が消泡液添加装置、 水蒸気噴射装置、 破泡翼、 消泡板またはサ イクロンである (5) 記載の装置。
( 7 ) 消泡されたラテックスを該消泡手段から該塔本体内に再び導入するラィン をさらに有する (5) 記載の装置。
(8) 前記装置が前記ラテックス排出口に連結されたラテックス排出管を有し、 該ラテックス排出管が液封部を有していることを特徴とする ( 1) 記載の装置。
(9) 該ラテックス排出管を通して該ラテックス排出口に連結されたラテックス 抜出し槽をさらに有する (8) 記載の装置。
( 1 0) 該ラテックス排出管の断面積が該塔本体の断面積の 1 Z 1 0〜1/ 1 0 0 0であり、 該液封部の長さの総計が 5 0 0〜5 0 0 0 mmである (8) 記載の ( 1 1 ) 該液封部の少なく とも一部が U字シール管で構成されている ( 1 0) 記
( 1 2) 液封部の別の一部が、 前記ラテックス排出管の出口を該ラテックス抜出 し槽内に貯留されるラテックス液面下に位置するように設置されることによって 構成されている ( 1 1) 記載の装置。
( 1 3) 該消泡手段が該塔本体内の最上部棚段と該脱気口との間に設けられてい る (5) 記載の装置。
(1 4) 筒状の塔本体と,
多数の細孔を有し、 しかも該塔本体内に垂直方向に設けられた一つまたは複数 の棚段と、
該棚段上に設けられた区画壁および溢流壁と、
該棚段を底面としてその上に形成された室と、
少なく とも 1つの室に設けられたラテックス排出口と、
該ラテックス排出口より上部に設けられた少なく とも一つのラテックス導入口 と、
該塔本体内を減圧するために、 塔外部に設けられた減圧ポンプと連結され、 か っ該ラテックス導入口より上部に設けられた脱気口と、
前記ラテックス排出口が設けられた室の底面を形成する棚段の下に設けられた 水蒸気導入口と
を有し、 該室の高さが該溢流壁の高さの 3〜3 0 0倍であり、 しかも棚段が設け られた位置における該塔本体の断面積が該棚段に設けられた該細孔の合計面積の 5 0〜 1 0 0 0倍である装置を使用し、 ラテックスを導入する室の圧力が 0. 0 0 4〜0. 0 7MP aであり、 各棚段上のラテツクスの深さの総計が 2 5〜 1 5 0 0 mmであるような条件下で該装置を運転する、 未反応モノマーを含む重合体 ラテックスから未反応モノマーを除去する方法。
( 1 5) 該水蒸気導入口が設けられた室の直上の棚段上を流動するラテックスの 温度が 3 0〜9 0°Cであるような条件下で該装置を運転する ( 1 4) 記載の方法 c
( 1 6) 前記ラテックス排出口が設けられた室の底面を形成する棚段に設けられ た細孔を通過する水蒸気の線速度が 1 0〜1 0 O mZ秒であるような条件下で該 装置を運転する ( 1 4 ) 記載の方法。
( 1 7 ) 前記装置が、 ラテックス排出口に連結されたラテックス排出管を有して おり、 該ラテックス排出管内のラテックス流速が 0 . 0 l〜5 m Z秒であるよう な条件下で該装置を運転する ( 1 4 ) 記載の方法。 図面の簡単な説明
第 1図は重合体ラテックスから未反応モノマーを除去するのに使用する本発明 の装置の一実施例の断面を示す概略図である。
第 2図は第 1図に示された装置における棚段の平面を示す概略図であり、 棚板 1 3の上面には区画壁 1 9と溢流壁 2 0が設けられている。
第 1図および第 2図で使用されている参照数字はそれぞれ下記の部分を示して いる。
1 : ラテックス供給槽、 2 : ラテックス供給ポンプ、 3 : ラテックス供給管、 4 : ラテックス抜出し槽、 5 : ラテックス排出ポンプ、 6 :消泡槽、 7 :凝縮器、 8 :凝縮水分離槽、 9 :減圧ポンプ、 1 0 : ラテックス導入室、 1 1 : ラテック ス排出室、 1 2 :水蒸気導入室、 1 3 :棚板、 1 4 : モノマー除去塔 (塔本体) 、 1 5 :塔頂部、 1 6 : ラテックス導入口、 1 7 :脱気口、 1 8 : ラテックス還流 口、 1 9 :区画壁、 2 0 :溢流壁、 2 1 :溢流管入口、 2 2 :棚板、 2 3 :溢流 管、 2 4 :溢流管出口、 2 6 :区画壁、 2 7 :溢流壁、 2 8 : ラテックス排出口、 2 9 :ラテックス排出管 (U字シール管を一部に含む) 、 3 0 : ラテックス排出 管出口、 3 1 :塔底部、 3 2 :脱気口、 3 3 :脱液口、 3 4 :還流管、 3 5 :消 泡板、 3 6 : モノマー除去塔圧力コン トロール装置、 3 7 :水蒸気導入口、 3 8 :脱気用配管、 3 9 : ラテックス抜出し槽出口、 4 0 :棚段の細孔、 4 1 :塔 頂部圧力検出装置、 4 2 :塔頂部圧力コン トロール弁。 発明を実施するための最良の形態
本発明の装置は、 例えば乳化重合法、 播種乳化重合法、 微細懸濁重合法で得ら れる重合体ラテックスから未反応モノマ一を除去するのに応用できるが、 以下で は代表例として乳化重合で得られた塩化ビニルモノマーの重合体 (P V C ) ラテ ックスから該モノマーを除去する場合について述べる。
先ず、 本発明の装置を第 1図を参照しながら説明する。
第 1図は重合体ラテックスから未反応モノマーを除去する本発明の一つの装置 の断面を示すものである。 この装置は筒状の塔本体 1 4と、 該塔本体 1 4の垂直 方向に設けられた、 それぞれ多数の細孔を有する 2段の棚板 1 3、 2 2 と、 該棚 板および塔底をそれぞれ底面としてその上に形成される 3つの室、 即ちラテツク ス導入室 1 0、 ラテックス排出室 1 1および水蒸気導入室 1 2と、 前記ラテック ス導入室 1 0に設けられたラテックス導入口 1 6と、 上方の室の棚板から下方の 室の棚板に順次ラテツクスを流下させるように該棚板間に設けられた流下部 (溢 流管) 2 3と、 前記ラテックス排出室 1 1に設けられたラテックス排出口 2 8と、 塔底の水蒸気導入室 1 2に設けられた水蒸気導入口 3 7と、 塔本体 1 4の底部を 貫通して設けられたラテックス排出管 (U字シール管を一部に含む) 2 9と、 該 排出管 2 9に連結されたラテックス抜出し槽 4とから主として構成される。 なお、 「水蒸気導入室」 は、 その室の底面に棚段が構成されていなくてもよい。 第 1図 に示されているように、 塔本体のラテックス導入口 1 6の上部であってラテック ス導入室 1 0の上部にはその塔壁に、 脱気口 1 7が設けられ、 消泡槽 6に連結さ れている。 各棚段 1 3、 2 2は第 2図に示すように多数の細孔 4 0を有し、 各棚 板上には区画壁 1 9、 2 6が設けられている。 区画壁は、 導入された若しくは流 下したラテックスが区画壁と塔内壁との間に九十九折り (またはジグザグ状) の 流路を形成するように各棚段上に配列されている。 ラテックス導入口 1 6はラテ ックス供給管 3およびポンプ 2を介してラテックス供給槽 1に連結されている。 消泡槽 6は、 消泡手段として例えば消泡板 3 5を内蔵し、 その上部に脱気口 3 2およびその底部に脱液口 3 3を有している。 該脱液口 3 3は、 還流管 3 4およ び還流口 1 8を介して塔本体内のラテックス導入室 1 0に連結されている。 また 消泡槽 6の脱気口 3 2は、 配管 3 8、 凝縮器 7、 凝縮水分離槽 8を介して減圧ポ ンプ 9に連結されている。
ラテックス排出室の棚板 2 2には、 溢流壁 2 7が設けられ、 ここから溢流した ラテックスがラテックス排出口 2 8からラテックス排出管 (U字シール管を一部 に含む) 2 9を通ってラテックス抜出し槽 4へ所定量ずつ流下するようになって いる。 各棚段上に設けられた溢流壁の高さ (別言すれば、 各棚段上のラテックス の深さ) の総計は好ましくは 2 5〜 1 5 0 0 m m、 さらに好ましくは 5 0〜 1 4 0 0 m m、 特に望ましくは 1 0 0〜 1 0 0 0 m mである。 該総計が 2 5 m mより 小さいと、 棚板上においてラテックスの均一な液深が保たれにく くなる。 その結 果、 棚板上に生じたラテックスの液深が浅い箇所では、 水蒸気が該ラテックス液 層を通過するにあたってその液層に基づく抵抗が小さいことから、 当該箇所の棚 板の細孔からは、 その棚段を挟む下部の室から上部の室へ水蒸気が多量に通過す ることになる。 一方、 当該棚段上で液深が深い箇所においては、 水蒸気が該ラテ ックス液層を通過するにあたりその液層に基づく抵抗が大きいことから、 当該箇 所の棚板の細孔を通過する水蒸気量は減少することになる。 このため、 当該ラテ ックス液の液深が深い箇所では、 細孔内を上昇する水蒸気流と、 細孔内を下降し ようとするラテックス流との均衡が崩れ、 ラテックス液が該棚段の当該箇所の細 孔を流下し、 下部の室へ液漏れが生じやすくなるのである。 一方、 該総計が 1 5 0 O m mより大きいと、 水蒸気が棚板の細孔とラテックス液層を通過する際にう ける抵抗が過大になる。 このため、 この抵抗にうち勝って、 本願で所望とするラ テックスとの十字流接触を行わせるに充分な水蒸気の通過量を維持させるために は、 棚板を挟んだ上下の室に多大な圧力差を生じさせることが必要になる。 この 結果、 水蒸気飽和圧力と温度との関係から、 棚板を挟んだ上下の室の温度差も大 きくなり、 ラテックスの処理に適した温度範囲から逸脱してしまいやすい。 3 0 はラテックス排出管出口である。 ラテックス抜出し槽 4の上部には減圧ポンプま たは塔本体のラテックス排出室への接続配管と弁類が備えてあるが図には示され ていない。 ラテックス抜出し槽の圧力は、 減圧ポンプ、 これらの配管および弁を 用いることで必要に応じて大気圧以下にされるが、 基本的にはラテックス排出室 の圧力と同等もしくはそれよりも低く維持される。 この圧力はラテックス排出管 において長さ 5 0 0〜5 0 0 0 m mの液封が維持される範囲であれば、 精密に制 御する必要はない。 またラテックス抜出し槽 4の底部には、 抜出し口 3 9が設け られ、 ラテックス排出ポンプ 5によりラテックスが抜き出されるようになつてい る o
塔本体の頂部 1 5には、 圧力検出装置 4 1および圧力コントロール装置 3 6が 設けられ、 塔本体内の圧力は、 減圧ポンプ 9の前後を接続するバイパス管のバル ブ 4 2の調節により、 所定値に保持される。 なお、 図中、 1 9, 2 6は区画壁、 2 0は溢流壁、 2 1は溢流管入口、 2 3は溢流管、 2 4は溢流管出口である。 本発明の装置は、 例えば棚板 1 3または 2 2を有する各棚段をュニッ トとして 組み立てることにより容易に製造することができる。
第 1図の装置において、 P V Cラテックスは、 P V Cラテックス供給槽 1から ポンプ 2のような移送手段を用い、 配管 3を通してラテックス導入口 1 6から所 定の流量で塔内のラテックス導入室 1 0内に導入される。
塔本体 1 4の内部に導入される P V Cラテックスの流量は、 第 2図に示されて いる棚板 1 3の面積 1 m 2 当たり 0 . 0 1〜 1 0 0 m 3 Z h、 好ましくは 0 . 1 〜 1 O m 3 Z hである。 塔本体 1 4内に導入される P V Cラテックスは、 予熱さ れていることが望ましい。 このラテツクスが予熱されていると未反応モノマーの 除去効率が向上する。
一般に、 P V Cラテックス中の未反応塩化ビニルモノマーの大部分は、 ラテツ クス導入室で蒸発される。 そのため他の各室と比較すると、 ラテックス導入室で の発泡は顕著である。 そこで、 脱気口 1 7に連結される消泡槽 6中の消泡扳 3 5 は、 ラテックス導入室で発生した泡が、 凝縮水分離槽 8、 減圧ポンプ 9に侵入す るのを防止するために用いられる。
消泡手段は塔本体内部、 例えば最上部の棚段と脱気口の間に設けてもよく、 こ の場合でも泡が凝縮水分離槽、 減圧ポンプへ侵入するのを防止することができる c なお、 第 1図では消泡手段として消泡板が示されているが、 消泡手段は消泡液 添加装置、 水蒸気噴射装置、 サイクロン、 破泡翼でもよい。 また、 第 1図の装置 では塔本体内に二つの棚段が設けられているが、 棚段の数は 1〜4が好ましく、 特に 2〜4が望ましい。 棚段の数が 5段以上であると、 水蒸気が、 各棚段に設け られた細孔、 各棚段上のラテックス液層およびラテックス発泡層を通過する際に 受ける抵抗が過大となりやすい。 この抵抗にうち勝って、 本願で所望とするラテ ックスとの十字流接触を行わせるに充分な水蒸気の通過量を維持させるためには、 水蒸気導入室とラテックス導入室との間に多大な圧力差を生じさせることが必要 となる。 その結果、 飽和水蒸気圧と温度との関係から、 水蒸気導入室とラテック ス導入室との温度差も大きくなって、 ラテックスの処理に適した温度範囲から逸 脱してしまいやすい。
塔本体に導入される P V Cラテツタスの温度が高いと未反応モノマーの除去効 率は向上するが、 ラテックスの凝集等の問題を生じるので、 ラテックスの温度は 適正に調整する必要がある。 棚板上、 特に水蒸気導入口が設けられた室の直上の 棚段上を流動するラテックスの温度は、 P V Cラテックスの場合、 通常 3 0〜9 0 °C、 好ましくは 4 0〜8 0 °C、 さらに好ましくは 4 0〜7 5 °Cに調整される。 棚板上のラテックスの温度は下方から吹き込まれる水蒸気の温度と導入量、 塔本 体 1 4内の圧力によって調整することができる。 塔本体 1 4内、 特にラテックス を導入する室の圧力は 0 . 0 0 4〜0 . 0 7 M P aの範囲で調整されるのが好ま しい。
塔本体 1 4の内部に設置され、 片面に数個の区画壁 1 9、 2 6を垂直方向に設 置した、 多数の細孔を有する棚板 1 3、 2 2の細孔は、 P V Cラテックスが棚段 上を流動する際に細孔より吹込まれる水蒸気によって撹拌されながら水蒸気と高 効率で接触し、 未反応モノマーが除去されるように開けられている。 細孔を通過 する水蒸気の線速度は 1 0〜 1 0 O m /秒が好ましい。 この速度が所定の線速度 よりも小さい場合は、 棚板上での P V Cラテックスの攪拌が不十分となり、 P V C粒子が沈降したり、 水蒸気とラテックスの接触が不十分となり、 ラテックス中 の未反応モノマーを効率よく除去することができない。 さらに水蒸気の線速度が 小さい場合は、 細孔を通じて P V Cラテックスが、 棚段より漏れる事態が生じる c 棚段下の室が水蒸気導入室である場合は、 水蒸気導入室にラテックスが堆積する 事態を生じ、 水蒸気との長期の接触で変質してしまう。 また、 上に位置する棚段 から下に位置する棚段にラテックスが漏れた場合には、 下に位置する棚段より多 くのモノマ一を含む、 上に位置する棚段上のラテックスが、 下に位置する棚段の ラテックスに混入するため、 モノマー除去効率が著しく低下する。
逆に、 上記した水蒸気の線速度が所定の速度よりも大きい場合は、 吹込まれる 水蒸気により P V Cラテックスが吹き上げられて、 飛沫同伴を起こし、 装置の運 転が困難になる。
細孔径の大きさは 0 . 5〜 5 m mの範囲で選べばよいが、 室の底面を形成する 1つの棚段に設けられた細孔の合計面積 (以降、 「細孔合計面積」 と言うこと力く ある) は、 該棚段が設けられた位置における塔の断面積 (以降、 「塔本体断面 積」 と言うことがある) の 1 / 5 0〜1 Z 1 0 0 0 (塔本体断面積 Z細孔合計面 積 = 5 0〜1 0 0 0 ) に設定する必要がある。
もし、 所定の比よりも細孔の合計面積が大きい場合は、 細孔を通過する水蒸気 の線速度を適当な範囲に保っために、 過剰量の水蒸気が必要となる。 過剰量の水 蒸気が塔内に導入された場合は、 ラテックスが激しく発泡し、 さらに塔内での水 蒸気の空塔速度が増し、 ラテックスと、 水蒸気さらに未反応モノマーで形成され る泡で塔内の空間が充満され、 塔内圧力のコントロールが困難になり、 装置の運 転が不能に陥る。
逆に、 所定の比より細孔の合計面積が小さい場合は、 P V Cラテックス中の P V C粒子が沈降したり、 水蒸気とラテックスの接触が不十分となり、 ラテックス 中の未反応モノマーを効率よく除去することができない。
区画壁 1 9、 2 6は、 棚段上に P V Cラテックスが流動できる処理通路を確保 するためのものである。 溢流壁 2 0、 2 7は棚段上に一定量の P V Cラテックス を保持するためのものである。 これらによって P V Cラテックスは棚段上で一定 時間流動し、 その間に水蒸気による未反応モノマー除去処理を受ける。
第 2図は、 棚板 1 3の上面に区画壁 1 9 と溢流壁 2 0が設けられた棚段の平面 図を示している。
棚板上の溢流壁により一定の深さに保たれたラテックスは、 細孔より吹込まれ る水蒸気により攪拌され、 これによつて水蒸気とラテックスは高効率で接触し、 未反応モノマーがラテックスから効率的に除去される。
棚段を底面とする室の高さは、 この溢流壁の高さの 3〜3 0 0倍、 好ましくは 5 ~ 2 0 0倍である。 室の高さを溢流壁の 3〜3 0 0倍にすることにより、 室内 に十分に泡を保持するための高さを確保することができる。 かく して、 発泡した ラテックスが室内を完全に満たし、 上部に位置する棚段の細孔を通過すべき水蒸 気の流れに対する抵抗となり、 圧力コントロールが妨げられ、 塔内温度が所定の 運転温度より上昇して装置の運転が不能に陥る事態を防止できる。 また、 ラテツ クス導入室の高さを十分にとることにより、 該室の上部に設けられた脱気口より 多量の泡が排出される事態を防止できる。 室の高さが、 溢流壁の高さの 3 0 0倍 を超える場合は、 装置製作費用が高くなるにも拘らず、 室高さ 7溢流壁の高さの 3〜3 0 0倍の場合と同様の効果しか得られない。
なお、 この室内で泡が発生し、 消失する経過は次の通りである。 ①棚段の細孔 より吹込まれた水蒸気により気泡が生じる。 ②この気泡は、 溢流壁で形成される 一定の深さの液内を上昇し、 溢流壁よりも高い位置に達して、 多量のラテックス を含んだ球形気泡となる。 ③この球形気泡が塔内を上昇するにつれて、 気泡の外 壁を構成するラテックスの一部が液重力により気泡から脱落して、 より大きな気 泡を形成する。 ④さらに室の上部では、 気泡壁の厚みは非常に薄くなり、 やがて 気泡壁が弾けて泡が消失する。
室の高さが溢流壁の高さの 3倍より小さい場合は、 ラテックス導入室よりも下 部の室内を、 水蒸気により発泡したラテックスが完全に満たし、 このラテックス が上部に位置する棚段の細孔を通過すベき水蒸気の流れに対する抵抗となり、 圧 力コントロールの妨げとなり、 塔内温度を所定の運転温度より上昇させて装置の 運転を不能にする。
また、 ラテックス導入室の高さが十分でない場合は、 該室の上部に設けられた 脱気口より多量の泡が排出される事態を生ずる。 脱気口は、 ラテックス導入口よ り上部であって、 ラテックス導入室の上部に設けられるが、 ラテックス導入室で 発生する泡が、 該脱気口から多量に排出しない位置に設けられていればよく、 特 にその位置を限定するものではない。
区画壁 1 9、 2 6の設置の仕方によって処理通路の形状が決定される。 その形 状は第 2図で示される九十九折り型 (ジグザグ状) が望ましく、 そのほかに渦巻 き型、 矢車型または星型 (放射状) 等の形状が選択できる。
本発明の装置は塔底部に水蒸気導入室 1 2を有しており、 この水蒸気導入室に は水蒸気導入口 3 7が設けられている。 水蒸気導入口 3 7から導入される水蒸気 は、 棚段の細孔を通してそれぞれの棚段上を流動する P V Cラテックス中に吹込 まれる。
本発明の装置においては塔の内部、 特に棚板の下面を洗浄するための温水洗浄 装置を設けてもよい。 P V Cラテツクスは、 ラテックス供給槽 1からポンプ 2によってラテックス導 入口 1 6を通して塔本体 1 4内に供給され、 塔本体 1 4内のラテックス導入室 1 0およびラテックス排出室 1 1の各棚段 1 3、 2 2の上を流動する間に、 塔底部 の水蒸気導入口 3 7から導入される水蒸気と棚段上で、 撹拌されながら高効率で 十字流接触され、 これによつて未反応モノマーがラテックスから効率的に除去さ れる。 未反応モノマーが除去されたラテックスは、 ラテックス排出口 2 8からラ テックス排出管 (U字シール管を一部に含む) 2 9を通り、 排出管出口 3 0を出 てラテックス抜出し槽 4内に一時貯留される。 U字シール管は、 U字部にラテツ クスを貯留し、 液封部を形成する。 また、 ラテックス排出管の出口 3 0を、 ラテ ックス抜出し槽 4内に貯留されるラテックスの液面下に配置するように構成する ことによって、 別のさらなる液封部を構成してもよい。 これらの液封部の主な役 割は、 ラテックス排出管を通じて水蒸気がラテックス抜出し槽 4に侵入する事態 を防ぐことである。 排出管の断面積を塔本体の断面積の 1 Z 1 0 0〜1 Z 1 0 0 0、 好ましくは 1 / 1 0 0〜1 Z 5 0 0に調整し、 液封部の長さの総計を 5 0 0 〜5 0 0 0 m mに調整した場合には、 棚段上でラテックス中に混合された気泡が、 ラテックス排出槽にラテックスと共に同伴されてしまうことを防ぐことができ、 これにより、 一定した流量でラテックスを安定的に排出することができる。
ラテックス排出管の断面積が塔本体の断面積の 1 Z 1 0 0を超える場合は、 ラ テックス排出管内のラテックスの流速が遅く、 P V C粒子の沈降を招きやすい。 また、 1ノ 1 0 0 0より小さい場合は、 ラテックスの流速が過度に高く、 十分に ラテックス中の気泡を分離することができにく くなる場合がある。 ラテックス排 出管内のラテックスの流速は、 0 . 0 1〜 5 秒の範囲で運転されるのが好ま しい。
さらに、 ラテックスの見掛けの比重は、 ラテックス中に存在する気泡の量によ り変動するため、 この液封部の長さが 5 0 0 m mよりも短い場合は、 十分な液封 作用が得られず、 ラテックス中の気泡が液封部を適過して、 ラテックス抜出し槽 4に進入しやすくなり、 塔本体内の圧力変動を招く場合がある。 また、 液封部が 5 0 0 0 m mを超える場合は、 液封が過剰となり、 利点がない。 なお、 本発明で は、 ラテックス排出管の一部に U字シール管を用いた場合、 U字シール管によつ て構成される液封部の長さとは、 U字部の底部から頂部までの距離 (言い換えれ ば U字部の高さ) を言うものとする。
ラテックス抜出し槽に抜出されたラテックスは、 ポンプ 5により出口 3 9から 外部に排出される。
上述の液封部によって、 水蒸気がラテックス排出管を通じて塔外へ排出される ことを防ぐことができるため、 棚段上へ供給される水蒸気量が一定となり、 モノ マー除去が安定に行われる。 その結果、 一時的な水蒸気量の変動で細孔を通過す る水蒸気の線速度が低下することによる、 棚段の細孔からのラテックスの液漏れ を防止することができる。
塔本体内で除去されたモノマーガスは、 脱気口 1 7を通り消泡槽 6に導入され、 消泡板 3 5で消泡された後、 脱気用配管 3 8を通り、 凝縮器 7で冷却後、 凝縮水 分離槽 8に送られる。 この凝縮水分離槽では凝縮水が気体から分離され、 残りの 気体は減圧ポンプ 9を経て、 気体液化回収工程へ移送され、 ここで回収されたモ ノマ一は塩化ビニル重合工程へリサイクルされる。 なお、 凝縮水に塩化ビニルモ ノマ一が多く含まれる場合は、 凝縮水を塔本体に再び導入し、 モノマー除去を行 なってもよい。 本発明の装置および方法を用いれば、 特に塩化ビニル系重合体ラ テックス中の残留未反応モノマー濃度を、 効率よく 1 O p p m程度のレベルまで 低減することが可能である。 従来の一般的な装置、 方法では、 該残留未反応モノ マ一を 1 0 0 0 p p m程度に効率よく低減することさえ困難であった点を鑑みれ ば、 本発明で提供される装置および方法は、 環境基準が厳しく規制される昨今、 および将来において極めて有用である。
以下、 実施例および比較例を用いて本発明をより具体的に説明するが、 本発明 はこれによって限定されるものではない。 なお、 実施例および比較例における残 留モノマー濃度および粒径の測定は下記の方法で行なわれた。
( 1 ) 未反応モノマー除去処理後の重合体ラテックス中の残留モノマー濃度の測 定:
未反応モノマーを除去処理した直後の重合体ラテックスをラテックス排出管か らサンプリ ングし、 島津製作所製のガスクロマトグラフ 9 A (商品名) を用いた へッ ドスペース法でラテックス中の残留塩化ビニルモノマ一濃度を測定し、 この モノマー濃度と別途求めたラテックス中の樹脂分濃度より樹脂分当たりの残留モ ノマー濃度を計算した。 なお、 供給ラテックス中のモノマー濃度測定用は、 ラテ ックス供給ポンプ出口からラテックスをサンプリングして同様に行なつた。 測定条件は A S TM法の D 4 4 4 3に準じ、 検出部には F I Dを用いた。
(2) 重合体の平均粒径の測定:
堀場製作所製のレーザー回折/散乱式粒度分布測定装置 (商品名 : L A - 9 1 0) を用いてラテックス中の重合体粒子の平均粒径を求めた。
実施例 1
微細懸濁重合法で塩化ビニルを重合させた。 次いで重合反応を終了した塩化ビ ニル重合体ラテックスを、 ブローダウンタンクへ移送し、 さらに第 1図に示すラ テックス供給槽 1に移送した。
ラテックス供給槽 1内のラテックスは、 5 0. 0重量%の水分、 4 8. 5重量
%の塩化ビニル重合体を主とする固形分および 1. 5重量%の未反応塩化ビニル モノマーを含んでいた。 また、 塩化ビニル重合体粒子の平均粒径は 0. 9 ;zmで あった。 この重合体ラテックスを、 第 1図に示すような装置に供給して重合体ラ テックスから未反応モノマー除去した。 装置の仕様および運転条件は下記の通り であった。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 0 mm
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 0 mm
④ラテックス排出室 1 1の高さ : 3 0 0 0 mm
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 3 0 0 mm
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 3 0 0 mm ⑦消泡手段:消泡板 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に含む。 この U字部分が液封部となる。 液封部の長さ (U字部の底部から頂部まで) は 2 0 0 0 mm. 管径 は 2 0 mm。 ⑨ラテツクス排出管出口 3 0の位置 : ラテツクス抜出し槽 4内のラテツクス液面 下 2 0 0 0 mm
(2)運転条件および操作
①モノマー除去塔のラテツクスを導入する室の圧力: 0. 0 1 6 MP a ②水蒸気導入室への水蒸気の導入量: 5 K g/H r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K g/H r
④ラテックス排出室の棚板 2 2の細孔を通過する水蒸気の線速度: 4 3 m/秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 6 0 0 mm
⑥水蒸気導入室 1 2の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテック スの温度: 5 8 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 cmZ秒
減圧ポンプ 9を起動し、 塔内圧力を 0. 0 1 6MP aに調整した後、 モノマー 除去塔 1 4内に、 水蒸気を 5 KgZH rの流速で供給した。 また温水を、 塔内に 供給して、 塔内を予熱した。 塔内圧力、 水蒸気流量等が所定の設定値で安定した 後、 ラテックスをラテックス供給槽 1からポンプ 2によってラテックス導入口 1 6を通して塔内に供給した。 ラテックスは棚板 1 3上の処理通路を通過後、 溢流 管 2 3を通じて棚板 2 2に流下し、 さらに棚板 2 2の処理通路を通過し、 ラテツ クス排出管 2 9を通じて、 ラテックス抜出し槽 4に抜出された。 ラテックス排出 管 2 9は、 抜出し槽 4内のラテツクス液面下 2 0 0 0 mmの位置にラテックス排 出管出口 3 0が位置するように配置された。
(3)運転状況
運転中のモノマ—除去装置の状況は次の通りであつた。
①ラテックス排出室 1 1内の温度は所定値に安定に保たれ、
②凝縮水分離槽 8より排出された凝縮水中に重合体ラテツクスの混入がなく、 ③減圧ポンプ 9に重合体ラテックスが侵入せず、
④モノマー除去塔内の圧力変動がなく、 安定しており、
⑤ラテックス導入室 1 0の棚板 1 3の細孔よりラテックス排出室 1 1内に重合体 ラテックスが漏れることがなく、
⑥ラテックス排出室 1 1からラテックス抜出し槽 4にラテックスが連続して、 安 定した流量で排出され、 しかも
⑦順調に 3 0日間連続運転できた (なお、 3 0日以上の運転は可能であつたが、 塔内観察のため停止した) 。
(4)モノマー除去後のラテックスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によって排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0. 9 //mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマ一濃度は、 樹脂ベースで 2 0 O p pmであった。
なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったが、 棚板 2 2上 には、 ラテックス重合体の凝集物等のスケールは存在せず、 塔内壁は金属光沢を 残していた。
実施例 2
第 1図の装置において次の様な装置仕様、 運転条件で、 実施例 1のラテックス を同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O mm
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 0 mm
④ラテックス排出室 1 1の高さ : 3 0 0 0 mm
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 2 0 0 mm
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 2 0 0 mm
⑦消泡手段:なし
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ (U字部の底部から頂部まで) は 2 0 0 0 mm, 管径 は 2 0 mm。
⑨ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
(2)運転条件 ①モノマー除去塔のラテツクスを導入する室の圧力 : 0. 0 1 6 MP a
②水蒸気導人室への水蒸気の導入量: 5 K g/H r
③ラテックス導入室への重合体ラテツタスの供給量: 6 0 K g/H r
④ラテックス排出室の棚板 2 2の細孔を通過する水蒸気の線速度: 4 3 m/秒 ⑤棚段 1 3、 2 2上のラテックスの液深の総計: 4 0 0 mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 5 7 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 c mZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであった。
①ラテックス供給室棚板 1 3の細孔よりラテックス排出室 1 1内に重合体ラテツ クスが洩れることはなく、
②ラテックス排出室 1 1からラテックス抜出し槽 4にラテックスが連続的に、 安 定した流量で排出されたが、
③凝縮水分離槽 8より排出された凝縮水中に、 重合体ラテックスの混入が観察さ れ、
④減圧ポンプ 9に重合体ラテックスが侵入し、 減圧ポンプが不調となる現象が見 られたが、 2 4時間の連続運転が可能であった。
(4)モノマ一除去後のラテックスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によって排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0.
9〃mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマー濃度は、 樹脂ベースで 3 5 0 p pmであった。
なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったが、 棚板 2 2上 には、 ラテックス重合体の凝集物は存在せず、 塔内壁は金属光沢を残していた。 実施例 3
棚段が 3段である他は第 1図と同じ装置において次の様な装置仕様、 運転条件 で、 実施例 1のラテックスを同実施例と同じ操作手順で処理した。
(1)装置仕様 ①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O mm
②棚板の数: 3段
③ラテックス導入室 1 0の高さ : 3 0 0 O mm
④ラテックス導入室と排出室の間に位置する室の高さ : 2 0 0 O mm
⑤ラテックス排出室 1 1の高さ : 2 0 0 O mm
⑥ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 1 0 O mm
⑦ラテックス導入室と排出室の間に位置する室の棚板上に設置された溢流壁の高 さ : 1 0 0 mm
⑧ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 1 0 O mm ⑨消泡手段:消泡板 3 5
⑩ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ (U字部の底部から頂部まで) は 2 0 0 0 mm, 管径 は 2 0 mm。
⑪ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
(2)運転条件
①モノマー除去塔のラテツクスを導入する室の圧力: 0. 0 1 6 MP a
②水蒸気導入室への水蒸気の導入量: 5 K gZH r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K gZH r
④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 4 3m/秒
⑤各段 (3段) の棚段上のラテックスの液深の総計: 3 0 O mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 6 0 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 c mZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであった。
①ラテックス排出室 1 1内の温度は所定の設定値に安定に保たれ、
②凝縮水分離槽 8より排出された凝縮水中に重合体ラテツクスの混入がなく、 ③減圧ポンプ 9に重合体ラテックスが侵入せず、
④モノマー除去塔内の圧力変動がなく、 安定しており、
⑤ラテックス導入室棚板 1 3の細孔より重合体ラテックスが漏れることがなく、
⑥ラテックス排出室 1 1からラテックス抜出し槽 4にラテックスが連続的に、 安 定した流量で排出され、 しかも
⑦順調に 3 0日間連続運転できた (なお、 3 0日以上の運転は可能であつたが、 塔内観察のため停止した) 。
(4)モノマー除去後のラテックスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によって排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0 . 9 / mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマ一濃度は、 樹脂ベースで 2 0 p p mであった。
なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったが、 棚板 2 2上 には、 ラテックス重合体の凝集物等のスケールは存在せず、 塔内壁は金属光沢を 残していた。
実施例 4
第 1図の装置において次の様な装置仕様、 運転条件で、 実施例 1のラテックス を同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 0 m m
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 0 m m
④ラテックス排出室 1 1の高さ : 3 0 0 0 m m
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 1 5 0 m m ⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 1 5 0 m m
⑦消泡手段:消泡扳 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ ( U字部の底部から頂部まで) は 2 0 0 0 m m , 管径 ⑨ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. 0 2 0MP a
②水蒸気導入室への水蒸気の導入量: 6. 7 K g/H r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K gZH r
④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 4 3mZ秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 3 0 0 mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 6 3 °C
⑦ラテックス排出管内でのラテックスの流速: 4. S c mZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであつた。
①ラテックス排出室 1 1内の温度は所定の設定値に安定に保たれ、
②凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスの混入がなく、
③減圧ポンプ 9に重合体ラテックスが侵入せず、
④モノマー除去装置内の圧力変動がなく、 安定しており、
⑤ラテックス供給室棚板 1 3の細孔よりラテックス排出室内に重合体ラテックス が漏れることがなく、
⑥ラテックス排出室 1 1からラテックス抜出し槽 4にラテックスが連続的に、 安 定した流量で排出され、 しかも
⑦順調に 3 0日間連続運転できた (なお、 3 0日以上の運転は可能であつたが、 塔内観察のため停止した) 。
(4)モノマー除去後のラテックスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によって排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0.
9 / mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマ—濃度は、 樹脂ベースで 3 0 p pmであった。
2 0 なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったが、 棚板 2 2上 には、 ラテックス重合体の凝集物等のスケールは存在せず、 塔内壁は金属光沢を 残していた。
実施例 5
棚段が 1段である他は第 1図と同じ装置において次の様な装置仕様、 運転条件 で、 実施例 1のラテツクスを同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O mm
②棚板の数: 1段
③ラテックス導入室 1 0の高さ : 7 0 0 0 mm
*棚段 1段のためラテックス導入室がラテックス排出室を兼ねる。
④ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 1 5 0 mm
⑤消泡手段:なし
⑥ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ
(U字部の底部から頂部まで) は 2 0 0 0 mm. 管径 は 2 0 mm。
⑦ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. 0 1 6 MP a
②水蒸気導入室への水蒸気の導入量: 5 K gZH r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K g/H r
④ラテックス排出室 (ラテックス導入室を兼ねる) の棚段 1 3の細孔を通過する 水蒸気の線速度: 4 3 m/秒
⑤棚段 1 3上のラテックスの液深: 1 5 0 mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室 (ラテックス導入室を兼ねる) の棚段 1 3) 上のラテックスの温度: 5 5°C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 cm/秒 (3)運転状況
運転中のモノマー除去装置の状況は次の通りであった。
①ラテックス排出室 1 1内の温度は所定の設定値に安定に保たれ、
②凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスの混入がなく、 ③減圧ポンプ 9に重合体ラテックスが侵入せず、
④モノマー除去装置内の圧力変動がなく、 安定しており、
⑤ラテックス導入室の棚板 1 3の細孔より、 水蒸気導入室内に重合体ラテックス が漏れることがなく、
⑥ラテックス導入室が兼ねるラテックス排出室からラテックス抜出し槽 4にラテ ックスが連続的に、 安定した流量で排出され、 しかも
⑦順調に 3 0日間連続運転できた (なお、 3 0日以上の運転は可能であつたが、 塔内観察のため停止した) 。
(4)モノマー除去後のラテックスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によって排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0 . 9 /z mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマ一濃度は、 樹脂ベースで 3 0 0 p p mであった。
なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったが、 棚板 2 2上 には、 ラテックス重合体の凝集物等のスケールは存在せず、 塔内壁は金属光沢を 残していた。
比較例 1
第 1図の装置において次の様な装置仕様、 運転条件で、 実施例 1のラテックス を同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 0 m m
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 2 0 0 0 m m
④ラテックス排出室 1 1の高さ : 2 0 0 0 m m
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 1 0 0 0 m m (したがって、 室の高さ Z溢流壁の高さ = 2 )
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 1 0 0 O mm
(したがって、 室の高さ/溢流壁の高さ = 2)
⑦消泡手段:消泡板 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ (U字部の底部から頂部まで) は 2 0 0 0 mm, 管径 は 2 0 mm。
⑨ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. 0 1 6 MP a
②水蒸気導入室への水蒸気の導入量: 5 K g/H r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K gZH r
④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 4 3mZ秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 2 0 0 O mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 5 9 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 cmZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであった。
①運転開始後にラテックス排出室内に泡が密に充満し、
②ラテックス導入室にて発生した泡が、 消泡板を備えた消泡槽内に密に充満し、
③ラテックス排出室 1 1内の棚段 2 2上のラテックスの温度が 9 2°Cへ上昇し、 ④凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスが混入し、
⑤減圧ポンプ 9に重合体ラテックスが侵入し、
⑥モノマー除去装置内の圧力が変動し、
⑦ラテックス排出室からラテックス抜出し槽へのラテックス排出量が減少し、
⑧運転開始 1時間後に減圧ポンプ 9の運転が不調となり、 ⑨モノマー除去塔 1 4内の圧力と温度が上昇して装置の運転が不能になった。 運転不調によりラテツクス抜出し槽ヘラテツクスが排出されなかったので、 モ ノマ一除去後のラテックスの品質評価を実施できなかった。
また、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったところ、 棚板 2 2上には、 ラテックス重合体の凝集物が、 8 mm堆積しており、 塔内壁を薄いラ テックスの膜が覆っていた。
比較例 2
第 1図の装置において次の様な装置仕様、 運転条件で、 実施例 1のラテックス を同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O mm
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 O mm
④ラテックス排出室 1 1の高さ : 3 0 0 0 mm
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 3 0 0 mm
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 3 0 0 mm
⑦消泡手段:消泡板 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ (U字部の底部から頂部まで) は 2 0 0 0 mm、 管径 は 2 0 m m。
⑨ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
⑩ラテックス導入室における塔本体断面積 Z細孔合計面積 = 4 8
⑪ラテックス排出室における塔本体断面積/細孔合計面積 = 4 1
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. 0 1 6 MP a
②水蒸気導入室への水蒸気の導入量: 2 4. 0 K g/H r
③ラテツクス導入室への重合体ラテックスの供給量: 6 0 K gZH r
2 A ④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 4 3 m Z秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 6 0 0 m m
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2 ) 上のラテックスの 温度: 6 2 °C
⑦ラテックス排出管内でのラテックスの流速: 4 . 6 c m Z秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであつた。
①運転開始後にラテックス排出室内に泡が密に充満し、
②ラテックス導入室にて発生した泡が、 消泡槽内に密に充満し、
③ラテックス排出室 1 1内の棚段 2 2上のラテックスの温度が 9 5 °Cへ上昇し、
④凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスが混入し、
⑤減圧ポンプ 9に重合体ラテックスが侵入し、
⑥モノマー除去装置内の圧力が変動し、
⑦ラテックス排出室からラテックス抜出し槽へのラテックス排出量が減少し、
⑧運転開始 1時間後に減圧ポンプ 9の運転が不調となり、
⑨モノマー除去塔 1 4内の圧力と温度が上昇して装置の運転が不能になった。 装置の運転不調によりラテックス抜出し槽へラテックスが排出されなかったの で、 モノマー除去後のラテックスの品質評価を実施できなかった。
また、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったところ、 棚板 2 2上には、 ラテックス重合体の凝集物が、 8 m m堆積しており、 塔内壁を薄いラ テックスの膜が覆っていた。
比較例 3
第 1図の装置において次の様な装置仕様、 運転条件で、 実施例 1のラテックス を同実施例と同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O m m
②棚板の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 O m m
④ラテックス排出室 1 1の高さ : 3 0 0 0 m m ⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 3 0 O mm
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 3 0 O mm
⑦消泡手段:消泡板 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ
(U字部の底部から頂部まで) は 2 0 0 0 mm, 管径 は 2 0 mm。
⑨ラテックス排出管出口 3 0の位置: ラテックス抜出し槽 4内のラテックス液面 下 2 0 0 0 mm
⑩ラテックス導入室における塔本体断面積 Z細孔合計面積 = 1 1 4 4
⑪ラテックス排出室における塔本体断面積/細孔合計面積 = 1 1 4
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. 0 1 6MP a
②水蒸気導入室への水蒸気の導入量: 1. 8 K gZH r
③ラテックス導入室への重合体ラテックスの供給量: 6 0 K gZH r
④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 9 3mZ秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 6 0 0 mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 5 7 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 cmZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであった。
①ラテックス排出室内に泡がほとんど立たず、
②ラテックス導入室にて発生した泡が、 消泡槽内に密に充満せず、
③凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスが混入せず、
④減圧ポンプ 9に重合体ラテックスが侵入せず、
⑤ラテックス排出室 1 1内の棚段 2 2上のラテックスの温度が 7 1 °Cへ上昇し、
⑥運転開始 5時間後よりラテックス排出室からのラテックスの排出量が徐々に減 少し、 8時間後に排出されなくなつたため運転を停止した。 (4)モノマー除去後のラテツクスの品質
ラテックス抜出し槽 4よりラテックス排出ポンプ 5によつて排出された重合体 ラテックス中の重合体粒子の平均粒径は、 モノマー除去処理前後で変化がなく 0. 9 //mであり、 ラテックス中に凝集物は存在しなかった。 また残留塩化ビニルモ ノマ一濃度は、 樹脂ベースで 1 5 0 0 O p pmであった。
なお、 運転終了後に、 ラテックス排出室 1 1内の観察を行ったところ、 棚板 2 2上には、 ラテックス重合体の凝集物等のスケールが 1 5 mm存在していた。 比較例 4
図 1の装置において次の様な装置様式、 運転条件にて、 実施例 1のラテックス を同じ操作手順で処理した。
(1)装置仕様
①モノマー除去塔本体 1 4の内径 (棚板の直径) : 3 0 O mm
②棚段の数: 2段
③ラテックス導入室 1 0の高さ : 4 0 0 O mm
④ラテックス排出室 1 1の高さ : 3 0 0 0 mm
⑤ラテックス導入室の棚板 1 3上に設置された溢流壁 2 0の高さ : 3 0 0 mm
⑥ラテックス排出室の棚板 2 2上に設置された溢流壁 2 7の高さ : 3 0 0 mm
⑦消泡機構:消泡槽 6内消泡板 3 5
⑧ラテックス排出管 2 9 :図 1のように U字の形状を有する U字シール管を一部 に使用。 この U字部分が液封部となる。 液封部の長さ
(U字部の底部から頂部まで) は 2 0 0 0 mm. 管径 は 2 0 mm。
⑨排出管 2 9の抜出し槽 4内への挿入位置:液面下 2 0 0 0 mm
(2)運転条件
①モノマー除去塔のラテックスを導入する室の圧力: 0. I MP a
②水蒸気導入室への水蒸気の導入量: 2 9. 0 K g/H r
(なお、 この水蒸気量は、 実施例 1のラテックス排出室細孔の水蒸気線速度 (4 3 mZ秒) と同等の線速度を 0. 1 MP aの条件下で得るために必要な量で ある。 ) ③ラテツクス導入室への重合体ラテツクスの供給量: 6 0 K gZH r
④ラテックス排出室の棚段 2 2の細孔を通過する水蒸気の線速度: 4 3 mZ秒
⑤棚段 1 3、 2 2上のラテックスの液深の総計: 6 0 O mm
⑥水蒸気導入室の直上の棚段 (ラテックス排出室の棚段 2 2) 上のラテックスの 温度: 1 0 2 °C
⑦ラテックス排出管内でのラテックスの流速: 4. 6 cmZ秒
(3)運転状況
運転中のモノマー除去装置の状況は次の通りであつた。
①運転開始後にラテツクス排出室内に泡が充満し、
②ラテックス導入室にて発生した泡が、 消泡槽内に進入し、
③凝縮水分離槽 8より排出された凝縮水中に重合体ラテックスが混入せず、
④減圧ポンプ 9に重合体ラテックスが侵入せず、
⑤ラテックス排出室 1 1内の棚段 2 2上のラテックスの温度がさらに 1 0 5°Cへ 上昇し、 塔内圧力も 0. 1 2 3MP aへ上昇した。
⑥ラテックス排出室からラテックス抜出し槽へのラテックスの排出量が減少し、 2時間後にラテックスの排出がなくなつたため運転を停止した。
装置の運転不調により、 ラテックス抜出し槽ヘラテックスが排出されなかった ので、 モノマー除去後のラテックスの品質評価を実施できなかった。
また、 運転終了時に、 ラテックス排出室 1 1内の観察を行ったが、 棚段 2 2上 には、 ラテックス重合体の粘土状の凝集物が 6 0 mm堆積しており、 塔内壁を厚 いラテックスの膜が覆っていた。
実施例および比較例における処理条件および得られた結果をまとめて表 1に示 す。 表 1— 1
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 処理前の 塩化ビニル重合体濃度 (重量 48.5 48.5 48.5 48.5 48.5 ラテックスの 処理量 (Kg/h) 60 60 60 60 60 残留 V CM濃度 (ppm/樹脂) 32000 32000 32000 32000 32000 重合体平均粒径 ( ) 0.9 0.9 0.9 0.9 0.9 棚段の数 2 2 3 2 1 ラテックス排出管液封部の長さの総計 4000 4000 4000 4000 4000 ラテックス排出管 Uシール管の液封部の長さ(mm) ι 2000 2000 2000 2000 2000 ラテックス排出管出口液 ffiT位置 (mm) : 2000 2000 2000 2000 2000 消泡槽の有無 設置 無し 設置 設置 無し 塔本体内径 (mm) 300 300 300 300 300 水蒸気供 (重量) ( g/Hr) 5.0 5.0 5.0 6.7 5.0
7K蒸気供給量 (W (raVHr) 47.9 47.9 47.9 51.5 47.9 ラテックス排出室細孔の水蒸 度(ra/秒) 43 43 43 43 43 水蒸気空塔 ¾S (m/秒) 0.23 0.23 0.23 0.24 0.23 塔本体内部圧力 (MPa) 0.016 0.016 0.016 0.020 0.016 ラテックス 室の高さ Onra) 4000 4000 3000 4000 7000 導入室の 盆流壁の高さ(mm) 300 200 100 150 150 室の高さ/ ¾ί¾の高さ 13 20 30 27 47 細孔直径 1.7 1.7 1.7 1.7 1.7 細孔個数 137 137 137 147 137 細孔合計菌 311 311 311 334 311 断臓/細孔合計画 227 227 227 212 227 ラテックス 至の 1¾さ 2000
導入室と ¾ISの高さ 100
排出室の 室の高さ/益 ¾Sの高さ 20
間に位置 細孔直径 1.7
する室の 細孔個数 110
細孔合計鹏 250
断丽貴/細孔合計臓 283
ラテックス 室の高さ 3000 3000 2000 3000
排出室の ¾Mの高さ(mm) 300 200 100 150
室の高さ/ の高さ 10 15 20 20 細孔直径 (mm) 1.7 1.7 1.7 1.7 細孔個数 110 110 110 138 細孔合計 ®« 250 250 250 312 断臓 細孔合計醒 283 283 283 226 ラテックスお出室のラテックス' CO 58 57 60 63 55 ラテックス導 λ¾中の泡高さ 00 100 100 100 100 90 中間に位置する室中の泡高さ (%) —— 85
ラテックス排出室中の泡高さ (» 85 80 80 75
処理後の 残留 V CM鍵(ppm/樹脂) 200 350 20 30 300 ラテックスの 重合体平均粒径( m) 0.9 0.9 0.9 0.9 0.9 凝集水分離槽 \のラテックスの Αλ 無し 有り 無し 無し 無し
SEポンプ 9内へのラテックスの Λλ 無し 有り 無し 無し 無し 棚段 22上の凝*¾3の堆積 無し 無し 無し 無し 無し 運転時間 30曰 2 時間 30曰 £(± 30曰 J¾± 30曰 J: 表 1一 2
比較例 1 ί 比較例 2 比較例 3 比較例 4 処理前の 塩化ビニル重合体濃度 (重量 ¾) ; 48.5 ! 48.5 48.5 48.5 ラテックスの 処理量 (Kg/h) 60 60 60 60
残留 V CM濃度 (ppm/樹脂) 32000 32000 32000 32000 重合体平均粒径 ( m) ! 0.9 0.9 0.9 0.9 棚段の数 2 2 2 2 ラテックス排出管液封部の長さの総計 (懇) 4000 4000 4000 4000 ラテックス排出管 Uシール管の液封部の長さ(mm): 2000 2000 2000 2000 ラテックス排出管液 S 位置 ί 2000 2000 2000 2000 消泡槽の有無 設置 設置 設置 設置 塔本体内径 300 300 300 300 水蒸気供 (重量) (Kg/Hr) 5.0 24.0 1.8 29.0 水蒸気供給量 (体積) (mVHr) 47.9 229.7 17.2 48.4 ラテックス排出室細孔の水蒸 度 (m/秒) 43 43 93 43 水蒸気空塔避 (m/秒) 0.23 1.06 0.08 0.22 塔本体内部圧力 (MPa) 0.016 0.016 0.016 0.100 ラテックス 室の高さ(Ifflll) 2000 4000 4000 4000 導 λ¾の の高さ 1000 300 300 300
室の高さ/益 SUMの高さ 2 13 13 13 細孔直径 1.7 2.0 1.1 1.7 細孔個数 137 470 65 137 細孔合計 ®« 311 1477 62 311 断醒,細孔合計醒 227 48 1144 227 ラテックス 至'の! ¾さ ノ
導 λ¾と の高さ(mm)
排出室の 室の高さ/ の高さ
間に位置 細孔直径
する室の 細孔個数
細孔合計癒
断 ©»/細孔合計臓
ラテックス 室の高さ 2000 3000 3000 3000 排出室の の高さ(mm) 1000 300 300 300
室の高さ の高さ 2 10 10 10 細孔直径 1.7 2.0 1.1 1.7 細孔個数 110 550 65 110 細孔合計 B« 250 1728 62 250 断 S«/細孔合計臓 283 41 1144 283 ラテックス t ϋ室のラテックス S¾ CC) 59 → 92 62 → 95 57 → 71 102 → 105 ラテックス導 λ¾中の泡高さ (¾) 100 100 15 100 中間に位置する室中の泡高さ (%)
ラテックス お室中の泡高さ (¾) 100 100 20 98 処理後の 残留 V CM離 (ppra/樹脂) サンブリンク不口」' サンブリンクイ、。」 15000 サンブリンクイ、口」 ラテックスの 重合体平均粒径 (urn) サンプリンクイ、口」 サンプリングお! 0.9 サンブリング 凝 分離槽へのラテックスのお 有り 有り 無し 無し 減圧ポンプ 9内へのラテックスの ftA 有り 有り 無し 無し 棚段22上の凝集物の堆積 有り(8 有り(8 有り(15 有り(60 運転時間 1時間 1時間 8時間 1時間 産業上の利用可能性
本発明の装置を使用すれば、 重合体ラテックス中に存在する未反応モノマーを、 消泡剤を使用しない場合においてさえ高い効率で除去することができる。 本発明 の装置は発泡性の高い塩化ビニル系重合体ラテックスから残留モノマーを除去す るのに特に好ましく使用できる。

Claims

請求の範囲
1 . 筒状の塔本体と、
多数の細孔を有し、 しかも該塔本体内に垂直方向に設けられた一つまたは複数 の棚段と、
該棚段上に設けられた区画壁および溢流壁と、
該棚段を底面としてその上に形成された室と、
少なくとも 1つの室に設けられたラテックス排出口と、
該ラテックス排出口より上部に設けられた少なくとも一つのラテックス導入口 と、
該塔本体内を減圧するために、 塔外部に設けられた減圧ポンプと連結され、 か っ該ラテックス導入口より上部に設けられた脱気口と、
前記ラテツクス排出口が設けられた室の底面を形成する棚段の下に設けられた 水蒸気導入口と
を有し、 該室の高さが該溢流壁の高さの 3〜 3 0 0倍であり、 しかも棚段が設け られた位置における該塔本体の断面積が該棚段に設けられた該細孔の合計面積の 5 0〜 1 0 0 0倍である、 未反応モノマーを含む重合体ラテックスから未反応モ ノマーを除去する装置。
2 . 該塔本体が複数の棚段と、 最下部の棚段上に形成された室に設けられたラテ ックス排出口と、 最下部の棚段より上部の棚段上に形成された室に設けられた少 なくとも一つのラテックス導入口と、 上部の棚段から下部の棚段へラテックスを 流下させるための流下部とを有する請求の範囲 1記載の装置。
3 . 該塔本体内に設けられた棚段の数が 1 〜 4である請求の範囲 1記載の装置。
4 . 各棚段上に設けられた該溢流壁の高さの総計が 2 5〜 1 5 0 O m mである請 求の範囲 1記載の装置。
5 . 該脱気口と該'减圧ポンプとの間および Zまたは該塔本体内に消泡手段を有す る請求の範囲 1記載の装置。
6 . 該消泡手段が消泡液添加装置、 水蒸気噴射装置、 破泡翼、 消泡板またはサイ クロンである請求の範囲 5記載の装置。
7 . 消泡されたラテックスを該消泡手段から該塔本体内に再び導入するラインを さらに有する請求の範囲 5記載の装置。
8 . 前記装置が前記ラテックス排出口に連結されたラテックス排出管を有し、 該 ラテックス排出管が液封部を有していることを特徴とする請求の範囲 1記載の装 置。
9 . 該ラテックス排出管を通して該ラテックス排出口に連結されたラテックス抜 出し槽をさらに有する請求の範囲 8記載の装置。
1 0 . 該ラテックス排出管の断面積が該塔本体の断面積の 1 Z 1 0〜 1 Z 1 0 0 0であり、 該液封部の長さの総計が 5 0 0〜5 0 0 0 m mである請求の範囲 8記 載の装置。
1 1 . 該液封部の少なくとも一部が U字シール管で構成されている請求の範囲 1 0記載の装置。
1 2 . 液封部の別の一部が、 前記ラテックス排出管の出口を該ラテックス抜出し 槽内に貯留されるラテックス液面下に位置するように設置されることによって構 成されている請求の範囲 1 1記載の装置。
1 3 . 該消泡手段が該塔本体内の最上部棚段と該脱気口との間に設けられている 請求の範囲 5記載の装置。
1 4 . 筒状の塔本体と,
多数の細孔を有し、 しかも該塔本体内に垂直方向に設けられた一つまたは複数 の棚段と、
該棚段上に設けられた区画壁および溢流壁と、
該棚段を底面としてその上に形成された室と、
少なくとも 1つの室に設けられたラテックス排出口と、
該ラテックス排出口より上部に設けられた少なくとも一つのラテックス導入口 と、
該塔本体内を減圧するために、 塔外部に設けられた減圧ポンプと連結され、 か っ該ラテックス導入口より上部に設けられた脱気口と、
前記ラテックス排出口が設けられた室の底面を形成する棚段の下に設けられた 水蒸気導入口と
を有し、 該室の高さが該溢流壁の高さの 3〜 3 0 0倍であり、 しかも棚段が設け られた位置における該塔本体の断面積が該棚段に設けられた該細孔の合計面積の
5 0〜 1 0 0 0倍である装置を使用し、 ラテックスを導入する室の圧力が 0. 0 0 4〜 0. 0 7 M P aであり、 各棚段上のラテックスの深さの総計が 2 5〜 1 5 0 O mmであるような条件下で該装置を運転する、 未反応モノマーを含む重合体 ラテックスから未反応モノマーを除去する方法。
1 5. 該水蒸気導入口が設けられた室の直上の棚段上を流動するラテックスの温 度が 3 0〜9 0°Cであるような条件下で該装置を運転する請求の範囲 1 4記載の 方法。
1 6. 前記ラテックス排出口が設けられた室の底面を形成する棚段に設けられた 細孔を通過する水蒸気の線速度が 1 0〜 1 0 O mZ秒であるような条件下で該装 置を運転する請求の範囲 1 4記載の方法。
1 7. 前記装置が、 ラテックス排出口に連結されたラテックス排出管を有してお り、 該ラテックス排出管内のラテックスの流速が 0. 0 l〜5 mZ秒であるよう な条件下で該装置を運転する請求の範囲 1 4記載の方法。
PCT/JP2000/002628 1999-04-22 2000-04-21 Dispositif et methode d'extraction de monomere non reagi d'un latex polymere WO2000064950A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00919147A EP1097947A4 (en) 1999-04-22 2000-04-21 DEVICE AND METHOD FOR REMOVING UNREACTED MONOMER FROM POLYMER LATEX

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11516899 1999-04-22
JP11/115168 1999-04-22

Publications (1)

Publication Number Publication Date
WO2000064950A1 true WO2000064950A1 (fr) 2000-11-02

Family

ID=14656036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002628 WO2000064950A1 (fr) 1999-04-22 2000-04-21 Dispositif et methode d'extraction de monomere non reagi d'un latex polymere

Country Status (5)

Country Link
EP (1) EP1097947A4 (ja)
KR (1) KR100429272B1 (ja)
CN (1) CN1137149C (ja)
TW (1) TW527368B (ja)
WO (1) WO2000064950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539066A (ja) * 2005-04-29 2008-11-13 アルファ ラヴァル コーポレイト アクチボラゲット 脱臭方法
JP2017516899A (ja) * 2014-05-28 2017-06-22 エルジー・ケム・リミテッド 脱去装置{stripping apparatus}
JP7541406B1 (ja) 2023-09-14 2024-08-28 株式会社コスモテック 蒸留処理装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572847B2 (ja) 2010-03-17 2014-08-20 株式会社Moresco シリンダライナ及びその製造方法
CN102120789B (zh) * 2010-07-12 2012-09-26 赛鼎工程有限公司 一种在合成氯丁橡胶过程中进行脱气的工艺
CN103920311B (zh) * 2014-03-08 2015-10-28 天伟化工有限公司 聚氯乙烯糊树脂生产中脱除泡沫中含有vc气体的方法
WO2015183006A1 (ko) * 2014-05-28 2015-12-03 주식회사 엘지화학 탈거 장치
CN106693448A (zh) * 2015-08-03 2017-05-24 安徽华明制药有限公司 一种乳剂制备过程中的消泡方法
CN105521628A (zh) * 2016-01-07 2016-04-27 永胜机械工业(昆山)有限公司 一种用于聚氯乙烯树脂生产的脱除塔
DE202017107262U1 (de) 2017-11-29 2017-12-13 Apex Mfg. Co., Ltd. Amboss eines Heftgeräts
US11976154B2 (en) 2020-01-21 2024-05-07 ExxonMobil Engineering & Technology Company Devolatilization apparatus and process
WO2021215750A1 (ko) * 2020-04-24 2021-10-28 주식회사 엘지화학 후처리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548693A (en) * 1977-06-21 1979-01-23 Chisso Corp Removal of monomer from vinyl chloride resin slurry by steam treatment using improved plate column
US4369092A (en) * 1979-08-01 1983-01-18 Chisso Corporation Process for removing monomer from vinyl chloride resin slurry by steam treatment and apparatus employed therefor
EP0084167A1 (de) * 1982-01-09 1983-07-27 Bayer Ag Verfahren zum Entmonomerisieren von Polymeraufschlämmungen
JPH06107723A (ja) * 1992-09-25 1994-04-19 Chisso Corp 塩化ビニル樹脂スラリーの水蒸気処理による残留ビニルモノマー含有量の低い樹脂粉体の製造方法及びその装置
EP0668134A2 (en) * 1994-02-07 1995-08-23 Chisso Corporation Method and tower for removing residual monomers
US5804039A (en) * 1995-08-04 1998-09-08 Chisso Corporation Method for removing residual monomers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2832972A1 (de) * 1978-07-27 1980-02-07 Wacker Chemie Gmbh Verfahren zur druck- und restentgasung eines pvc-wasser-gemisches im polymerisationsautoklaven bei hoechstmoeglichem abscheidegrad des uebertriebs in einem nachgeschalteten abscheider und rueckfuehrung des uebertriebs zur restentgasung in den polymerisationsautoklaven

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548693A (en) * 1977-06-21 1979-01-23 Chisso Corp Removal of monomer from vinyl chloride resin slurry by steam treatment using improved plate column
US4369092A (en) * 1979-08-01 1983-01-18 Chisso Corporation Process for removing monomer from vinyl chloride resin slurry by steam treatment and apparatus employed therefor
EP0084167A1 (de) * 1982-01-09 1983-07-27 Bayer Ag Verfahren zum Entmonomerisieren von Polymeraufschlämmungen
JPH06107723A (ja) * 1992-09-25 1994-04-19 Chisso Corp 塩化ビニル樹脂スラリーの水蒸気処理による残留ビニルモノマー含有量の低い樹脂粉体の製造方法及びその装置
EP0668134A2 (en) * 1994-02-07 1995-08-23 Chisso Corporation Method and tower for removing residual monomers
US5804039A (en) * 1995-08-04 1998-09-08 Chisso Corporation Method for removing residual monomers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1097947A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539066A (ja) * 2005-04-29 2008-11-13 アルファ ラヴァル コーポレイト アクチボラゲット 脱臭方法
JP2017516899A (ja) * 2014-05-28 2017-06-22 エルジー・ケム・リミテッド 脱去装置{stripping apparatus}
US10570223B2 (en) 2014-05-28 2020-02-25 Lg Chem, Ltd. Stripping apparatus
JP7541406B1 (ja) 2023-09-14 2024-08-28 株式会社コスモテック 蒸留処理装置

Also Published As

Publication number Publication date
EP1097947A4 (en) 2003-03-19
TW527368B (en) 2003-04-11
EP1097947A1 (en) 2001-05-09
CN1137149C (zh) 2004-02-04
CN1310726A (zh) 2001-08-29
KR100429272B1 (ko) 2004-04-29
KR20010053137A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
WO2000064950A1 (fr) Dispositif et methode d'extraction de monomere non reagi d'un latex polymere
TWI381874B (zh) 供含有聚合物之液體用的靜態去揮發作用裝置
JP6207636B2 (ja) 揮発成分除去装置及びその使用のためのプロセス
EP1362069B1 (en) Process using condensing mode in fluidized beds, with liquid phase enrichment and bed injection
JP3724012B2 (ja) 残留モノマー除去装置およびそれを用いる残留モノマー除去方法
US4483747A (en) Monomer removal from the slurry of vinyl chloride resin with steam by using improved plate tower
US6211331B1 (en) Polymer devolatilization apparatus
US7682484B2 (en) Apparatus and method for removing volatile components from viscous liquids
JP3966560B2 (ja) 重合体ラテックスから未反応モノマーを回収する方法
KR20110101663A (ko) 폴리부타디엔 라텍스 제조방법
CN111918884B (zh) 残留单体除去装置
KR100573374B1 (ko) 염화비닐계 페이스트 수지 라텍스의 소포방법
CN115023275B (zh) 托盘型蒸馏设备
WO1990010653A1 (en) Method or removing volatile substances and apparatus therefor
EP2658628B1 (en) Process for the depressurization of fluids and device suitable for the purpose
JPH11100410A (ja) 塩化ビニル重合体ラテックスからの未反応モノマー回収操作方法
JP3645417B2 (ja) 液体の移送方法
RU2135841C1 (ru) Способ работы вакуумсоздающей насосно-эжекторной установки и устройства для его реализации
JP4257006B2 (ja) 塩化ビニル系ペースト樹脂ラテックスの製造方法および製造装置
JP2002363204A (ja) 重合方法およびジエン系重合体の製造方法
AU8979598A (en) Method for reducing the formation of foam during the treatment of a dispersion or a liquid with water vapour
EP0797471A1 (en) A condenser cooling and temperature control system
AU2002243855A1 (en) Processing using condensing mode in fluidized beds, with liquid phase enrichment and bed injection
JPH07330811A (ja) 重合反応方法
TH53650B (th) อุปกรณ์และวิธีขจัดโมโนเมอร์ที่เหลือจากการทำปฏิกิริยาออกจากโพลิเมอร์ลาเท็กซ์

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800974.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007014681

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000919147

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000919147

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007014681

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007014681

Country of ref document: KR