WO2000050950A1 - Dispositif de balayage optique de type planar et sa structure de montage - Google Patents

Dispositif de balayage optique de type planar et sa structure de montage Download PDF

Info

Publication number
WO2000050950A1
WO2000050950A1 PCT/JP2000/001132 JP0001132W WO0050950A1 WO 2000050950 A1 WO2000050950 A1 WO 2000050950A1 JP 0001132 W JP0001132 W JP 0001132W WO 0050950 A1 WO0050950 A1 WO 0050950A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning device
optical scanning
substrate
mounting
conductive pattern
Prior art date
Application number
PCT/JP2000/001132
Other languages
English (en)
French (fr)
Inventor
Norihiro Asada
Original Assignee
The Nippon Signal Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nippon Signal Co., Ltd. filed Critical The Nippon Signal Co., Ltd.
Priority to US09/673,269 priority Critical patent/US6456413B1/en
Priority to AT00905374T priority patent/ATE502319T1/de
Priority to DE60045730T priority patent/DE60045730D1/de
Priority to EP00905374A priority patent/EP1087248B8/en
Publication of WO2000050950A1 publication Critical patent/WO2000050950A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • the present invention relates to a planar optical scanning device manufactured by using a semiconductor manufacturing technology, and more particularly to a technology for reducing the size and cost of a planar optical scanning device.
  • Examples of the ultra-small planar optical scanning device manufactured by micromachining technology using semiconductor manufacturing technology include, for example, a planar galvano mirror proposed by the present inventors (Japanese Patent Application Laid-Open No. 7-170550). No. 05, Japanese Unexamined Patent Publication No. 7-21887, and Japanese Unexamined Patent Application Publication No. 8-322227).
  • the planar type optical scanning device is composed of a silicon substrate and a flat movable portion and a shaft support portion having a torsion bar structure for pivotally supporting the movable portion at a center position of the movable portion with respect to the silicon substrate.
  • a mirror is provided at the center of the movable portion, and a drive coil of a copper thin film that generates a magnetic field when energized is provided at a peripheral portion thereof.
  • a pair of static magnetic field generating means such as permanent magnets is provided around the movable portion so that a static magnetic field acts on the drive coil portion on the opposite side of the movable portion parallel to the axial direction of the shaft support portion.
  • a pair of permanent magnets are arranged above and below each of the opposite sides of the movable portion, and a static magnetic field generated between the pair of permanent magnets is configured to cross the drive coil in a predetermined direction.
  • the optical scanning device having such a configuration drives the movable section by the interaction between the magnetic field generated by passing a current through the drive coil and the static magnetic field generated by the static magnetic field generating means.
  • a static magnetic field is formed by the permanent magnet in a direction crossing the drive coil along the plane of the movable part.
  • the drive coil In accordance with the current density and magnetic flux density of the movable part, the magnetic force shown in the following formula (1) acts on the movable part in the direction according to the current • magnetic flux density 'force Fleming's left hand rule. Move.
  • F is the magnetic force
  • i is the current flowing through the drive coil
  • B is the magnetic flux density.
  • optical scanning device Since such an optical scanning device is manufactured using a silicon single crystal, it is light and durable, and can be batch-processed and can be mass-produced with uniform quality.
  • the drive coil electrode terminals are located on the surface side of the semiconductor substrate to facilitate wiring between the drive coil and external electrodes. As shown in Fig. 10 (A).
  • a mirror 2 and a drive coil 3 are formed on the same surface (front surface side) of 1. In this case, if the mirror 2 and the drive coil 3 are formed in an overlapping manner, the surface becomes uneven and the light reflection characteristics become non-uniform, so that the mirror 1 and the drive coil 3 do not overlap, as shown in the figure.
  • a drive coil 3 is arranged around 2.
  • the movable section 1 requires a drive coil formation area in addition to the mirror formation area, and there is a limit to the miniaturization of the movable section.
  • reference numeral 4 denotes a semiconductor substrate
  • 5A and 5B denote shaft support portions of a transition bar structure for pivotally supporting the movable portion 1 on the semiconductor substrate 4
  • 6 denotes electrode terminals of the drive coil 3.
  • planar type optical scanning device in addition to the above-mentioned prior art, for example,
  • the present invention has been made in view of the above circumstances, and by arranging a mirror on one surface of a movable portion and a drive coil on the other surface, it is possible to further reduce the size, and further reduce the size. It is an object of the present invention to provide a planar optical scanning device capable of achieving price reduction.
  • the planar optical scanning device is configured such that a movable portion and a pivot portion that pivotally supports the movable portion are integrally formed on a semiconductor substrate, and a surface of the movable portion is formed.
  • a mirror is provided on the surface side
  • a drive coil is provided on the back side of the movable section
  • a magnetic field generating means for applying a static magnetic field to the drive coil is provided, and a magnetic force generated by flowing an electric current to the drive coil is used.
  • the configuration is such that the movable part is driven.
  • a mirror is formed on the front side of the movable section, and a drive coil is formed on the back side of the movable section. Therefore, compared to the conventional apparatus, the optical scanning having the same mirror area is equivalent to the area where the drive coil is formed.
  • the device can be downsized.
  • the movable portion of the optical scanning device is provided in the optical scanning device fixing region of the mounting substrate.
  • the driving coil electrode terminals on the optical scanning device side can be electrically connected to the terminal pins of the mounting substrate via the conductive pattern. Even if a drive coil is formed on the side, the optical scanning device can be easily mounted on the mounting substrate.
  • the terminal pin when the mounting substrate is configured to fix an electrode extraction terminal pin that is electrically connected to the conductive pattern around the fixing region, the terminal pin can be connected to the outside with a single touch.
  • a solder surface is formed on the conductive pattern and the drive coil electrode terminal, and the optical scanning device is fixed to the fixed region by thermocompression bonding of the respective solder surfaces, optical scanning is performed.
  • the electrode terminals can be connected simultaneously with the fixing of the device.
  • the space portion allowing the swinging operation of the movable portion of the optical scanning device and at least the rear surface side
  • An auxiliary substrate provided with a conductive pattern around the space portion, an optical scanning device fixed to the back surface of the auxiliary substrate from the front side, and a driving coil electrode terminal provided on the back surface of the optical scanning device and the auxiliary substrate.
  • the auxiliary substrate While electrically connecting the conductive pattern, the auxiliary substrate is fixed with a spacer interposed above the mounting substrate on which a plurality of terminal pins are fixed through the surface side.
  • the structure is such that the terminal pin protruding portion on the surface of the mounting substrate is electrically connected to the conductive pattern.
  • the auxiliary substrate has a plurality of through holes around the space, and has the conductive pattern that electrically connects the front side and the back side through the through holes.
  • the terminal pin protruding portion on the surface of the mounting substrate may be penetrated through a through hole of the auxiliary substrate, and the terminal pin protruding toward the auxiliary substrate surface may be soldered.
  • FIG. 1 is a configuration diagram showing an embodiment of the optical scanning device according to the present invention.
  • FIG. 2 (A) is a diagram showing a front side of the optical scanning device of the embodiment.
  • FIG. 2B is a diagram showing the back surface side of the optical scanning device of FIG. 2A.
  • FIG. 3 (A) is a diagram showing the front side when the movable section of the optical scanning device of the above embodiment has the same size as the conventional one.
  • FIG. 3 (B) is a diagram showing the back surface side of the optical scanning device of FIG. 3 (A).
  • FIG. 4 is a diagram showing one embodiment of the mounting structure according to the present invention.
  • FIG. 5 is an explanatory diagram of a mounting process of the mounting structure of FIG.
  • FIG. 7 is an explanatory diagram of a mounting process of the mounting structure of FIG.
  • FIG. 8 is an explanatory diagram of the mounting process following FIG.
  • FIG. 10 (B) is a diagram showing the back side of the optical scanning device of FIG. 10 (A).
  • FIG 1 and 2 show the configuration of an embodiment of the optical scanning device according to the present invention.
  • an optical scanning device 10 of the present embodiment includes a silicon substrate 11 as a semiconductor substrate, a flat movable plate 12 as a movable portion, and a silicon substrate 11 as a movable plate 12
  • the torsion bars 13A and 13B as shaft supporting portions for supporting the shaft are integrally formed by anisotropic etching.
  • the thickness of the movable plate 12 is made thinner than the thickness of the silicon substrate 11 so that the movable plate 12 can swing around the shaft support.
  • a mirror 14 is formed on the surface side of the movable plate 12 by, for example, aluminum evaporation. As shown in FIG.
  • a drive coil 15 made of, for example, a copper thin film is formed on the back side of the movable plate 12 by using an electro-coil method or the like.
  • a pair of electrode terminals 16 A and 16 B are formed on the back surface of the silicon substrate 11 by the electrode coil method or the like in the same manner as the drive coil 15.
  • One end of the drive coil 15 is electrically connected to a pair of electrode terminals 16 A via one of the transition bars 13 A, and the other end of the drive coil 15 is connected to the other of the transition bars. It is electrically connected to the other electrode terminal 16 B via 13 B.
  • a plurality of solder surfaces 22 for fixing the optical scanning device 10 to the package substrate in a mounting structure described later are provided on the back surface side of the silicon substrate 11.
  • Insulating substrates 17 and 18 are fixed to the front and back surfaces of the silicon substrate 11, and the opening 17 a is formed on the front side insulating substrate 17 so that the movable plate 12 can swing around the pivot. It is set up.
  • the insulating substrates 17 and 18 are paired with each other to apply a static magnetic field to the drive coil 15 on the opposite side of the movable plate 12 parallel to the axial direction of the torsion bars 13A and 13B.
  • Permanent magnets 19A and 19B and 20A and 20B are provided as magnetic field generating means.
  • one pair of permanent magnets 19 A and 19 B is provided so that the lower side has an N pole and the upper side has an S pole
  • the other permanent magnets 20 A and 20 8 Is provided so that the lower side has three poles and the upper side has N poles.
  • the mirror 14 is formed on the front side of the movable plate 12
  • the drive coil 15 is formed on the back side of the movable plate 12.
  • the area can be reduced, and the optical scanning device 10 can be downsized.
  • the area of the movable plate 12 is the same as the conventional one, the area of the mirror 14 can be increased, and there is an advantage that the size of the mirror can be increased at the same cost as the conventional one.
  • the operation of the optical scanning device having such a configuration is the same as that of the conventional one, and will be briefly described below.
  • a current flows through the drive coil 15 with one electrode terminal 168 being a positive electrode and the other electrode terminal 16 B being a negative electrode.
  • permanent magnets 198 and 198, 20 A and 20 B are driven along the plane of movable plate 12 between upper and lower magnets as shown by arrows in FIG.
  • a magnetic field is formed so as to cross the coil 15.
  • the rotation angle of the movable plate 12 is proportional to the current flowing through the drive coil 15, the rotation angle of the movable plate 12 can be controlled by controlling the amount of current supplied to the drive coil 15.
  • the reflection direction of the laser beam incident on the mirror 14 can be freely controlled in a plane perpendicular to the axes of the torsion bars 13A and 13B, and the rotation angle of the mirror 14 can be continuously adjusted. Laser light can be skimmed by repeated operation.
  • the package substrate 31 as a mounting substrate on which the optical scanning device 10 of FIG. 1 is mounted on the upper surface is, as shown in FIG.
  • a space 32 is provided for allowing the movable plate 12 of the optical scanning device 10 to swing.
  • a pair of conductive patterns 33 electrically connected to the electrode terminals 16A and 16B on the back surface of the optical scanning device 10 and a fixing portion for fixing the optical scanning device 10 are provided.
  • Solder surfaces 34 and 34 are provided. Solder surfaces are also formed on the extended portions 33A and 33B of the conductive pattern 33 so as to serve as fixing portions together with the solder surfaces 34 and 34.
  • the package substrate 31 is provided with four terminal pins 35 electrically connected to the conductive pattern 33 so as to penetrate through the through-hole to the surface side of the substrate 31 and protrude therefrom.
  • a pair of permanent magnets 37 and 38 are provided as magnetic field generating means.
  • the permanent magnets 37 and 38 have the S pole and the N pole facing each other, and the optical scanning device 10 moves from one permanent magnet 37 (or 38) toward the other permanent magnet 38 (or 37).
  • a static magnetic field that crosses the In this embodiment, the permanent magnets 37 and 38 are arranged with the optical scanning device 10 interposed therebetween.
  • the arrangement of the permanent magnets is not limited to the configuration of this embodiment, and is shown in FIG. May be arranged vertically.
  • the process of mounting the optical scanning device 10 on the package substrate 31 is as follows from above the package substrate 31 as shown by the arrow in the figure.
  • the scanning device 10 is placed.
  • the solder surface provided on the drive coil electrode terminals 16 A, 16 B on the back of the optical scanning device 10 comes into contact with the solder surfaces of the extensions 33 A, 33 B of the conductive pattern 33,
  • the soldering surfaces 22 and 22 on the back surface of the optical scanning device 10 are placed in contact with the soldering surfaces 34 and 34 on the package substrate 31 side.
  • a thermocompression bonding process is performed to fix the contacted solder surfaces to each other and fix the optical scanning device 10 to the package substrate 31 so that the optical scanning is performed as shown in FIG.
  • the device 10 is mounted on the package substrate 31.
  • the electrode terminals 16 A and 16 B on the optical scanning device 10 are simultaneously connected to the conductive patterns 3 on the package substrate 31. 3 can be electrically contacted with the extension 3 3 A, 3 3 B. Even if the drive coil 15 is provided on the back side of the movable plate 12, the electrode terminals 16 A, By electrically connecting the 16 B to the terminal pins 35 of the package substrate 31, it can be easily taken out. Since the swing operation of the movable plate 12 can be tolerated by the space portion 32 of the package substrate 31, there is no hindrance to the operation of the optical scanning device 10.
  • the method of fixing the optical scanning device 10 is not limited to the present embodiment.
  • a structure without terminal pins may be used.
  • the mounting structure in FIG. 4 allows the optical scanning device 10 to be easily mounted even if the drive coil 15 is provided on the back surface of the movable plate 12, but allows the movable plate 12 to swing on the package substrate 31. It is necessary to provide a space 32 for this. For this reason, the strength of the package substrate 31 may be reduced.
  • FIG. 6 shows a mounting structure according to claim 5 of the present invention, which can be easily mounted on a package substrate without reducing the strength of the package substrate even in an optical scanning device provided with only a driving coil on the back surface of the movable plate.
  • the same elements as those in the embodiment of FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the mounting structure according to the present embodiment is configured such that the auxiliary substrate 42 is fixed above the package substrate 31 ′ via a spacer 41 at a certain distance from the package substrate 31 ′.
  • the structure is such that the optical scanning device 10 is fixed between the back surface of the substrate 2, that is, between the package substrate 31 ′ and the auxiliary substrate 42.
  • permanent magnets 37 and 38 and a frame-shaped yoke 36 are provided on the surface of the package substrate 31 'as in the embodiment of FIG.
  • the package substrate 31 ′ is formed in the same manner as the package substrate 31 of the embodiment in FIG. 4 except that there is no space.
  • FIGS. 7 With the back side of the auxiliary substrate 42 facing upward, as shown by the arrow in FIG. 7, a state where the back side of the optical scanning device 10 is facing upward in a fixed region at the approximate center of the auxiliary substrate 42 from above Fix the optical scanning device 10 with. After fixing, the electrode terminals 16 A and 16 B on the optical scanning device 10 and the extension portions 45 a and 45 a of the conductive pattern 45 on the back surface of the auxiliary substrate 42 are electrically connected with bonding wires 46. Connect to This state is shown in FIG.
  • the electrode terminals 16 A and 16 B of the driving coil 15 are connected to the terminal pins 35 of the package substrate 31. And can be easily taken out.
  • the strength of the package substrate 31' is improved as compared with the mounting structure shown in FIG.
  • the area of the movable portion can be reduced, so that the optical scanning device can be downsized. Therefore, the number of chips that can be made from one wafer can be increased, so that the cost can be reduced and the manufacturing cost of the optical scanning device can be reduced. Also, if the area of the movable part is made the same as the conventional one, the area of the mirror can be increased, and there is an advantage that the size of the mirror can be increased with the same cost as the conventional one. Also, according to the mounting structure of the present invention, when the optical scanning device is fixed to the mounting substrate, the electrode terminals on the optical scanning device can be electrically connected to the terminal pins on the mounting substrate at the same time.
  • the electrodes of the optical scanning device can be easily taken out.
  • the conductive pattern can also serve as a part of the fixing portion, and the electrode can be formed simultaneously with the fixing of the optical scanning device. Terminals can be connected.
  • a driving coil is provided on the back side of the movable part.
  • the electrodes of the optical scanning device be easily taken out, but the space for allowing the oscillating motion of the movable portion of the optical scanning device does not have to be formed on the mounting substrate. The strength of the substrate can be increased.
  • the present invention can reduce the size and cost of a planar optical scanning device manufactured using semiconductor manufacturing technology, and can reduce the size and cost of various devices to which the planar optical scanning device is applied. Since it can be realized, industrial applicability is great.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

糸田 »
プレーナ型光走査装置及びその実装構造
〔技術分野〕
本発明は、 半導体製造技術を用いて製造するプレーナ型光走査装置に関し、 特 に、 プレーナ型光走査装置の小型化、 低価格化等を図る技術に関する。
〔背景技術〕
半導体製造技術を応用したマイクロマシユング技術で製造する超小型のプレー ナ型光走査装置としては、 本発明者等により先に提案された、 例えばプレーナ型 ガルバノミラ一 (特開平 7— 1 7 5 0 0 5号公報、 特開平 7— 2 1 8 8 5 7号公 報及び特開平 8— 3 2 2 2 2 7号公報参照) 等がある。
このようなブレーナ型光走査装置の動作原理について以下に説明する。
プレーナ型光走査装置は、 シリコン基板に、 平板状の可動部と該可動部の中心 位置でシリ コン基板に対して揺動可能に可動部を軸支するト一シヨンバー構造の 軸支部とを一体形成する。 前記可動部には、 中央部にミラ一を設け、 その周縁部 に通電により磁界を発生する銅薄膜の駆動コイルを設ける。 また、 互いに対をな す永久磁石等の静磁界発生手段を、 前記軸支部の軸方向と平行な可動部の対辺の 駆動コイル部分に静磁界が作用するよう可動部周囲に設ける。 前述の先願例では
、 可動部の対辺部分それぞれの上下に一対の永久磁石を配置し、 対をなす永久磁 石間に発生する静磁界が駆動コィルを所定方向に横切るように構成してある。 かかる構成の光走査装置は、 駆動コイルに電流を流すことにより発生する磁界 と、 静磁界発生手段の作る静磁界との相互作用により可動部を駆動する。
即ち、 可動部の両側では、 永久磁石によって可動部の平面に沿って駆動コイル を横切るような方向に静磁界が形成されており、 この静磁界中の駆動コイルに電 流が流れると、 駆動コイルの電流密度と磁束密度に応じて可動部の両端に、 電流 •磁束密度 '力のフレミングの左手の法則に従った方向に、 下記 (1 ) 式に示す 磁気力が作用して可動部が回動する。
F = i X B · · . ( 1 )
ここで、 Fは磁気力、 iは駆動コイルに流れる電流、 Bは磁束密度である。 可動部が回動すると軸支部が捩じられてばね反力が発生し、 前記磁気力とばね 反力が釣り合う位置まで可動部が回動する。 可動部の回動角は駆動コイルに流れ る電流に比例するので、 駆動コイルに流す電流を制御することで可動部の回動角 を制御することができる。 従って、 軸支部の軸に対して垂直な面内においてミラ —に入射するレーザ光等の光の反射方向を自由に制御できるので、 ミラーの変位 角を連続的に反復動作させてレーザ光をスキャニングする等、 光の走査が可能で める。
かかる光走査装置は、 シリコン単結晶を用いて製造するので、 軽くて丈夫であ り、 バッチ処理が可能で品質の揃ったものが大量に生産できる。
ところで、 半導体ウェハ一のバッチ処理で大量にチップを作成する場合、 ゥェ ハ一1枚あたりのコストは同じ工程を取る場合には同じである。 従って、 1枚の ウェハーで作成できるチップ数を増加する、 言いかえればチップをより一層小型 化すればその分コストダウンにつながる。
しかしながら、 従来のプレーナ型光走査装置では、 実装用のパッケージ基板上 に実装する際に、 駆動コイルと外部電極との配線容易化のために、 駆動コイル電 極端子が半導体基板表面側に位置するように、 図 1 0 ( A) に示すように可動部
1の同一面(表面側)にミラー 2と駆動コイル 3を形成している。 この場合、 ミラ —2と駆動コイル 3を重ねて形成すると表面に凹凸ができ光の反射特性が均一で なくなるため、 ミラ一 2と駆動コイル 3が重ならないよう、 図示のようにミラー
2の周囲に駆動コイル 3を配置している。 このため、 可動部 1はミラー形成領域 の他に駆動コイル形成領域も必要となり、 可動部の小型化には限界があった。 図
1 0 ( B ) は光走査装置の裏面側を示す。 図中、 4は半導体基板、 5 A, 5 Bは 半導体基板 4に可動部 1を揺動可能に軸支するト一シヨンバー構造の軸支部、 6 は駆動コイル 3の電極端子である。
尚、 プレーナ型光走査装置としては、 前述の先行技術の他に、 例えば特開昭 6
0— 1 ◦ 7 0 1 7号公報、 特開平 4一 2 1 1 2 1 8号公報及び U . S . P atent
4 , 4 2 1 , 3 8 1号明細書等に開示されたものがあるが、 いずれもミラ一と駆 動コイルが同一面側に設けられている。 本発明は上記の事情に鑑みなされたもので、 可動部の一方の面にミラーを、 他 方の面に駆動コイルをそれぞれ配置することにより、 一層の小型化が可能であり 、 延いては低価格化を達成できるプレーナ型光走査装置を提供することを目的と する。
〔発明の開示〕
このため、 本発明の請求項 1のプレーナ型光走査装置は、 半導体基板に、 可動 部と、 該可動部を揺動可能に軸支する軸支部とを一体に形成し、 前記可動部の表 面側にミラ一を設け、 前記可動部の裏面側に駆動コイルを設け、 該駆動コイルに 静磁界を与える磁界発生手段を設け、 前記駆動コイルに電流を流すことにより発 生する磁気力により前記可動部を駆動する構成とした。
かかる構成では、 可動部の表面側にミラ一を、 可動部の裏面側に駆動コイルを それぞれ形成したので、 従来の装置に比べて駆動コイルの形成領域の分、 同一の ミラー面積を有する光走査装置を小型化できる。
本発明のプレーナ型光走査装置を実装用基板に実装するための請求項 2に記載 した本発明の実装構造では、 前記実装用基板の光走査装置固定領域内に、 光走査 装置の可動部の揺動動作を許容する空間部及び導電パターンを設け、 光走査装置 を前記固定領域に固定した時に、 光走査装置の半導体基板裏面に設けた駆動コィ ル電極端子と前記導電パターンとが接触する構造とした。
かかる構造では、 実装用基板に光走査装置を固定した時に、 光走査装置側の駆 動コィル電極端子を導電パターンを介して実装用基板の端子ピンに電気的に接続 させることができるので、 裏面側に駆動コイルを形成しても光走査装置を容易に 実装用基板に実装できるようになる。
請求項 3のように、 前記実装用基板が、 前記固定領域周囲に前記導電パターン と電気的に接続する電極取出し用端子ピンを固定する構成とすれば、 端子ピンに よってワンタツチで外部と接続できるようになる。
請求項 4のように、 前記導電パターン及び前記駆動コイル電極端子にハンダ面 を形成し、 互いのハンダ面を熱圧着して光走査装置を前記固定領域に固定する構 造とすれば、 光走査装置の固定と同時に電極端子の接続ができる。 本発明のプレーナ型光走査装置を実装用基板に実装するための請求項 5に記載 した本発明の実装構造では、 光走査装置の可動部の揺動動作を許容する空間部及 び少なくとも裏面側の前記空間部周囲に導電パターンを設けた補助基板を有し、 該補助基板の裏面に光走査装置を表面側から固定し、 光走査装置裏面に設けた駆 動コィル電極端子と前記補助基板の導電パターンとを電気的に接続する一方、 複 数の端子ピンが表面側に貫通固定された前記実装用基板の上方に、 スぺ一サを介 在させて補助基板を間隔を設けて固定し、 前記実装用基板表面側の端子ピン突出 部と前記導電パターンを電気的に接続する構造とした。
かかる構成では、 光走査装置の可動部の揺動運動を許容するための空間部を、 実装用基板に形成しなくてもよく、 実装用基板の強度を高めることができる。 また、 請求項 6のように、 前記補助基板は、 前記空間部周囲に複数のスルーホ —ルを有し、 前記スルーホールを介して表面側と裏面側を電気的に導通する前記 導電パターンを有し、 前記実装用基板表面側の端子ピン突出部を、 前記補助基板 のスルーホ一ルに貫通させ補助基板表面側に突出した端子ピンをハンダ付けする 構造としてもよレ、。
〔図面の簡単な説明〕
図 1は、 本発明に係る光走査装置の一実施例を示す構成図である。
図 2 ( A) は、 同上実施例の光走查装置の表面側を示す図である。
図 2 ( B ) は、 図 2 (A) の光走査装置の裏面側を示す図である。
図 3 (A) は、 同上実施例の光走査装置の可動部を従来同様の大きさにした時 の表面側を示す図である。
図 3 ( B ) は、 図 3 ( A) の光走査装置の裏面側を示す図である。
図 4は、 本発明に係る実装構造の一実施例を示す図である。
図 5は、 図 4の実装構造の実装工程の説明図である。
図 6は、 本発明に係る実装構造の一実施例を示す図である。
図 7は、 図 6の実装構造の実装工程の説明図である。
図 8は、 図 7に続く実装工程の説明図である。
図 9は、 図 8に続く実装工程の説明図である。 図 1 0 ( A) は、 従来の光走査装置の表面側を示す図である。
図 1 0 ( B ) は、 図 1 0 ( A ) の光走査装置の裏面側を示す図である。
〔発明を実施するための最良の形態〕
以下に、 本発明に係る光走査装置について添付図面に基づいて説明する。
図 1及び図 2は、 本発明に係る光走査装置の一実施形態の構成を示す。
図 1及び図 2において、 本実施形態の光走査装置 1 0は、 半導体基板として例 えばシリコン基板 1 1に、 可動部としての平板状の可動板 1 2とシリコン基板 1 1に可動板 1 2を軸支する軸支部としてのトーションバ一 1 3 A, 1 3 Bを、 異 方エッチングによって一体形成する。 尚、 シリコン基板 1 1の厚さに比べて可動 板 1 2の厚さを、 可動板 1 2が軸支部回りに揺動できるよう薄く形成してある。 前記可動板 1 2の表面側には、 図 2の (A) に示すように例えばアルミニウム 蒸着により ミラ一 1 4が形成されている。 可動板 1 2の裏面側には、 図 2の (B ) に示すように、 例えば銅薄膜の駆動コイル 1 5が電铸コイル法等を用いて形成 されている。 また、 シリコン基板 1 1裏面側には、 駆動コイル 1 5と同様に電铸 コイル法等で一対の電極端子 1 6 A, 1 6 Bが形成されている。 そして、 駆動コ ィル 1 5の一端が一方のト一ションバ一 1 3 A介して一対の電極端子 1 6 Aに電 気的に接続し、 駆動コイル 1 5の他端が他方のト一シヨンバー 1 3 B介して他方 の電極端子 1 6 Bに電気的に接続している。 尚、 シリコン基板 1 1裏面側には、 後述する実装構造において光走査装置 1 0をパッケージ基板に固定するための複 数のハンダ面 2 2が設けられている。
シリコン基板 1 1の表面と裏面には、 絶縁基板 1 7, 1 8が固定され、 表面側 絶縁基板 1 7には、 可動板 1 2が軸支部回りに揺動できるよう開口部 1 7 aが設 けられている。 絶縁基板 1 7, 1 8には、 前記トーシヨンバ一 1 3 A, 1 3 Bの 軸方向と平行な可動板 1 2の対辺の駆動コイル 1 5部分に静磁界を作用させる互 いに対をなす磁界発生手段としての永久磁石 1 9 A, 1 9 Bと 2 0 A, 2 0 Bが 設けられている。 そして、 図に示すように、 互いに対をなす一方の永久磁石 1 9 A, 1 9 Bは下側が N極、 上側が S極となるよう設けられ、 他方の永久磁石 2 0 A, 2 0 8は下側が3極、 上側が N極となるよう設けられている。 かかる構成の光走查装置 1 0では、 可動板 1 2の表面側にミラ一 1 4を形成し 、 可動板 1 2の裏面側に駆動コイル 1 5を形成するようにしたので、 図 1 0に示 す従来装置のような可動板の表面側だけにミラーと駆動コイルとを形成した場合 に比べて、 ミラー 1 4の面積を同じとすれば従来の駆動コイル形成領域分可動板 1 2の面積を縮小でき、 光走査装置 1 0を小型化できる。
従って、 1枚のウェハーから作成できるチップ数が増加する。 半導体ウェハ一 のバッチ処理で大量にチップを作成する場合、 ウェハ一 1枚当たりのコストは同 じ工程を取る場合には同じであるので、 1枚のウェハーから作成できるチップ数 が増加することで、 その分コストダウンでき、 光走査装置 1 0の小型化が図れる と共に製造コストを低減できる。
また、 図 3に示すように、 可動板 1 2の面積を従来と同じとすれば、 ミラ一 1 4の面積を広くでき、 従来と同じコストでミラーの大型化を図れる利点がある。 尚、 かかる構成の光走査装置の動作は従来と同様であり、 以下に簡単に説明す る。
例えば、 一方の電極端子 1 6八を+極、 他方の電極端子 1 6 Bを—極として駆 動コイル 1 5に電流を流す。 可動板 1 2の両側では、 永久磁石 1 9八と 1 9 8、 2 0 Aと 2 0 Bによって、 図 1の矢印で示すように上下の磁石間で可動板 1 2の 平面に沿って駆動コイル 1 5を横切るような方向に磁界が形成されている。 この 磁界中の駆動コイル 1 5に電流が流れると、 可動板 1 2の両端に、 フレミングの 左手の法則に従った方向に前述の(1 )式に基づく磁気力が作用し、 可動板 1 2が 回動する。 可動板 1 2が回動すると トーシヨンバ一 1 3 A, 1 3 Bが捩じられ、 ト一シヨンバー 1 3 A, 1 3 Bにばね反力が発生する。 このばね反力と前記磁気 力が釣り合う位置まで可動板 1 2が回動する。 可動板 1 2の回動角は、 駆動コィ ル 1 5に流れる電流に比例するので、 駆動コイル 1 5の通電量を制御することに より、 可動板 1 2の回動角を制御でき、 例えば、 ト一シヨンバー 1 3 A, 1 3 B の軸に対して垂直な面内においてミラー 1 4に入射するレーザ光の反射方向を自 由に制御でき、 ミラー 1 4の回動角を連続的に反復動作させれば、 レ一ザ光のス キヤエングが可能である。 次に、 上述した光走査装置 1 0のパッケージ実装に好適な、 本発明の請求項 2 に記載の実装構造の実施形態について説明する。
図 4及び図 5において、 図 1の光走査装置 1 0を上面に実装する実装用基板と してのパッケージ基板 3 1は、 図 5に示すように、 基板略中央の光走査装置固定 領域内に、 光走査装置 1 0の可動板 1 2の揺動動作を許容する空間部 3 2が設け られている。 この空間部 3 2周囲には、 光走査装置 1 0裏面の電極端子 1 6 A, 1 6 Bと電気的に接続する一対の導電パターン 3 3と、 光走査装置 1 0を固定す る固定部としてのハンダ面 3 4, 3 4が設けられている。 前記導電パターン 3 3 の延長部 3 3 A, 3 3 Bにも、 ハンダ面が形成されて前記ハンダ面 3 4, 3 4と 共に固定部を兼ねるようになつている。 更に、 パッケージ基板 3 1には、 導電パ ターン 3 3と電気的に接続する 4本の端子ピン 3 5がスルーホールを介して基板 3 1表面側に貫通し突出して設けられている。
パッケージ基板 3 1の上面周縁部には、 例えば磁性体である純鉄からなる枠状 のヨーク 3 6が設けられている。 ヨーク 3 6の互いに対面する 2辺の内側には、 磁界発生手段として一対の永久磁石 3 7, 3 8が設けられている。 永久磁石 3 7 , 3 8は、 S極と N極が対面し、 一方の永久磁石 3 7 (又は 3 8 ) から他方の永 久磁石 3 8 (又は 3 7 ) に向かって前記光走査装置 10を横切る静磁界が発生する ようになつている。 尚、 本実施形態では、 光走查装置 1 0を挟んで永久磁石 3 7 と 3 8を配置したが、 永久磁石の配置構造は本実施形態の構成に限るものではな く、 図 1に示すように上下に配置するようにしても良い。
パッケージ基板 3 1に光走査装置 1 0を実装する工程は、 図 5に示すように、 パッケージ基板 3 1上方から図の矢印で示すように、 パッケージ基板 3 1表面略 中央部の固定領域に光走査装置 1 0を載置する。 載置する場合、 光走査装置 1 0 裏面の駆動コイル電極端子 1 6 A, 1 6 Bに設けたハンダ面が導電パターン 3 3 の延長部 3 3 A, 3 3 Bのハンダ面に接触し、 光走査装置 1 0裏面のハンダ面 2 2, 2 2がパッケージ基板 3 1側のハンダ面 3 4, 3 4に接触するように載置する 。 その後、 熱圧着工程を施して、 接触させた互いのハンダ面を固着させて光走査 装置 1 0をパッケージ基板 3 1に固定することにより、 図 4に示すように光走査 装置 1 0がパッケージ基板 3 1上に実装される。
かかる実装構造によれば、 パッケージ基板 3 1に光走査装置 1 0を固定した時 に、 同時に光走査装置 1 0側の電極端子 1 6 A , 1 6 Bをパッケージ基板 3 1側 の導電パターン 3 3の延長部 3 3 A , 3 3 Bと電気的に接触させることができ、 可動板 1 2裏面側に駆動コイル 1 5を設けた場合でも、 駆動コイル 1 5の電極端 子 1 6 A, 1 6 Bをパッケージ基板 3 1の端子ピン 3 5に電気的に接続させて容 易に外部に取り出すことができる。 可動板 1 2の揺動動作はパッケージ基板 3 1 の空間部 3 2によって許容できるので、 光走査装置 1 0の動作には何ら支障は無 レ、。
尚、 光走査装置 1 0の固定方法は本実施形態に限定されるものではない。 端子 ピンのない構造でもよい。
図 4の実装構造は、 可動板 1 2裏面に駆動コイル 1 5を設けても容易に光走査 装置 1 0を実装できるが、 パッケージ基板 3 1に可動板 1 2の揺動動作を可能に するための空間部 3 2を設ける必要がある。 このために、 パッケージ基板 3 1の 強度が低下する虞れがある。
可動板裏面に駆動コィルだけを設けた光走査装置でも、 パッケージ基板の強度 を低下させずに容易にパッケージ基板に実装可能な、 本発明の請求項 5の実装構 造を図 6に示す。 尚、 図 4の実施形態と同一要素には同一の符号を付して説明を 省略する。
図 6において、 本実施形態の実装構造は、 パッケージ基板 3 1 ' 上方にスぺ一 サ 4 1を介して補助基板 4 2をパッケージ基板 3 1 ' と間隔を設けて固定し、 補 助基板 4 2の裏面、 即ち、 パッケージ基板 3 1 ' と補助基板 4 2との間に光走査 装置 1 0を固定する構造である。 尚、 パッケージ基板 3 1 ' 表面には、 図 4の実 施形態と同様に永久磁石 3 7 , 3 8と枠状のヨーク 3 6を設けてある。
前記補助基板 4 2は、 図 7〜図 9で示すように、 光走査装置 1 0の可動板 1 2 の揺動動作を許容する空間部 4 2 aを有し、 空間部 4 2 a周囲の 4箇所にスルー ホール 4 3を有する。 また、 前記スルーホール 4 3を介して電気的に導通する導 電パターン 4 4, 4 5を表面及び裏面に設けてあり、 裏面側導電パターン 4 5は , 光走査装置 1 0側の駆動コイル電極端子 1 6 A, 1 6 Bと接続するための延長 部 4 5 a, 4 5 aを有する。
パッケージ基板 3 1 ' は、 空間部が無いことを除いて図 4の実施形態のパッケ ージ基板 3 1と同様に形成されている。
本実施形態の光走査装置 1 0の実装工程を図 7〜図 9に基づいて説明する。 補助基板 4 2の裏面側を上にして、 上方から図 7の矢印で示すように、 補助基 板 4 2の略中央部の固定領域に、 光走査装置 1 0の裏面側を上にした状態で光走 查装置 1 0を固定する。 固定後に、 光走査装置 1 0側の電極端子 1 6 A, 1 6 B と補助基板 4 2裏面側の導電パターン 4 5の延長部 4 5 a, 4 5 aとをボンディ ングワイヤ 4 6で電気的に接続する。 この状態を図 8に示す。
次に、 図 8の状態から補助基板 4 2を裏返して補助基板 4 2表面側が上になる ようにする。 これにより、 図 9のように、 光走査装置 1 0のミラー 1 4の面が上 になる。 この状態で、 パッケージ基板 3 1 ' の各端子ピン 3 5突出部に、 スぺー サ 4 1と補助基板 4 2を順次取付け、 補助基板 4 2をパッケージ基板 3 1 ' に取 付ける。 その後、 補助基板 4 2表面側に突出した端子ピン 3 5をハンダ付けして 補助基板 4 2をパッケージ基板 3 1 ' に固着する。 これにより、 光走査装置 1 0 の駆動コイル 1 5の電極端子 1 6 A, 1 6 Bは、 補助基板 4 2の導電パターン 4 3 , 4 4、 ハンダ固定部を介して端子ピン 3 5に電気的に接続する。
以上の実装構造によれば、 可動板 1 2裏面側に駆動コイル 1 5を設けた場合で も、 駆動コイル 1 5の電極端子 1 6 A, 1 6 Bをパッケージ基板 3 1の端子ピン 3 5に電気的に接続させて容易に外部に取り出すことができる。 しかも、 パッケ ージ基板 3 1 ' には空間部がないのでパッケージ基板 3 1 ' の強度が図 4の実装 構造に比べて向上する。
以上のように本発明の光走査装置によれば、 可動部の面積を縮小できるので、 光走査装置を小型化できる。 従って、 1枚のウェハーから作成できるチップ数を 増加できるので、 その分コストダウンでき、 光走査装置の製造コストを低減でき る。 また、 可動部の面積を従来と同じにすれば、 ミラ一の面積を広くでき、 従来 と同じコス卜でミラ一の大型化を図れる利点がある。 また、 本発明の実装構造によれば、 実装用基板に光走査装置を固定した時に、 同時に光走査装置側の電極端子を実装用基板側の端子ピンと電気的に接続できる ので、 可動部裏面側に駆動コイルを設けた場合でも、 光走査装置の電極を容易に 外部に取り出すことができる。 この場合、 基板側の導電パターン及び光走査装置 側の駆動コィル電極端子にそれぞれハンダ面を形成すれば、 導電パターンで固定 部の一部を兼ねることができると共に、 光走査装置の固定と同時に電極端子の接 続ができる。
また、 実装用基板上方にスぺーサを介して補助基板を設け、 補助基板に空間部 を形成して光走査装置を固定する実装構造にすれば、 可動部裏面側に駆動コイル を設けた場合でも光走査装置の電極を容易に外部に取り出すことができるだけで なく、 光走査装置の可動部の揺動運動を許容するための空間部を実装用基板に形 成しなくてもよく、 実装用基板の強度を高めることができる。
〔産業上の利用可能性〕
本発明は、 半導体製造技術を用いて製造するプレーナ型光走査装置の小型化、 低価格化等を図ることができ、 このプレーナ型光走査装置を応用する各種装置の 小型化及び低価格化を実現できるので、 産業上の利用可能性が大である。

Claims

請求の範囲
( 1 ) 半導体基板に、 可動部と、 該可動部を揺動可能に軸支する軸支部とを一体 に形成し、 前記可動部の表面側にミラーを設け、 前記可動部の裏面側に駆動コィ ルを設け、 該駆動コイルに静磁界を与える磁界発生手段を設け、 前記駆動コイル に電流を流すことにより発生する磁気力により前記可動部を駆動する構成とした ことを特徴とするプレーナ型光走査装置。
( 2 ) 請求項 1に記載のプレーナ型光走査装置を実装用基板に実装する実装構造 であって、
前記実装用基板の光走査装置固定領域内に、 光走査装置の可動部の揺動動作を 許容する空間部及び導電パターンを設け、 光走査装置を前記固定領域に固定した 時に、 光走査装置の半導体基板裏面に設けた駆動コイル電極端子と前記導電パタ ーンとが接触する構造としたことを特徴とするプレーナ型光走査装置の実装構造
( 3 ) 前記実装用基板は、 前記固定領域周囲に前記導電パターンと電気的に接続 する電極取出し用端子ピンを固定する構成である請求項 2に記載のプレーナ型光
( 4 ) 前記導電パターン及び前記駆動コイル電極端子にハンダ面を形成し、 互い のハンダ面を熱圧着して光走査装置を前記実装基板の固定領域に固定する構造と した請求項 2又は 3に記載のプレーナ型光走査装置の実装構造。
( 5 ) 請求項 1に記載のプレーナ型光走査装置を実装用基板に実装する実装構造 であって、
光走查装置の可動部の揺動動作を許容する空間部及び少なくとも裏面側の前記 空間部周囲に導電パターンを設けた補助基板を有し、 該補助基板の裏面に光走査 装置を表面側から固定し、 光走査装置裏面に設けた駆動コィル電極端子と前記補 助基板裏面の導電パターンとを電気的に接続する一方、 複数の端子ピンが表面側 に貫通固定された前記実装用基板の上方に、 スぺ一サを介在させて前記補助基板 を間隔を設けて固定し、 前記実装用基板表面側の端子ピン突出部と前記補助基板 の導電パターンを電気的に接続する構造としたことを特徴とするプレーナ型光走 査装置の実装構造。
( 6 ) 前記補助基板は、 前記空間部周囲に複数のスルーホールを有し、 前記スル —ホールを介して表面側と裏面側を電気的に導通する前記導電パターンを有し、 前記実装用基板表面側の端子ピン突出部を、 前記補助基板のスル一ホールに貫通 させ補助基板表面側に突出した端子ピンをハンダ付けする構造とした請求項 5に 記載のプレーナ型光走査装置の実装構造。
PCT/JP2000/001132 1999-02-26 2000-02-25 Dispositif de balayage optique de type planar et sa structure de montage WO2000050950A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/673,269 US6456413B1 (en) 1999-02-26 2000-02-25 Planar type optical scanning apparatus and mounting structure thereof
AT00905374T ATE502319T1 (de) 1999-02-26 2000-02-25 Ebener optischer scanner und seine halterung
DE60045730T DE60045730D1 (de) 1999-02-26 2000-02-25 Ebener optischer scanner und seine halterung
EP00905374A EP1087248B8 (en) 1999-02-26 2000-02-25 Planar optical scanner and its mounting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/51805 1999-02-26
JP05180599A JP4111619B2 (ja) 1999-02-26 1999-02-26 プレーナ型光走査装置の実装構造

Publications (1)

Publication Number Publication Date
WO2000050950A1 true WO2000050950A1 (fr) 2000-08-31

Family

ID=12897147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001132 WO2000050950A1 (fr) 1999-02-26 2000-02-25 Dispositif de balayage optique de type planar et sa structure de montage

Country Status (7)

Country Link
US (1) US6456413B1 (ja)
EP (1) EP1087248B8 (ja)
JP (1) JP4111619B2 (ja)
KR (1) KR100712297B1 (ja)
AT (1) ATE502319T1 (ja)
DE (1) DE60045730D1 (ja)
WO (1) WO2000050950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207416A1 (en) * 2000-11-20 2002-05-22 Olympus Optical Co., Ltd. Optical deflector

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544734B2 (ja) * 2000-12-21 2010-09-15 シチズンファインテックミヨタ株式会社 プレーナー型ガルバノミラー
JP4641378B2 (ja) * 2004-02-16 2011-03-02 キヤノン株式会社 光走査装置及びそれを有する画像表示装置
JP2005292381A (ja) 2004-03-31 2005-10-20 Canon Inc 光偏向器
JP4969136B2 (ja) * 2006-04-13 2012-07-04 日本信号株式会社 アクチュエータ製造方法
US7420449B2 (en) 2006-08-18 2008-09-02 Oc Oerlikon Balzers Ag Mirror actuating device for projection systems
DE102006038787A1 (de) * 2006-08-18 2008-02-21 Oc Oerlikon Balzers Ag Spiegelantrieb für Projektionssysteme
JP2009014762A (ja) * 2007-06-29 2009-01-22 Olympus Corp マイクロミラーデバイス
JP5252872B2 (ja) * 2007-09-28 2013-07-31 日本信号株式会社 プレーナ型電磁アクチュエータ
JP2009154264A (ja) * 2007-12-27 2009-07-16 Stanley Electric Co Ltd Memsモジュール
WO2015092907A1 (ja) * 2013-12-19 2015-06-25 パイオニア株式会社 駆動装置
JP2016006445A (ja) * 2014-06-20 2016-01-14 船井電機株式会社 振動ミラーパッケージおよびプロジェクタ
JP6524722B2 (ja) * 2015-03-06 2019-06-05 株式会社リコー 光走査装置、光走査装置における基板の固定方法、画像表示装置、車両
CN111417884B (zh) * 2017-12-01 2022-07-29 浜松光子学株式会社 致动器装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421381A (en) 1980-04-04 1983-12-20 Yokogawa Hokushin Electric Corp. Mechanical vibrating element
JPS60107017A (ja) 1983-11-16 1985-06-12 Hitachi Ltd 光偏向素子
DE4100358A1 (de) 1991-01-05 1992-07-09 Robotron Bueromasch Ag Schwingspiegelanordnung
JPH04211218A (ja) 1990-01-18 1992-08-03 Fuji Electric Co Ltd ねじり振動子およびその応用素子
JPH07175005A (ja) * 1993-12-20 1995-07-14 Nippon Signal Co Ltd:The プレーナー型ガルバノミラー及びその製造方法
JPH08322227A (ja) * 1995-05-26 1996-12-03 Nippon Signal Co Ltd:The プレーナ型電磁アクチュエータ
US5748172A (en) 1995-02-25 1998-05-05 Samsung Electro-Mechanics Co., Ltd. Mirror driving method and apparatus of micro-mirror array
DE29801643U1 (de) 1998-01-31 1998-06-04 CMS Mikrosysteme GmbH Chemnitz, 09125 Chemnitz Mikromechanische und elektromagnetisch betriebene Spiegelanordnungen
JPH11231252A (ja) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd 光偏向器及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100358A (ja) * 1990-08-17 1992-04-02 Matsushita Electric Ind Co Ltd セル転送回路
US5629790A (en) * 1993-10-18 1997-05-13 Neukermans; Armand P. Micromachined torsional scanner
JP2657769B2 (ja) 1994-01-31 1997-09-24 正喜 江刺 変位検出機能を備えたプレーナー型ガルバノミラー及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421381A (en) 1980-04-04 1983-12-20 Yokogawa Hokushin Electric Corp. Mechanical vibrating element
JPS60107017A (ja) 1983-11-16 1985-06-12 Hitachi Ltd 光偏向素子
JPH04211218A (ja) 1990-01-18 1992-08-03 Fuji Electric Co Ltd ねじり振動子およびその応用素子
DE4100358A1 (de) 1991-01-05 1992-07-09 Robotron Bueromasch Ag Schwingspiegelanordnung
JPH07175005A (ja) * 1993-12-20 1995-07-14 Nippon Signal Co Ltd:The プレーナー型ガルバノミラー及びその製造方法
US5748172A (en) 1995-02-25 1998-05-05 Samsung Electro-Mechanics Co., Ltd. Mirror driving method and apparatus of micro-mirror array
JPH08322227A (ja) * 1995-05-26 1996-12-03 Nippon Signal Co Ltd:The プレーナ型電磁アクチュエータ
JPH11231252A (ja) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd 光偏向器及びその製造方法
DE29801643U1 (de) 1998-01-31 1998-06-04 CMS Mikrosysteme GmbH Chemnitz, 09125 Chemnitz Mikromechanische und elektromagnetisch betriebene Spiegelanordnungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207416A1 (en) * 2000-11-20 2002-05-22 Olympus Optical Co., Ltd. Optical deflector
US6888656B2 (en) * 2000-11-20 2005-05-03 Olympus Corporation Optical deflector

Also Published As

Publication number Publication date
KR100712297B1 (ko) 2007-05-02
ATE502319T1 (de) 2011-04-15
KR20010034830A (ko) 2001-04-25
EP1087248A4 (en) 2006-06-21
EP1087248A1 (en) 2001-03-28
DE60045730D1 (de) 2011-04-28
US6456413B1 (en) 2002-09-24
EP1087248B8 (en) 2011-10-05
JP4111619B2 (ja) 2008-07-02
JP2000249964A (ja) 2000-09-14
EP1087248B1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP2987750B2 (ja) プレーナ型電磁アクチュエータ
WO2000050950A1 (fr) Dispositif de balayage optique de type planar et sa structure de montage
US7256926B2 (en) Optical deflector
US7224507B2 (en) Optical deflector
US7230743B2 (en) Optical deflector array
JPH08186975A (ja) 電磁アクチュエータ及びその製造方法
JPH08334723A (ja) 光偏向素子
JP4262583B2 (ja) 二次元光偏向器
JP4036643B2 (ja) 光偏向器及び光偏向器アレイ
JP2002350457A (ja) 揺動体
JP2005169553A (ja) マイクロアクチュエータ
JP2001051224A (ja) アクチュエータ
JP2004136373A (ja) プレーナ型電磁アクチュエータ
JP2007252124A (ja) 電磁アクチュエータ
JP4882595B2 (ja) 光スキャナおよび画像形成装置
JP4404560B2 (ja) プレーナ型電磁アクチュエータ
JP2001125037A (ja) プレーナ型ガルバノミラー
JP2001125038A (ja) プレーナ型ガルバノミラー
JP4665868B2 (ja) 光スキャナおよび画像形成装置
JP2002189188A (ja) プレーナー型ガルバノミラー
JP2004258157A (ja) プレーナー型電磁アクチュエータ
JP2007283413A (ja) アクチュエータ及びその製造方法
JP2004294959A (ja) 静電型アクチュエータ
JP2002287074A (ja) プレーナー型ガルバノミラーの製造方法
JP2001125036A (ja) プレーナ型ガルバノミラー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09673269

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000905374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007011838

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000905374

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007011838

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007011838

Country of ref document: KR