WO2000042389A1 - Resolveur utilisant une bobine en couches - Google Patents

Resolveur utilisant une bobine en couches Download PDF

Info

Publication number
WO2000042389A1
WO2000042389A1 PCT/JP1999/004542 JP9904542W WO0042389A1 WO 2000042389 A1 WO2000042389 A1 WO 2000042389A1 JP 9904542 W JP9904542 W JP 9904542W WO 0042389 A1 WO0042389 A1 WO 0042389A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
resolver
rotary transformer
sheet coil
phase
Prior art date
Application number
PCT/JP1999/004542
Other languages
English (en)
French (fr)
Inventor
Toru Shikayama
Akihiko Maemura
Takashi Katsuma
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP00790799A external-priority patent/JP4269330B2/ja
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US09/868,929 priority Critical patent/US6628038B1/en
Priority to DE69930643T priority patent/DE69930643T2/de
Priority to EP99938598A priority patent/EP1152223B1/en
Publication of WO2000042389A1 publication Critical patent/WO2000042389A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2086Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/49Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/06Printed-circuit motors and components

Definitions

  • the present invention relates to a small and thin sheet coil type resolver that is used for speed detection and position detection of a servomotor in the field of FA equipment and OA equipment, for example, and is configured by a sheet coil.
  • Conventional sheet-coil resolvers have a structure in which a planar sheet coil of an excitation phase composed of one phase and a planar sheet coil of a detection phase composed of two phases are arranged via a gap.
  • One of the three detection phases is the same as the detection phase consisting of a spiral pattern made of copper foil on the front and back sides of the thin insulating sheet layer, and the same on the back side of the same thin film insulating sheet layer.
  • Another detection phase which is a pattern but has a phase difference of 90 electrical degrees from the detection phase, is arranged.
  • the excitation phase is the same on the front side and the back side with the thin insulating sheet layer interposed. Spiral patterns are arranged without phase difference.
  • This sheet-coil resolver is a resolver with a small angular error, because the interlinkage magnetic flux of the detection phase changes precisely in a sine wave shape depending on the rotation angle due to the spiral pattern precisely patterned by etching or the like (for example, JP-A-8-84449.
  • the following rotary transformer is disclosed as having the same function as a sheet coil type resolver.
  • a pair of secondary conductor patterns formed on the front and back of a thin-film substrate made of an insulator are formed by concentric multi-stage thin-film conductors with a gap in a part of a circle.
  • the end between the thin film conductors is connected by a jumper wire, and the secondary side is arranged opposite to the primary side of the transformer via a through hole with a gap.
  • Japanese Patent Publication No. 8-360652 Japanese Patent Publication No. 8-360652
  • the present invention can reduce the size without lowering the detection voltage, and can suppress the fluctuation of the amplitude of the interlinkage magnetic flux even if the core is misaligned when attaching the sheet coil. It is an object of the present invention to provide a sheet coil type resolver.
  • the present invention is a means for solving the above problems, and the seat coil resolver of the first embodiment according to the present invention is as described in claims 1 to 5. is there.
  • the present invention includes a disk-shaped rotor, and two disk-shaped stators arranged so as to be sandwiched in the axial direction of the rotor via an air gap, wherein the rotor is a circular rotor.
  • a rotating sheet coil having a rotating transformer secondary pattern and a resolver exciting phase pattern formed thereon is affixed, respectively.
  • the stator has a fixed-side sheet coil having a rotationally-transformed primary pattern formed on a disk-shaped soft magnetic material,
  • the other of the stators facing the louver excitation phase pattern has a fixed-side sheet coil having a resolver detection phase pattern formed on a disk-shaped soft magnetic material.
  • the rotating-side sheet coil may include a disk portion on which the resolver excitation phase pattern is formed, a disk portion on which the rotary transformer secondary side pattern is formed, the resolver excitation phase pattern, and the rotation.
  • Transformer The linear part that forms the crossover connecting the secondary pattern is formed by one sheet.
  • the fixed-side sheet coil may include a disk portion on which the resolver detection phase pattern is formed, a disk portion on which the rotary transformer primary-side pattern is formed, and a straight line connecting the two disk portions.
  • the part is formed by one sheet.
  • the rotary transformer secondary-side pattern formed on both surfaces of the disk portion is a pattern spiraling from the outside to the inside, is connected in series with each other, and is formed on both surfaces of the disk portion.
  • N spiral patterns with N as the natural number are arranged on both sides in the circumferential direction, and the centers of the spirals on the front and back sides are arranged at the same position in the circumferential direction.
  • N vortices are connected in series to form a double angle NX.
  • the present invention provides the rotary transformer, wherein the rotary transformer primary patterns formed on both surfaces of the disk portion are patterns spiraling inward from the outside and connected in series with each other, and the resolver formed on both surfaces of the disk portion.
  • the detected phase pattern one surface is the ⁇ phase
  • the other surface is the jS phase
  • 2 N spiral patterns are arranged in the circumferential direction
  • the center position of the ⁇ phase and the i3 phase spiral is It is 90 ZN apart from each other in the circumferential direction
  • 2 N spirals are connected in series to form a multiple angle NX: Therefore, the present invention according to claims 1 to 5 has the following features.
  • one of the outer diameter of the rotary transformer secondary-side pattern and the outer diameter of the rotary transformer primary-side pattern is larger than the other.
  • the present invention also Bataan pitch of the rotary transformer secondary side pattern; 1 2, when the pattern pitch of the rotary transformer primary side flap Ichin, said rotary transformer secondary side pattern - down outermost If the radius r of the radial conductor and the radius of the outermost conductor of the rotary transformer primary side rotor are 0 ⁇ r,-r, ⁇ 4 X ⁇ 2 , or 0 ⁇ r [1 r 2 ⁇ 4 Xe [
  • the outer diameter of the resolver excitation phase pattern is larger than the outer diameter of the resolver detection phase pattern, and the inner diameter of the resolver excitation phase pattern is smaller than the inner diameter of the resolver detection phase pattern.
  • the outer diameter of the phase pattern is larger than the outer diameter of the excitation phase pattern, and the inner diameter of the detection phase pattern is smaller than the inner diameter of the excitation phase pattern.
  • the pattern pitch of the resolver excitation phase pattern is I ⁇
  • the pattern pitch of the resolver detection phase pattern is ⁇
  • the radius r s of the outermost conductor of the resolver excitation phase pattern is I ⁇
  • the pattern pitch of the resolver detection phase pattern is ⁇
  • the radius r s of the outermost conductor of the resolver excitation phase pattern is I ⁇
  • the outermost diameter conduction of the rotary transformer primary pattern ⁇ r ⁇ 0
  • the innermost diameter conduction of the resolver excitation phase pattern ⁇ the radius r fl I
  • the innermost diameter conduction of the rotating transformer primary side pattern If the radius r of the book is 0 ⁇ r ⁇ .- r ⁇ .
  • FIG. 1 is a sectional view of a sheet coil type resolver showing a first embodiment of the present invention.
  • Fig. 2 is an expanded plan view of the fixed side sheet coil pattern.
  • FIGS. 4A and 4B are diagrams of a pattern of a sheet coil type resolver according to a second embodiment of the present invention, as viewed from the same direction, where (a) is the primary side pattern of the rotary transformer, and (b) is the pattern.
  • the solid line in the figure is the pattern on the front side of the sheet coil
  • the dotted line is the pattern on the back side seen through from the front side
  • (c) is the primary side and the secondary side of the rotary transformer facing each other.
  • Fig. 5 shows the outline of the maximum @ of each pattern when the rotor is shifted:
  • Fig. 5 shows the rotating transformer primary side pattern and primary side when the rotor is misaligned with respect to the center of the stator. It is a figure which shows the contour of the outermost diameter of a pattern, (a) is when a rotor is stationary, (b) is when a rotor rotates 90 degrees, (c) is when a rotor is 180 degrees.
  • FIGS. 6A and 6B are diagrams showing patterns of a sheet coil type resolver according to a third embodiment of the present invention, as viewed from the same direction.
  • FIG. 6A shows a resolver part detection phase pattern
  • FIG. In the figure, the solid line in the figure is the pattern on the front side of the sheet coil, the dotted line is the pattern on the back side seen through from the front side, and (c) shows the excitation phase and the detection phase in the resolver section. The outline of the outermost diameter and the innermost diameter of each pattern is shown in FIG.
  • Figure 7 is a diagram showing the resolver detection phase pattern when the rotor is decentered with respect to the center of the stator, and the outermost and innermost contours of the excitation phase pattern. a) when the rotor is stationary, (b) when the rotor rotates 90 degrees, (c) when the rotor rotates 180 degrees, and (d) when the rotor rotates 270 degrees. This shows the case where the rotation is performed.
  • FIG. 8 is a diagram showing the relationship between the misalignment amount ⁇ and the angle error in a sheet coil type resolver having a shaft double angle of 3X and an outer diameter of about 0:35 mm.
  • FIG. 1 is a cross-sectional view of a sheet coil type resolver showing a first embodiment of the present invention.
  • FIG. 2 is an expanded plan view of a fixed-side sheet coil butter
  • FIG. (B) shows the pattern of the back surface seen through from the front surface of (a).
  • Fig. 3 is an expanded plan view of the pattern of the rotating sheet coil.
  • (A) shows the pattern on the front surface
  • (b) shows the pattern on the back surface seen through from the surface of (a). Is shown.
  • an example of a resolver with 2x shaft angle, 1-phase excitation, 2-phase output type is used: 2 X is a resolver with two pole pairs, and X is usually added when it is displayed as a shaft double angle.
  • a rotor 4 and two stators 2 and 3 provided on both side surfaces in the axial direction are configured.
  • the rotor 4 has a back yoke 41 made of a thin disk ferrite, and disk portions 6 1 and 6 2 of a rotating side sheet coil 6 are attached to both surfaces of the back yoke 41.
  • the rotating side sheet coil 6 uses a copper foil as a conductor, and a coil pattern is formed on both surfaces of a thin insulating sheet layer 3.
  • One side of the back yoke 4 1 of the rotor 4 has a shaft 1 at the center. Are fixed vertically by bonding or the like, and a hole for passing the shaft 1 is provided in the center of the back yoke 21 constituting the stator 2.
  • the fixed-side sheet coil 5 is formed of two disk portions 51, 52, a straight portion 53 connecting them, and a protrusion 54 extending laterally from one of the portions near the center of the straight portion 53.
  • a rotary transformer primary side pattern 55 and resolver detection phase patterns 56 and 57 are formed, respectively.
  • the pattern on the front surface is ⁇ phase 56
  • the pattern on the back surface is phase 57.
  • the rotary transformer primary side pattern 55 is formed as a spiral from the vicinity of the center of the disk part 51 to the outside, and two terminals 580 are provided on both sides of the projection part 54 (ten, one). ing.
  • the (+) on the front side and the (-) on the back side of the terminal 58 have a sac on the outside of the spiral on the front side and the outside of the spiral on the back side, respectively, and are connected to each other at the through hole 59 near the center: . Look at the front and back patterns from the same surface It spirals in the same direction as one coil.
  • Each of the resolver detection phase patterns 56 and 57 has four spiral patterns formed in the circumferential direction, which are shifted from each other by half a pitch in the circumferential direction. Therefore, the electrical angle is shifted 90 degrees, and the mechanical angle is shifted 4 degrees. The arrangement is shifted by 5 degrees.
  • the resolver detection phase pattern (phase) 56 has two terminals 58 (SA1, SA2) on the back of the protrusion 54, and the through hole between the spiral coil pattern on the back is provided. Through to the center of the spiral pattern on the surface. The outside of the spiral is connected to the outside of the adjacent spiral by a crossover, and the center is connected to each other on the back through a through hole 50.
  • the resolver detection phase pattern (phase 0) 57 is provided with two terminals 58 (SB1, SB2) on the surface of the projection 54, and the through hole 50 between the spiral coil pattern on the surface is provided. And is connected to the center of the spiral pattern on the back side. The outside of the spiral is connected to the outside of the next spiral by a crossover, and its center is connected to each other on the surface through a through hole 50.
  • the rotary sheet coil 6 is composed of two disk portions 61, 62 and a linear portion 63 connecting them, and the disk portions 61, 62 each include a rotary transformer secondary side component.
  • a turn 64 and a resolver excitation side pattern 65 are formed.
  • the resolver excitation phase pattern 65 has four spiral patterns formed on both sides in the circumferential direction, and the circumferential positions on both sides are the same.All of these patterns are connected in series. , It is as follows.
  • On both surfaces of the linear portion 63 there are formed crossover lines connecting the rotary transformer secondary pattern 64 and the resolver excitation pattern 65, respectively. Each is connected to the outside of the spiral formed on both sides of the rotary transformer secondary-side pattern 6 4, and is connected to each other through the through hole 66 inside the spiral.
  • the crossover line extends outside one of the spirals on the surface of the resolver excitation side pattern 65, and extends through the through hole 67 at the center to the center of the spiral on the back side.
  • the outside of the spiral is outside the next spiral, and the center of the spiral is connected to the surface spiral via through hole 67. The same connection is repeated. After It is connected to the crossover on the back of the straight section 63.
  • the fixed-side sheet coil 5 and the rotating-side sheet coil 6 formed as described above are bent at the straight portions 5 3 and 6 3, respectively. It is affixed to the backpack 4 1. Then, the rotating transformer primary pattern 5 5 of the fixed sheet coil 5 and the rotating transformer secondary pattern 6 4 of the rotating sheet coil 6 face each other, and the resolver detection phase pattern 5 6 of the fixed sheet coil 5 is opposed. , 57 and the resolver excitation side pattern 65 of the rotating side sheet coil 6 are arranged to face each other:
  • the high-frequency voltage is applied from the terminals 58 (+,-) of the fixed-side rotating transformer primary-side pattern 55, so that the rotating side rotates first.
  • a voltage is induced in the transformer secondary side pattern 64.
  • the current flows through the resolver excitation phase pattern 65 due to the ⁇ ] ⁇ , creating a magnetic flux distribution with peaks and valleys in the circumferential direction.
  • the resolver detection phase pattern 56 of the ⁇ phase and the resolver detection phase pattern 57 of the phase are arranged with a phase difference of 90 degrees in electrical angle, the amplitude of the detected voltage is also 90 degrees in electrical angle. It changes with a phase difference of 1 degree, and functions as a 1-phase excitation Z 2-phase output type resolver.
  • the first embodiment of the present invention is directed to a rotor having a rotary transformer secondary-side pattern and a resolver excitation phase pattern on both sides, and a rotary transformer primary so as to be interposed between both sides in the axial direction of the rotor via a gap. Since the resolver in which the stator having the side pattern and the resolver detection phase pattern are arranged is configured, the present invention compares the pattern of the conventional rotary transformer with the pattern provided inside the resolver pattern.
  • the pattern of the rotating transformer is about four times as large as the conventional outer diameter. As a result, the number of turns is increased eight times in total on the primary side and the secondary side, and the magnetic flux that the secondary side of the rotary transformer interlinks becomes significantly larger due to an increase in the precision.
  • the present embodiment can greatly reduce power consumption compared to the prior art.
  • the pattern of the rotation transformer and the pattern of the resolver detection phase can be obtained.
  • the magnetic flux generated by the rotary transformer does not interlink with the resolver detection phase pattern at all because the pin is not on the same plane as in the past. That is, the present invention solves the problem of the residual voltage, which has conventionally occurred, and provides a highly accurate sheet coil type resolver.
  • FIG. 4 is a view of a pattern of a seat-coil resolver according to a second embodiment of the present invention, as viewed from the same direction.
  • FIG. 4 is a view of a pattern of a seat-coil resolver according to a second embodiment of the present invention, as viewed from the same direction.
  • (b) is the secondary side pattern of the rotary transformer.
  • the solid line in the figure is the pattern on the front side of the sheet coil, and the dotted line is the pattern on the back side seen through from the front side.
  • (C) illustrates the outline of the last pattern of each pattern when the primary side and the secondary side of the rotary transformer face each other.
  • the second embodiment differs from the first embodiment, the radius r of the outermost ⁇ of radius r 2 of the secondary side flap one down of the outermost ⁇ body primary pattern, more Is also growing.
  • the difference between the data r 2 - ⁇ is, if the pattern pitch of the secondary side Bataan was ⁇ 2,
  • the amount of misalignment at the time of attaching the sheet coil is ⁇ 0.2 mm or less even when the ease of assembly is taken into consideration, and the pattern pitch is at least 0.0 mm. Because 5 is about mm, 4 ⁇ ⁇ 2 is the minimum at 0 2 mm, r, -. . r, but 0 if it is 2 mm, the misalignment amount was ⁇ 0 2 mm. This is because the primary pattern never goes outside the secondary pattern.
  • Figure 5 is a diagram showing the outermost contours of the primary and secondary patterns of the rotating transformer when the rotor is misaligned with respect to the center of the stator.
  • (b) is when the rotor is rotated 90 degrees
  • (c) is when the rotor is rotated 180 degrees
  • (d) is when the rotor is rotated 240 degrees. Show It is.
  • the sheet coil type resolver configured as described above, if a core misalignment occurs at the time of attaching the sheet coil, the rotor-side sheet coil causes a core rotation with respect to the fixed-side sheet coil, and the rotation transformer secondary As shown in Figs.
  • the outermost side of the primary side pattern 55 which rotates on the primary side pattern 55 is a secondary side pattern. Since it always enters inside the outermost diameter of 6, the fluctuation of the amplitude of the interlinkage magnetic flux is reduced.
  • the second embodiment of the present invention has such a configuration, even if a core misalignment at the time of attaching the sheet coil, a core rotation of the rotor, or a core misalignment occurs, the fluctuation of the amplitude of the linkage flux is small. The angle error does not increase.
  • FIGS. 6A and 6B are diagrams of a pattern of a sheet coil type resolver according to a third embodiment of the present invention, as viewed from the same direction.
  • FIG. 6A shows a resolver part detection phase pattern
  • FIG. It is an excitation phase pattern.
  • the solid line in the figure is the pattern on the front side of the sheet coil, and the dotted line is the pattern on the back side seen through from the front side: (c) is the pattern when the excitation phase and the detection phase of the resolver face each other.
  • a spiral pattern with an axial angle of 3X and a single-phase excitation / two-phase detection resolver with an electrical angle of 360 ° is shown in the third embodiment.
  • the third embodiment differs from the first embodiment in that the radius of the outermost conductor of the detection phase pattern is: . Is the radius r s of the outermost diameter conduction of the excitation phase pattern.
  • the radius r ui of the innermost conductor of the detection phase pattern is smaller than the radius r 9 i of the innermost conductor of the excitation phase pattern.
  • the difference of this radius r a One r ⁇ .
  • r 8 i — r rt i are, assuming that the pattern pitch of the detected phase pattern is
  • Figure 7 shows the outermost and innermost contours of the resolver detection phase pattern and the excitation phase pattern when the rotor is misaligned with respect to the center of the stator.
  • (b) shows when the rotor rotates 90 degrees
  • (c) shows when the rotor rotates 180 degrees
  • (d) shows when the rotor rotates 270 degrees. It is.
  • the sheet coil type resolver configured as described above, if a core misalignment occurs at the time of attaching the sheet coil, the rotor side seat core rotates relative to the fixed side sheet coil, and the resolver excitation phase pattern 65 is shown in FIG.
  • FIG. 8 shows the relationship between the misalignment amount ⁇ and the angle error in a sheet coil type resolver having a shaft double angle of 3 ⁇ . This means that at the minimum pattern pitch of 50 ⁇ m, r a0 —
  • the size of the sheet coil is large, so it seems to be a disadvantage in the case of miniaturization.However, even if it is made large, the maximum is ⁇ 0.2 mm, and from the overall size, It doesn't get big enough to be a problem
  • the number of turns is increased in order to increase the size of one of the patterns, but this may cause an increase in loss due to an increase in resistance.
  • the number is 4 or less, and the ratio of one spiral pattern to the number of turns is 5% at the maximum. In other words, the increase in the total resolver loss is very small, and it is almost no problem.
  • the third embodiment of the present invention has such a configuration, even if the core is misaligned at the time of attaching the sheet coil, the rotor is rotated, or the core is misaligned, the linkage is performed similarly to the second embodiment.
  • the fluctuation of the magnetic flux amplitude is small and the angle error cannot be large.
  • the back yoke of the rotor or the stator has a force that takes an appropriate thickness in FIG. 1; the magnetic flux generated by the pattern of the rotating transformer resolver is very small. There is no problem even if the thickness of the yoke is reduced to about 2-3 mm. Also, the magnetic flux created by the patterns on both sides of the rotor does not interfere for the same reason.
  • the rotary transformer section radius r 2 of the outermost ⁇ of secondary pattern has a radius Yori even greater if the outermost ⁇ of primary pattern , Ore to the resolver part, of the most ⁇ guide of the detection phase pattern is Te ⁇ r a. Is the radius r fl of the outermost conductor of the excitation phase pattern. Greater than the innermost diameter conductor of the detection phase pattern ⁇ ai is 3 also goes without saying that force each magnitude relation showing a case r ei is smaller than the innermost diameter conductors no harm be reversed excitation phase pattern, In this embodiment, the rotary transformer and the resolver are handled separately, but both may be configured as an integrated sheet coil.
  • the present invention is applied to a resolver used for speed detection and position detection of a servomotor in the field of FA equipment and OA equipment, so that the detection voltage can be reduced without fail, and a sheet coil can be attached. It can be used in the field of providing an inexpensive sheet coil resolver that can suppress the amplitude fluctuation of the linkage magnetic flux even if misalignment occurs at the same time, and has a small angle error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

明細書
シ一トコィル开 レゾルバ
[技術分野]
本発明は、 例えば F A機器や O A機器の分野でサーボモータの速度検出 '位 置検出などに用いられると共に、 シートコイルで構成された小型 ·薄型のシ一 トコィル形レゾルバに関するものである。
[背景技術]
従来のシ一トコィル形レゾルバには、 1相からなる励磁相の平面状シ一トコ ィルと 2相からなる検出相の平面状シートコイルが空隙を介して配置されて構 成されるものがある 3 検出相は薄膜の絶縁シート層を挟んで、 表側と裏側に銅 箔で形成された渦巻き状パターンからなる検出相と、 同じく薄膜の絶縁シ一ト 層を挟んで、 裏側には同一のパターンであるが前記検出相と電気角 9 0度の位 相差を持つもう一つの検出相が配置されており、 一方、 励磁相は薄膜の絶縁シ 一ト層を挟んで、 表側と裏側に同一の渦巻き状パターンが位相差なく配置され ている。 このシートコイル形レゾルバは、 エッチング等により精密にパターン 化された渦巻き状パターンによって、 検出相の鎖交磁束が回転角度によって精 度良く正弦波状に変化し、 角度誤差の小さいレゾルバとなっている (例えば、 特開平 8— 8 4 4 4 9号公報) 。
また、 シートコイル形レゾルバと同等の機能を有するものとして、 次のよう な回転トランスが開示されている。 この回転トランスは、 絶縁体よりなる薄膜 状の基板の表裏に形成した一対の二次側の導 ί本パターンを、 円の一部に間隙を 設けた同心円状で多段の薄膜導体により形成して、 薄膜導体間の端部をジヤン パ線で接続するように構成しており、 この 2次側を、 スル一ホールを介してト ランスの 1次側に空隙を介して対向配置したものである (例えば、 特 平 8 - 3 0 6 5 6 2号公報) 。
また、 他の従来のシートコイル形レゾルバには、 回転トランスのパターンをレ ゾルバのバタ一ンの内側に設け、 回転卜ランスのバタ一ンとレゾルバのバタ一 ンを一体化したものがある (特開平 8— 1 3 6 2 1 1号公報) c
し力 しな力;ら、 従来技術では次のような問題点があつた.: ( 1 ) 特開平 8— 1 3 6 2 1 1号記載の回転トランス形レゾ/レバは、 回転トラ ンスのパターンとレゾルバのパターンを一体化したため、 加工工数を低减し低 コスト化は得られるものの、 小型にするときは外径を小さくしなければならず、 そのため回転トランスのパターンが非常に小さくなってしまい、 磁束と巻数の 减少に伴う変圧比の低下が生じ、 所定の検出電圧を得ることができなかった。 また、 検出相パターンが回転トランスの作る磁束を鎖交するので、 大きな残留 ¾]Ξが発生し角度誤差が大きなものとなっていた。
( 2 ) 特開平 8 - 8 4 4 4 9号記載のレゾルバ、 特開平 8— 3 0 6 5 6 2号記 載の回転トランスは、 導体のシートコイル貼り付け時の芯ずれによって、 1次 側と 2次側の中心が一致しなくなり、 そして、 そのシートコイルが回転すると、 鎖交磁束の振幅に機械角 3 6 0度の変動成分が現れるようになった。 このよう に従来技術では、 シートコイル貼り付け時に若干の芯ずれを起こしただけで、 大きな角度誤差を引き起こすという問題があった。 また、 シートコイル貼り付 け精度や組立精度を向上すれば角度誤差を低減できるものの、 これはかえつて コス ト高となり、 本来の安価を目的とした効果を失うという問題があつた。 そこで、 本発明は、 検出電圧の低下を招くことなく小型化できると共に、 シ 一トコイル貼り付け時に芯ずれが生じても鎖交磁束の振幅変動を抑えることが できる、 角度誤差の小さい、 安価なシートコイル形レゾルバを提供することを 目的とする。
[発明の開示]
本発明は、 上記問題を解決するためになされた手段であり、 本発明に係る第 1の実施例のシ一トコィル形レゾルバは、 請求の範囲第 1項〜第 5項に記載し たとおりである。
すなわち、 本発明は、 円板状の回転子と、 前記回転子の軸方向に空隙を介し て挟み込むように配置された 2個の円板状の固定子が備えられ、 前記回転子は、 円板状の軟磁性体の両面に、 各々回転トランス 2次側パターンとレゾルバ励磁 相パターンを形成した回転側シ一卜コイルが貼り付けられ、 前記回転卜ランス 2次側パターンに対向すろ一方の前記固定子は、 円板状の軟磁性体に回転卜ラ ンス 1次側パターンを形成した固定側シ一卜コイルが貼り付けられ、 前記レゾ ルバ励磁相パターンに対向する他方の前記固定子は、 円板状の軟磁性体にレゾ ルバ検出相バターンを形成した固定側シ一卜コィルが貼り付けられたものであ る。
また、 本発明は、 前記回転側シートコイルは、 前記レゾルバ励磁相パターンを 形成した円板部と、 前記回転トランス 2次側パターンを形成した円板部と、 前 記レゾルバ励磁相パターンと前記回転トランス 2次側パターンを接続する渡り 線を形成した直線部とが 1枚のシ一トで形成されたものである
また、 本発明は、 前記固定側シートコイルは、 前記レゾルバ検出相パターンを 形成した円板部と、 前記回転トランス 1次側パターンを形成した円板部と、 該 2つの円板部を繋ぐ直線部とが 1枚のシ一トで形成されたものである。
また、 本発明は、 円板部の両面に形成された前記回転トランス 2次側パターン は外側から内側に渦巻くパターンであって、 互いに直列接続されており、 円板 部の両面に形成された前記レゾルバ励磁相パターンは両面とも周方向に Nを自 然数とする 2 N個の渦卷くパターンが配置されるとともに、 表面と裏面の渦巻 きの中心が周方向の同じ位置に配置され、 4 N個の渦巻きが直列接続されて軸 倍角 NXとなっている。
また、 本発明は、 円板部の両面に形成された前記回転トランス 1次側パターン は外側から内側に渦巻くパターンであって互いに直列接続されており、 円板部 の両面に形成された前記レゾルバ検出相パターンは、 一方の面が α相、 他方の 面が jS相であって、 それぞれ周方向に 2 N個の渦巻くパターンが配置されると ともに、 α相と i3相の渦巻きの中心位置が互いに周方向に 9 0 ZN度ずれてお り、 2 N個の渦巻きがそれぞれ直列接続されて軸倍角 N Xとなっている: したがって、 請求項第 1項から第 5項までの本発明は、 外径を小さく しても 回転トランスの面積は従来のものより大きくできるので、 検出電圧は従来のも のより低下することはない: また回転トランスのパターンとレゾルバのバタ一 ンが同一面にないので、 回転卜ランスの作る磁束はレゾルバの検出相バタ一ン に全く鎮交することがない... よって、 残留電圧の問題が解消され、 より角度誤 差の小さいシー卜コイル形レゾルバを捉-供できろ.: そして、 消費電力を大きく 低减することができ、 停電時のノ ッテリ運転の際に非常に有効なものとなろ。 次に、 本発明に係る第 2の実施例のシ一トコィル形レゾ /レバは、 請求の範囲第 6項、 第 7項に記載したとおりである:
すなわち、 本発明は、 前記回転トランス 2次側パターンの^ ¾と前記回転卜ラ ンス 1次側パターンの外径は、 何れか一方が他方に比べて大きく したものであ る。
また、 本発明は、 前記回転トランス 2次側パターンのバターンピッチを; 1 2、 前記回転トランス 1次側バタ一ンのパターンピッチを とした場合、 前記回転 トランス 2次側パタ―ンの最外径導 ί本の半径 r ,と前記回転トランス 1次側ノ タ ーンの最タ 導体の半径 が、 0 < r , - r ,≤4 X λ 2, もしくは、 0く r【一 r 2≤ 4 Xえ【の関係にしたものである。
次に、 本発明に係る第 3の実施例のシートコイル形レゾルバは、 請求の範囲第 8項、 第 9項に記載したとおりである:
すなわち、 本発明は、 前記レゾルバ励磁相パターンの外径が前記レゾルバ検出 相パターンの外径より大きく、 かつ前記レゾルバ励磁相パターンの内径が前記 レゾルバ検出相パターンの内径より小さいか、 若しくは、 前記検出相パターン の外径が前記励磁相パターンの外径より大きく、 かつ前記検出相パターンの内 径が前記励磁相パターンの内径より小さくしたものである。
また、 本発明は、 前記レゾルバ励磁相パターンのパターンピッチを; I β、 前記 レゾルバ検出相パターンのパターンピッチをえ αとし、 前記レゾルバ励磁相パタ —ンの最タ 導体の半径 r s。と前記回転トランス 1次側パターンの最外径導 (本の ¾ r α0、 前記レゾルバ励磁相パターンの最内径導 ί本の半径 r fl Iと前記回転トラ ンス 1次側パターンの最内径導 (本の半径 r が、 0 < r α。― r β。 4 Xえ"で、 力つ 0く r e i- r α ί ≤ 4 X Α α Ν もしくは、 0く r e 0— r α0 ≤ 4 Xえ Ηで、 か つ 0 < r a i — r H i 4 X λ βの関係にしたものである:
これにより、 請求項第 6項から第 9項に記載した本発明は、 シートコィ/レ貼 り付け時に芯ずれが生じても、 鎖交磁束の振幅変動を抑えることができ、 角度 誤差を小さく保つことができる.: また、 むやみに組み立て精度を上げる必要が なし、ので、 安価なレゾルバを提供することができる .
[図面の簡単な説明] 図 1は、 本発明の第 1の実施例を示すシ一トコイル形レゾルバの断面図であ る。 図 2は、 固定側シートコイルのパターンの平面図を展開したものであって、
( a ) は表面のパターンを示しており、 (b ) は ( a ) の表面から透視した裏 面のパターンを示している。 図 3は、 回転側シートコイルのバタ一ンを示す平 面図を展開したものであって、 (a ) は表面のパターンを示しており、 (b ) は (a ) の表面から透視した裏面のパターンを示している。 図 4は、 本発明の 第 2の実施例を示すシートコイル形レゾルバのそれぞれ同一方向から見たバタ ーンの図であって、 (a ) は回転トランスの 1次側パターン、 (b ) は回転ト ランスの 2次側パターンであって、 図中実線はシートコイルの表側のパターン、 点線は表側から透視した裏側のパターンであり、 ( c ) は回転トランスの 1次 側と 2次側が対向したときの各パターンの最^ @の輪郭を図示したものである: 図 5は、 回転子が固定子の中心に対して、 芯ずれを起こした際の回転トランス 1次側パターンと 1次側パターンの最外径の輪郭を示す図であって、 (a ) は 回転子が静止した場合、 (b ) は回転子が 9 0度回転した場合、 (c ) は回転 子が 1 8 0度回転した場合、 (d ) は回転子が 2 7 0度回転した場合を示すも のである。 図 6は、 本発明の第 3の実施例を示すシートコイル形レゾルバのそ れぞれ同一方向から見たパターンの図であって、 (a ) はレゾルバ部検出相パ ターン、 (b ) はレゾルバ部の励磁相パターンであって、 図中実線はシ一トコ ィルの表側のパターン、 点線は表側から透視した裏側のパターンであり、 (c ) はレゾルバ部の励磁相と検出相が対向したときの各パターンの最外径と最内径 の輪郭を図示したものである。 図 7は、 回転子が固定子の中心に対して、 芯ず れを起こした際のレゾルバ検出相パターンと励磁相バタ一ンの最外径と最内径 の輪郭を示す図であって、 (a ) は回転子が静止した場合、 (b ) は回転子が 9 0度回転した場合、 (c ) は回転子が 1 8 0度回転した場合、 (d ) は回転 子が 2 7 0度回転した場合を示すものである。 図 8は、 軸倍角 3 X、 外径 0 :3 5 m m程度のシ一トコィル形レゾルバにおける芯ずれ量 δと角度誤差の関係を 示す図である。
[発明を実施すろための最良の形態]
以下、 本発明の実施例を図に基づし、て説明する: [第 1の実施例]
図 1は本発明の第 1の実施咧を示すシ一トコイル形レゾルバの断面図である 図 2は固定側シートコイルのバタ一ンの平面図を展開したものであって、 (a ) は表面のパターンを示しており、 (b ) は (a ) の表面から透視した裏面のバ ターンを示している。 図 3は回転側シートコイルのパターンの平面図を展開し たものであって、 (a ) は表面のパターンを示しており、 (b ) は ( a ) の表 面から透視した裏面のパターンを示している。 これらの図では軸倍角 2 X、 1 相励磁 2相出力形のレゾルバを例としている: 2 Xとは、 極対数 2のレゾル バであり、 軸倍角として表示する場合は通常 Xを付記する。
本発明のシートコイル形レゾルバの特徴を以下に説明する。
図 1において、 回転子 4とその軸方向両側面に設けた 2個の固定子 2、 3から 構成されている。 回転子 4は薄い円板のフェライ 卜でできたバックヨーク 4 1 の両面に回転側シートコイル 6のそれぞれ円板部 6 1、 6 2が貼り付けられて いる。 回転側シートコイル 6は、 導体として銅箔を用い、 薄膜の絶縁シート層 の両面にコイルパターンが形成されている 3 また回転子 4のバックヨーク 4 1 の一方の面には、 中央にシャフト 1が接着等によって垂直に固着されており、 固定子 2を構成するバックヨーク 2 1の中央にはシャフト 1を通すための穴が 設けられている。
まず、 固定側シートコイルについて、 図 2を用いて説明する。
固定側シ一トコイル 5は、 2つの円板部 5 1、 5 2と、 それをつなぐ直線部 5 3と、 直線部 5 3の中央付近の一方から側方に伸びる突起部 5 4とで形成さ れており、 円板部 5 1、 5 2にはそれぞれ回転トランス 1次側パターン 5 5と レゾルバ検出相パターン 5 6、 5 7が形成されている。 レゾルバ検出相パター ン 5 6、 5 7は、 表面のパターンが α相 5 6であり、 裏面のパターンが 相 5 7である。 回転トランス 1次側パターン 5 5は円板部 5 1の中央付近から外側 に向う渦卷きとなつており、 その端子 5 8は突起部 5 4の両面に 2つ (十、 一) 設けられている。 端子 5 8の表面の (+ ) と裏面の (―) は、 それぞれ表面の 渦巻きの外側と裏面の渦巻きの外側に槃がつており、 さらに中央付近のスル一 ホール 5 9で互いに繋がっている:. 表面と裏面のパターンは同じ表面から見ろ と同じ方向に渦卷いており、 1つのコイルをなしている。
レゾルバ検出相パターン 5 6、 5 7はそれぞれ周方向に 4個の渦巻き状パタ —ンが形成されており、 互いに周方向に半ピッチずれている したがって電気 角で 9 0度ずれ、 機械角で 4 5度ずれた配置となっている。
レゾルバ検出相パターン (ひ相) 5 6の端子 5 8は突起部 5 4の裏面に 2つ ( S A 1.、 S A 2 ) 設けられており、 裏面の渦巻きコイルパターンの間のスル —ホール 5 0を通って表面の渦巻きパターンの中心に接続されている。 その渦 巻きの外側は渡り線によつて隣の渦卷きの外側に繋がっており、 さらに、 その 中心はスルーホール 5 0を通じて裏面で互レ、に繋がっている。
レゾルバ検出相パターン (0相) 5 7の端子 5 8は突起部 5 4の表面に 2つ ( S B 1、 S B 2 ) 設けられており、 表面の渦巻きコイルパターンの間のスル —ホール 5 0を通って裏面の渦巻きパターンの中心に接続されている。 その渦 巻きの外側は渡り線によって隣の渦巻きの外側に繋がっており、 さらに、 その 中心はスル一ホール 5 0を通じて表面で互レ、に繋がっている。
次に、 回転側シートコイルについて、 図 3を用いて説明する。
回転側シ一トコイル 6は 2つの円板部 6 1、 6 2とそれをつなぐ直線部 6 3 とで構成されており、 円板部 6 1、 6 2には、 それぞれ回転トランス 2次側パ ターン 6 4とレゾルバ励磁側パターン 6 5が形成されている。 レゾルバ励磁相 パターン 6 5は両面とも周方向に 4個の渦巻き状バタ一ンが形成されており、 両面の周方向位置は同じになっているつ これらのパターンは全てが直列に接続 されており、 次のようになっている。 直線部 6 3の両面には、 それぞれ回転ト ランス 2次側パターン 6 4とレゾルバ励磁側パターン 6 5を繋ぐ渡り線が形成 されている。 それぞれ回転トランス 2次側パターン 6 4の両面に形成された渦 巻きの外側に繋がっており、 渦巻きの内側ではスル一ホール 6 6を介して互い に接続されている, 直線部 6 3の表面の渡り線は、 レゾルバ励磁側パターン 6 5の表面にある 1つの渦巻きの外側に繫がっており、 その中央でスルーホール 6 7を介して裏面の渦巻きの中央に繁がっている, 裏面の渦巻きの外側はその 隣の渦巻きの外側に繫がっており、 更にその渦 きの中心でスル一ホール 6 7 を介して表面の渦巻きに繋がっている, 同じような繋ぎ方が繰返され、 ¾後は 直線部 6 3の裏面の渡り線に繋がっている。
以上のように形成された固定側シートコイル 5と回転側シートコイル 6は、 直線部 5 3、 6 3で折り曲げられ、 それぞれ固定子 2、 3のバックョ一ク 2 1、 3 1と回転子のバックョ一ク 4 1に貼付けられている。 そして、 固定側シート コイル 5の回転トランス 1次側パターン 5 5と回転側シートコイル 6の回転ト ランス 2次側パターン 6 4とが対向し、 固定側シ一トコイル 5のレゾルバ検出 相パターン 5 6、 5 7と回転側シ一 トコイル 6のレゾルバ励磁側バターン 6 5 とが対向するよう配置されている:
次に動作について説明する。
このように構成されたシ一トコイル形レゾルバにおいて、 固定側にある回転 トランス 1次側パターン 5 5の端子 5 8 ( +、 -) から高周波の電圧を印加す ることにより、 まず回転側の回転トランス 2次側パターン 6 4に電圧が誘起さ れる。 その ¾]Ξによってレゾルバ励磁相パターン 6 5に電流が流れ、 周方向に 山と谷を持つ磁束分布を作る。 その磁束が固定側のレゾルバ検出相パターン 5 6、 5 7に鎖交すると、 回転角に応じて振幅が変化する検出電圧を得ることが できる。 また α相のレゾルバ検出相パターン 5 6と 相のレゾルバ検出相パタ —ン 5 7が電気角で 9 0度の位相差をもって配置されているため、 その検出電 圧の振幅も電気角で 9 0度の位相差で変化し、 1相励磁 Z 2相出力形のレゾル バとして機能している。
本発明の第 1の実施例は、 回転トランス 2次側パターンとレゾルバ励磁相バタ ーンを両面に備えた回転子と、 回転子の軸方向両側に空隙を介して挟むように 回転トランス 1次側パターンとレゾルバ検出相パターンを備えた固定子を配置 するレゾルバを構成したので、 本発明に対して、 従来の回転トランスのパター ンをレゾルバのパターンの内側に設けたものと比較すると、 本発明の回転トラ ンスのパターンは、 従来と同じ外径の場合、 約 4倍の面積となる。 その結果、 ターン数が 1次側と 2次側を合わせて 8倍になり、 さらにパ一ミアンスの増加 によって回転トランスの 2次側が鎖交する磁束は格段に大きくなる.: すなわち、 所定の検出電圧を得る場合は、 本実施例の方が従 ¾に比べ大きく消費 ¾力を低 减すろことができるつ また、 回転卜ランスのパターンとレゾルバ検出相のパタ —ンが従来と違い同一面上にないため、 回転トランスによって発生した磁束は レゾルバ検出相パターンに全く鎖交することがない。 すなわち、 従来発生して いた残留電圧の問題が本発明によって解消され、 精度の良いシートコイル形レ ゾルバを得ることが出来る
[第 2の実施例]
次に、 本発明の第 2の実施例を説明する:
図 4は本発明の第 2の実施例を示すシ一トコィル形レゾルバのそれぞれ同一方 向から見たパターンの図であって、 (a ) は回転トランスの 1次側パターン、
( b ) は回転トランスの 2次側パターンである。 図中の実線はシートコイルの 表側のパターンであり、 点線は表側から透視した裏側のパターンを意味する。 また、 ( c ) は回転トランスの 1次側と 2次側が対向したときの各パターンの 最夕^の輪郭を図示したものである。
図において、 この第 2の実施例が第 1の実施例と異なるのは、 2次側バタ一 ンの最外径導体の半径 r 2が 1次側パターンの最外径導体の半径 r ,よりも大きく なっていることである。 このタ の差 r 2— ^は、 2次側バターンのパターン ピッチを λ 2とした場合、
0 < r ,- r L≤ 4 X λ
の関係にある。
なお、 このような条件としたのは、 シートコイル貼り付け時の芯ずれ量は、 組立の容易性を考慮したとしても ± 0 . 2 m m以下であり、 また、 パターンピ ツチは最小で 0 . 0 5 mm程度であるので、 4 Χ λ 2は最小で 0 . 2 mmであり、 r ,- r ,が 0 . 2 m mであるとすれば、 芯ずれ量が ± 0 . 2 mmであったとし ても 1次側パターンが 2次側パターンの外側にでることがないという理由から である
次に動作にっレ、て説明する:
図 5は、 回転子が固定子の中心に対して、 芯ずれを起こした際の回転トランス 1次側パターンと 2次側パターンの最外怪の輪郭を示す図であって、 ( a ) は 回転子が静止した場合、 ( b ) は回転子が 9 0度回転した場合、 ( c ) は回転 子が 1 8 0度回転した場合、 ( d ) は回転子が 2 7 0度回転した場合を示す のである。 このように構成されたシートコイル形レゾルバにおいて、 シートコ ィル貼り付け時の芯ずれが起こると、 回転子側シ一卜コイルが固定側シートコ ィルに対して芯回転が起き、 回転トランス 2次側バタ一ン 6 4は、 図 5 ( a ) 〜 (d ) に示すように、 回転卜ランス 1次側パターン 5 5上を回転する 1次 側パターン 5 5の最外径は 2次側パターン 6 4の最外径の内側に必ず入るので、 鎖交磁束の振幅変動が小さくなる。
本発明の第 2の実施例はこのような構成にしたので、 シ一トコイル貼り付け時 の芯ずれや回転子の芯回転、 芯ずれが起きても、 鎖交磁束の振幅の変動が小さ く、 角度誤差が大きくなることがない。
[第 3の実施例]
次に、 第 3の実施例について説明する 2
図 6は本発明の第 3の実施例を示すシ一トコイル形レゾルバのそれぞれ同一方 向から見たパターンの図であって、 (a ) はレゾルバ部検出相パターン、 (b ) はレゾルバ部の励磁相パターンである。 図中の実線はシ一トコイルの表側のパ ターンであり、 点線は表側から透視した裏側のパターンを意味する: また、 ( c ) はレゾルバ部の励磁相と検出相が対向したときの各パターンの最外径と最内径 の輪郭を図示したものである この第 3の実施例では、 軸倍角 3 X、 1相励磁 2相検出形のレゾルバの電気角 3 6 0 ° 分の渦巻パターンを例とする極対数 3 のレゾルバで説明する c
図において、 この第 3の実施例が第 1の実施例と異なるのは、 検出相パターン の最外径導体の半径]:。。が励磁相パターンの最外径導 の半径 r s。よりも大きく、 検出相パターンの最内径導 ί本の半径 r u iが励磁相パターンの最内径導体の半径 r 9 iより小さくなつていることである。 この半径の差 r a。一 r Η。と r 8 i— r rt iは、 検出相パターンのパターンピッチをえ„とした場合、
0 < r a0- r ,0 ≤4 X λ α
で、 カゝつ、
0 < r e - r a i ≤ 4 X λ ,t
の関係にある点である
次に動作につし、て説明すろ 図 7は、 回転子が固定子の中心に対して、 芯ずれを起こした際のレゾルバ検出 相パターンと励磁相パターンの最外径と最内径の輪郭を示す図であって、 ( a ) は回転子が静止した場合、 (b) は回転子が 90度回転した場合、 (c) は回 転子が 1 80度回転した場合、 (d) は回転子が 270度回転した場合を示す ものである。 このように構成されたシートコイル形レゾルバにおいて、 シート コイル貼り付け時の芯ずれが起こると、 回転子側シ一トコィルが固定側シート コイルに対して芯回転が起き、 レゾルバ励磁相パターン 65は図 7 (a) 〜 (d) に示すようにレゾルバ検出相パターン 56、 57上を回転する e 励磁相パター ン 65の最外径は検出相バタ一ン 56、 57の最外径の内側に必ず入り、 励磁 相パターン 65の最内径は検出相パターン 56、 57の最内径の外側に入るの で、 鎖交磁束の振幅変動が小さくなる 3
ここで、 軸倍角 3 Xのシートコイル形レゾルバにおける芯ずれ量 δと角度誤 差の関係を図 8に示す。 これは最小パターンピッチ 50 μ mにおいて、 r a0
Γ 90一 0ゝ i αθ― Γ Θ0―え αヽ で αθ一 Γ S0= 2 Xえ a、 Γ ο0― Γ θ0一。 え αゝ r α0- r β0=4 Xえ αの角度誤差を表したものである- 図からもわかるように、 従来技術の場合 ( r„。一 r ,0=0) は芯ずれ量 δが大きくなるにつれて極端に 角度誤差が増加した。 しカゝし、 本発明によれば芯ずれ量 δが 0. 2 mmあった としても r α0- r so=4 Xえ。、 かつ r e。 一 r α。=4 X λ a、 つまり検出相の 外側の半径を励磁相よりも 4ピッチ分大きくし、 検出相の内側の半径を励磁相 よりも 4ピッチ分小さくしておけば角度誤差は小さいままである 3 また、 軸倍 角 3 Xのレゾルバにおいて角度誤差は 5分以下であれば十分であるとすれば、 r tt0- r β0= 2 Xえ α、 かつ r β。 一 r aQ= 2 Xえ α、 つまり検出相の外側の半 径を励磁相よりも 2ピッチ分大きく し、 検出相の内側の半径を励磁相よりも 2 ピッチ分小さく しておけば良いことになる。
以上の実施例では、 シ一トコイルが大きくなるために小型化を目的とする場 合短所となるように見えるが、 大きくしたとしても最大で ±0. 2mmであり、 全体の大きさから見れば何ら問題になるほど大きくならないつ
また、 一方のパターンを大きくするためにターン数を多くするが、 これによ り抵抗増加による損失増加が懸念される: し力ゝし、 そのターン数の増加は本発 明によると 4本以下であり、 1個の渦巻パターンのタ一ン数に対する割合は最 大で 5 %である。 つまり、 レゾルバ全体の損失のうちで占める増加分としては 非常に小さく、 ほとんど問題になることはなレ、。
本発明の第 3の実施例はこのような構成にしたので、 第 2の実施例と同様にシ —トコイル貼り付け時の芯ずれや回転子の芯回転、 芯ずれが起きても、 鎖交磁 束の振幅の変動が小さく、 角度誤差が大きくなることがなレ、。
なお、 第 1の実施例において、 回転子もしくは固定子のバックヨークは、 図 1 では厚さを適当にとっている力;、 回転トランスゃレゾルバのパターンが作る磁 束は非常に小さいため、 これらのバックヨークの厚みを 2〜3 m m程度まで薄 くしても何ら問題となることはない。 また、 回転子の両面のパターンによって 作られる磁束は同様の理由で干渉することがない。
また、 第 2、 第 3の実施例では、 回転トランス部においては 2次側パターン の最外径導体の半径 r 2が 1次側パターンの最外径導体の半径 ょりも大きい場 合であり、 レゾルバ部にぉレ、ては検出相パターンの最^ 導 の^^ r a。が励磁 相パターンの最外径導体の半径 r fl。よりも大きく、 検出相パターンの最内径導体 の^ a iが励磁相パターンの最内径導体の r e iより小さい場合を示した力 各々大小関係は逆であっても差し支えないことは言うまでもない 3 また、 本実 施例では回転トランス部とレゾルバ部を別個に取り扱つたが、 どちらも一体と したシートコイルとして構成しても何ら差し支えない。
また、 上記実施例では軸倍角 2 Xと 3 Xの場合を説明したが、 他の軸倍角を用 いても良いことは言うまでもなく、 同じ効果が得られる。
[産業上の利用可能性]
本発明は、 F A機器や O A機器の分野でサーボモータの速度検出 ·位置検出 などに用いられるレゾルバに適用して、 検出電圧の低下を招く二となく小型化 できると共に、 シ一卜コイル貼り付け時に芯ずれが生じても鎖交磁束の振幅変 動を抑えることができる、 しかも角度誤差の小さい、 安価なシートコイル形レ ゾルバを提供する分野に利用できる

Claims

請求の範囲
1 . 円板状の回転子と、 前記回転子の軸方向に空隙を介して挟み込むように 配置された 2個の円板状の固定子が備えられ、
前記回転子は、 円板状の軟磁性体の両面に各々回転トランス 2次側パターンと レゾルノく励磁相パターンを形成した回転側シ一トコィルが貼り付けられ、 前記回転トランス 2次側パターンに対向する一方の前記固定子は、 円板状の軟 磁性体に回転トランス 1次側パターンを形成した固定側シ一トコィルが貼り付 けられ、
前記レゾルバ励磁相パターンに対向する他方の前記固定子は、 円板状の軟磁性 体にレゾルバ検出相パターンを形成した固定側シ一卜コィルが貼り付けられて いることを特徴とするシ一トコィル形レゾルバ:
2 . 前記回転側シートコイルは、 前記レゾルバ励磁相パターンを形成した円 板部と、 前記回転トランス 2次側パターンを形成した円板部と、 前記レゾルバ 励磁パターンと前記回転トランス 2次側パターンを接続する渡り線を形成した 直線部とが 1枚のシートで形成されていることを特徴とする請求項 1記載のシ —トコィル开 レゾ /レバ。
3 . 前記固定側シートコイルは、 前記レゾルバ検出相パターンを形成した円 板部と、 前記回転トランス 1次側パターンを形成した円板部と、 該 2つの円板 部を繋ぐ直線部とが 1枚のシ一トで形成されていることを特徴とする請求項 1 記載のシ一トコィル形レゾルバ。
4 . 円板部の両面に形成された前記回転トランス 2次側パターンは、 外側か ら内側に渦卷くパターンであって互レ、に直列接続されており、
円板部の両面に形成された前記レゾルバ励磁相パターンは、 両面とも周方向に Nを自然数とする 2 N個の渦巻くパターンが配置されるとともに、 表面と裏面 の渦卷きの中心が周方向の同じ位置に配置され、
4 N個の渦卷きが直列接続されて軸倍角 N Xとなってレ、ることを特徴とする請 求項 1または 2に記載のシートコィル形レゾ /レ/
5 . 円板部の両面に形成された前記回転トランス t次側ハターンは外側から 内側に渦巻くパターンであって互レ、に直列接続されており、 円板部の両面に形成された前記レゾルバ検出相バタ一ンは、 一方の面が α相、 他方の面が e相であって、 それぞれ周方向に 2 N個の渦巻くパターンが配置さ れるとともに、 α相と ]3相の渦卷きの中心位置が互いに周方向に 9 0 / Ν度ず れており、
2 Ν個の渦巻きがそれぞれ直列接続されて軸倍角 N Xとなっていることを特徴 とする請求項 1または 3に記載のシ一トコィル形レゾルバ。
6 . 前記回転トランス 2次側パターンの^ gと前記回転トランス 1次側パタ —ンの外径は、 何れか一方が他方に比べて大きく してあることを特徴とする請 求項 1から 5までの ί可れか 1項に記載のシ一トコィル形レゾルバ。
7 . 前記回転トランス 2次側パタ一ンのパターンピッチを λ 2、 前記回転卜ラ ンス 1次側パターンのパターンピッチをえ した場合、 前記回転トランス 2次 側バタ―ンの最外径導体の半径 r 2と前記回転トランス 1次側パタ一ンの最タ g 導体の半径 r tが、
0く τ ,- r t≤4 X λ 2
もしくは、
0 < r! - r ,≤ 4 X
であることを特徴とする請求項 1から 6までの何れか 1項に記載のシートコィ ル形レゾルバ。
8 . 前記レゾルバ励磁相パターンの外径が前記レゾルバ検出相パターンの外 径より大きく、 かつ前記レゾルバ励磁相パターンの内径が前記レゾルバ検出相 パターンの内径より小さレ、か、 若しくは、 前記検出相バタ一ンの外径が前記励 磁相パターンの外径より大きく、 かつ前記検出相パターンの内径が前記励磁相 パターンの内径より小さいことを特徴とする請求項 1カゝら 5までの何れか 1項 に記載のシ一トコィル形レゾルバ
9 . 前記レゾルバ励磁相バタ一ンのパターンピッチをえい 前記レゾルバ検出 相パターンのパターンピッチをえ aとし、 前記レゾルバ励磁相パターンの最外径 導 ί本の半径 r a。と前記回転トランス 1次側パターンの最外径導体の半径 r ,,。、 前 記レゾルバ励磁相バタ一ンの最内怪導体の半径 r tf Iと前記回転トランス 1次側パ ターンの最内径導 ί本の半径 r Λ 1が、 0< r α0- r θ0 ≤4 X Αα
で、 カゝっ
0 < r 9i- r ai ≤ 4 X λ α
もしくは、
0< r eo- ra0 ≤4Χλ9
で、 力つ
0< r ai - r fli ≤4 X λ θ
であることを特徴とする請求項 1、 2、 3、 4、 5、 8の何れか 1項に記載の シートコィル形レゾルバ。
PCT/JP1999/004542 1999-01-14 1999-08-23 Resolveur utilisant une bobine en couches WO2000042389A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/868,929 US6628038B1 (en) 1999-01-14 1999-08-23 Resolver using sheet coil
DE69930643T DE69930643T2 (de) 1999-01-14 1999-08-23 Impulsgeber mit flächiger spule
EP99938598A EP1152223B1 (en) 1999-01-14 1999-08-23 Resolver using sheet coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP00790799A JP4269330B2 (ja) 1998-03-10 1999-01-14 シートコイル形レゾルバ
JP11/7907 1999-01-14

Publications (1)

Publication Number Publication Date
WO2000042389A1 true WO2000042389A1 (fr) 2000-07-20

Family

ID=11678636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004542 WO2000042389A1 (fr) 1999-01-14 1999-08-23 Resolveur utilisant une bobine en couches

Country Status (6)

Country Link
US (1) US6628038B1 (ja)
EP (1) EP1152223B1 (ja)
KR (1) KR100611630B1 (ja)
CN (1) CN1153954C (ja)
DE (1) DE69930643T2 (ja)
WO (1) WO2000042389A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520632A (zh) * 2001-06-26 2004-08-11 �Ƚ�ת��ϵͳ���Ϲ�˾ 无刷直流电动机
JP4158858B2 (ja) * 2003-12-04 2008-10-01 多摩川精機株式会社 回転角度検出器
US20070296369A1 (en) * 2005-09-16 2007-12-27 Showway Yeh Thin linear, rotary, and step motor and electromagnet driver using printed coil board
JP4696209B2 (ja) * 2006-07-05 2011-06-08 多摩川精機株式会社 角度検出器
JP4816358B2 (ja) * 2006-09-19 2011-11-16 ダイキン工業株式会社 モータおよび圧縮機
CN101726241B (zh) * 2008-10-23 2012-01-25 鸿富锦精密工业(深圳)有限公司 角度传感器
JP5091905B2 (ja) * 2008-11-06 2012-12-05 愛三工業株式会社 レゾルバ付モータ構造
US8269487B2 (en) * 2008-11-11 2012-09-18 Aisan Kogyo Kabushiki Kaisha Sheet coil type resolver
US8310228B2 (en) * 2008-11-12 2012-11-13 Aisan Kogyo Kabushiki Kaisha Resolver
US10203225B2 (en) 2014-08-25 2019-02-12 Nsd Corporation Rotation detector
US9673684B2 (en) 2015-10-02 2017-06-06 E-Circuit Motors, Inc. Structures and methods for thermal management in printed circuit board stators
US11121614B2 (en) 2017-06-05 2021-09-14 E-Circuit Motors, Inc. Pre-warped rotors for control of magnet-stator gap in axial flux machines
US10170953B2 (en) 2015-10-02 2019-01-01 E-Circuit Motors, Inc. Planar composite structures and assemblies for axial flux motors and generators
US11527933B2 (en) 2015-10-02 2022-12-13 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
US9800109B2 (en) 2015-10-02 2017-10-24 E-Circuit Motors, Inc. Structures and methods for controlling losses in printed circuit boards
US9673688B2 (en) 2015-10-02 2017-06-06 E-Circuit Motors, Inc. Apparatus and method for forming a magnet assembly
US9859763B2 (en) 2015-10-02 2018-01-02 E-Circuit Motors, Inc. Structures and methods for controlling losses in printed circuit boards
DE102016202859B3 (de) * 2016-02-24 2017-06-29 Robert Bosch Gmbh Drehwinkelsensor
DE102016202867B3 (de) * 2016-02-24 2017-04-06 Robert Bosch Gmbh Drehwinkelsensor
DE102016202871B3 (de) * 2016-02-24 2017-06-29 Robert Bosch Gmbh Drehwinkelsensor
DE102016203234B4 (de) * 2016-02-29 2021-02-11 Robert Bosch Gmbh Drehwinkelsensor
JP6046873B1 (ja) * 2016-07-13 2016-12-21 株式会社 五十嵐電機製作所 回転角度検出装置、およびそれを備える回転角度検出装置付き電動モータ
DE102017222674A1 (de) * 2016-12-29 2018-07-05 Robert Bosch Gmbh Wegsensor
US11831211B2 (en) 2017-06-05 2023-11-28 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
US11005322B2 (en) 2017-06-05 2021-05-11 E-Circuit Motors, Inc. Rotor assemblies for axial flux machines
CN111095447B (zh) * 2018-03-15 2023-03-17 株式会社艾特慕 变压器用二次线圈元件及其制造方法
FR3100611B1 (fr) * 2019-09-09 2021-09-10 Safran Landing Systems Dispositif de mesure d’une position angulaire d’un corps mobile par rapport à un corps fixe
DE102019220393A1 (de) * 2019-12-20 2021-06-24 Infineon Technologies Ag Stator-package, rotor-package und induktiver winkelsensor
JP7314113B2 (ja) * 2020-12-11 2023-07-25 マブチモーター株式会社 レゾルバ
CA3209142A1 (en) 2021-02-17 2022-08-25 E-Circuit Motors, Inc. Planar stator configurations for axial flux machines
AU2022318884A1 (en) * 2021-07-30 2024-01-25 E-Circuit Motors, Inc. Magnetic material filled printed circuit boards and printed circuit board stators
US11336130B1 (en) 2021-08-17 2022-05-17 E-Circuit Motors, Inc. Low-loss planar winding configurations for an axial flux machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169715A (ja) * 1985-01-23 1986-07-31 Toyoda Mach Works Ltd レゾルバ
JPH08136211A (ja) * 1994-09-16 1996-05-31 Yaskawa Electric Corp 回転トランス形レゾルバ
JPH08292066A (ja) * 1995-04-21 1996-11-05 Yaskawa Electric Corp シートコイル型レゾルバ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE406642B (sv) * 1977-02-16 1979-02-19 Aga Ab Elektromekanisk legesgivare
US4668884A (en) * 1984-04-27 1987-05-26 Sanyo Electric Co Brushless motor
JP2649172B2 (ja) * 1988-06-11 1997-09-03 アスモ 株式会社 ディスク型モータのロータ
DE4012546A1 (de) * 1990-04-19 1991-10-24 Siemens Ag Drehmelder
JP3376496B2 (ja) * 1992-09-29 2003-02-10 ミネベア株式会社 プリントモータのロータ
JPH10503077A (ja) * 1994-06-15 1998-03-17 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ フラット電気モータ
JP3536375B2 (ja) 1994-09-08 2004-06-07 株式会社安川電機 シートコイル形レゾルバ
JP3642352B2 (ja) 1995-04-27 2005-04-27 株式会社安川電機 回転トランス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169715A (ja) * 1985-01-23 1986-07-31 Toyoda Mach Works Ltd レゾルバ
JPH08136211A (ja) * 1994-09-16 1996-05-31 Yaskawa Electric Corp 回転トランス形レゾルバ
JPH08292066A (ja) * 1995-04-21 1996-11-05 Yaskawa Electric Corp シートコイル型レゾルバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1152223A4 *

Also Published As

Publication number Publication date
EP1152223A4 (en) 2002-04-24
KR20010101517A (ko) 2001-11-14
US6628038B1 (en) 2003-09-30
DE69930643D1 (de) 2006-05-18
DE69930643T2 (de) 2006-08-17
EP1152223B1 (en) 2006-03-29
CN1153954C (zh) 2004-06-16
CN1339101A (zh) 2002-03-06
KR100611630B1 (ko) 2006-08-10
EP1152223A1 (en) 2001-11-07

Similar Documents

Publication Publication Date Title
WO2000042389A1 (fr) Resolveur utilisant une bobine en couches
US8415945B2 (en) Sheet coil type resolver
WO2007000952A1 (ja) 位置センサ
JPH04222447A (ja) 平坦な巻線を有するレゾルバー
JP3458916B2 (ja) 回転トランス形レゾルバ
US20100321007A1 (en) Sheet coil type resolver
US20120262158A1 (en) Angle detecting device
JP4269330B2 (ja) シートコイル形レゾルバ
JP3167679B2 (ja) ステータの巻回方法
JP3534206B2 (ja) シートコイル型レゾルバ
JP5182752B2 (ja) 角度検出装置及びその製造方法
JP5098087B2 (ja) 回転角度検出装置
US20010015588A1 (en) Multipolar resolver with variable magnetic coupling
JP4654368B2 (ja) レゾルバ及び角度検出装置
JP5342963B2 (ja) シートコイル型レゾルバ
JP4654366B2 (ja) レゾルバ及び角度検出装置
JP3642352B2 (ja) 回転トランス
JP7489563B1 (ja) レゾルバ及びサーボモータ
US6630763B1 (en) Solid core angular position resolver
JPH023239B2 (ja)
JPS6339450A (ja) ブラシレスモ−タ
JP2004101423A (ja) プリントレゾルバ
WO2022124415A1 (ja) レゾルバ
JP7270903B2 (ja) 平板型エンコーダ
US20230147074A1 (en) Rotary position sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99816478.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999938598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017008879

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09868929

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999938598

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017008879

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999938598

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017008879

Country of ref document: KR