WO2000063412A1 - HETEROPOLYSACCHARIDE PRODUIT PAR UN $i(PSEUDOMONAS SP) - Google Patents

HETEROPOLYSACCHARIDE PRODUIT PAR UN $i(PSEUDOMONAS SP) Download PDF

Info

Publication number
WO2000063412A1
WO2000063412A1 PCT/FR2000/000907 FR0000907W WO0063412A1 WO 2000063412 A1 WO2000063412 A1 WO 2000063412A1 FR 0000907 W FR0000907 W FR 0000907W WO 0063412 A1 WO0063412 A1 WO 0063412A1
Authority
WO
WIPO (PCT)
Prior art keywords
heteropolysaccharide
salts
fermentation
medium
weight
Prior art date
Application number
PCT/FR2000/000907
Other languages
English (en)
Inventor
Sophie Vaslin
Alain Senechal
Paule Chevallereau
Jean-Luc Simon
Robert Cantiani
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to EP00917172A priority Critical patent/EP1173601B1/fr
Priority to DE60006511T priority patent/DE60006511T2/de
Priority to CA002370194A priority patent/CA2370194C/fr
Priority to AT00917172T priority patent/ATE254182T1/de
Priority to BR0009789-6A priority patent/BR0009789A/pt
Priority to US09/958,673 priority patent/US7078198B1/en
Priority to JP2000612489A priority patent/JP3734711B2/ja
Priority to AU38270/00A priority patent/AU3827000A/en
Publication of WO2000063412A1 publication Critical patent/WO2000063412A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/20Cream substitutes
    • A23L9/22Cream substitutes containing non-milk fats but no proteins other than milk proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/40Foaming or whipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to a new heteropolysaccharide (HP), its process for the preparation by fermentation of a Pseudomonas sp I - 2054 (or DSM 12295) strain, said strain, and the uses of this heteropolysaccharide as a thickening agent and / or gelling agent.
  • HP heteropolysaccharide
  • the food industry offers a wide range of gelled products (creams, yogurts, various jellies, ice creams, etc.), the pharmaceutical industry uses gels as carriers for active ingredients or thickening agents.
  • Aqueous gels are also used as chromatographic supports or even for the development of contact lenses.
  • Heteropolysaccharides of bacterial origin such as xanthan gum
  • xanthan gum have already been described and used for their effective rheological properties under extreme temperature and pH conditions.
  • these heteropolysaccharides which are suitable in solution applications do not always lead to gels.
  • this gelation is brought about by adding additional cations, in particular of alkaline or alkaline-earth type (for example calcium and / or magnesium), to the medium, by switching from pH to acidic or basic pHs, by adding a another compound, in particular another poiysaccharide (for example the combination of xanthan and carob), or by modification of the temperature.
  • alkaline or alkaline-earth type for example calcium and / or magnesium
  • a another compound in particular another poiysaccharide (for example the combination of xanthan and carob), or by modification of the temperature.
  • gel in the context of the present invention, is meant a pseudo-solid (behavior close to the solid), resulting from the association, at least partially, of heteropolysaccharide chains dispersed in a liquid.
  • pseudo-solid gels are generally characterized with regard to their solid component by an elastic module G '( ⁇ ) also called conservation module, and with regard to their liquid or viscous component by a viscous module G “( ⁇ ) also called loss module.
  • the mechanical quantities G '( ⁇ ) and G" ( ⁇ ) can be measured using an imposed deformation rheometer and operating in oscillatory mode. As an indication and not limiting, one can quote for example a Rheo-Fluid Spectrometer®.
  • G 'and G can also be measured on a rheometer constraint operating in oscillatory mode.
  • a rheometer CARRrMED ® As an indication, there may be mentioned for example a rheometer CARRrMED ®.
  • the principle of the measurement consists in first determining the area of reversible mechanical deformation in which the response of the gel to mechanical stress is linear as a function of said deformation. In a second step, the gel is subjected to a fixed value of mechanical deformation included in the linear range previously determined. It is then that the rheometer performs a frequency sweep ⁇ .
  • the stress response of the gel which is in phase with the deformation gives access to the elastic modulus G '( ⁇ ).
  • G '( ⁇ ) corresponds to the energy stored by the gel in elastic form and is recoverable.
  • the stress response of the gel which is 90 ° out of phase with the deformation gives access to the viscous module G "( ⁇ ).
  • G" ( ⁇ ) corresponds to the energy dissipated by the viscous flow and is unrecoverable.
  • a gel is said to be strong or true when in the entire frequency domain of stress ( ⁇ ) swept the ratio G '/ G "is greater than or equal to 10, that is to say when the elasticity of the gel remains strong and when the value of G '(co) is greater than or equal to 10 Pa.
  • the present invention specifically aims to provide heteropolysaccharides which have very good rheological properties, in particular in terms of thickening and pseudo-plastic (shear-thinning) properties as well as the ability to lead to true gels without adding additional cations to the medium, without tilting the pH, and this at temperatures below or equal to 40 ° C.
  • the present invention also aims to provide a heteropolysaccharide having very good rheological properties at low concentrations.
  • the present invention firstly relates to a heteropolysaccharide (HP) characterized in that it is capable of being obtained by fermentation of a medium comprising at least one strain Pseudomonas sp I - 2054 (or DSM 12295), one of its recombinants , or one of its mutants, and a source of carbon assimilable by said strain, one of its recombinants, or one of its mutants.
  • HP heteropolysaccharide
  • the Pseudomonas sp strain was deposited in accordance with the Budapest Treaty, with the National Collection of Culture of Microorganisms (CNCM), on July 22, 1998, where it is publicly accessible under the number I - 2054. It has also been deposited with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), on July 13, 1998, where it is publicly available under the number DSM 12295. This strain constitutes one of the objects of the invention.
  • the pure culture of Pseudomonas sp I - 2054 (or DSM 12295), which constitutes another aspect of the present invention, can be carried out in a petri dish incubated at a temperature between 25 ° C and 30 ° C, and more particularly understood between 25 ° C and 28 ° C, for about 24 hours.
  • the sources of carbon and nitrogen assimilable by Pseudomonas sp I - 2054 can be chosen from glucose, fructose, galactose, trehalose, mannose, melobiose, saccharose, raffinose, maltotriose, maltose.
  • lactose lactose, lactulose, methyl- ⁇ -galactopyranoside, methyl- ⁇ -galactopyranoside, cellobiose, gentobiose, methyl- ⁇ -D-glucopyranoside, methyl- ⁇ -D-glucopyranoside, esculin, ribose , arabinose, xylose, palatinose, rhamnose, fucose, melezitose, D (+) arabitol.
  • L (-) arabitol, xylitol, dulcitol. tagatose, glycerol, myo-innositol, mannitol. maltitol, turanose.
  • sorbitol adonitol, lyxose, erythritol, D (-) tartrate, D (+) malate.
  • maintenance medium of the MY agar type from Difco (reference 0712-01-8) is considered to be particularly advantageous.
  • Said MY agar medium from Difco has the following composition: 3 bacto-yeast extract 3 g
  • stage of preculture For the conservation of the strain, it is preferable to envisage at least one stage of preculture.
  • stage of preculture one understands a stage which consists in developing and multiplying the bacterial strain, without production of polysaccha ⁇ de
  • the heteropolysaccharide (HP) comprises units of glucose and / or its derivatives, galactose and / or its derivatives, mannuronic acid and / or its salts, acetic acid and / or its salts
  • the constituent units of the heteropolysaccharide (HP) are generally present in the following molar proportions, taking galactose equal to 1 as reference
  • said patterns are present in the following molar proportions, taking galactose equal to 1 as a reference.
  • Mannuronic and acetic acids may be in the form of salts.
  • salts mention may be made of sodium, potassium, calcium or ammonium salts.
  • heteropolysaccharide (HP) The methods of analysis of the heteropolysaccharide (HP) which have made it possible to determine its crude formula as specified above have for principle the determination of the constituent elements (monosaccharides and acids) after hydrolysis of said heteropolysaccharide (HP) and chromatographic assays by internal or external calibration
  • the dosage of monosaccha ⁇ des was carried out in the following manner 100 mg of heteropolysaccharide (HP) are hydrolyzed in hermetic tubes with 5 ml of t ⁇ fluoroacetic molar acid at 105 ° C for three to six hours
  • the assay of the monosaccha ⁇ des is then carried out by gas chromatography with FID detection (Flame Ionization Detection), on a capillary glass column 25 meters in length and 0.25 mm in diameter, charged with phase. methylsilicone having a film thickness of 0.14 microns
  • the carrier gas used is hydrogen, with a flow rate of 2 ml / minute
  • the dosage of acetic acid is carried out after hydrolysis of 100 mg of heteropolysaccharide (HP) with 5 ml of 2N hydrochloric acid at 105 ° C for one hour Then 5 ml of a 5% propionic acid solution are added mg / ml as internal standard and complete with 15 ml of demineralized water
  • the assay is carried out by HPLC using a column of grafted C-18 silica 5 microns long 250 cm and diameter 4.6 mm
  • the eluent is an aqueous solution of phospho ⁇ que acid 0.02 mol / l at a flow rate of 1.2 ml / minute
  • the detection is refractometric
  • the mannuronic acid is measured by means of the CO 2 released by the decarboxylationsuite following the treatment with hot gum with hydrochloric acid according to the method determined in the Food Chemical Codex, 4th edition, page 768
  • the molar mass by weight is determined by exclusion chromatography on a TSK PW 4000 and 6000 column in series (columns 30 cm long and 7 mm in diameter), with refractometric detection.
  • the eluent is a solution of sodium nitrate 0.1. mol / l
  • the heteropolysaccharide is about 0.015% by weight in the eluent
  • the calibration is carried out by means of pullulans which are monodisperse poiysaccha ⁇ des of molar masses between 5 10 3 and 1.6 10 6 g / mol extrapolated up to 'at 10 7 g / mol.
  • the weight-average molar mass (Mw) is obtained from the mass distribution curve obtained from the chromatogram, it is generally between 1 10 5 and 8 10 6 g / mol, preferably approximately between 8 10 5 and 5 10 6 g / mol
  • HP has a weight-average molar mass (Mw) of between approximately 2.5 10 6 and 4 10 6 g / mol, the terminals being included
  • the (HP) gives the aqueous medium viscosity which is evaluated by flow rheology
  • the rheological measurements of flow viscosity are carried out using a rheometer with imposed stress or with imposed shear gradient for example by means of a viscometer Rheomat respectively ® or Carrimed ®.
  • the apparatus measures the flow stress of the HP + water mixture when this mixture is irreversibly deformed. From the stress, the flow viscosity is calculated.
  • This apparatus thus makes it possible to quantify the level of viscosity at a given shear gradient.
  • the flow viscosity can more simply be evaluated using a BROOKFIELD ® viscometer. These rheological flow viscosity measurements of (HP) also make it possible to evaluate the flow threshold of the solution of (HP) and / or of the formulation comprising it. Said threshold represents the force required to destroy the structure of the medium and force it to flow.
  • the flow rheology also makes it possible to quantify the ease of a solution of (HP) and / or of a formulation comprising it to flow when the imposed shear increases (pseudo-plastic or shear thinning behavior).
  • the gels obtained by incorporation of (HP) in the medium are healing gels, that is to say that after shearing, even strong, "fractured” gels have the power to reform and regain their properties. initials.
  • the healing power of the gels obtained from (HP) is evaluated by compressometry measurements carried out for example on an ETIA T2 texturizer composed of a cylindrical measuring body of 12.7 mm in diameter, a penetration speed of 0.05 mm / s, and a driving height of 15 mm.
  • the piston is pressed into the gel in the same place several times, at different time intervals, and the compression force is recorded.
  • the slope at the origin expressed in mN / mm, representative of the elasticity of the gel, is determined.
  • a gel is prepared with 0.5% w / w (HP) in distilled water. This gel is then stored 24 hours before carrying out the measurement of compressometry, i.e. at room temperature (approximately 25 ° C). either cold at around 6 ° C.
  • Compression measurements are performed at different time intervals: 0, 5, 15 minutes and 24 hours, with a wait of 5 minutes between each measurement.
  • the present invention also relates to a process for preparing the heteropolysaccharide (HP) as defined above.
  • the preparation process consists first of all in the fermentation of a medium comprising at least one assimilable carbon source, by a strain Pseudomonas sp I - 2054 (or DSM 12295). one of its recombinants or one of its mutants.
  • the fermentation medium can also contain at least one source of organic or mineral nitrogen, and optionally one or more mineral salts.
  • the medium is inoculated in a conventional manner by the strain Pseudomonas I - 2054 (or DSM 12295).
  • sugars such as advantageously hydrolyzed starch, starch hydrolysates, mixtures of these sugars, and mixtures comprising at minus one of these sugars. More particularly, mention may be made of glucose, sucrose, advantageously hydrolyzed starch, starch hydrolysates, lactose, mixtures of these sugars, and mixtures comprising at least one of these sugars. Glucose and sucrose are the most preferred sugars.
  • the concentration of carbon source in the fermentation medium can be between 1 and 100 g / l, and preferably between 15 and 60 g / l.
  • mineral sources of nitrogen there may be mentioned ammonium or sodium nitrates, phosphates or sulphates, of ammonium.
  • Fermentation can also take place with a mixture of organic and mineral nitrogen sources.
  • concentration of nitrogen source (organic, mineral, or mixture of the two) in the fermentation medium can be between 1 and 80 g / l, and preferably between 3 and 50 g / l
  • the fermentation medium advantageously contains calcium, alone or optionally in admixture with other trace elements such as iron, manganese and / or magnesium, as well as vitamins and nucleotides
  • Calcium can be introduced into the medium in the form of a composition or a general or organic compound, such as, for example, CSL, soy flour, phosphate salts, nitrate, carbonate, sulfate Fermentation can be carried out at pressures between 1 and 4 bar at a temperature between 25 ° C and 35 ° C, preferably between 25 ° C and 30 ° C, under aerobic conditions
  • the pH of the fermentation medium can be between 5 and 9, and preferably between 6 and 8
  • the pH can be adjusted, as the case may be, with a base such as soda, potash, or ammonia, or with a acid such as sulfuric acid, phospho ⁇ que acid, hydrochloric acid or nit ⁇ que acid.
  • the fermentation medium placed in a fermentation tank or container, can advantageously be subjected to stirring.
  • This agitation can be exercised for example by means of a reciprocal shaker, a gyratory shaker, a stirring mobile or a bubble column.
  • the fermentation time is usually over 30 hours, but generally between 40 and 100 hours
  • Fermentation yields are generally greater than 40%, more particularly between 55 and 75%, and very particularly between 60 and 75% by weight of heteropolysaccharide (HP) produced relative to the carbon source used
  • the heteropolysaccharide (HP) can be separated from the fermentation wort according to the following steps
  • the wort at the end of fermentation is subjected to a heat treatment between 80 ° C and 120 ° C for approximately 10 to 60 minutes, // - the heteropolysaccharide (HP) is precipitated by means of an organic liquid at least partially miscible with water, /// - the heteropolysaccharide (HP) is separated from the organic liquid
  • step (i) the fermentation wort containing the heteropolysaccharide (HP) is advantageously heated to temperatures between 80 ° C and 120 ° C, for 10 to 60 minutes, and preferably between 15 and 45 minutes
  • the must subjected to the above heat treatment advantageously has a pH of between 6 and 8 However, this pH can be adjusted if necessary, as appropriate, with a base or an acid.
  • the wort from step (i) is maintained at the same temperature as the temperature of the heat treatment.
  • step (ii) the heteropolysaccharide (HP) is recovered from the must obtained in step (i) advantageously by precipitation using an organic liquid at least partially miscible with water and in which the heteropolysaccharide (HP) is insoluble or practically insoluble.
  • acetone or alcohols having from 1 to 6 carbon atoms such as ethanol, propanol, isopropanol, butanol, tert-butanol, or their mixed.
  • the precipitation of (HP) is carried out with isopropanol.
  • the volume of organic liquid used is generally at least twice that of the volume of must to be treated.
  • the precipitation of the heteropolysaccharide (HP) by an organic liquid can also be carried out in the presence of salts, such as sulphates, chlorides, or phosphates, of sodium, potassium, or calcium. According to a particular embodiment, the precipitation can take place at a temperature between 40 and 60 ° C.
  • the heteropolysaccharide (HP) once precipitated, can then be separated, in step (iii), from the organic liquid.
  • the separation method is not critical in itself and can be chosen indifferently from the usual known separation methods such as, for example, filtration. centrifugation or spinning.
  • the fibers obtained can be optionally dehydrated for example by means of acetone or an alcohol such as ethanol, propanol, or isopropanol.
  • the weight of alcohol required to carry out this dehydration operation is generally 1 to 10 times that of the fibers to be treated.
  • the dehydrated fibers can undergo new filtration, centrifugation or spinning operations.
  • the fibers can be dried, ground and / or sieved so as to obtain a heteropolysaccharide (HP) powder.
  • a heteropolysaccharide (HP) powder If it is desired to obtain a purer powder, it is possible to treat either the fermentation must or an aqueous solution reconstituted from the powder obtained according to the process described above, by means of one or more enzymes.
  • enzymes which may be suitable for this purpose, mention may be made of proteases, mutanases, lipoproteases, cellulases, and chitinases.
  • Enzymatic purification can be combined or replaced by physical purification methods such as the various modes of filtration, centrifugation, dialysis, or by different chromatography techniques.
  • Fermentation musts and reconstituted solutions of heteropolysaccharide (HP), whether or not they have undergone a purification treatment, can be concentrated.
  • HP heteropolysaccharide
  • Concentration can be advantageous in certain cases, in particular when transport costs can be reduced in this way.
  • concentrated solutions can be implemented more quickly than heteropolysaccharide (HP) powders.
  • the concentration can be carried out by all the techniques known to those skilled in the art, in particular evaporation, ultrafiltration, or diafiltration.
  • the heteropolysaccharide (HP) is advantageously present in the form of a solid of fiber or powder type.
  • (HP) has very good rheological properties and in particular the ability to form true gels.
  • (HP) has the advantage of being able to be used either as a thickening agent or as a gelling agent, or both.
  • the present invention relates to the use of the heteropolysaccharide (HP) as described above or as obtained by the process defined above, as a thickening and / or gelling agent.
  • HP can be used as a thickening and / or gelling agent, for example in the petroleum, agrochemical, food, cosmetic, paper, textile industries, as well as in paints, contact lenses, glues, inks, and household or industrial cleaners.
  • the amount of heteropolysaccharide (HP) of the invention, which can be used in cosmetic compositions is a function of the aqueous medium to be thickened and / or to be gelled. This can represent from 0.01% to 5% approximately, preferably of the order of 0.1% to 0.3% of the weight of the thickened or gelled aqueous medium.
  • cosmetic composition or formulation means all the cosmetic products or preparations of the type of those described in Annex I ("Illustrative list by category of cosmetic products") of European Directive No. 76 / 768 / EEC of July 27, 1976, known as the cosmetic directive.
  • Cosmetic compositions can be formulated in a large number of types of products for the skin and / or the hair, such as foams, gels (including styling), conditioners, formulations for styling or to facilitate combing of hair, rinsing formulas, hand and body lotions, products regulating the hydration of the skin, toilet milks, make-up removing compositions, creams or lotions for protection against the sun and ultraviolet radiation, care creams, anti-acne preparations, local analgesics, mascaras, products intended to be applied to the lips or other mucous membranes , sticks, and many other compositions of the same type.
  • foams such as foams, gels (including styling), conditioners, formulations for styling or to facilitate combing of hair, rinsing formulas, hand and body lotions, products regulating the hydration of the skin, toilet milks, make-up removing compositions, creams or lotions for protection against the sun and ultraviolet radiation, care creams, anti-acne preparations, local analgesic
  • compositions use a vehicle, or a mixture of several vehicles, present in said compositions at concentrations of between 0.5% and 99.5% approximately, generally between 5 and 90% approximately.
  • the choice of the appropriate vehicle depends on the nature of the ingredients used, and on the destination of said compositions, depending on whether the formulated product is supposed to be left on the surface where it has been applied (for example sprays, foams, tonic lotion, or gels) or on the contrary rinsed after use (for example shampoo, conditioner, rinsing lotions).
  • the aqueous vehicles present in the cosmetic compositions can also contain CC 6 alcohols, in particular methanol. ethanol, isopropanol. They can also contain another solvent making it possible to dissolve or disperse, in the aqueous medium, the various ingredients used in said compositions.
  • Said vehicles can thus also contain a wide variety of other solvents such as acetone, hydrocarbons, halogenated hydrocarbons, linalool, esters and volatile silicones.
  • the various solvents which can be used in aqueous vehicles can be miscible or immiscible with each other.
  • the preferred vehicles comprise, in addition to water, ethanol, volatile silicone derivatives, and their mixtures.
  • Formulations for aerosol sprays and foams may also contain a propellant capable of generating the products in the form of foam or fine, uniform sprays.
  • a propellant capable of generating the products in the form of foam or fine, uniform sprays.
  • trichlorofluoromethane and dichlorodifluoromethane difluoroethane. dimethyl ether. propane, n-butane or isobutane.
  • Said aqueous vehicles can take a large number of forms, in particular those of emulsions, including water-in-oil, oil-in-water emulsions, and multiple emulsions, the desired viscosity of which can range up to 2,000,000 mPa.s.
  • the cosmetic compositions may contain surfactants, used to disperse, weaken, dissolve, stabilize various compounds used in particular for their emollient or humectant properties. They can be of the anionic type. non-ionic, cationic, zwitterionic or amphoteric; we can cite as examples:
  • ° anionic surfactants in an amount which can range from 3% to 50%, preferably from 5% to 20%, agents such as
  • the salts of saturated or unsaturated fatty acids D nonionic surfactants in an amount which can range from 0.1% to 30%, preferably from 2% to 10%, agents such as
  • glycerolamides derived from N-alkylamines. polyoxyalkylenated C 8 -C 2 2 aliphatic alcohols
  • the amides. amines, ethoxylated amidoamines ° amphoteric and zwitterionic surfactants in amounts which can range from 0.1% to 30%, preferably from 1% to 10%, agents such as
  • amidoalkylbetaines • and sulfo-betaines
  • Conditioners may also be present, in an amount which can range from 0.05% to 5%, preferably from 0.1% to 1%.
  • polyquaternium such as polyquaterniums -2, -7, and -10
  • cationic derivatives of polysaccharides such as cocodimonium hydroxyethyl cellulose, guar hydroxypropyl trimonium chloride, hydroxypropyl guar hydroxypropyl trimonium chloride, non-volatile silicone derivatives such as amodimethicone.
  • cyclomethicones, non-water-soluble and non-volatile organopolysiloxanes such as oils, resins or gums such as diphenyldimethicone gums.
  • the cosmetic compositions can also contain polymers having film-forming properties which can be used to provide a fixing function.
  • These polymers are generally present at concentrations of between 0.01 and 10%, preferably between 0.5 and 5%. They are preferably of the polyvinylpyrrolidone type, copolymers of polyvinylpyrrolidone and of methyl methacrylate, copolymer of polyvinylpyrrolidone and of vinyl acetate.
  • the cosmetic compositions can also contain polymeric derivatives exerting a protective function, in amounts of the order of 0.01-10%, preferably about 0.1-5% by weight, derivatives such as. cellulosic derivatives. polyvinyl esters grafted onto polyalkylene trunks
  • ethoxylated monoamines or polyamines polymers of ethoxylated amines
  • the performance of cosmetic compositions can also be improved by the use of plasticizing agents, in an amount which can range from 0.1 to 20% of the formulation, preferably from 1 to 15%.
  • plasticizing agents in an amount which can range from 0.1 to 20% of the formulation, preferably from 1 to 15%.
  • these agents mention may be made of adipates. phthalates, isophthalates, azelates, stearates, silicone copolyols, glycols, castor oil, or mixtures thereof.
  • metal sequestering agents more particularly those sequestering calcium such as citrate ions, or polymeric dispersing agents in an amount of the order of 0.1-7% by weight, to control the calcium hardness. and magnesium, agents such as. water-soluble salts of polycarboxylic acids.
  • polyethylene glycols with a molecular mass of the order of 1000 to 50,000 humectants can also be incorporated into cosmetic compositions; there may be mentioned glycerol, sorbitol.
  • urea collagen, gelatin, and emoliients which are generally chosen from alkylmonoglycerides, alkyldiglycerides, triglycerides such as oils extracted from plants and vegetable or animal oils or their hydrogenated derivatives, mineral oils or paraffinic oils, diols, fatty esters, silicones
  • perfumes for example, one or more perfumes, coloring agents and / or opacifying agents such as pigments
  • sunscreens can be added to these formulations which are either chemical compounds strongly absorbing UV radiation or mineral particles such as zinc oxide, titanium dioxide or cerium oxides
  • Preservatives such as esters of p-hydroxybenzoic acid, sodium benzoate, or any chemical agent preventing bacterial proliferation or molds and traditionally used cosmetic compositions are generally introduced into these compositions up to 0.01 to 3 % in weight
  • agents that modify water activity and greatly increase osmotic pressure can be used, such as carbohydrates or salts
  • the cosmetic composition may also contain viscous polymers and / or other ge fiqnts, such as crosslinked polyacrylates hydrocolloids obtained by fermentation such as xanthan gum and Rheozan®, cellulose derivatives such as hydroxypropylcellulose, carboxymethylcellulose guars and their fins used alone or in combination
  • viscous polymers and / or other ge fiqnts such as crosslinked polyacrylates hydrocolloids obtained by fermentation such as xanthan gum and Rheozan®, cellulose derivatives such as hydroxypropylcellulose, carboxymethylcellulose guars and their fins used alone or in combination
  • the invention relates more particularly to the use of the heteropolysaccharide as a thickening and / or gelling agent in food formulations
  • Food formulations to which the heteropolysaccharide (HP) is added are conventionally single or multiple emulsions of liquids, complex emulsions of gas and liquids (bulk systems), suspensions of liquids and solids, or any other system combining these possibilities
  • the liquid is advantageously water or a liquid comprising at least partly water
  • the food formulations are obtained by implementing the conventional methods for preparing the food formulations according to their type.
  • the (HP) advantageously in the form of a fiber or powder type solid is mixed with the other ingredients necessary for the formulation. together can, if necessary, be homogenized
  • the temperature at which the formulation is prepared is not per se critical
  • the formulations comprising the (HP) can be sterilized without any damage for their properties of use
  • Another advantage of (HP) is that it is possible to prepare food formulations without having to heat the ingredients beforehand
  • the parameters that can be measured to characterize the texture of food formulations are rheological in nature and essentially consist in measuring the elastic (G ') and viscous (G ") modules, and the flow viscosity at a given shear gradient G' and G", as well as the viscosity were previously defined
  • modules G ′ and G ′′, as well as the viscosity measured for a formulation can be different from those measured for (HP) in distilled water.
  • dairy and gelled desserts such as, for example, flans can advantageously be at least partially replace the usual gelling agents, in particular gelatin, with (HP)
  • the aqueous medium contained can be structured by adding small amounts of (HP).
  • HP small amounts of
  • whipped creams toppings ice creams can be used as thickening and / or gelling agent (HP) can likewise be used in formulations such as mayonnaises, vegetable foams, foams comprising proteins, such as meat, fish foams, foams comprising albumin such as meringues As an agent thickener and / or gelling agent, (HP) can also be used in the composition of yogurts
  • heteropolysaccharide HP
  • use is generally made of 0.01 to 5% by weight, and preferably between 0.05 to 2% by weight of heteropolysaccharide (HP) relative to the weight of the composition or formulation which contains it. Even more preferably, 0.1 to 1% by weight of heteropolysaccharide (HP) is used relative to the weight of the composition or formulation.
  • heteropolysaccharide does not alter the taste of the foods into which it is introduced.
  • the invention finally relates to food compositions or formulations comprising the heteropolysaccharide (HP) as defined above.
  • the maintenance medium of the strain Pseudomonas sp I - 2054 (or DSM 12295) is the midpoint MY agar Difco (0712-01-8 reference)
  • the composition of this medium already ready, is ⁇ bacto-yeast 3 g
  • 21 g of this medium are diluted in one liter of distilled water After dissolution, the medium is sterilized in an autoclave for 15 minutes at 121 ° C. The medium is then distributed in petri dishes The culture is carried out on an incubated petri dish between 25 ° C and 30 ° C preferably between 25 ° C and 28 ° C, for 24 hours minimum Preculture - conservation
  • the strain is then stored in the form of a frozen tube at -196 ° C by the liquid nitrogen freezing process (CAL)
  • cryotubes of capacities varying from 1 ml to 10 ml, preferably 2 ml to 4 ml
  • This example describes the preparation and obtaining of the heteropolysaccharide according to two fermentation processes, one with a source of organic nitrogen and the other with a source of mineral nitrogen.
  • the production stage which corresponds to the stage during which the bacterial strain produces the polysaccharide, takes place in a 20-liter fermenter, of which 15 liters are useful
  • preculture 1 After 24 hours of incubation, preculture 1 is used to seed preculture 2
  • the preculture step 2 is carried out with a medium of the following composition
  • preculture 2 is used to seed the two fermentation media (fermenters 1 and 2) in the production stage
  • the last stage is the stage of production of the heteropolysacchande (HP)
  • the medium of fermenter 1 has the following composition
  • Glucose Qsp grams of glucose are dissolved in qsp 3 I of softened water The pH is lowered to 5 by H 2 SO 10%. The solution is sterilized in a Manotte bottle for 30 minutes at 120 ° C in an autoclave.
  • Nitrogen + salts Qsp grams of corn-steep liquor (CSL), 15 g of K 2 HPO 4 , 12 g of MgSO 4 , 7H 2 0, 23 ml of a solution of MnSO, H 2 O at 10 g / l, and 3 ml of antifoam are dissolved in qs 7 I of softened water. The pH is adjusted to 6.5 with H 2 SO 4 10% This mixture is sterilized in situ for 30 minutes at 120 ° C.
  • Soda 1 N o 40 g of NaOH tablets are dissolved in qs 11 of distilled water
  • the solution is sterilized in a bottle of Manotte 30 minutes at 120 ° C in an autoclave
  • all the ingredients are at 28 ° C, they are mixed in the fermenter
  • the fermenter is then inoculated with qs of preculture 2
  • the fermentation conditions in fermenter 1 are as follows.
  • the temperature is regulated at 28 ° C
  • the pH is regulated to 6.8 with 1 N NaOH
  • the medium of fermenter 2 has the following composition ° NaNO 3 1.2 g (Prolabo) ° NH 4 NO 3 0.25 g (Prolabo) "CaSO 4 , 2H 2 O 0.3 g (Prolabo)" MgSO 4 , 7H 2 O 0.8 g (Prolabo) ° MnSO 4 , H 2 O 5 ppm Mn 2+ (Prolabo) ° FeSO 4 , 7H 2 O 0.01 g (Prolabo) ° Na 2 HPO 4 3 g (Prolabo) ° glucose 45 g (Prolabo) ⁇ anti-foam 0.2 ml
  • Glucose Qsp grams of glucose are dissolved in qsp 3 I of softened water.
  • the pH is adjusted to 5 with 10% H 2 SO.
  • the solution is sterilized in a Manotte bottle for 30 minutes at 120 ° C in an autoclave.
  • Nitrogen + salts • > 18 g of NaNO 3 , 3.75 g of NH 4 NO 3 , 4.5 g of CaSO 4 , 2H 2 O, 23 ml of a solution of MnSO 4 , H 2 O at 10 g / l, 12 g of MgSO 4 , 7H 2 O, 75 ml of a solution of FeSO, 7H 2 O at 2 g / l, 4.5 g of Na 2 HPO 4 , and 3 ml of antifoam are dissolved in qs 71 of softened water. The pH of this solution is adjusted to 6 with H 2 SO 10%. This mixture is sterilized in situ for 30 minutes at 120 ° C. 1N soda 40 g of NaOH pellets are dissolved in qs 11 of distilled water. The solution is sterilized in a Manotte bottle for 30 minutes at 120 ° C in an autoclave.
  • the fermentation conditions in fermenter 2 are as follows Agitation 200 rpm from 0 to 20 hours of age, then 400 rpm until the end of fermentation
  • the temperature is regulated at 28 ° C.
  • the pH is regulated to 6.8 by 1N NaOH.
  • Pressure is atmospheric pressure.
  • the fermentation times vary from 60 to 115 hours
  • the dry matter precipitated with isopropanol varies from 10 to 18 g / kg
  • the weight yield compared to the carbon source used will vary. from 44 to
  • the wort at the end of fermentation is stabilized with 10% pure IPA (weight / weight) It is then heat treated for 20 minutes at 100-110 ° C at pH 7 The pH, during the heat treatment, does not vary heat treatment, the must is hot extracted (temperature> 70 ° C)
  • the fibers are chopped, then washed and dehydrated with riPA having a titer of 78%.
  • the fibers are then dried in a ventilated oven at approximately 85 ° C. until a product having a humidity of approximately 10 is obtained. % in weight
  • the fibers are then ground and sieved
  • This example relates to the use of (HP) obtained in Example 2, in a food formulation for coating
  • the flow viscosities expressed in mPa.s, were measured using a BROOKFIELD RVT 20-2 viscometer, at room temperature.
  • the values of the elastic moduli, expressed in Pa, were carried out using a CARRIMED CSL 100 rheometer, with imposed stress. They were measured in an oscillatory regime - frequency from 0.01 to 10 Hz.
  • formulation 3.1 comprising the heteropolysaccharide (HP) according to the invention
  • formulation 3.2 comprising sodium caseinate, and sodium alginate.
  • Aqueous phase Aqueous phase :
  • the fat and the emulsifiers are heated in a water bath to 70 ° C.
  • the oily phase is then added to the aqueous phase with stirring at 1000 rpm.
  • the whole is then homogenized with Ultra-turrax for 2 minutes at 20,000 rpm.
  • the mixture is cooled to a temperature below 10 ° C, before proceeding to the expansion. This takes place using a laboratory mixer of the KENNWOOD CHEF type at maximum speed for 3 minutes at a temperature close to 5 ° C.
  • formulation 3.1 (according to the invention) is on the one hand more gelled (higher G 1 at high frequency), and has an improved swelling rate.

Abstract

La présente invention concerne un hétéropolysaccharide (HP) caractérisé en ce qu'il est susceptible d'être obtenu par fermentation d'un milieu comportant au moins une souche Pseudomonas sp l - 2054 (ou DSM 12295), un de ses recombinants, ou de ses mutants, et une source de carbone assimilable par ladite souche, l'un de ses recombinants, ou l'un de ses mutants. Elle concerne également son procédé de préparation et son utilisation en tant qu'agent épaississant et/ou gélifiant.

Description

HETEROPOLYSACCHARIDE PRODUIT PAR UN PSEUDOMONAS SP
La présente invention concerne un nouveau heteropolysaccharide (HP), son procédé de préparation par fermentation d'une souche Pseudomonas sp I - 2054 (ou DSM 12295), ladite souche, et les utilisations de cet heteropolysaccharide en tant qu'agent épaississant et/ou gélifiant.
Dans de nombreux domaines industriels, on est constamment à la recherche de nouveaux composés présentant :
- des propriétés rhéologiques améliorées et capables de former des gels, - une compatibilité accrue avec les milieux dans lesquels ils sont incorporés,
- une grande stabilité dans une large gamme de températures et de pH.
Dans le cas des composés obtenus à l'issue d'une fermentation bactérienne, il est également important que le composé ait une bonne productivité.
La faculté de gélifier est très intéressante car ce sont des systèmes particulièrement attrayants de par la diversité des domaines dans lesquels ils trouvent des applications : certaines applications nécessitent l'utilisation d'un gël.
Ainsi, par exemple, l'industrie agroalimentaire propose une large gamme de produits gélifiés (crèmes, yoghourts, gelées diverses, glaces...), l'industrie pharmaceutique utilise les gels comme supports de principes actifs ou agents épaississants.
Dans un tout autre domaine, certaines peintures ne gouttent pas, car elles possèdent au repos des caractéristiques de gel alors qu'elles s'étalent facilement sous l'action du pinceau (profil rhéofluidifiant).
Les gels aqueux sont aussi utilisés comme supports chromatographiques ou encore pour l'élaboration de lentilles de contact.
Les hétéropolysaccharides d'origine bactérienne comme par exemple la gomme xanthane, ont déjà été décrits et utilisés pour leurs propriétés rhéologiques performantes dans des conditions de température et de pH extrêmes. Toutefois, ces hétéropolysaccharides qui conviennent dans des applications en solution, ne conduisent pas toujours à des gels.
Il est connu que la gélification d'un milieu a lieu lorsqu'un réseau tridimensionnel est formé suite à la réticulation des composants dudit milieu.
Habituellement, cette gélification est amenée par ajout dans le milieu de cations supplémentaires notamment de type alcalin ou alcalino-terreux (par exemple le calcium et/ou le magnésium), par basculement de pH vers les pH acides ou basiques, par adjonction d'un autre composé notamment un autre poiysaccharide (par exemple l'association de xanthane et de caroube), ou par modification de la température. Quelle que soit l'application envisagée, les conditions de gélification précitées peuvent :
- nuire à la stabilité et à la compatibilité du gel final du fait des interactions entre les cations supplémentaires ou le coadditif que l'on doit introduire pour obtenir le gel et les autres ingrédients présents dans lesdites compositions, ou
- dénaturer l'hétéropolysaccharide et/ou les autres ingrédients présents dans lesdites compositions du fait des températures élevées et/ou des changements de pH.
Par "gel", dans le cadre de la présente invention, on désigne un pseudo-solide (comportement proche du solide), résultant de l'association, au moins partielle, de chaînes d'héteropolysaccharide dispersées dans un liquide. Dans un domaine de fréquences de sollicitation ω, les gels pseudo-solides sont en général caractérisés en ce qui concerne leur composante solide par un module élastique G'(ω) appelé également module de conservation, et en ce qui concerne leur composante liquide ou visqueuse par un module visqueux G"(ω) appelé également module de perte. Les grandeurs mécaniques G'(ω) et G"(ω) peuvent être mesurées à l'aide d'un rhéomètre à déformation imposée et fonctionnant en mode oscillatoire. A titre indicatif et non limitatif, on peut citer par exemple un rhéomètre Rheo-Fluid Spectrometer®.
G' et G" peuvent aussi être mesurées sur un rhéomètre à contrainte imposée et fonctionnant en mode oscillatoire. A titre indicatif, on peut citer par exemple un rhéomètre CARRrMED®.
Le principe de la mesure consiste à déterminer dans un premier temps le domaine de déformation mécanique réversible dans lequel la réponse du gel à la sollicitation mécanique est linéaire en fonction de ladite déformation. Dans un second temps, le gel est soumis à une valeur fixe de déformation mécanique comprise dans le domaine linéaire précédemment déterminé. C'est alors que le rhéomètre procède à un balayage en fréquence ω.
La réponse en contrainte du gel qui est en phase avec la déformation donne accès au module élastique G'(ω). G'(ω) correspond à l'énergie emmagasinée par le gel sous forme élastique et est récupérable. La réponse en contrainte du gel qui est en déphasage d'un angle 90° avec la déformation donne accès au module visqueux G"(ω). G"(ω) correspond à l'énergie dissipée par l'écoulement visqueux et est irrécupérable.
Un gel est dit fort ou vrai lorsque dans tout le domaine de fréquence de sollicitation (ω) balayé le rapport G'/G" est supérieur ou égal à 10, c'est-à-dire lorsque l'élasticité du gel demeure forte et lorsque la valeur de G'(co) est supérieure ou égale à 10 Pa.
La présente invention a précisément pour but de proposer des hétéropolysaccharides qui possèdent de très bonnes propriétés rhéologiques, notamment en terme de propriétés épaississantes et pseudo-plastiques (rhéofluidifiantes) ainsi que la faculté de conduire à des gels vrais sans ajout de cations supplémentaires au milieu, sans basculement de pH, et ce à des températures inférieures ou égales à 40°C. La présente invention a également pour but de proposer un heteropolysaccharide présentant de très bonnes propriétés rhéologiques aux faibles concentrations.
La présente invention concerne d'abord un heteropolysaccharide (HP) caractérisé en ce qu'il est susceptible d'être obtenu par fermentation d'un milieu comportant au moins une souche Pseudomonas sp I - 2054 (ou DSM 12295), un de ses recombinants, ou un de ses mutants, et une source de carbone assimilable par ladite souche, l'un de ses recombinants, ou l'un de ses mutants.
La souche Pseudomonas sp a été déposée conformément au Traité de Budapest, auprès de la Collection Nationale de Culture des Micro-organismes (CNCM), le 22 juillet 1998, où elle est publiquement accessible sous le numéro I - 2054. Elle a également été déposée auprès de la Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), le 13 juillet 1998, où elle est publiquement accessible sous le numéro DSM 12295. Cette souche constitue un des objets de l'invention.
La culture pure de Pseudomonas sp I - 2054 (ou DSM 12295), qui constitue un autre aspect de la présente invention, peut être effectuée en boîte de Pétri incubée à une température comprise entre 25°C et 30°C, et plus particulièrement comprise entre 25°C et 28°C, pendant environ 24 heures.
Les sources de carbone et d'azote assimilables par le Pseudomonas sp I - 2054 (ou DSM 12295), peuvent être choisies parmi le glucose, le fructose, le galactose, le tréhalose, le mannose, le mélobiose, le saccharose, le raffinose, le maltotriose, le maltose. le lactose, le lactulose, le méthyl-β-galactopyranoside, le méthyl-α- galactopyranoside, le cellobiose, le gentobiose, le méthyl-β-D-glucopyranoside, le méthyl-α-D-glucopyranoside, l'esculine, le ribose, l'arabinose, le xylose, le palatinose, le rhamnose, le fucose, le mélézitose, le D(+) arabitol. le L(-) arabitol, le xylitol, le dulcitol. le tagatose, le glycerol, le myo-innositol, le mannitol. le maltitol, le turanose. le sorbitol, l'adonitol, le lyxose, l'érythritol, le D(-) tartrate, le D(+) malate. le L(-) malate, le cis-aconitate, le trans aconitate, le 2-céto-D-gluconate, le N-acétyl-glucosamine, le quinate, la bétaïne, le succinate, le fumarate, le glycérate, et le glucosamine.
Parmi les milieux d'entretien possibles de la souche, le milieu d'entretien du type MY agar de Difco (référence 0712-01-8) est considéré comme particulièrement avantageux. Ledit milieu MY agar de Difco a la composition suivante : 3 extrait de bacto-levure 3 g
= extrait de malt 3 g ° bacto-peptone 5 g
° bacto-dextrose 10 g
° bacto-agar 20 g
Pour la conservation de la souche, il est préférable de prévoir au moins une étape de préculture Par étape de préculture, on entend une étape qui consiste a développer et multiplier la souche bactérienne, sans production de polysacchaπde
Il a pu être mis en évidence que d'une manière générale, l'hétéropolysacchande (HP) comporte des motifs de glucose et/ou ses dénvés, de galactose et/ou ses déπvés, de l'acide mannuronique et/ou ses sels, de l'acide acétique et/ou ses sels Les motifs constitutifs de l'hétéropolysacchande (HP) sont en général présents dans des proportions molaires suivantes, en prenant comme référence le galactose égal à 1
- glucose et/ou ses dérivés 0,2 - 5
- acide mannuronique et/ou ses sels 0,2 - 5, - acide acétique et/ou ses sels 0 - 10,
Plus particulièrement, lesdits motifs sont présents dans des proportions molaires suivantes, en prenant comme référence le galactose égal à 1
- glucose et/ou ses déπvés 0,5 - 4, et de préférence 0,8 - 2,
- acide mannuronique et/ou ses sels 0,5 - 4 et de préférence 0,8 - 2, - acide acétique et/ou ses sels 0 - 8, et de préférence 0 - 6,
Les acides mannuronique et acétique peuvent se présenter sous forme de sels A titre de sels on peut citer les sels de sodium, de potassium, de calcium ou d'ammonium
Les méthodes d'analyse de l'hétéropolysacchande (HP) qui ont permis de déterminer sa formule brute telle que spécifiée ci-dessus ont pour pnncipe la détermination des éléments constitutifs (monosacchaπdes et acides) après hydrolyse dudit heteropolysaccharide (HP) et dosages chromatographiques par étalonnage interne ou externe
Ainsi, le dosage des monosacchaπdes a été réalisé de la manière suivante 100 mg d'héteropolysaccharide (HP) sont hydrolysees en tubes hermétiques par 5 ml d'acide tπfluoroacétique molaire à 105°C pendant trois à six heures
Cette opération est suivie d'une évaporation à sec et d'une repπse du résidu sec dans 5 ml de pyπdine contenant 15 mg de sorbitol en tant qu'étalon interne puis une silylation sur 1 ml de solution pyπdinique par 0,9 ml d'hexaméthyldisilazane La silylation est catalysée par 0,1 ml d'acide tπfluoroacétique
Le dosage des monosacchaπdes est ensuite effectué par chromatographie en phase gazeuse à détection F I D (Flame Ionisation Détection), sur colonne capillaire en verre de 25 mètres de longueur et de 0,25 mm de diamètre, chargée de phase méthylsilicone présentant une épaisseur de film de 0,14 microns Le gaz vecteur utilise est l'hydrogène, avec débit de 2 ml/minute
Le dosage de l'acide acétique se fait après hydrolyse de 100 mg d'héteropolysacchaπde (HP) par 5 ml d'acide chlorhydπque 2N a 105 °C pendant une heure Puis on ajoute 5 ml d'une solution d'acide propionique à 5 mg/ml en tant qu'étalon interne et on complète par 15 ml d'eau déminéralisée Le dosage est effectue par CLHP au moyen d'une colonne de silice greffée C-18 de 5 microns de longueur 250 cm et de diamètre 4,6 mm L'eluant est une solution aqueuse d'acide phosphoπque 0.02 mol/l à un débit de 1 ,2 ml/minute La détection est refractometnque L'acide mannuronique est dosé par l'intermédiaire du CO2 libéré par la decarboxylationsuite au traitement a chaud de la gomme par de l'acide chlorhydπque selon la méthode décπte dans le Food Chemical Codex, 4ème édition, page 768
La masse molaire en poids est déterminée par chromatographie d'exclusion sur colonne TSK PW 4000 et 6000 en série (colonnes de longueur 30 cm et de diamètre 7 mm), avec détection refractometnque L'eluant est une solution de nitrate de sodium 0,1 mol/l L'hétéropolysacchande est à environ 0,015 % en poids dans l'eluant L'étalonnage est réalisé au moyen de pullulanes qui sont des poiysacchaπdes monodisperses de masses molaires comprises entre 5 103 et 1,6 106 g/mol extrapolés jusqu'à 107 g/mol. La masse molaire moyenne en poids (Mw) est obtenue à partir de la courbe de distπbution massique issue du chromatogramme , elle est généralement compπse entre 1 105 et 8 106 g/mol, de préférence compπse environ entre 8 105 et 5 106 g/mol
Plus paticulièrement (HP) présente une masse molaire moyenne en poids (Mw) comprise environ entre 2.5 106 et 4 106 g/mol, les bornes étant inclues
Comme déjà mentionné le (HP) présente de très bonnes propriétés rhéologiques en solution notamment dans l'eau distillée ou l'eau de ville
Ainsi, on a pu constater que par exemple des solutions à 0,5 % en poids/ poids de (HP) dans l'eau distillée a 23°C et à une fréquence de 1 Hz, conduisent a des valeurs de G' compπses entre 0 1 et 200 Pa, et de G" comprises entre 0 1 et 20 Pa
(HP) conduit à des gels forts ou vrais lorsque les valeurs de G' et G" sont comprises avantageusement entre 20 et 200 Pa pour G', et entre 0,5 et 15 Pa pour G" Plus avantageusement encore G' est compris entre 20 et 150 Pa, et G" entre 0 5 et 10 Pa Selon un mode particulièrement préféré, la valeur de G' est d'environ 100 Pa et celle de G" est d'environ 5 Pa (dans l'eau distillée)
Le (HP) confère au milieu aqueux de la viscosité qui est évaluée par rhéologie en écoulement Les mesures rhéologiques de viscosité en écoulement sont réalisées au moyen de rhéomètre à contrainte imposée ou à gradient de cisaillement impose comme par exemple au moyen d'un viscosimètre de type respectivement RHEOMAT® ou CARRIMED®.
Dans les deux cas, l'appareillage mesure la contrainte à l'écoulement du mélange HP + eau lorsque ce mélange est déformé irréversiblement. A partir de la contrainte se calcule la viscosité en écoulement.
Cet appareillage permet ainsi de quantifier le niveau de viscosité à un gradient de cisaillement donné.
La viscosité en écoulement peut être plus simplement évaluée à l'aide d'un viscosimètre BROOKFIELD®. Ces mesures rhéologiques de viscosité en écoulement de (HP) permettent, de plus, d'évaluer le seuil d'écoulement de la solution de (HP) et/ou de la formulation le comprenant. Ledit seuil représente la force à fournir pour détruire la structure du milieu et le forcer à s'écouler.
La rhéologie en écoulement permet également de quantifier la facilité d'une solution de (HP) et/ou d'une formulation le comprenant à s'écouler lorsque le cisaillement imposé augmente (comportement pseudo-plastique ou rhéofluidifiant).
On a constaté par exemple que des solutions à 1 % en poids/poids de HP dans l'eau distillée contenant 0,5 % poids/poids de NaCI, à 23°C, conduit à des valeurs de viscosité en écoulement à gradient de cisaillement de 0,1 s-1 comprises entre 100 et 5000 Pa.s, et plus particulièrement entre 200 et 2000 Pa.s.
Dans des conditions similaires, à un gradient de cisaillement de 10 s*1 comprises entre 0,5 et 300 Pa.s, et plus particulièrement entre 5 et 150 Pa.s.
Ces données de rhéologie en écoulement sont représentatives du comportement de la formulation lors de sa mastication, lors de son transvasement, de son foisonnement etc.
Les gels obtenus par incorporation de (HP) dans le milieu, sont des gels cicatrisants, c'est-à-dire qu'après un cisaillement, même fort, les gels "fracturés" ont le pouvoir de se reformer et de retrouver leurs propriétés initiales.
Le pouvoir cicatrisant des gels obtenus à partir de (HP) est évalué par des mesures de compressometrie effectuées par exemple sur un texturant ETIA T2 composé d'un corps de mesure cylindrique de 12,7 mm de diamètre, une vitesse de pénétration de 0.05 mm/s, et une hauteur d'enfoncement de 15 mm. Le piston est enfoncé dans le gel au même endroit plusieurs fois, à des intervalles de temps différents, et on enregistre la force de compression. On détermine la pente à l'origine exprimée en mN/mm, représentative de l'élasticité du gel.
Par exemple, un gel est préparé avec 0.5 % en poids/poids de (HP) dans l'eau distillée. Ce gel est ensuite stocké 24 heures avant d'effectuer les mesures de compressometrie, soit à température ambiante ( environ 25°C). soit à froid à environ 6°C.
Des mesures de compressometrie sont effectuées à des intervalles de temps différents : 0, 5, 15 minutes et 24 heures, avec une attente de 5 minutes entre chaque mesure.
Ainsi, la pente demeure constante est environ égale à 45 + 1 mN/mm, quel que soit le temps de mesure (t= 0, 5, 15 minutes et 24 heures).
Ceci signifie que l'élasticité du gel est stable et qu'il a le pouvoir de se cicatriser plusieurs fois de suite au cours du temps tout en maintenant la même force de gel. La présente invention a également trait à un procédé de préparation de l'hétéropolysaccharide (HP) tel que défini précédemment.
Le procédé de préparation consiste d'abord en la fermentation d'un milieu comportant au moins une source de carbone assimilable, par une souche Pseudomonas sp I - 2054 (ou DSM 12295). un de ses recombinants ou un de ses mutants.
Outre ladite source de carbone assimilable, le milieu de fermentation peut aussi renfermer au moins une source d'azote organique ou minérale, et éventuellement un ou plusieurs sels minéraux.
Le milieu est inoculé de manière classique par la souche Pseudomonas I - 2054 (ou DSM 12295).
A titre de source organique de carbone constitutive du milieu de fermentation, outre les sucres cités précédemment, on peut aussi citer des sucres tels que l'amidon avantageusement hydrolyse, les hydrolysats d'amidon, les mélanges de ces sucres, et les mélanges comprenant au moins un de ces sucres. Plus particulièrement, on peut citer le glucose, le saccharose, l'amidon avantageusement hydrolyse, les hydrolysats d'amidon, le lactose, les mélanges de ces sucres, et les mélanges comprenant au moins un de ces sucres. Le glucose et le saccharose sont les sucres encore plus préférés.
La concentration en source de carbone dans le milieu de fermentation peut être comprise entre 1 et 100 g/l, et de préférence entre 15 et 60 g/l.
A titre de source organique d'azote, on peut citer la caséine et les caséinates. les hydrolysats de poisson, les farines de blé, de maïs, ou de soja, les extraits de levure (levure de boulanger, levure de bière, levures lactiques, etc.), com steap liquor (CSL), l'urée, et les protéines de pomme de terre. A titre de sources minérales d'azote, on peut citer les nitrates d'ammonium ou de sodium, les phosphates ou les sulfates, d'ammonium.
La fermentation peut aussi avoir lieu avec un mélange de sources d'azote organiques et minérales. La concentration en source azotée (organique, minérale, ou mélange des deux) dans le milieu de fermentation peut être compπse entre 1 et 80 g/l, et de préférence entre 3 et 50 g/l
Le milieu de fermentation renferme avantageusement du calcium, seul ou éventuellement en mélange avec d'autres oligo-éléments tels que du fer, du manganèse et/ou du magnésium, ainsi que des vitamines et des nucléotides
Le calcium peut être introduit dans le milieu sous forme d'une composition ou d'un composé mιnéral(e) ou organique, comme par exemple du CSL, de la farine de soja, des sels de phosphate, nitrate, carbonate, sulfate La fermentation peut être réalisée à des pressions comprises entre 1 et 4 bar à une température compπse entre 25°C et 35°C, de préférence entre 25°C et 30°C, dans des conditions aérobies
Le pH du milieu de fermentation peut être compris entre 5 et 9, et de préférence entre 6 et 8 Le pH peut être ajusté, selon le cas, avec une base telle que la soude, la potasse, ou l'ammoniaque, ou avec un acide tel que l'acide sulfurique, l'acide phosphoπque, l'acide chlorhydπque ou l'acide nitπque.
Le milieu de fermentation, placé dans une cuve ou un récipient de fermentation peut être avantageusement soumis à une agitation. Cette agitation peut être exercée par exemple au moyen d'un secoueur réciproque, d'un secoueur giratoire, d'un mobile d'agitation ou d'une colonne à bulles. Le temps de fermentation est habituellement supéπeur à 30 heures, mais généralement compns entre 40 et 100 heures
Les rendements de fermentation sont généralement supéπeurs à 40 %, plus particulièrement compris entre 55 et 75 %, et tout particulièrement compris entre 60 et 75 % en poids d'héteropolysaccharide (HP) produit par rapport à la source de carbone mise en oeuvre
Apres la fermentation, l'hétéropolysacchande (HP) peut être séparé du moût de fermentation selon les étapes suivantes
; - on soumet le moût de fin de fermentation a un traitement thermique entre 80°C et 120 °C pendant environ 10 à 60 minutes, // - on précipite le heteropolysaccharide (HP) au moyen d'un liquide organique au moins partiellement miscible avec l'eau, /// - on sépare l'hétéropolysacchande (HP) du liquide organique
Dans l'étape (i), le moût de fermentation renfermant l'hétéropolysacchande (HP) est avantageusement chauffé à des températures comprises entre 80°C et 120°C, pendant 10 à 60 minutes, et de préférence entre 15 et 45 minutes
Le moût soumis au traitement thermique ci-dessus présente avantageusement un pH compris entre 6 et 8 Cependant, ce pH peut être ajusté si nécessaire, selon le cas, avec une base ou un acide.
Ces derniers peuvent être choisis parmi les bases et les acides mentionnés ci- dessus utilisés pour l'ajustement du pH du milieu de fermentation. Selon une variante préférée de l'invention, le moût issu de l'étape (i) est maintenu à la même température que la température du traitement thermique.
Dans l'étape (ii), on récupère l'hétéropolysaccharide (HP) du moût obtenu dans l'étape (i) avantageusement par précipitation au moyen d'un liquide organique au moins partiellement miscible avec l'eau et dans lequel l'hétéropolysaccharide (HP) est insoluble ou pratiquement insoluble.
A titre de liquides convenables selon la présente invention, on peut citer l'acétone ou les alcools comportant de 1 à 6 atomes de carbone tels que l'éthanol, le propanol, l'isopropanol, le butanol, le tertio-butanol, ou leur mélange.
Plus particulièrement la précipitation de (HP) est effectuée avec l'isopropanol. Le volume de liquide organique utilisé est généralement au moins 2 fois celui du volume de moût à traiter.
La précipitation de l'hétéropolysaccharide (HP) par un liquide organique peut également être réalisée en présence de sels, tels que les sulfates, les chlorures, ou les phosphates, de sodium, de potassium, ou de calcium. Selon un mode de réalisation particulier, la précipitation peut avoir lieu à une température comprise entre 40 et 60°C.
L'hétéropolysaccharide (HP) une fois précipité, peut ensuite être séparé, dans l'étape (iii), du liquide organique.
La méthode de séparation n'est pas critique en soi et peut être choisie indifféremment parmi les méthodes de séparation usuelles connues comme par exemple la filtration. la centrifugation ou l'essorage.
Les fibres obtenues peuvent être facultativement déshydratées par exemple au moyen d'acétone ou d'un alcool tel que l'éthanol, le propanol, ou l'isopropanol.
Le poids d'alcool nécessaire pour effectuer cette opération de déshydratation est généralement de 1 à 10 fois celui des fibres à traiter.
Les fibres déshydratées peuvent subir de nouvelles opérations de filtration, de centrifugation ou d'essorage.
Le cas échéant, les fibres peuvent être séchées, broyées et/ou tamisées de façon à obtenir une poudre d'héteropolysaccharide (HP). Si l'on souhaite obtenir une poudre plus pure, il est possible de traiter soit le moût de fermentation, soit une solution aqueuse reconstituée à partir de la poudre obtenue selon le procédé décrit ci-dessus, au moyen d'une ou plusieurs enzymes. A titre d'enzymes pouvant convenir à cet effet, on peut citer les protéases, les mutanases, les lipoprotéases, les cellulases, et les chitinases.
La purification enzymatique peut être associée ou remplacée par des procédés physiques de purification tels que les divers modes de filtration, de centrifugation, de dialyse, ou par différentes techniques de chromatographies.
Les moûts de fermentation et les solutions reconstituées d'héteropolysaccharide (HP), ayant subi ou non un traitement de purification, peuvent être concentrés.
La concentration peut être avantageuse dans certains cas, en particulier lorsque les coûts de transport peuvent être ainsi réduits. De plus, les solutions concentrées peuvent être plus rapidement mises en oeuvre que les poudres d'héteropolysaccharide (HP).
La concentration peut être réalisée par toutes les techniques connues par l'homme du métier, notamment l'évaporation, l'ultrafiltration, ou la diafiltration.
Dans la présente invention, l'hétéropolysaccharide (HP) est présent avantageusement sous la forme d'un solide de type fibre ou poudre.
Comme déjà mentionné, (HP) présente de très bonnes propriétés rhéologiques et notamment la faculté de former des gels vrais. Selon les conditions de fermentation, en particulier selon les composants et leurs concentrations dans le milieu de culture, et/ou les conditions de précipitation dans l'étape (ii) du procédé (plus particulièrement si la précipitation se fait ou non en présence de sels), (HP) a l'avantage de pouvoir être utilisé soit en tant qu'agent épaississant soit en tant qu'agent gélifiant, soit les deux.
Ainsi, la présente invention concerne l'utilisation de l'hétéropolysaccharide (HP) tel que décrit précédemment ou tel qu'obtenu par le procédé défini ci-dessus, en tant qu'agent épaississant et/ou gélifiant. (HP) peut être utilisé en tant qu'agent épaississant et/ou gélifiant par exemple dans les industries pétrolière, agrochimique, alimentaire, cosmétique, papetière, textile, ainsi que dans les peintures, les lentilles de contact, les colles, les encres, et les nettoyants ménagers ou industriels.
La quantité d'héteropolysaccharide (HP) de l'invention, pouvant être mise en oeuvre dans des compositions cosmétiques est fonction du milieu aqueux à épaissir et/ou à gélifier. Celle-ci peut représenter de 0,01 % à 5 % environ, de préférence de l'ordre de 0,1 % à 0.3% du poids du milieu aqueux épaissi ou gélifié.
On entend par le terme composition ou formulation cosmétique tous les produits ou préparations cosmétiques du type de ceux ou celles décrit(e)s dans l'annexe I ("lllustrative list by category of cosmetic products") de la directive européenne n° 76/768/CEE du 27 juillet 1976, dite directive cosmétique.
Les compositions cosmétiques peuvent être formulées en un grand nombre de types de produits pour la peau et/ ou le cheveu, comme les mousses, les gels (coiffants notamment), les conditionneurs, les formulations pour le coiffage ou pour faciliter le peignage des cheveux, les formules de rinçage, les lotions pour les mains et le corps, les produits régulant l'hydratation de la peau, les laits de toilette, les compositions démaquillantes, les crèmes ou lotions de protection contre le soleil et le rayonnement ultra-violet, les crèmes de soins, les préparations anti-acnée, les analgésiques locaux, les mascaras, les produits destinés à être appliqués sur les lèvres ou autres muqueuses, les sticks, et bien d'autres compositions du même type.
Ces compositions cosmétiques font appel à un véhicule, ou à un mélange de plusieurs véhicules, présent dans lesdites compositions à des concentrations comprises entre 0,5 % et 99.5 % environ, généralement entre 5 et 90 % environ.
Le choix du véhicule approprié dépend de la nature des ingrédients utilisés, et de la destination desdites compositions, selon que le produit formulé est censé être laissé sur la surface où il a été appliqué (par exemple sprays, mousses, lotion tonique, ou gels) ou au contraire rincé après utilisation (par exemple shampoing, conditionneur, lotions de rinçage).
Les véhicules aqueux présents dans les compositions cosmétiques peuvent contenir en outre des alcools en C C6, en particulier le méthanol. l'éthanol, l'isopropanol. Ils peuvent également contenir un autre solvant permettant de solubiliser ou de disperser, dans le milieu aqueux, les divers ingrédients utilisés dans lesdites compositions.
Lesdits véhicules peuvent ainsi contenir en outre une grande variété d'autres solvants comme l'acétone, les hydrocarbures, les hydrocarbures halogènes, le linalol, les esters et les silicones volatils. Les différents solvants pouvant être utilisés dans les véhicules aqueux peuvent être miscibles ou non miscibles les uns avec les autres. Lorsque les compositions cosmétiques se présentent sous la forme de sprays, lotions toniques, gels ou mousses, les véhicules préférentiels comprennent à côté de l'eau, de l'éthanol, des dérivés volatils de silicone, et leurs mélanges.
Les formulations pour mousses et sprays aérosol peuvent aussi renfermer un propulseur capable de générer les produits sous forme de mousse ou de sprays fins, uniformes. A titre d'exemples, on peut citer le trichlorofluoromethane, le dichlorodifluorométhane. le difluoroéthane. le diméthyléther. le propane, le n-butane ou l'isobutane.
Lesdits véhicules aqueux peuvent prendre un grand nombre de formes, notamment celles d'émulsions, incluant les emulsions eau dans huile, huile dans eau, et emulsions multiples, dont la viscosité recherchée peut aller jusqu'à 2 000 000 mPa.s.
A côté du véhicule aqueux, les compositions cosmétiques peuvent contenir des agents tensioactifs, mis en oeuvre pour disperser, émuisionner, solubiliser, stabiliser divers composés utilisés notamment pour leurs propriétés èmollientes ou humectantes. Ils peuvent être de type anionique. non-ionique, cationique, zwitterionique ou amphotère ; on peut citer à titre d'exemples :
° des agents tensio-actifs anioniques en quantité pouvant aller de 3 % à 50 %, de préférence de 5 % à 20 %, agents tels que
. les alkylesters sulfonates
. les alkylsulfates
. les alkyiamides sulfates
. les sels d'acides gras saturés ou insaturés D agents tensio-actifs non-ioniques en quantité pouvant aller de 0, 1 % à 30 %, de préférence de 2 % à 10 %, agents tels que
. les alkylphénols polyoxyalkylénés
. les giucosamides, glucamides ;
. les glycérolamides dérivés de N-alkylamines . les alcools aliphatiques en C8-C22 polyoxyalkylénés
. les produits résultant de la condensation de l'oxyde d'éthylène avec un composé hydrophobe résultant de la condensation de l'oxyde de propylène avec le propylène glycol,
. les oxydes d'aminés . les alkylpolyglycosides et leurs dérivés polyoxyalkylénés;
. les amides d'acides gras en C8-C2o
. les acides gras éthoxylés
. les amides. aminés, amidoamines éthoxylées ° agents tensio-actifs amphoteres et zwitterioniques en quantité pouvant aller de 0.1 % à 30 %, de préférence de 1 % à 10 %, agents tels que
* ceux de type bétaïne comme
• les bétaïnes
• les sulfo-bétaïnes
• les amidoalkylbétaïnes • et les sulfo-bétaïnes
* les alkylsultaines
* les produits de condensation d'acides gras et d'hydrolysats de protéines,
* les cocoamphoacétates et cocoamphodiacétates
* les alkylampho-propionates ou -dipropionates, * les dérivés amphoteres des alkylpolyamines
Peuvent également être présents des agents conditionneurs, en quantité pouvant aller de 0,05 % à 5 %, de préférence de 0,1 % à 1 %. Parmi ceux-ci, on peut mentionner ceux d'origine synthétique plus connus sous le nom polyquaternium comme les polyquaterniums -2,-7, et -10, les dérivés cationiques de polysaccharides, comme la cellulose cocodimonium hydroxyéthyl, le guar hydroxypropyl trimonium chlorure, l'hydroxypropyl guar hydroxypropyl trimonium chlorure, les dérivés non volatils de silicones comme l'amodiméthicone. les cyclométhicones, les organopolysiloxanes non hydrosolubles et non volatils comme les huiles, résines ou gommes telles que les gommes diphényldiméthicone.
Les compositions cosmétiques peuvent également contenir des polymères présentant des propriétés filmogènes pouvant être utilisés pour apporter une fonction fixante. Ces polymères sont généralement présents à des concentrations comprises entre 0,01 et 10%, préférentiellement entre 0,5 et 5 %. Ils sont préférentiellement du type polyvinylpyrrolidone, copolymères de polyvinylpyrrolidone et de méthyl méthacrylate, copolymère de polyvinylpyrrolidone et d'acétate de vinyle. copolymères polytéréphtale d'éthylène glycol / polyéthylène glycol, polymères copolyesters téréphtaliques sulfonés.
Les compositions cosmétiques peuvent également contenir des dérivés polymériques exerçant une fonction protectrice, en quantités de l'ordre de 0,01-10 %, de préférence environ 0,1-5 % en poids, dérivés tels que . les dérivés cellulosiques . les polyvinylesters greffés sur des troncs polyalkylenes
. les alcools polyvinyliques . polymères copolyesters téréphtaliques sulfonés
. les monoamines ou polyamines éthoxylées, les polymères d'aminés éthoxylées
Les performances des compositions cosmétiques peuvent aussi être améliorées par l'emploi d'agents plastifiants, en quantité pouvant aller de 0,1 à 20% de la formulation, de préférence de 1 à 15 %. Parmi ces agents, on peut citer les adipates. les phtalates, les isophtalates, les azélates, les stéarates, les silicones copolyols, les glycols, l'huile de ricin, ou leurs mélanges.
On peut aussi avantageusement ajouter à ces compositions des agents séquestrants des métaux, plus particulièrement ceux séquestrants du calcium comme les ions citrates, ou des agents dispersants polymériques en quantité de l'ordre de 0.1-7 % en poids, pour contrôler la dureté en calcium et magnésium, agents tels que . les sels hydrosolubles d'acides polycarboxyliques . les polyéthylèneglycols de masse moléculaire de l'ordre de 1000 à 50 000 On peut également incorporer aux compositions cosmétiques des agents humectants ; on peut citer le glycerol, le sorbitol. l'urée, le collagène, la gélatine, et des émoliients qui sont généralement choisis parmi les alkylmonoglycérides, les alkyldiglycérides, les triglycérides comme les huiles extraites des plantes et des végétaux ou les huiles d'origine animale ou leurs dérivés hydrogénés, les huiles minérales ou les huiles paraffiniques, les diols, les esters gras, les silicones
A ces composés, on peut ajouter en association des poudres ou des particules minérales comme du carbonate de calcium, des oxydes minéraux sous forme de poudre ou sous forme colloïdale comme du dioxyde de titane, de la silice, des sels d'aluminium, du kaolin, du talc, des argiles et leurs déπvés
A ces ingrédients on rajoute généralement un ou des parfums, des agents colorants et/ou des agents opacifiants comme des pigments
Pour protéger la peau et/ou les cheveux des agressions du soleil et des rayons UV, on peut ajouter à ces formulations des filtres solaires qui sont soit des composes chimiques absorbant fortement le rayonnement UV ou des particules minérales comme l'oxyde de zinc, le dioxyde de titane ou les oxydes de céπum
Des agents conservateurs comme les esters de l'acide p-hydroxybenzoïque le benzoate de sodium, ou tout agent chimique évitant la prolifération bactérienne ou des moisissures et utilisé traditionnellement des les compositions cosmétiques sont généralement introduits dans ces compositions à hauteur de 0,01 à 3 % en poids
On peut parfois utiliser des agents modifiant l'activité de l'eau et augmentant fortement la pression osmotique, comme les carbohydrates ou des sels
La composition cosmétique peut aussi contenir des polymères viscosants et/ou gé fiqnts autres, comme les polyacrylates réticulés les hydrocolloïdes obtenus par fermentation comme la gomme xanthane et le Rhéozan®, les dérivés de la cellulose comme l'hydroxypropylcellulose, la carboxyméthylcellulose les guars et leurs dérives utilisés seuls ou en association
L'invention concerne plus particulièrement l'utilisation de l'hétéropolysacchande en tant qu'agent épaississant et/ou gélifiant dans des formulations alimentaires
Les formulations alimentaires dans lesquelles est ajoute l'hétéropolysacchande (HP) sont classiquement des emulsions simples ou multiples de liquides, des emulsions complexes de gaz et de liquides (systèmes foisonnes), des suspensions de liquides et de solides, ou tout autre système combinant ces possibilités Dans ces formulations, le liquide est avantageusement l'eau ou un liquide comprenant au moins en partie de l'eau
Les formulations alimentaires sont obtenues en mettant en oeuvre les méthodes classiques de préparation des formulations alimentaires selon leur type Ainsi, le (HP) avantageusement sous la forme d'un solide de type fibre ou poudre est mélange aux autres ingrédients nécessaires a la formulation L'ensemble peut, le cas échéant, être homogénéisé
La température a laquelle est préparée la formulation n'est pas en soi critique Les formulations comprenant le (HP) peuvent être stérilisées sans aucun dommage pour leurs propriétés d'usage Un autre avantage de (HP) est qu'il est possible de préparer les formulations alimentaires sans avoir a chauffer au préalable les ingrédients
(HP) demeure compatible malgré la diversité des formulations alimentaires (pH, force ionique, composition), et conserve substantiellement ses propπétés
Les propπétés rhéologiques intéressantes associées à l'hétéropolysacchande (HP) objet de l'invention, ainsi que la faculté de ce dernier à conduire a des gels vrais a des températures inféπeures ou égales à 40°C, et ce dans une large gamme de pH permet, en outre, de conférer aux formulations dans lesquelles il est utilisé seul ou en mélange avec d'autres additifs, une texture voisine de celle des formulations comprenant exclusivement lesdits additifs
Les paramètres mesurables pour caractériser la texture des formulations alimentaires sont de nature rhéologique et consistent essentiellement a mesurer les modules élastique (G') et visqueux (G"), et la viscosité en écoulement a un gradient de cisaillement donné G' et G", ainsi que la viscosité ont été précédemment définis
Ces caractéristiques rhéologiques ont comme objectif de mettre en évidence les comportements visco-élastique et/ou pseudo-plastique des formulations, afin de les comparer entre elles
(HP), avantageusement sous la forme d'un solide de type fibre ou poudre, a la faculté de conférer un profil rhéofluidifiant à la formulation le comprenant
(HP) a, de même, la faculté de conduire à des gels vrais pouvant αcatπser après application d'une contrainte mécanique
Il est à noter que les modules G' et G", ainsi que la viscosité mesures pour une formulation peuvent être différents de ceux mesurés pour (HP) dans l'eau distillée Dans les desserts lactés et gélifiés comme par exemple les flans on peut avantageusement remplacer au moins partiellement les gélifiants usuels notamment la gélatine par (HP)
Dans les milieux salés-acides, comme les vinaigrettes, on peut structurer le milieu aqueux contenu par l'ajout de faibles quantités de (HP) Dans le domaine de la confiserie notamment dans les bonbons gélifies du type
HARIBO®, on peut avantageusement remplacer au moins partiellement les gélifiants comme par exemple la gélatine, par (HP)
Dans les milieux à force ionique élevée notamment en charcuterie, (HP) peut être rajoute aux carraghenanes, pour renforcer la texture en particulier l'aspect élastique des saucisses par exemple
Dans les formulations destinées a être foisonnees, comme les crèmes chantilly les nappages les crèmes glacées (HP) peut être employé comme agent épaississant et/ou gélifiant (HP) peut de même être utilisé dans des formulations comme les mayonnaises les mousses de légumes, les mousses comprenant des protéines, telles que les mousses de viande, de poissons, les mousses comprenant de l'albumine comme les meringues En tant qu'agent épaississant et/ou gélifiant, (HP) peut également entrer dans la composition des yoghourts
Dans les applications alimentaires précitées, on utilise en général de 0,01 a 5 % en poids, et de préférence entre 0,05 à 2 % en poids d'hétéropolysacchaπde (HP) par rapport au poids de la composition ou formulation qui le renferme Plus préférentiellement encore, on utilise 0,1 à 1 % en poids d'hétéropolysacchaπde (HP) par rapport au poids de la composition ou formulation
Il est à noter que l'hétéropolysacchande (HP) n'altère pas le goût des aliments dans lesquels il est introduit
L'invention concerne enfin les compositions ou les formulations alimentaires comprenant l'hétéropolysacchande (HP) tel que défini précédemment
Les exemples suivants illustrent la présente invention, sans toutefois en limiter la portée
EXEMPLES Exemple 1
Cet exemple décnt la culture pure de Pseudomonas sp I - 2054 (ou DSM 12295), et les conditions de conservation de la souche
Culture pure de Pseudomonas sp I - 2054 ( ou DSM 12295)
Le milieu d'entretien de la souche Pseudomonas sp I - 2054 ( ou DSM 12295) est le milieu MY agar de Difco (référence 0712-01-8) La composition de ce milieu deja prêt, est α extrait de bacto-levure 3 g
° extrait de malt 3 g
° bacto-peptone 5 g ° bacto-dextrose 10 g
° bacto-agar 20 g
On dilue 21 g de ce milieu dans un litre d'eau distillée Après dissolution, le milieu est stérilisé à l'autoclave pendant 15 minutes a 121 °C On repartit ensuite le milieu en boîtes de Pétri La culture est réalisée sur boîte de Pétri incubée entre 25°C et 30°C de préférence entre 25°C et 28 °C, pendant 24 heures minimum Preculture - conservation
La souche est alors conservée sous la forme de tube congelé à -196°C par le procède de congélation azote liquide (CAL)
Pour une congélation azote liquide (CAL) on réalise une preculture sur milieu PYG10 ayant la composition suivante
° extrait de malt 3 g (procuré auprès de Oxoid)
° extrait de levure 3 g (Oxoid)
° peptone de soja 5 g (Oxoid)
° glucose 10 g (procure auprès de Prolabo) ° eau de source qsp 1 I
Pour la préparation du milieu, tous les ingrédients sont dispersés dans l'eau de source Le pH est ajusté à 6,5 avec H2SO 10 % Le milieu est stérilisé 20 minutes a 120°C à l'autoclave
Apres 24 heures d'incubation a 28°C sur secoueur giratoire a 220 tr/min et amplitude = 50 mm, 10 % en volume de glycerol pur sténle sont ajoutés à la culture La culture est ensuite répartie dans des cryotubes de contenances variant de 1 ml a 10 ml, de préférence de 2 ml à 4 ml
Ces tubes sont conservés dans l'azote liquide
Exemple 2
Cet exemple décπt la préparation et l'obtention de l'hétéropolysacchande selon deux procédés de fermentation, l'un avec une source d'azote organique et l'autre avec une source d'azote minérale
Dans cet exemple deux étapes de "preculture" interviennent Ces étapes ont lieu en erleπmeyers de 500 ml, ce qui correspond a 100 ml de milieu
L'étape de production qui correspond a l'étape au cours de laquelle la souche bacténenne produit le polysacchaπde, a lieu en fermenteur de 20 litres, dont 15 litres utiles
Les conditions d'agitation du secoueur giratoire sont vitesse = 220 tr/min et amplitude = 50 mm Etape preculture 1
L'étape de préculture 1 est réalisée avec un milieu PYG 10 de composition suivante = extrait de malt 3 g (Oxoid) a extrait de levure 3 g (Oxoid) = bacto-peptone 5 g (Oxoid) α glucose 10 g (Prolabo) = eau distillée qsp 1 I Tous les ingrédients sont dispersés dans qsp 1 I d'eau distillée Le pH est ajuste avant stérilisation à 6 5 avec H2SO4 10 % Le milieu est stérilisé 20 minutes à 120°C a l'autoclave
Apres stérilisation et avant inoculation par le cryotube (qsp) le pH est à 7,33 Chaque erlenmeyer est ensemencé avec la quantité qsp de la CAL
Apres 24 heures d'incubation à 28°C sur secoueur giratoire (220 tr/min, A = 50 mm), le milieu présente les caractéristiques suivantes ° pH = 6,50 ° viscosité < 10 mPa s ° la population lue sur MY agar (milieu Difco, référence 0712-01-8) après 72 heures a 28°C = 1 ,7 105 ufc/ml
Apres 24 heures d'incubation, la preculture 1 est utilisée pour ensemencer la préculture 2
Etape de préculture 2
L'étape de préculture 2 est réalisée avec un milieu de composition suivante
° extrait de levure 4 g (Oxoid)
° MgSO4,7H20 0,8 g (Prolabo)
° FeSO4,7H2O 0,01 g (Prolabo) o MnSO4,H2O 5 ppm Mn2+ (Prolabo)
° K2HPO4 4 g (Prolabo) ou Na2HPO4 3 g (Prolabo)
° glucose 10 g (Prolabo)
° eau adoucie qsp 1 I Une solution de glucose a 100 g/l est préparée dans de l'eau distillée puis stérilisée a pH naturel 15 minutes a 121°C
Le reste des ingrédients est disperse dans qsp 900 ml d'eau adoucie puis ajuste à pH 6,8 avant la stéπlisation 15 minutes à 121 °C
Apres stérilisation, on ajoute 10 ml de la solution de glucose dans chaque erlenmeyer
Apres stérilisation et avant inoculation, le pH est de 6,88
Chaque erlenmeyer est inocule avec la quantité suffisante pour de la preculture 1
Apres 24 heures d'incubation à 28°C sur secoueur giratoire (220 tr/min, A = 50 mm), le milieu présente les caractéristiques suivantes ° pH = 6,82 ° viscosité = 50 - 100 mPa s ° la population lue sur MY agar (milieu Difco, référence 0712-01-8) après 72 heures a 28°C = 1 ,6 109 ufc/ml
Après 24 heures d'incubation, la préculture 2 est utilisée pour ensemencer la les deux milieux de fermentation (fermenteurs 1 et 2) dans l'étape de production
Etape de production
La dernière étape est l'étape de production de l'hétéropolysacchande (HP)
Le milieu du fermenteur 1 a la composition suivante
° glucose 20 g (Prolabo)
° CSL (corn-steep liquor) 6 g (Prolabo) o MgSO4,7H2O 0.8 g (Prolabo)
° MnSO4,H2O 5 ppm Mn2+ (Prolabo)
° K2HPO4 1 g (Prolabo)
° antimousse 0,2 ml
° eau adoucie qsp 1 I
Glucose Qsp grammes de glucose sont dissous dans qsp 3 I d'eau adoucie Le pH est abaissé à 5 par H2SO 10 %. La solution est stéπ sée en flacon de Manotte 30 minutes à 120°C à l'autoclave.
Azote + sels Qsp grammes de corn-steep liquor (CSL), 15 g de K2HPO4, 12 g de MgSO4,7H20, 23 ml d'une solution de MnSO ,H2O à 10 g/l, et 3 ml d'antimousse sont dissous dans qsp 7 I d'eau adoucie. Le pH est ajusté à 6,5 avec H2SO4 10 % Ce mélange est stérilisé in situ 30 minutes à 120°C
Soude 1 N o 40 g de pastilles de NaOH sont dissous dans qsp 11 d'eau distillée La solution est stérilisée en flacon de Manotte 30 minutes a 120°C à l'autoclave Quand tous les ingrédients sont à 28°C, ils sont mélangés dans le fermenteur Le fermenteur est ensuite inoculé avec qsp de préculture 2
Les conditions de fermentation dans le fermenteur 1 sont les suivantes
Agitation => 200 tr/min de 0 à 20 heures d'âge, puis 400 tr/min jusqua la fin de la fermentation Aération 400 l/h de 0 à 18 heures puis 825 l/h de 24 heures jusqu'à la fin de la fermentation
La température est régulée à 28°C
Le pH est régulé à 6,8 par NaOH 1 N
La pression est la pression atmosphérique Le milieu du fermenteur 2 a la composition suivante ° NaNO3 1,2 g (Prolabo) ° NH4NO3 0,25 g (Prolabo) " CaSO4,2H2O 0,3 g (Prolabo) " MgSO4,7H2O 0,8 g (Prolabo) ° MnSO4,H2O 5 ppm Mn2+ (Prolabo) ° FeSO4,7H2O 0,01 g (Prolabo) ° Na2HPO4 3 g (Prolabo) ° glucose 45 g (Prolabo) α antimousse 0,2 ml
° eau adoucie qsp 1 I
Glucose Qsp grammes de glucose sont dissous dans qsp 3 I d'eau adoucie. Le pH est ajusté à 5 par H2SO 10 %. La solution est stérilisée en flacon de Manotte 30 minutes à 120°C à l'autoclave. Azote + sels •=> 18 g de NaNO3, 3,75 g de NH4NO3, 4,5 g de CaSO4,2H2O, 23 ml d'une solution de MnSO4,H2O à 10 g/l, 12 g de MgSO4,7H2O, 75 ml d'une solution de FeSO ,7H2O à 2 g/l, 4,5 g de Na2HPO4, et 3 ml d'antimousse sont dissous dans qsp 71 d'eau adoucie. Le pH de cette solution est ajusté à 6 avec H2SO 10 %. Ce mélange est stérilisé in situ 30 minutes à 120°C. Soude 1N 40 g de pastilles de NaOH sont dissous dans qsp 11 d'eau distillée. La solution est stérilisée en flacon de Manotte 30 minutes à 120°C à l'autoclave.
Quand tous les ingrédients sont à 28°C, ils sont mélangés dans le fermenteur. Le fermenteur est ensuite inoculé avec qsp de préculture 2.
Les conditions de fermentation dans le fermenteur 2 sont les suivantes Agitation 200 tr/min de 0 à 20 heures d'âge, puis 400 tr/min jusqu'à la fin de la fermentation
Aération 400 l/h de 0 à 24 heures puis 825 l/h de 24 heures jusqu'à la fin de la fermentation
La température est régulée à 28°C. Le pH est régulé à 6,8 par NaOH 1 N.
La pression est la pression atmosphérique.
Résultats de fermentation :
Selon le milieu de culture étudié, les durées de fermentations varient de 60 à 115 heures, les matières sèches precipitables à l'isopropanol varient de 10 à 18 g/kg, et le rendement pondéral par rapport à la source de carbone mise en oeuvre vaπe de 44 à
70 % Extraction et Puπfication
Le moût de fin de fermentation est stabilisé avec 10 % d'IPA pur (poids/poids) Il est ensuite traité thermiquement pendant 20 minutes à 100-110°C à pH 7 Le pH, pendant le traitement thermique, ne varie pas Sorti du traitement thermique, le moût est extrait à chaud (température > 70°C)
Les conditions de précipitation sont
° 1,7 kg de moût chaud dans 4,5 kg d'IPA pur (à 50°C environ)
Après la précipitation, les fibres sont hachées puis lavées et déshydratées avec riPA ayant un titre de 78 % Les fibres sont ensuite séchées à l'étuve ventilée à environ 85°C jusqu'à obtention d'un produit ayant une humidité d'environ 10 % en poids
Les fibres sont ensuite broyées et tamisées
L'analyse des motifs de l'hétéropolysacchande obtenu dans le milieu du fermenteur 1 (milieu organique) est comme suit en proportions molaires (pourcentage massique)
Galactose 1 (13%)
Glucose 1,08 (14%) Acide mannuronique 1 ,1 (17%)
Acide acétique 4,3 (18,6%)
L'analyse des motifs de l'hétéropolysacchande obtenu dans le milieu du fermenteur 2 (milieu minerai) est comme suit (pourcentage massique)
Galactose (22 5%)
Glucose (21 ,7%)
Acide mannuronique (26%)
Acide acétique (31 %)
Exemple 3
Cet exemple a pour objet l'utilisation de (HP) obtenu dans l'exemple 2, dans une formulation alimentaire pour nappage Dans les exemples qui vont suivre, les viscosités en écoulement, exprimées en mPa.s, ont été mesurées au moyen d'un viscosimètre BROOKFIELD RVT 20-2, à température ambiante.
Les valeurs des modules élastiques, exprimées en Pa, ont été effectuées au moyen d'un rhéomètre CARRIMED CSL 100, à contrainte imposée. Elles ont été mesurées en régime oscillatoire - fréquence de 0,01 à 10 Hz.
Les mesures de taux de foisonnement, exprimées en %. ont été réalisées de la façon suivante :
•dans un bêcher de volume (V) et de masse connus, on introduit de la mousse, on donne trois coups secs, et on arase ;
• on pèse le bêcher pour déterminer la masse (M) de mousse qu'elle contient :
• le taux de foisonnement = [ M(g) / V (ml) ] x 100
On prépare deux formulations : formulation 3.1 : comprenant l'hétéropolysaccharide (HP) selon l'invention, formulation 3.2 (comparative) : comprenant le caséinate de sodium, et l'alginate de sodium.
Les compositions des formulations sont récapitulées dans le Tableau I. Tableau I
Figure imgf000024_0001
Phase aqueuse :
Dans un bêcher équipé d'une pale défloculeuse, on pèse la quantité d'eau requise et l'on disperse sous vive agitation (500 tr/min) le mélange de poudres décrit dans le tableau ci-dessus.
L'agitation est maintenue 5 minutes après l'introduction desdites poudres.
Phase huileuse
Dans un bêcher, on chauffe au bain-marie à 70°C la matière grasse et les émulsifiants.
On ajoute ensuite la phase huileuse à la phase aqueuse sous agitation à 1000 tr/min.
L'agitation est maintenue 5 minutes après l'introduction de la phase huileuse. Pendant cette opération, on compense l'évaporation de l'eau.
Le tout est ensuite homogénéisé à l'Ultra-turrax pendant 2 minutes à 20000 tr/min.
On refroidit le mélange à une température inférieure à 10°C, avant de procéder au foisonnement. Celui-ci a lieu en utilisant un mélangeur de laboratoire de type KENNWOOD CHEF à vitesse maximale pendant 3 minutes à une température proche de 5°C.
Les résultats sont rassemblés dans le Tableau II. Tableau II
Figure imgf000025_0001
Ces résultats montrent que la formulation 3.1 mettant en oeuvre le (HP) selon l'invention, présente une viscosité plus faible que celle de la formulation 3.2 comparative, et de ce fait est plus facile à faire foisonner.
En outre, la formulation 3.1 (selon l'invention), est d'une part plus gélifiée (G1 plus élevé à haute fréquence), et présente un taux de foisonnement amélioré.

Claims

REVENDICATIONS
1 Hétéropolysacchaπde (HP) caractéπsé en ce qu'il est susceptible d'être obtenu par fermentation d'un milieu comportant au moins une souche Pseudomonas sp I - 2054 (ou DSM 12295), un de ses recombinants, ou de ses mutants et une source de carbone assimilable par ladite souche, l'un de ses recombinants, ou l'un de ses mutants
2 Heteropolysaccharide (HP) selon la revendication 1, caractéπse en ce qu'il comporte des motifs de glucose, de galactose, et/ou leurs dérives de l'acide mannuronique, de l'acide acétique et/ou leurs sels
3 Heteropolysaccharide (HP) selon la revendication précédente caractérise en ce qu'il comporte lesdits motifs dans des proportions molaires suivantes en prenant comme référence le galactose égal à 1
- glucose et/ou ses dérivés 0,2 - 5,
- acide mannuronique et/ou ses sels 0,2 - 5,
- acide acétique et/ou ses sels 0 - 10,
4 Hétéropolysacchaπde (HP) selon l'une quelconque des revendications précédentes, caractéπsé en ce qu'il comporte lesdits motifs dans des proportions molaires suivantes en prenant comme référence le galactose égal à 1
- glucose et/ou ses déπvés 0,5 - 4, et de préférence 0 8 - 2,
- acide mannuronique et/ou ses sels 0,5 - 4 et de préférence 0,8 - 2 - acide acétique et/ou ses sels 0 - 8, et de préférence 0 - 6
5 Heteropolysaccharide (HP) selon l'une quelconque des revendications 1 a 4 caractérisé en ce que les acides mannuronique et acétique se présentent sous forme de sels
6 Hetéropolysacchaπde (HP) selon l'une quelconque des revendications 1 a 5 caractérisé en ce qu'il présente une masse molaire moyenne en poids (Mw) comprise entre 1 105 et 8 106 g/mol, de préférence comprise environ entre 8 105 et 5 106 g/mol
7 Heteropolysaccharide (HP) selon l'une quelconque des revendications 1 à 6, caractérise en ce qu'il présente une masse molaire moyenne en poids (Mw) comprise environ entre 2,5 106 et 4 106 g/mol, les bornes étant inclues 8 Hétéropolysacchaπde (HP) selon l'une quelconque des revendications 1 a 7, caractéπsé en ce que des solutions à 0,5 % en poids/poids dudit hétéropolysacchaπde (HP) dans l'eau distillée à 23 °C, et à une fréquence de 1 Hz, conduisent à des valeurs de G' compπses entre 0,1 et 200 Pa, et celles de G" comprises entre 0,1 et 20 Pa
9 Heteropolysaccharide (HP) selon l'une quelconque des revendications précédentes, caractéπsé en ce que des solutions à 0,5 % en poids/poids dudit hétéropolysacchaπde (HP) dans l'eau distillée à 23 °C, et à une fréquence de 1 Hz, conduit à des valeurs de G' compnses entre 20 et 200 Pa, et celles de G" compπses entre 0,5 et 15 Pa
10 Hétéropolysacchande (HP) selon l'une quelconque des revendications 1 a 9, caractérisé en ce que des solutions à 1 % en poids/poids dudit HP dans l'eau distillée contenant 0,5 % poids/poids de NaCI, à 23°C, conduit a des valeurs de viscosité en écoulement à un gradient de cisaillement de 0,1 s-1 comprises entre 100 et 5000 Pa s, et plus particulièrement entre 200 et 2000 Pa s
11 Heteropolysaccharide (HP) selon l'une quelconque des revendications 1 à 10, caracténsé en ce que des solutions à 1 % en poids/poids dudit HP dans l'eau distillée contenant 0,5 % poids/poids de NaCI, à 23°C, conduit à des valeurs de viscosité en écoulement à un gradient de cisaillement de 10 s-1 compπses entre 0,5 et 300 Pa s, et plus particulièrement entre 5 et 150 Pa s
12 Procédé de préparation de l'hétéropolysacchande (HP) tel que défini à l'une quelconque des revendications 1 à 11 , caractérisé en ce que l'hétéropolysacchande (HP) est sépare du moût de fermentation selon les étapes suivantes
/ - on soumet le moût de fin de fermentation a un traitement thermique entre 80°C et
120 °C pendant environ 10 à 60 minutes
// - on précipite ledit heteropolysaccharide (HP) au moyen d'un liquide organique au moins partiellement miscible avec l'eau, /// - on sépare l'hétéropolysacchande (HP) du liquide organique
13 Procédé selon la revendication 12, caractérise en ce que dans l'étape (i) te moût soumis au traitement thermique présente un pH compπs entre 6 et 8
14 Procédé selon l'une des revendications 12 ou 13, caractérisé en ce que le moût issu de l'étape (i) est maintenu à la même température que la température du traitement thermique 15 Procédé selon l'une quelconque des revendications 12 a 14, caractérisé en ce que dans l'étape (ii) la précipitation de l'hétéropolysacchande (HP) par un liquide organique est réalisée en présence de sels, tels que les sulfates, les chlorures, ou les phosphates de sodium, de potassium, ou de calcium
16 Procédé selon l'une quelconque des revendications 12 à 15, caractérise en ce que dans l'étape (H) la précipitation a eu à une température comprise entre 40 et 60°C
17 Souche de Pseudomonas sp déposée auprès de la CNCM sous le numéro I - 2054 et également auprès de DSMZ sous le numéro DSM 12295
18 Culture pure de Pseudomonas sp I - 2054 (ou DSM 12295)
19 Utilisation de l'hétéropolysacchande (HP) tel que décrit a l'une quelconque des revendications 1 à 11 en tant qu'agent épaississant et/ou gélifiant
20 Utilisation de l'hétéropolysacchande (HP) tel que décπt à l'une quelconque des revendications 1 à 11 , comme agent épaississant et/ou gélifiant dans des formulations alimentaires en des quantités comprises entre 0,01 à 5 % en poids, et de préférence entre 0,05 à 2 % en poids d'hétéropolysacchaπde (HP) par rapport au poids de la composition ou formulation
21 Utilisation de l'hétéropolysacchande (HP) tel que décrit à l'une quelconque des revendications 1 à 1 , pour l'obtention de gels sans ajout de cations supplémentaires au milieu
22 Composition ou formulation comprenant l'hétéropolysaccharide (HP) tel que décrit à l'une quelconque des revendications 1 à 11
PCT/FR2000/000907 1999-04-15 2000-04-10 HETEROPOLYSACCHARIDE PRODUIT PAR UN $i(PSEUDOMONAS SP) WO2000063412A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP00917172A EP1173601B1 (fr) 1999-04-15 2000-04-10 Heteropolysaccharide produit par un pseudomonas sp
DE60006511T DE60006511T2 (de) 1999-04-15 2000-04-10 Durch pseudomonas sp hergestellte heteropolysaccharide
CA002370194A CA2370194C (fr) 1999-04-15 2000-04-10 Heteropolysaccharide produit par un pseudomonas sp
AT00917172T ATE254182T1 (de) 1999-04-15 2000-04-10 Durch pseudomonas sp hergestellte heteropolysaccharide
BR0009789-6A BR0009789A (pt) 1999-04-15 2000-04-10 Heteropolissacarìdeo, processo de preparação do mesmo, cepa de pseudomonas sp, cultura pura, utilização do heteropolissacarìdeo e composição ou formulação
US09/958,673 US7078198B1 (en) 1999-04-15 2000-04-10 Heteropolysaccharide produced by Pseudomonas sp
JP2000612489A JP3734711B2 (ja) 1999-04-15 2000-04-10 シュードモナス種により産生するヘテロ多糖類
AU38270/00A AU3827000A (en) 1999-04-15 2000-04-10 Heteropolysaccharide produced by (pseudomonas sp)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/04743 1999-04-15
FR9904743A FR2792337B1 (fr) 1999-04-15 1999-04-15 Heteropolysaccharide produit par un pseudomonas sp

Publications (1)

Publication Number Publication Date
WO2000063412A1 true WO2000063412A1 (fr) 2000-10-26

Family

ID=9544452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000907 WO2000063412A1 (fr) 1999-04-15 2000-04-10 HETEROPOLYSACCHARIDE PRODUIT PAR UN $i(PSEUDOMONAS SP)

Country Status (13)

Country Link
US (1) US7078198B1 (fr)
EP (1) EP1173601B1 (fr)
JP (1) JP3734711B2 (fr)
CN (1) CN1238517C (fr)
AT (1) ATE254182T1 (fr)
AU (1) AU3827000A (fr)
BR (1) BR0009789A (fr)
CA (1) CA2370194C (fr)
DE (1) DE60006511T2 (fr)
ES (1) ES2211525T3 (fr)
FR (1) FR2792337B1 (fr)
PT (1) PT1173601E (fr)
WO (1) WO2000063412A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277133A1 (en) * 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
FR2841802B1 (fr) * 2002-07-08 2005-03-04 Commissariat Energie Atomique Composition, mousse et procede de decontamination de surfaces
FR2906819B1 (fr) * 2006-10-09 2009-01-16 Agro Ind Rech S Et Dev Ard Sa Nouveau polysaccharide,son procede de preparation et ses utilisations notamment dans le domaine cosmetique
PT103714B (pt) * 2007-04-11 2020-07-28 73100 - Setenta E Três Mil E Cem, Lda. Processo para a obtenção de um polímero à base de galactose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231585A2 (fr) * 1986-02-06 1987-08-12 Celgene Corporation Biosynthèse d'hétéropolysaccharides
EP0410604A1 (fr) * 1989-07-25 1991-01-30 Pfizer Inc. Hétéropolysaccharide 105-4
EP0534855A1 (fr) * 1991-09-25 1993-03-31 Systems Bio-Industries Polysaccharide, ses applications, son obtention par fermentation, souche de Pseudomonas le produisant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231585A2 (fr) * 1986-02-06 1987-08-12 Celgene Corporation Biosynthèse d'hétéropolysaccharides
EP0410604A1 (fr) * 1989-07-25 1991-01-30 Pfizer Inc. Hétéropolysaccharide 105-4
EP0534855A1 (fr) * 1991-09-25 1993-03-31 Systems Bio-Industries Polysaccharide, ses applications, son obtention par fermentation, souche de Pseudomonas le produisant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE FSTA [online] INTERNATIONAL FOOD INFORMATION SERVICE (IFIS), FRANFURT/MAIN, DE; STABNIKOVA E V ET AL: "Possible utilization of exopolysaccharide producers in the baking industry.", XP002125943, Database accession no. 84-3-10-m1181 *
FETT F W ET AL: "Identification of exopolysaccharides produced by fluorescent pseudomonads associated with commercial mushroom (Agaricus bisporus) production.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 61, no. 2, February 1995 (1995-02-01), WASHINGTON,DC, US, pages 513 - 517, XP002125942, ISSN: 0099-2240 *
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII, PISHCHEVAYA TEKHNOLOGIYA, 1983, Kievskii Ordena Trudovogo Krasnogo Znameni Tekh. Inst. Pishchevoi Promyshlennosti, Kiev, USSR *

Also Published As

Publication number Publication date
US7078198B1 (en) 2006-07-18
CA2370194A1 (fr) 2000-10-26
EP1173601B1 (fr) 2003-11-12
AU3827000A (en) 2000-11-02
FR2792337B1 (fr) 2001-07-06
ATE254182T1 (de) 2003-11-15
JP2002542385A (ja) 2002-12-10
ES2211525T3 (es) 2004-07-16
EP1173601A1 (fr) 2002-01-23
BR0009789A (pt) 2002-01-08
DE60006511T2 (de) 2004-09-23
JP3734711B2 (ja) 2006-01-11
PT1173601E (pt) 2004-03-31
CA2370194C (fr) 2009-12-29
DE60006511D1 (de) 2003-12-18
CN1353766A (zh) 2002-06-12
FR2792337A1 (fr) 2000-10-20
CN1238517C (zh) 2006-01-25

Similar Documents

Publication Publication Date Title
Nejadmansouri et al. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type
WO1999020241A1 (fr) Utilisation de nanofibrilles de cellulose essentiellement amorphes associees a au moins un compose organique polyhydroxyle dans des formulations cosmetiques
CA2281594C (fr) Polysaccharide, micro-organisme et procede pour son obtention, composition le contenant et application
EP1532967B1 (fr) Composition cosmétique comprenant de la gomme de gellane ou un de ses derivés, un composé solide et un sel monovalent, procédés mettant en oeuvre cette composition et utilisations
FR2759376A1 (fr) Procede pour obtenir des microfibrilles de cellulose cationiques ou leurs derives solubles, ainsi que celluloses obtenues par ce procede
EP1121453B1 (fr) Heteropolysacchardie produit par un agrobacterium radiobacter
EP0351303B1 (fr) Nouvel hétéropolysaccharide BM07, procédé permettant son obtention et son application dans divers types d&#39;industries
EP0527061B1 (fr) Composition dérivant d&#39;un succinoglycane, son procédé de préparation et ses applications
EP1173601B1 (fr) Heteropolysaccharide produit par un pseudomonas sp
JPH04122701A (ja) β−グルカン及びその製造方法
JP3686170B2 (ja) 化粧料
JPH10237105A (ja) 多糖類、その製造方法及びこれを配合した化粧品
JPH10226701A (ja) オリゴガラクツロン酸含有抗菌組成物及びその製造方法
JP2008120725A (ja) 皮膚外用剤
AU752746B2 (en) Sun protection product with microparticles on the basis of water-insoluble linear polyglucan
JP2009079025A (ja) アルブチン配合皮膚外用剤
FR2906819A1 (fr) Nouveau polysaccharide,son procede de preparation et ses utilisations notamment dans le domaine cosmetique
CA1340731C (fr) Heteropolysaccharide bm07, procede permettant son obtention et son application dans divers types d&#39;industries
WO2023153370A1 (fr) Composition d&#39;émulsion de type huile dans l&#39;eau et produit cosmétique l&#39;utilisant
MXPA01003743A (en) Heteropolysaccharide produced by an agrobacterium radiobacter
Gadad et al. International Journal of Advances in Pharmacy and Biotechnology
CN113490479A (zh) 柑橘纤维和小核菌葡聚糖组合物及其在个人护理应用中的用途
FR2631976A1 (fr) Polyglycannes hydrosolubles possedant notamment des proprietes viscosantes
JPH0840868A (ja) 化粧料
JPH0994454A (ja) 分散剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807330.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000917172

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2370194

Country of ref document: CA

Ref document number: 2370194

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 612489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/1416/CHE

Country of ref document: IN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2000917172

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09958673

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000917172

Country of ref document: EP