WO2000049057A1 - Vinylcyclohexan basierende polymere - Google Patents

Vinylcyclohexan basierende polymere Download PDF

Info

Publication number
WO2000049057A1
WO2000049057A1 PCT/EP2000/001027 EP0001027W WO0049057A1 WO 2000049057 A1 WO2000049057 A1 WO 2000049057A1 EP 0001027 W EP0001027 W EP 0001027W WO 0049057 A1 WO0049057 A1 WO 0049057A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylcyclohexane
polymers
polymer
alkyl
isotactic
Prior art date
Application number
PCT/EP2000/001027
Other languages
English (en)
French (fr)
Inventor
Volker Wege
Yun Chen
Friedrich-Karl Bruder
Ralf Dujardin
Original Assignee
Bayer Aktiengesellschaft
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft, Teijin Limited filed Critical Bayer Aktiengesellschaft
Priority to KR1020017010520A priority Critical patent/KR20010102252A/ko
Priority to BR0009132-4A priority patent/BR0009132A/pt
Priority to AT00902667T priority patent/ATE282644T1/de
Priority to DE50008674T priority patent/DE50008674D1/de
Priority to CA002362829A priority patent/CA2362829A1/en
Priority to JP2000599793A priority patent/JP2002537421A/ja
Priority to EP00902667A priority patent/EP1163275B1/de
Priority to AU24420/00A priority patent/AU769875B2/en
Publication of WO2000049057A1 publication Critical patent/WO2000049057A1/de
Priority to HK02106597.2A priority patent/HK1044958B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/045Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material

Definitions

  • the present invention relates to vinylcyclohexane (VCH) -based polymers and copolymers with a predominantly isotactic configuration and a process for their production and their use as an optical material.
  • VH vinylcyclohexane
  • the materials can be processed into moldings by extrusion or injection molding and are particularly suitable as substrates for optical materials, prisms, lenses and compact discs.
  • Transparent plastics such as aromatic polycarbonate, polymethyl methacrylate or polystyrene can be used as the substrate for optical materials.
  • Addition copolymers of ethylene and a norbornene derivative or a tetracyclododecene derivative as well as hydrogenated products of ring-opened metathesis polymers from norbornene or tetracyclododecene are also suitable.
  • Isotactic PVCH polyvinylcyclohexane
  • Ziegler catalysts and has a high melting point
  • EP-A 0 322 731 describes that vinylcyclohexane
  • Polymers with syndiotactic configuration by hydrogenation of syndiotactic polystyrene are crystalline, the amount of diads being at least 75% and the amount of pentads being at least 30%.
  • WO 94/21694 describes a process for the preparation of hydrogenated poly (alkylkenylaromatic) polymers and poly (alkenylaromatic) / polydiene block copolymers. Syndiotactic polystyrene is generally mentioned.
  • Atactic polymers are regular polymers. By definition, they have the possible configurative basic building blocks in equal quantities, with ideal statistical ones
  • the invention relates to a vinylcyclohexane-based polymer or copolymer, it being possible for comonomers to use olefins, acrylic acid derivatives, maleic acid derivatives, vinyl ethers or vinyl esters in the production, with isotactic configuration, characterized in that the amount of diads is greater than 50.1% and is less than 74%, particularly preferably 51-70%.
  • the vinylcyclohexane based polymers are amorphous polymers.
  • the polymers according to the invention are notable for high transparency and low
  • the invention relates to hydrogenated products of polystyrene, which leads to an amorphous hydrogenated polystyrene with an excess of the isotactic diads.
  • the vinylcyclohexane polymer of this invention is a new amorphous polymer with a defined stereostructure, which is characterized by the predominance of the isotactic diad configuration and can be prepared by the method described.
  • a vinylcyclohexane-based polymer with the recurring structural unit of the formula (I) is preferred
  • R 1 and R 2 independently of one another are hydrogen or C 1 -C 6 -alkyl, preferably C 1 -C 4 -alkyl and
  • R 3 and R 4 are independently hydrogen or C j -CG alkyl, preferably C j -C alkyl, in particular methyl and / or ethyl, or R 3 and R 4 together represent alkylene, preferably C 3 - or C 4 Alkylene (fused-on 5- or 6-membered cycloaliphatic ring),
  • R 5 is hydrogen or C 1 -C ⁇ alkyl, preferably C 1 -C alkyl, R 1 , R 2 and R 5 independently of one another in particular represent hydrogen or methyl.
  • the linkage can have a small proportion of head-to-head linkage.
  • the vinylcyclohexane based amorphous predominantly isotactic polymer can be branched via centers and e.g. have a star-shaped structure.
  • comonomers can preferably be used in the polymerization of the starting polymer (optionally substituted polystyrene) and incorporated into the polymer: olefins with generally 2 to 10 carbon atoms, such as, for example, ethylene, propylene, isoprene, isobutylene, butadiene, C j -Cg- preferably CpC 4 - alkyl esters of acrylic or methacrylic acid, unsaturated cycloaliphatic hydrocarbons, for example cyclopentadiene, cyclohexene, cyclohexadiene, optionally substituted norbornene, dicyclopentadiene, dihydrocyclopentadiene, optionally substituted tetracyclododecenes, nuclear alkylated styrenes, divinyl-styrene, ⁇ -methyl-styrene, ⁇ -methyl-styrene, ⁇ -methyl-styrene
  • comonomers In general, up to 60% by weight, preferably up to 50% by weight, particularly preferably up to 40% by weight (based on the polymer) of comonomers can be present.
  • the vinylcyclohexane polymers can very particularly preferably contain 1 to 30% by weight of comonomers.
  • the amorphous vinylcyclohexane polymer according to the invention has an isotactic
  • Diad fraction determined by two-dimensional NMR spectroscopy, from 50.1 to 74%, preferably from 51-70%.
  • Methods for microstructure elucidation using ⁇ C- ⁇ correlation spectroscopy of the methylene carbon atoms of a polymer backbone are generally known and are e.g. by A.M.P. Ros and O. Sudmeijer (A.M.P. Ros, O. Sudmeijer, Int. J. Polym. Anal. Charakt.
  • the signals from crystalline isotactic and syndiotactic polyvinylcyclohexane are determined by means of two-dimensional NMR spectroscopy.
  • the methylene carbon atom (in the polymer backbone) of the isotactic polyvinylcyclohexane splits signals into two separated protons in the 2 D-CH correlation spectrum and shows the pure isotactic diad configuration.
  • isotactic polyvinylcyclohexane shows only one signal for the carbon atom C 1 in the 2 D-CH correlation spectrum.
  • the amorphous isotactically rich polyvinylcyclohexane according to the invention has an integral excess of intensity of the isotactic diads compared to the syndiotactic diad configuration.
  • the vinylcyclohexane (co) polymers generally have absolute molecular weights Mw weight average of> 1000, preferably from 1500 to 400,000, very particularly preferably from 1500 to 380,000, determined by light scattering.
  • Vinylcyclohexane (co) polymers with a lower molecular weight are particularly preferably those with absolute molecular weights Mw (weight average) of 1,500 to 20,000.
  • the vinylcyclohexane-based homopolymers according to the invention generally have a glass transition temperature> 90 ° C., preferably> 95 ° C., determined by DSC.
  • the copolymers can be present both statistically and as block copolymers.
  • the polymers can have a linear chain structure and also have branching points due to Co units (for example graft copolymers).
  • the branching centers contain, for example, star-shaped or branched polymers.
  • the inventive Moderate polymers can have other geometrical forms of the primary, secondary, tertiary, optionally quaternary polymer structure, in this case its so-called helix, double helix, leaflet etc. or mixtures of these structures.
  • Block copolymers include di-blocks, tri-blocks, multi-blocks and star-shaped
  • VCH (co) polymers are prepared by polymerizing derivatives of styrene with the corresponding monomers by radical, anionic, cationic or metal complex initiators or catalysts and then hydrogenating the unsaturated aromatic bonds completely or partially (cf., for example WO 94/02720, EP-A 322 731). They are characterized by the predominance of the isotactic configuration of the vinylcyclohexane units of the present invention.
  • the degree of hydrogenation is> 80%, preferably> 90%, very particularly preferably> 99% to 100%.
  • the degree of hydrogenation can be determined, for example, by NMR or UV spectroscopy.
  • the starting polymers are generally known (e.g. WO 94/21 694).
  • the amount of catalyst to be used is described, for example, in WO 96/34896.
  • the amount of the catalyst used depends on the process carried out, which can be carried out continuously, semi-continuously or batchwise.
  • the response time is much shorter; it is influenced by the dimensions of the reaction vessel.
  • the trickle system and the sump system both with fixed Talysatoren, just as possible as a system with suspended and, for example, circulated catalyst.
  • the fixed catalysts can be present, for example, in tablet form or as extrudates.
  • Polymer is generally 80 to 1, preferably 50 to 10, in particular 40 to 15% by weight.
  • the hydrogenation of the starting polymers is carried out according to generally known methods (for example WO 94/21 694, WO 96/34 895, EP-A-322 731).
  • a large number of known hydrogenation catalysts can be used as catalysts.
  • Preferred metal catalysts are mentioned, for example, in WO 94/21 694 or WO 96/34 896.
  • Any catalyst known for the hydrogenation reaction can be used as the catalyst. Catalysts with a large surface area (for example 100-600 m 2 / g) and a small average pore diameter (for example 20-500 ⁇ ) are suitable.
  • catalysts with a small surface area (for example> 10 m / g) and large average pore diameters are also suitable, which are characterized in that 98% of the pore volume has pores with pore diameters greater than 600 ⁇ (for example approx. 1,000 - 4,000 ⁇ ) (see, for example, US-A 5,654,253, US-A 5,612,422, JP-A 03076706).
  • Raney nickel, nickel on silicon dioxide or silicon dioxide / aluminum oxide, nickel on carbon as a carrier and / or noble metal catalysts on silicon dioxide, silicon dioxide / aluminum oxide and aluminum oxide, in particular Pt, Ru, Rh, Pd, are used.
  • the reaction is generally carried out at temperatures between 0 and 500 ° C, preferably between 20 and 250 ° C, in particular between 60 and 200 ° C.
  • the solvents which are customary for hydrogenation reactions are described, for example, in DE-AS 1 131 885 (see above).
  • the reaction is generally carried out at pressures from 1 bar to 1000 bar, preferably 20 to 300 bar, in particular 40 to 200 bar.
  • the polymers or copolymers based on vinylcyclohexane according to the invention are outstandingly suitable for the production of optical materials, e.g. Lenses, prisms and optical discs.
  • optical data storage media The following are examples of optical data storage media:
  • MD Mini disc
  • MAMMOS Magnetic Amplifying magneto optical System
  • SIL Solid immersion lens
  • MSR Solid immersion lens
  • CD-ROM Read only memory
  • CDs CD, CD-R (recordable), CD-RW (rewritable), CD-I (interactive), Photo-CD
  • DVD digital versatile disc
  • MMVF multimedia video file system
  • the polymers according to the invention are furthermore particularly suitable for producing optical materials, for example for lenses, prisms, mirrors, color filters etc.
  • media for halographic images for example check cards, credit cards, identity cards, three-dimensional holo
  • the materials can be used as transparent media for inscribing three-dimensional structures, for example from focused coherent radiation (LASER) can be used in particular as a three-dimensional data memory or for three-dimensional imaging of objects.
  • LASER focused coherent radiation
  • the material can usually be used in place of or in combination with glass up to use temperatures of 145 ° C.
  • Outdoor applications for the transparent materials are roofing, window panes, foils, glazing of greenhouses e.g. in the form of double-wall sheets.
  • Other applications include covers to protect mechanically sensitive systems with high transparency e.g. in the field of photo voltatics, especially solar cells or solar collectors.
  • the plastics according to the invention can be coated with other materials, in particular with nanoparticles to increase the scratch resistance, metals and other polymers.
  • Household applications are, for example, transparent packaging materials with low water permeability, extrusion or injection molding
  • Household items e.g. Cups and containers. Furthermore, household appliances and transparent lamp covers.
  • the plastics can be used as temperature-resistant rigid foams for insulation in construction and technology (house and device insulation e.g. for refrigerators) and can replace polystyrene and polyurethane foams, for example.
  • One advantage is the high continuous use temperature.
  • the materials are particularly suitable for applications in the automotive,
  • the materials are insulators for electrical current and are therefore suitable for the
  • capacitors eg dielectrics
  • electronic circuits e.g dielectrics
  • Device housing Further applications in the electrical industry exist in particular due to the combination of high optical transparency with high heat resistance, low water absorption in connection with light from suitable emitting sources.
  • the materials are therefore suitable for the production of light-emitting diodes, laser diodes, matrices for organic, inorganic and polymeric electroluminescent materials, optoelectric signal recording devices, data transmission systems by replacing glass fibers (e.g. polymer optical fibers), transparent materials for electronic display media (screens, displays, projection apparatus) e.g. from liquid crystalline ones Substrates.
  • the materials are suitable for applications in medical technology for transparent extrusion or injection molded articles for sterile and non-sterile analysis vessels, petri dishes, microfilter plates, slides, tubes, ventilation tubes, contact lenses, spectacle lenses and containers from e.g. Infusion solutions or drug solutions, extrusion and injection molded articles for applications in blood contact, in particular for
  • syringes Manufacture of syringes, cannulas, catheters, short and long-term implants (eg artificial lenses), blood tubes, membranes for blood washing, dialyzers, oxygenators, transparent wound covers, blood preserves and sutures.
  • implants eg artificial lenses
  • blood tubes membranes for blood washing, dialyzers, oxygenators, transparent wound covers, blood preserves and sutures.
  • the autoclave is flushed with inert gas (argon).
  • inert gas argon
  • the polymer solution and the catalyst are added (Table 1).
  • the protective gas is then exposed to hydrogen several times.
  • the respective hydrogen pressure is set and heated to the corresponding reaction temperature with stirring.
  • the reaction pressure is kept constant after the onset of hydrogen uptake.
  • the polymer solution is filtered.
  • the product is precipitated in methanol and dried at 120 ° C.
  • the isolated product shows the physical properties listed in Table 2.
  • a heated argon 250 ml three-necked flask with reflux condenser is in turn with 50 ml abs.
  • the reaction mixture is heated to 50 ° C. and kept at this temperature for 2 hours.
  • the reaction is terminated by adding acidic methanol.
  • the polymer is washed several times with 200 ml of methanol and dried at 80 ° C.
  • the reaction mixture is heated to 60 ° C., stirred at this temperature for 50 minutes and then kept at 85 ° C. for 90 minutes.
  • the polymerization is terminated by adding methanol.
  • the product is refluxed in methanol, filtered off, then washed with methanol and acetone.
  • the polymer is dried at 60 ° C in a vacuum.
  • the product shows the physical properties listed in Table 2.
  • a 150 ⁇ m thick film of polycarbonate based on 2,2-bis (4-hydroxyphenyl) propane (Makrolon CD 2005, Bayer AG) is produced by melt pressing.
  • a glass transition temperature of 142 ° C. and a rheo-optic constant of +5.4 GPa "1 are measured on this film (see Table 2).
  • Table 1
  • Diades 2 Diades 2 glass temp. TT the
  • the amorphous polyvinylcyclohexane according to the invention (Example 1) is notable for the predominance of the isotactic diads. Compared to polycarbonate, the material also has a high level of transparency with high heat resistance (glass temperature). The syndiotactic and isotactic materials described above are unsuitable for optical applications because of their crystallinity and low transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft Vinylcyclohexan (VCH) basierende Polymere und Copolymere mit überwiegend isotaktischer Konfiguration und deren Verwendung als optisches Material, als Formkörper und Folien.

Description

Vinylcyclohexan basierende Polymere
Die vorliegende Erfindung betrifft Vinylcyclohexan (VCH) basierende Polymere und Copolymere mit überwiegend isotaktischer Konfiguration und ein Verfahren zu deren Herstellung und deren Verwendung als optisches Material. Die Werkstoffe können durch Extrusion oder Spritzguß zu Formkörpern verarbeitet werden und eignen sich besonders als Substrat für optische Materialien, Prismen, Linsen und Compact Discs.
Als Substrat für optische Materialien können transparente Kunststoffe wie aromatisches Polycarbonat, Polymethylmethacrylat oder Polystyrol, verwendet werden. Auch Additionscopolymere aus Ethylen und einem Norbornenderivat oder einem Tetracyclododecenderivat sowie hydrierte Produkte von ringgeöffneten Metathese- polymeren aus Norbornen - oder Tetracyclododecen kommen in Frage.
Optische Materialien aus einem Hydrierprodukt eines Polymers aus einer Alkenyl- aromatischen Kohlenwasserstoffverbindung oder einem Copolymer davon sind in GB 933,596 (= DE- AS 1 131 885) EP-A 317 263, US 4,911,966 und US 5,178,926 beschrieben. Ein Hinweis auf die Konfiguration ist nicht zu entnehmen.
Die Hydrierung von Polystyrol wurde erstmalig von Hermann Staudinger 1929 beschrieben. Neuere Patentliteratur beschäfigt sich mit der zugrundeliegenden Mikro- struktur von Polyvinylcyclohexan bzw. hydriertem Polystyrol. Stand des Wissens ist, daß amorphe Vinylcyclohexan-Polymere eine ataktische Konfiguration und kristalline VCH (Vinylcyclohexan) Polymere entweder isotaktische oder syndiotaktische Konfiguration besitzen (EP-A 0 322 731, EP-A 0 423 100, US-A 5,654,253; US-A 5,612,422; WO 96/34896). Isotaktisches PVCH (Polyvinylcyclohexan) wird in Gegenwart von Ziegler Katalysatoren hergestellt, und besitzt einen hohen Schmelzpunkt (J. Polym. Sei., A2, 5029 (1964). EP-A 0 322 731 beschreibt, daß Vinylcyclohexan-
Polymere mit syndiotaktischer Konfiguration durch Hydrierung von syndiotakti- schem Polystyrol kristallin sind, wobei die Menge der Diaden wenigstens 75 % und die Menge der Pentaden wenigstens 30 % betragen. WO 94/21694 beschreibt ein Verfahren zur Herstellung von hydrierten Poly(alkykenyl-aromatischen) Polymeren und Poly(alkenyl-aromatischen)/Polydien Blockcopolymeren. Syndiotaktisches Poly- styrol wird allgemein erwähnt.
Verfahren die zu isotaktischen, syndiotaktischen und ataktischen hydriertem Polystyrol führen, welche die bisher bekannten Materialeigenschaften zeigen werden in WO 94/21694, US-A 5,352,744 beschrieben, wobei spezielle Katalysatoren einge- setzt werden. Verfahren zur Hydrierung von ataktischem Polystyrol zu ataktischem hydrierten Polystyrol durch die Verwendung spezieller Katalysatoren werden beschrieben in US-A 5,654,253; US-A 5,612,422; WO 96/34896.
Ataktische Polymere sind reguläre Polymere. Sie besitzen definitionsgemäß die möglichen konfigurativen Grundbausteine in gleichen Mengen, mit ideal-statistischer
Verteilung von Molekül zu Molekül (IUPAC). Sie zeichnen sich durch die gleiche Zahl an iso- und syndiotaktischen Diaden aus. Es wird ein amorphes Material mit nur einer Glasstufe ohne kristallinen Anteil beschrieben.
Gegenstand der Erfindung ist ein Vinylcyclohexan basierendes Polymer oder Copo- lymer, wobei als Comonomere Olefine, Acrylsäurederivate, Maleinsäurederivate, Vinylether oder Vinylester bei der Herstellung eingesetzt werden können, mit isotaktischer Konfiguration, dadurch gekennzeichnet, daß die Menge an Diaden größer als 50,1 % und kleiner als 74 %, besonders bevorzugt 51-70%, ist. Die Vinylcyclo- hexan basierenden Polymere sind amorphe Polymere.
Die erfindungsgemäßen Polymeren zeichnen sich durch hohe Transparenz, geringe
Doppelbrechung und hohe Wärmeformbeständigkeit aus und lassen sich daher als
Substratmaterial für optische Datenspeicher einsetzen. Das bekannte und isotaktische PVCH, hergestellt durch Ziegler Natta Katalysatoren mit einem Anteil isotaktischer Diaden >75% ist aufgrund seiner Kristallinität für optische Anwendungen ungeeignet (J. Polymer Sei, A2, 5029 (1964)).
Gegenstand der Erfindung sind hydrierte Produkte von Polystyrol, die zu einem amorphen hydrierten Polystyrol mit einem Überschuß der isotaktischen Diaden führt.
Das Vinylcyclohexanpolymer dieser Erfindung ist ein neues amorphes Polymer mit einer definierten Stereostruktur, das sich durch das überwiegende Auftreten der isotaktischen Diadenkonfiguration auszeichnet und kann durch das beschriebene Verfahren hergestellt werden.
Bevorzugt ist ein Vinylcyclohexan basierendes Polymer mit der wiederkehrenden Struktureinheit der Formel (I)
Figure imgf000005_0001
in welcher
R1 und R2 unabhängig voneinander für Wasserstoff oder Ci-Cg-Alkyl, vorzugsweise Cι-C4-Alkyl stehen und
R3 und R4 unabhängig voneinander für Wasserstoff oder für Cj-Cg-Alkyl, vorzugsweise Cj-C -Alkyl, insbesondere Methyl und/oder Ethyl, oder R3 und R4 gemeinsam für Alkylen, vorzugsweise C3- oder C4-Alkylen (ankondensierter 5- oder 6-gliedriger Cycloaliphatischer Ring) stehen,
R5 für Wasserstoff oder C 1 -C^-Alkyl, vorzugsweise C 1 -C -Alkyl, R1, R2 und R5 stehen unabhängig voneinander insbesondere für Wasserstoff oder Methyl.
Die Verknüpfung kann außer der stereoregulären Kopf-Schwanz Verknüpfung einen geringen Anteil Kopf-Kopf Verknüpfung aufweisen. Das Vinylcyclohexan basierende amorphe überwiegend isotaktische Polymer kann über Zentren verzweigt sein und z.B. eine sternförmige Struktur besitzen.
Als Comonomere können bei der Polymerisation des Ausgangspolymeren (gegebenenfalls substituiertes Polystyrol) vorzugsweise verwendet und in das Polymer miteingebaut werden: Olefine mit im allgemeinen 2 bis 10 C- Atomen, wie beispielsweise Ethylen, Propylen, Isopren, Isobutylen, Butadien, Cj-Cg- vorzugsweise CpC4- Alkylester der Acryl- bzw. Methacrylsäure, ungesättigte cycloaliphatische Kohlen- Wasserstoffe, z.B. Cyclopentadien, Cyclohexen, Cyclohexadien, gegebenenfalls substituiertes Norbornen, Dicyclopentadien, Dihydrocyclopentadien, gegebenenfalls substituierte Tetracyclododecene, kernalkylierte Styrole, α-Methylstyrol, Divinyl- benzol, Vinylester, Vinylsäuren, Vinylether, Vinylacetat, Vinylcyanide wie beispielsweise Acrylnitril, Methacrylnitril, Maleinsäureanhydrid und Mischungen dieser Mo- nomere. Im allgemeinen können bis zu 60 Gew.-%, bevorzugt bis zu 50 Gew.-%, besonders bevorzugt bis zu 40 Gew.-%, (bezogen auf das Polymere) Comonomere enthalten sein. Ganz besonders bevorzugt können die Vinylcyclohexanpolymere 1 bis 30 Gew.-% Comonomere enthalten.
Das erfindungsgemäße amorphe Vinylcyclohexan-Polymer weist einen isotaktischen
Diadenanteil, ermittelt durch zwei dimensionale NMR-Spektroskopie, von 50,1 bis 74 %, vorzugsweise von 51 - 70 % aus. Verfahren zur Mikrostrukturaufklärung anhand von ^C-Η Korrellationsspektroskopie der Methylen Kohlenstoffatome eines Polymerrückgrates sind allgemein bekannt und werden z.B. von A.M.P. Ros und O. Sudmeijer beschrieben (A.M.P. Ros, O. Sudmeijer, Int. J. Polym. Anal. Charakt.
(1997), 4, 39.). Die Signale von kristallinen isotaktischen und syndiotaktischen Polyvinylcyclohexan werden mittels zweidimensionaler NMR Spektroskopie bestimmt. Das Methylen- Kohlenstoffatom (im Polymerrückgrat) des isotaktischen Polyvinylcyclohexan spal- tet im 2 D-CH-Korrelationsspektrum in zwei separierte Protonen Signale auf und zeigt die reine isotaktische Diadenkonfiguration. Isotaktisches Polyvinylcyclohexan zeigt dagegen für das Kohlenstoffatom C 1 nur ein Signal im 2 D-CH-Korrelationsspektrum. Das erfindungsgemäße amorphe isotaktisch reiche Polyvinylcyclohexan besitzt einen integralen Intensitätsüberschuß der isotaktischen Diaden gegenüber der syndiotaktischen Diaden-Konfiguration.
Es besitzt eine hohe Wärmeformbeständigkeit, eine niedrige Wasseraufnahme, bei ausreichenden mechanischen Eigenschaften und ist daher ein ideales Material für optische Anwendungen.
Die Vinylcyclohexan(co)polymere haben im allgemeinen absolute Molekulargewichte Mw Gewichtsmittel von >1000, vorzugsweise von 1500 - 400 000, ganz besonders bevorzugt 1500 - 380 000, bestimmt nach Lichtstreuung .
Vinylcyclohexan(co)polymere mit geringerem Molekulargewicht sind besonders bevorzugt solche mit absoluten Molekulargewichten Mw (Gewichtsmittel) von 1 500 bis 20 000.
Die erfindungsgemäßen Vinylcyclohexan basierenden Homopolymere haben im all- gemeinen eine Glastemperatur >90°C, vorzugsweise >95°C, ermittelt durch DSC.
Die Copolymere können sowohl statistisch als auch als Blockcopolymere vorliegen.
Die Polymere können eine lineare Kettenstruktur besitzen als auch durch Co-Ein- heiten Verzweigungsstellen aufweisen (z.B. Propfcopolymere). Die Verzweigungszentren beinhalten z.B. sternförmige oder verzweigte Polymere. Die erfindungsge- mäßen Polymere können andere geometrische Formen der primären, sekundären, tertiären, ggf. quartären Polymerstruktur aufweisen hierbei seinen genannt Helix, Doppelhelix, Faltblatt usw. bzw. Mischungen dieser Strukturen.
Blockcopolymere beinhalten Di-Blöcke, Tri-Blöcke, Multi-Blöcke und sternförmige
Blockcopolymere.
Die VCH-(Co)Polymere werden hergestellt, indem man Derivate des Styrols mit den entsprechenden Monomeren radikalisch, anionisch, kationisch, oder durch Metall- komplex-Initiatoren bzw. Katalysatoren polymerisiert und die ungesättigten aromatischen Bindungen anschließend vollständig oder teilweise hydriert (vgl. z.B. WO 94/02720, EP-A 322 731). Sie zeichnen sich durch das überwiegende Auftreten der isotaktischen Konfiguration der Vinylcyclohexaneinheiten der vorliegenden Erfindung aus.
Das Verfahren führt im allgemeinen zu einer praktisch vollständigen Hydrierung der aromatischen Einheiten. In der Regel ist der Hydriergrad > 80 %, vorzugsweise > 90 %, ganz besonders bevorzugt > 99 % bis 100 %. Der Hydriergrad läßt sich beispielsweise durch NMR oder UV-Spektroskopie bestimmen.
Die Ausgangspolymere sind allgemein bekannt (z.B. WO 94/21 694).
Die einzusetzende Menge an Katalysator ist beispielsweise in WO 96/34896 beschrieben.
Die eingesetzte Menge des Katalsators hängt von dem ausgeführten Prozeß ab, dieser kann kontinuierlich, halb-kontinuierlich oder diskontinuierlich durchgeführt werden.
Im kontinuierlichen System ist die Reaktionszeit wesentlich kürzer; sie wird von den Abmessungen des Reaktionsgefäßes beeinflußt. Bei der kontinuierlichen Arbeitsweise sind das Rieselsystem und das Sumpfsystem, beide mit fest angeordneten Ka- talysatoren, ebenso möglich wie ein System mit suspendiertem und z.B. im Kreis geführten Katalysator. Die festangeordneten Katalysatoren können z.B. in Tablettenform oder als Extrudate vorliegen.
Die Polymerkonzentrationen, bezogen auf das Gesamtgewicht aus Lösungsmittel und
Polymer betragen im allgemeinen 80 bis 1, vorzugsweise 50 bis 10, insbesondere 40 bis 15 Gew.-%.
Die Hydrierung der Ausgangspolymere wird nach allgemein bekannten Methoden durchgeführt (z.B. WO 94/21 694, WO 96/34 895, EP-A-322 731). Als Katalysatoren können eine Vielzahl von bekannten Hydrierkatalysatoren eingesetzt werden. Bevorzugte Metallkatalysatoren sind beispielsweise in WO 94/21 694 oder WO 96/34 896 genannt. Als Katalysator kann jeder für Hydrierreaktion bekannter Katalysator eingesetzt werden. Geeignet sind Katalysatoren mit großer Oberfläche (z.B. 100 - 600 m2/g) und kleinem mittleren Porendurchmesser (z.B. 20 - 500 Ä). Weiterhin sind auch Katalysatoren mit kleiner Oberfläche (z.B. >10 m /g) und großen mittleren Porendurchmessern geeignet, die dadurch charakterisiert sind, daß 98 % des Porenvolumens, Poren mit Porendurchmessern größer 600 Ä aufweisen (z.B. ca. 1 000 - 4 000 Ä) (vgl. z.B. US-A 5.654.253, US-A 5.612.422, JP-A 03076706). Ins- besondere werden Raney-Nickel, Nickel auf Siliciumdioxid oder Siliciumdi- oxid/ Aluminiumoxid, Nickel auf Kohlenstoff als Träger und/oder Edelmetallkatalysatoren auf Siliciumdioxid, Siliciumdioxid/ Aluminiumoxid und Aluminiumoxid insbesondere Pt, Ru, Rh, Pd, verwendet.
Die Reaktion wird im allgemeinen bei Temperaturen zwischen 0 und 500°C, vorzugsweise zwischen 20 und 250°C, insbesondere zwischen 60 und 200°C, durchgeführt.
Die für Hydrierreaktionen üblichen Lösungsmitteln verwendbaren Lösungsmitteln sind beispielsweise in DE-AS 1 131 885 beschrieben (siehe oben). Die Reaktion wird im allgemeinen bei Drücken von 1 bar bis 1000 bar, vorzugsweise 20 bis 300 bar, insbesondere 40 bis 200 bar, durchgeführt.
Die erfindungsgemäßen auf Vinylcyclohexan basierenden Polymere oder Copoly- mere eignen sich ausgezeichnet zur Herstellung von optischen Materialien, z.B. Linsen, Prismen und optischen Discs.
Als optische Datenspeicher werden beispielhaft genannt:
- Magneto-optische Disc (MO-Disc)
Mini-Disc (MD)
ASMO (MO-7) ("Advanced storage magnetooptic")
DVR (12 Gbyte Disc)
MAMMOS ("Magnetic Amplifying magneto optical System") - SIL and MSR ("Solid immersion lens" and "magnetic superresolution")
CD-ROM (Read only memory)
CD, CD-R (recordable), CD-RW (rewritable), CD-I (interactive), Photo-CD
Super Audio CD
DVD,DVD-R (recordable), DVD-RAM (random access memory); DVD=Digital versatile disc
DVD-RW (rewritable)
PC + RW (Phase change and rewritable)
MMVF (multimedia video file System)
Die erfindungsgemäßen Polymere sind aufgrund ihrer hervorragenden optischen Eigenschaften weiterhin besonders geeignet zur Herstellung von optischen Materialien, z.B. für Linsen, Prismen, Spiegel, Farbfilter etc. Ferner als Medien für halographi- sche Abbildungen (z.B. Scheck-, Kredit-Karten, Ausweise, dreidimensionale holo- grahische Bilder). Die Materialien können als transparente Medien zum Einschreiben dreidimensionaler Strukturen z.B. aus fokusierter kohärtenter Strahlung (LASER) insbesondere als dreidimensionale Datenspeicher oder zur dreidimensionalen Abbildung von Gegenständen eingesetzt werden.
Das Material kann üblicherweise anstelle oder in Verbindung mit Glas bis Ge- brauchstemperaturen von 145°C eingesetzt werden. Außenanwendungen für die transparenten Materialien sind Überdachungen, Fensterscheiben, Folien, Verglasung von Gewächshäuser z.B. in Form von Doppelstegplatten. Weitere Anwendungen sind Abdeckungen zum Schutz mechanisch empfindlicher Systeme bei gleichzeitig hoher Transparanz z.B. im Bereich Photo voltatik, insbesondere Solarzellen oder Sonnen- kollektoren. Die erfindungsgemäßen Kunststoffe können mit anderen Materialien beschichtet werden insbesondere mit Nanopartikeln zur Erhöhung der Kratzfestigkeit, Metallen und anderen Polymeren.
Anwendungen für den Haushalt sind zum Beispiel transparente Verpackungsmate- rialien mit geringer Wasserdurchlässigkeit, extrusions- oder spritzgußhergestellte
Haushaltsgegenstände z.B. Becher und Behälter. Ferner Haushaltsgeräte sowie transparente Lampenabdeckungen.
Die Kunststoffe können als temperaturbeständige Hartschäume zur Isolation im Bau- und Technikbereich (Haus- und Geräteisolation z.B. für Kühlschränke) eingesetzt werden und zum Beispiel Polystyrol- und Polyurethan-Schaum ersetzen. Ein Vorteil ist die hohe Dauergebrauchstemperatur.
Aufgrund der geringen Dichte (d <1) und der daraus resultierenden Gewichtserspar- nis sind die Materialien besonders geeignet für Anwendungen in der Automobil-,
Luft- und Raumfahrtindustrie für Instrumententafeln, transparente Abdeckungen von Instrumenten Systemen sowie von Lichtquellen, Bordverglasung und Isolationsmaterial.
Die Materialien sind Isolatoren für elektrischen Strom und eignen sich daher für die
Herstellung von Kondensatoren (z.B. Dielektrika), elektronische Schaltkreise und Gerätegehäuse. Weitere Anwendungen in der Elektroindustrie bestehen insbesondere aufgrund der Kombination von hoher optischer Transparenz bei hoher Wärmeformbeständigkeit, geringer Wasseraufnahme in Verbindung mit Licht aus geeigneten emitierenden Quellen. Die Materialien eignen sich daher für die Herstellung von Leuchtdioden, Laserdioden, Matrizes für organische, anorganische und polymere elektrolumineszierende Materialien, optoelektrische Signalaufnahmegeräte, Datenübertragungssysteme durch Glasfaserersatz (z.B. polymere Lichtwellenleiter), transparente Materialien für elektronische Anzeigemedien (Bildschirme, Displays, Projektionsapparate) z.B. von flüssigkristallinen Substraten.
Die Materialien eignen sich für Anwendungen in der Medizintechnik für transparente Extrusions- oder Spritzgußartikel für sterile und unsterile Analysengefäße, Petri- schalen, Mikrofilterplatten, Objektträger, Schläuche, Beatmungstubi, Kontaktlinsen, Brillengläser und Behälter von z.B. Infusionslösungen oder Medikamentenlösungen, Extrusions- und Spritzgußartikel für Anwendungen im Blutkontakt insbesondere zur
Herstellung von Spritzen, Kanülen, Katheter, Kurz- und Langzeitimplantaten (z.B. künstliche Linsen), Blutschläuchen, Membranen zur Blutwäsche, Dialysatoren, Oxy- genatoren, transparenten Wundabdeckungen, Blutkonserven und Nahtmaterialien.
Beispiele
Beispiel 1
Der Autoklave wird mit Inertgas (Argon) gespült. Die Polymerlösung und der Katalysator werden zugegeben (Tabelle 1). Nach dem Verschließen wird mehrmals mit Schutzgas dann mit Wasserstoff beaufschlagt. Nach dem Entspannen wird der jeweilige Wasserstoffdruck eingestellt und unter Rühren auf die entsprechende Reaktionstemperatur geheizt. Der Reaktionsdruck wird nach Einsetzen der Wasserstoffauf- nähme konstant gehalten.
Nach beendeter Reaktion wird die Polymerlösung filtriert. Das Produkt wird in Methanol gefällt und bei 120°C getrocknet. Das isolierte Produkt zeigt die in der Tabelle 2 aufgeführten physikalischen Eigenschaften.
Nergleichsbeispiel A
Syndiotaktisches Polyvinylcyclohexan
Ein ausgeheizter unter Argon stehender 250 ml Dreihalskolben mit Rückflußkühler wird der Reihe nach mit 50 ml abs. Toluol, 20 ml Methylaluminoxan (10%ige Lösung in Toluol), 16,5 mg (0,075 mmol) Titancyclopentadienyltrichlorid und 10,4 g (0.1 mol) Styrol gefüllt. Die Reaktionsmischung wird auf 50 °C aufgeheizt und 2 h bei dieser Temperatur gehalten. Die Reaktion wird durch die Zugabe von acidem Methanol beendet. Das Polymer wird mit 200 ml Methanol mehrmals gewaschen und bei 80 °C getrocknet.
12.5 g Palladium auf Bariumsulfat werden mit Wasserstoff reduziert und mit Schutzgas inertisiert. Ein 1 L-Druckreaktor wird mit Inertgas gespült. In den Autoklaven werden 2.5 g syndiotaktisches Polystyrol gelöst in Cyclohexan und der Katalysator zugegeben (Tabelle 1). Der Wasserstoffdruck wird auf 50 bar eingestellt und der An- satz auf 200 °C geheizt. Nach 24 Stunden wird die Reaktion beendet, entspannt und die Polymerlösung wird filtriert. Das Filtrat wird in Methanol gefällt und im Vakuum bei 120 °C getrocknet. Das isolierte Produkt zeigt die in der Tabelle 2 aufgeführten physikalischen Eigenschaften.
Nergleichsbeispiel B
Isotaktisches Polyvinylcyclohexan
In einen ausgeheizten, mit Inertgas gefüllten lL-Dreihalskolben mit Rückflußkühler werden 100 ml abs. Toluol, 12,5 g (0.11 mol) Vinylcyclohexan und 5 mmol Tri- ethylaluminium bei Raumtemperatur überführt.
1 ml Triethylaluminium (IM) und 2 ml Titan(IV)chlorid (IM) in 12,5 ml Toluol werden 30 Minuten bei 80 °C gerührt und in die Monomerlösung gegeben.
Die Reaktionsmischung wird auf 60 °C aufgeheizt, 50 Minuten bei dieser Temperatur gerührt und anschließend für 90 min bei 85 °C gehalten. Die Polymerisation wird durch Zugabe von Methanol beendet. Das Produkt wird in Methanol unter Rückfluß gekocht, abfiltriert, anschließend mit Methanol und Aceton gewaschen. Das Polymer wird bei 60 °C im Vakuum getrocknet. Das Produkt zeigt die in der Tabelle 2 aufgeführten physikalischen Eigenschaften.
Vergleichsbeispiel C
Polycarbonat aus 2,2-Bis(4-hydroxyphenyl)propan
Ein 150 μm dicker Film von Polycarbonat auf Basis von 2,2-Bis-(4-hydroxyphe- nyl)propan (Makrolon CD 2005, Bayer AG) wird durch Schmelzpressen hergestellt. An diesem Film wird eine Glastemperatur von 142 °C und eine rheooptische Konstante von +5,4 GPa"1 gemessen (vgl. Tabelle 2). Tabelle 1
Hydrierung von Polystyrol mit unterschiedlicher Taktizität
Wasser¬
BeiPolymer- LösungsKatalysator.- Reakions- stoff- ReaktionsHydrier- spiel- Masse mittel Masse temp. Druck zeit grad.
Nr. G ml g °C bar h %
1 2,52 300 ml 12,5 3> 200 50 6 100 Cyclohexan
A 2,5 300 ml 12,54> 200 85 24 100 Cyclohexan
1) Ermittelt durch 'H-NMR Spektroskopie
2) Polystyrol, Standard, Mw = 2500, Aldrich
3) Ni /Si02/Al203, 64-67 % Nickel, Aldrich
4) 5 % Palladium auf Bariumsulfat, Aldrich
Tabelle 2
Thermische und optische Eigenschaften der verschiedenen Vinylcyclohexan Homo- polymere
Beispiel Nr. isotakt. Syndiotakt. Sch elzpkt. Transparenz
Diaden2 Diaden2 Glastemp. T T der
% % °C °C Lösungsfilme
+/-
1 55 45 98 - +
A < 2 > 98 126 295 -
B > 98 < 2 % .0 369 -
C „ - 142 +
1 ) Durch DSC-Messungen nicht detektiert
2) Ermittelt durch zweidimensionale Kernresonanzspektroskopie (2D-NMR)
Das erfindungsgemäße amorphe Polyvinylcyclohexan (Beispiel 1) zeichnet sich durch das überwiegende Auftreten der isotaktischen Diaden aus. Das Material besitzt im Vergleich zu Polycarbonat ebenfalls eine hohe Transparenz bei hoher Wärmeformbeständigkeit (Glastemperatur). Die vorbeschriebenen syndiotaktischen und isotaktischen Materialien sind aufgrund deren Kristallinität und geringen Tranzparenz für optische Anwendungen ungeeignet.

Claims

Patentansprüche
1. Vinylcyclohexan basierendes Polymer oder Copolymer, wobei die Comonomere ausgewählt sind aus mindestens einem Monomer der Gruppe der Ole- fine, Alkylester der Acrylsäure oder Methacrylsäure, Cyclopentadien, Cyclo- hexen, Cyclohexadien, gegebenenfalls substituiertes Norbornen, Dicyclopen- tadien, Dihydrocyclopentadien, gegebenenfalls substituierte Tetracyclodode- cene, kernalkylierte Styrole, α-Methylstyrol, Divinylbenzol, Vinylester, Vinylsäuren, Vinylether, Vinylacetat, Acrylnitril, Methacrylnitril, Maleinsäureanhydrid, bei der Herstellung eingesetzt werden können, mit isotaktischer Konfiguration, dadurch gekennzeichnet, daß die Menge an Diaden größer als 50,1, kleiner als 74 % ist.
2. Polymer gemäß Anspruch 1, wobei die Menge an Diaden 51 bis 70 % beträgt.
3. Polymer gemäß Anspruch 1, wobei das Vinylcyclohexan basierende Polymer eine wiederkehrende Struktureinheit der Formel
Figure imgf000017_0001
in welcher
R3 und R4 unabhängig voneinander für Wasserstoff oder Cj-Cg-Alkyl oder R3 und R4 gemeinsam für Alkylen stehen,
R1, R2 und R5 unabhängig voneinander für Wasserstoff oder Cj-Cg-Alkyl stehen, aufweist. aufweist.
4. Verwendung von Polymeren oder Copolymeren gemäß Anspruch 1 bis 3 zur Herstellung von optischen Datenspeichern, Formkörpern und Folien.
5. Optische Datenspeicher, erhältlich aus Vinylcyclohexan-basierenden Polymeren oder Copolymeren gemäß Anspruch 1.
6. Formköφer und Folien, erhältlich aus Vinylcyclohexan-basierenden Polyme- ren oder Copolymeren gemäß Anspruch 1.
PCT/EP2000/001027 1999-02-19 2000-02-09 Vinylcyclohexan basierende polymere WO2000049057A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020017010520A KR20010102252A (ko) 1999-02-19 2000-02-09 비닐시클로헥산 기재 중합체
BR0009132-4A BR0009132A (pt) 1999-02-19 2000-02-09 Polìmero baseado em vinilciclohexano
AT00902667T ATE282644T1 (de) 1999-02-19 2000-02-09 Vinylcyclohexan basierende polymere
DE50008674T DE50008674D1 (de) 1999-02-19 2000-02-09 Vinylcyclohexan basierende polymere
CA002362829A CA2362829A1 (en) 1999-02-19 2000-02-09 Polymers based on vinylcyclohexane
JP2000599793A JP2002537421A (ja) 1999-02-19 2000-02-09 ビニルシクロヘキサンベースポリマー
EP00902667A EP1163275B1 (de) 1999-02-19 2000-02-09 Vinylcyclohexan basierende polymere
AU24420/00A AU769875B2 (en) 1999-02-19 2000-02-09 Polymers based on vinylcyclohexane
HK02106597.2A HK1044958B (zh) 1999-02-19 2002-09-06 基於乙烯基環已烷的聚合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19906984A DE19906984A1 (de) 1999-02-19 1999-02-19 Vinylcyclohexan basierende Polymere
DE19906984.0 1999-02-19

Publications (1)

Publication Number Publication Date
WO2000049057A1 true WO2000049057A1 (de) 2000-08-24

Family

ID=7898029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/001027 WO2000049057A1 (de) 1999-02-19 2000-02-09 Vinylcyclohexan basierende polymere

Country Status (15)

Country Link
EP (1) EP1163275B1 (de)
JP (1) JP2002537421A (de)
KR (1) KR20010102252A (de)
CN (1) CN1140541C (de)
AT (1) ATE282644T1 (de)
AU (1) AU769875B2 (de)
BR (1) BR0009132A (de)
CA (1) CA2362829A1 (de)
DE (2) DE19906984A1 (de)
ES (1) ES2232419T3 (de)
HK (1) HK1044958B (de)
RU (1) RU2248375C2 (de)
TW (1) TW548287B (de)
WO (1) WO2000049057A1 (de)
ZA (1) ZA200105917B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045937A1 (de) * 1999-12-22 2001-06-28 Bayer Aktiengesellschaft Thermoformbare mehrschichtfolie mit einer schicht aus vinylcyclohexan basierendem polymer
DE102008002599A1 (de) 2008-06-24 2009-12-31 Evonik Degussa Gmbh Bauteil mit Deckschicht aus einer PA613-Formmasse
DE102011084269A1 (de) 2011-10-11 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von Polymer-Nanopartikel-Compounds mittels einerNanopartikel-Dispersion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884253B1 (fr) * 2005-04-08 2007-06-22 Univ Lille Sciences Tech Materiaux monolithiques fonctionnalisables
CN106311150A (zh) * 2016-08-21 2017-01-11 王金桢 一种三羟甲基丙烷油酸酯提纯用吸附剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322731A2 (de) * 1987-12-29 1989-07-05 Idemitsu Kosan Company Limited Polymere aus Vinylcyclohexan und Verfahren zu deren Herstellung
WO1994021694A1 (en) * 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Method for hydrogenating polymers and products therefrom
WO1999032528A1 (de) * 1997-12-18 1999-07-01 Bayer Aktiengesellschaft Vinylcyclohexan basierende polymere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322731A2 (de) * 1987-12-29 1989-07-05 Idemitsu Kosan Company Limited Polymere aus Vinylcyclohexan und Verfahren zu deren Herstellung
WO1994021694A1 (en) * 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Method for hydrogenating polymers and products therefrom
WO1999032528A1 (de) * 1997-12-18 1999-07-01 Bayer Aktiengesellschaft Vinylcyclohexan basierende polymere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045937A1 (de) * 1999-12-22 2001-06-28 Bayer Aktiengesellschaft Thermoformbare mehrschichtfolie mit einer schicht aus vinylcyclohexan basierendem polymer
DE102008002599A1 (de) 2008-06-24 2009-12-31 Evonik Degussa Gmbh Bauteil mit Deckschicht aus einer PA613-Formmasse
DE102011084269A1 (de) 2011-10-11 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von Polymer-Nanopartikel-Compounds mittels einerNanopartikel-Dispersion
WO2013053598A1 (de) 2011-10-11 2013-04-18 Evonik Degussa Gmbh Verfahren zur herstellung von polymer-nanopartikel-compounds mittels einer nanopartikel-dispersion

Also Published As

Publication number Publication date
ATE282644T1 (de) 2004-12-15
RU2248375C2 (ru) 2005-03-20
ES2232419T3 (es) 2005-06-01
BR0009132A (pt) 2001-11-27
ZA200105917B (en) 2002-07-18
TW548287B (en) 2003-08-21
DE19906984A1 (de) 2000-08-31
CN1140541C (zh) 2004-03-03
AU2442000A (en) 2000-09-04
DE50008674D1 (de) 2004-12-23
CN1340066A (zh) 2002-03-13
HK1044958A1 (en) 2002-11-08
CA2362829A1 (en) 2000-08-24
AU769875B2 (en) 2004-02-05
EP1163275B1 (de) 2004-11-17
KR20010102252A (ko) 2001-11-15
EP1163275A1 (de) 2001-12-19
JP2002537421A (ja) 2002-11-05
HK1044958B (zh) 2004-12-24

Similar Documents

Publication Publication Date Title
RU2232164C2 (ru) Блоксополимеры на основе винилциклогексана
DE4304311C2 (de) Cycloolefin-Copolymere für Extrusions- und Spritzgußartikel und Verfahren zur Herstellung eines Cycloolefin-Copolymers
EP1040136B1 (de) Vinylcyclohexan basierende polymere
EP1163275B1 (de) Vinylcyclohexan basierende polymere
CN112646126B (zh) 一种加氢开环易位聚合法制备环烯烃聚合物的方法
TW201000503A (en) Hydrogenated β-pinene-based polymer and molded product made therefrom
DE19921941A1 (de) Vinylcyclohexan basierende Polymere
DE60031553T2 (de) Optsche mediaplatten mit hoher datendichte
WO2000070607A1 (de) Substrate für optische speichermedien
RU2246507C2 (ru) Смесь из полимера/сополимера на основе винилциклолгексана и стабилизирующей системы
DE10159273A1 (de) Verwendung von Dienen mit anschließender Hydrierung zur Thermostabilisierung von Vinylcyclohexan basierenden Polymeren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803943.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000902667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/05917

Country of ref document: ZA

Ref document number: 200105917

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/00949/MU

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2000 599793

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2362829

Country of ref document: CA

Ref document number: 2362829

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 24420/00

Country of ref document: AU

Ref document number: 09913656

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017010520

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017010520

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000902667

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 24420/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000902667

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017010520

Country of ref document: KR